JP2003132893A - Slurry composition for electrode, electrode, and lithium ion secondary battery - Google Patents
Slurry composition for electrode, electrode, and lithium ion secondary batteryInfo
- Publication number
- JP2003132893A JP2003132893A JP2001329072A JP2001329072A JP2003132893A JP 2003132893 A JP2003132893 A JP 2003132893A JP 2001329072 A JP2001329072 A JP 2001329072A JP 2001329072 A JP2001329072 A JP 2001329072A JP 2003132893 A JP2003132893 A JP 2003132893A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- polymer
- slurry composition
- active material
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電極用スラリー組成
物、それを用いて製造された電極および該電極を有する
リチウムイオン二次電池に関する。TECHNICAL FIELD The present invention relates to an electrode slurry composition, an electrode manufactured using the same, and a lithium ion secondary battery having the electrode.
【0002】[0002]
【従来の技術】近年、ノート型パソコンや携帯電話、P
DAなどの携帯端末の普及が著しい。そしてこれらの電
源には、リチウムイオン二次電池(以下、単に電池とい
うことがある)が多用されている。最近では、携帯端末
の使用時間の延長や充電時間の短縮などの要望が高ま
り、これに伴い電池の高性能化、特に高容量化と充電速
度(レート特性)の向上が強く求められている。2. Description of the Related Art In recent years, notebook computers, mobile phones, P
The spread of mobile terminals such as DAs is remarkable. A lithium-ion secondary battery (hereinafter sometimes simply referred to as a battery) is often used for these power sources. Recently, there has been an increasing demand for extending the usage time of mobile terminals and shortening the charging time, and accordingly, there has been a strong demand for higher performance of batteries, in particular, higher capacity and improved charging speed (rate characteristics).
【0003】リチウムイオン二次電池は、正極と負極と
をセパレーターを介して配置し、電解液とともに容器内
に収納した構造を有する。電極(正極および負極)は、
活物質と、必要に応じて導電付与剤などとを二次電池電
極用バインダーポリマー(以下、単にバインダーという
ことがある)によりアルミニウムや銅などの集電体に結
着させたものである。電極は、通常、バインダーを液状
媒体に溶解または分散させ、これに活物質などを混合し
て得られる二次電池電極用スラリー組成物を集電体に塗
布して、該液状媒体を乾燥などにより除去して、混合層
として結着させて形成される。A lithium-ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged with a separator interposed therebetween and is housed in a container together with an electrolytic solution. The electrodes (positive and negative) are
The active material and, if necessary, a conductivity-imparting agent are bound to a current collector such as aluminum or copper with a binder polymer for a secondary battery electrode (hereinafter may be simply referred to as a binder). An electrode is usually prepared by dissolving or dispersing a binder in a liquid medium, applying a slurry composition for a secondary battery electrode obtained by mixing the active material and the like to a current collector, and drying the liquid medium. It is formed by removing and binding as a mixed layer.
【0004】電池容量は、活物質の充填量に強く影響さ
れる。一方、レート特性は電子の移動の容易さに影響さ
れ、レート特性の向上にはカーボンなどの導電付与剤の
増量が効果的である。電池という限られた空間内で活物
質と導電付与剤を増量するには、バインダー量を低減す
る必要がある。しかしながら、バインダー量を少なくす
ると活物質の結着性が損なわれるという問題があった。
また、従来の電池はサイクル特性が劣り、繰り返し充放
電により電池容量が低下したり、レート特性が悪化する
という問題があった。これは、バインダーが電解液によ
り膨潤するため、結着性が次第に低下して集電体から活
物質が剥離したり、バインダーが集電体を覆って電子の
移動を妨げたりするためと考えられる。このように、こ
れまで、電池の高容量化とレート特性の向上とを両立さ
せることは困難であった。Battery capacity is strongly affected by the amount of active material charged. On the other hand, the rate characteristic is affected by the ease of movement of electrons, and increasing the amount of the conductivity-imparting agent such as carbon is effective for improving the rate characteristic. In order to increase the amount of the active material and the conductivity-imparting agent in the limited space of the battery, it is necessary to reduce the amount of binder. However, there is a problem that the binding property of the active material is impaired when the amount of the binder is reduced.
Further, the conventional battery has a problem that the cycle property is inferior, the battery capacity is reduced by repeated charging and discharging, and the rate property is deteriorated. It is considered that this is because the binder swells with the electrolytic solution, so that the binding property is gradually reduced and the active material is peeled from the current collector, or the binder covers the current collector and prevents the movement of electrons. . As described above, it has been difficult to achieve both high capacity and improved rate characteristics of the battery.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、電解
液に対する膨潤度が低く、かつ結着性が良好なバインダ
ーを含有する電極用スラリー組成物、および該スラリー
組成物を用いて製造される電極を提供することである。
また本発明の他の目的は、電池の高容量化とレート特性
の向上を達成したリチウムイオン二次電池を提供するこ
とである。SUMMARY OF THE INVENTION An object of the present invention is to provide a slurry composition for electrodes containing a binder having a low degree of swelling with respect to an electrolytic solution and having good binding properties, and a slurry composition prepared using the slurry composition. To provide an electrode.
Another object of the present invention is to provide a lithium ion secondary battery that achieves high capacity and improved rate characteristics of the battery.
【0006】[0006]
【課題を解決するための手段】本発明者らは、アクリロ
ニトリル単位またはメタクリロニトリル単位と、特定の
1−オレフィンまたは(メタ)アクリル酸エステル単位
を有する特定組成の共重合体からなるバインダーは、電
解液に対する膨潤度が低くかつ結着性が良好であること
を見出した。さらに、該重合体を含む電極用スラリー組
成物を用いて製造したリチウムイオン二次電池は高い電
池容量と良好な充放電サイクル特性およびレート特性を
示すことを見出し、これらの知見に基づいて本発明を完
成するに至った。DISCLOSURE OF THE INVENTION The present inventors have found that a binder composed of a copolymer having a specific composition having an acrylonitrile unit or a methacrylonitrile unit and a specific 1-olefin or (meth) acrylic acid ester unit is It was found that the degree of swelling in the electrolytic solution is low and the binding property is good. Furthermore, it was found that a lithium ion secondary battery produced by using an electrode slurry composition containing the polymer exhibits high battery capacity and good charge / discharge cycle characteristics and rate characteristics, and based on these findings, the present invention Has been completed.
【0007】かくして本発明によれば、第一に、アクリ
ロニトリルまたはメタクリロニトリル由来の繰り返し単
位含有量が60〜95モル%であり、炭素数2〜4の1
−オレフィンおよび一般式(1)で表される化合物
CH2=CR1−COOR2 (1)
(式中、R1は水素原子またはメチル基、R2は炭素数
3以下のアルキル基を示す。)から選ばれる少なくとも
1種の単量体由来の繰り返し単位含有量が5〜30モル
%であるポリマー(A)と、活物質と、ポリマー(A)
を溶解する液状媒体とを含有する電極用スラリー組成物
が提供される。このスラリー組成物は、さらにガラス転
移温度が−80〜0℃の、N−メチルピロリドン不溶分
含有量が50重量%以上であるポリマー(B)を含むこ
とが好ましい。第二に、上記の電極用スラリー組成物を
用いて製造された電極が提供される。第三に、上記の電
極を有するリチウムイオン二次電池が提供される。Thus, according to the present invention, firstly, the content of repeating units derived from acrylonitrile or methacrylonitrile is 60 to 95 mol%, and 1 to 2 to 4 carbon atoms is used.
- Compound CH 2 = CR 1 -COOR 2 ( 1) ( wherein represented by olefins and general formula (1), R 1 is a hydrogen atom or a methyl group, R 2 represents an alkyl group having 3 or less carbon atoms. A polymer (A) having a repeating unit content of 5 to 30 mol% derived from at least one monomer selected from (1), an active material, and a polymer (A).
There is provided a slurry composition for an electrode, which comprises a liquid medium which dissolves. This slurry composition preferably further contains a polymer (B) having a glass transition temperature of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more. Secondly, an electrode manufactured using the above slurry composition for electrodes is provided. Thirdly, a lithium ion secondary battery having the above electrode is provided.
【0008】[0008]
【発明の実施の形態】本発明の電極用スラリー組成物
は、アクリロニトリルまたはメタクリロニトリル由来の
繰り返し単位と、炭素数2〜4の1−オレフィンおよび
一般式(1)で表される化合物
CH2=CR1−COOR2 (1)
(式中、R1は水素原子またはメチル基、R2は炭素数
3以下のアルキル基を示す。)から選ばれる少なくとも
1種以上の単量体(以下、第2の単量体ということがあ
る。)由来の繰り返し単位を含有するポリマー(A)
と、活物質と、液状媒体とを含有する。BEST MODE FOR CARRYING OUT THE INVENTION The electrode slurry composition of the present invention comprises a repeating unit derived from acrylonitrile or methacrylonitrile, a 1-olefin having 2 to 4 carbon atoms, and a compound CH 2 represented by the general formula (1). = CR 1 -COOR 2 (1) (In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 3 or less carbon atoms.) At least one monomer (hereinafter, A polymer (A) containing a repeating unit derived from a second monomer.
And an active material and a liquid medium.
【0009】ポリマー(A)中のアクリロニトリルまた
はメタクリロニトリル由来の繰り返し単位含有量は、ポ
リマー(A)の全量に対して60〜95モル%、好まし
くは65〜90モル%である。アクリロニトリルまたは
メタクリロニトリル由来の繰り返し単位含有量が少なす
ぎると電解液に対する膨潤度が大きくなるため、結着持
続性が劣りサイクル特性が低下する。逆に、多すぎると
活物質の結着性が劣る。The content of repeating units derived from acrylonitrile or methacrylonitrile in the polymer (A) is 60 to 95 mol%, preferably 65 to 90 mol% based on the total amount of the polymer (A). If the content of repeating units derived from acrylonitrile or methacrylonitrile is too small, the degree of swelling with respect to the electrolytic solution becomes large, resulting in poor binding durability and poor cycle characteristics. On the other hand, if the amount is too large, the binding property of the active material is poor.
【0010】ポリマー(A)中の、第2の単量体由来の
繰り返し単位の含有量は5〜30モル%、好ましくは1
0〜25モル%である。第2の単量体由来の繰り返し単
位の含有量が少なすぎると活物質の結着性が劣るととも
に、スラリー組成物を集電体へ塗布する際に均一に塗布
することが困難になる。逆に、過度に多い場合でも、か
えって活物質の結着性は低下する。さらに、電解液に対
する膨潤度も大きくなる傾向がある。The content of the repeating unit derived from the second monomer in the polymer (A) is 5 to 30 mol%, preferably 1
It is 0 to 25 mol%. When the content of the repeating unit derived from the second monomer is too small, the binding property of the active material is deteriorated, and it becomes difficult to uniformly apply the slurry composition to the current collector. On the contrary, even if it is excessively large, the binding property of the active material is rather deteriorated. Further, the degree of swelling in the electrolytic solution tends to increase.
【0011】ポリマー(A)の製法は特に限定されな
い。例えば、アクリロニトリルまたはメタクリロニトリ
ルと第2の単量体を、乳化重合法、懸濁重合法、分散重
合法、溶液重合法または塊状重合法などの公知の重合法
により共重合して得ることができる。第2の単量体とし
て用いられる炭素数2〜4の1−オレフィンとしては、
エチレン、プロピレン、1−ブテンが挙げられ、中で
も、エチレンが好ましい。前記一般式(1)で表される
化合物としては、アクリル酸メチル、アクリル酸エチ
ル、アクリル酸プロピル、アクリル酸イソプロピルなど
のアクリル酸アルキルエステル類;メタクリル酸メチ
ル、メタクリル酸エチル、メタクリル酸プロピル、メタ
クリル酸イソプロピルなどのメタクリル酸アルキルエス
テル類;が挙げられ、中でも、アクリル酸メチル、メタ
クリル酸メチルが好ましい。The method for producing the polymer (A) is not particularly limited. For example, it can be obtained by copolymerizing acrylonitrile or methacrylonitrile and a second monomer by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a solution polymerization method or a bulk polymerization method. it can. As the 1-olefin having 2 to 4 carbon atoms used as the second monomer,
Examples thereof include ethylene, propylene, and 1-butene, and among them, ethylene is preferable. Examples of the compound represented by the general formula (1) include alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate and isopropyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate and methacrylic acid. Methacrylic acid alkyl esters such as isopropyl acid; and the like, of which methyl acrylate and methyl methacrylate are preferable.
【0012】また、例えば、ブタジエンなどの共役ジエ
ン類を原料単量体の一部として用いて得られた重合体を
水素化することにより第2の単量体単位由来の構造を有
するようにしてもよい。共役ジエンとしては、1,3−
ブタジエン、2−メチル−1,3−ブタジエン(イソプ
レン)、2、3−ジメチル−1,3−ブタジエン、1,
3−ペンタジエンなどが挙げられる。これら第2の単量
体単位由来の構造を形成し得る単量体は、単独で用いて
もよく、また2種以上を併用してもよい。Further, for example, a polymer obtained by using a conjugated diene such as butadiene as a part of a raw material monomer is hydrogenated to have a structure derived from the second monomer unit. Good. As the conjugated diene, 1,3-
Butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,
Examples include 3-pentadiene. These monomers capable of forming a structure derived from the second monomer unit may be used alone or in combination of two or more kinds.
【0013】ポリマー(A)は、本発明のスラリー組成
物に用いる液状媒体に溶解するものであれば、その他の
共重合可能な単量体由来の単位を含有していてもよい。
上記共重合可能な単量体としては、例えば、アクリル酸
n−ブチル、アクリル酸イソブチル、アクリル酸n−ア
ミル、アクリル酸イソアミル、アクリル酸n−ヘキシ
ル、アクリル酸2−エチルヘキシル、アクリル酸ヒドロ
キシプロピル、アクリル酸ラウリルなどのアクリル酸エ
ステル;メタクリル酸n−ブチル、メタクリル酸イソブ
チル、メタクリル酸n−アミル、メタクリル酸イソアミ
ル、メタクリル酸n−ヘキシル、メタクリル酸2−エチ
ルヘキシル、メタクリル酸ヒドロキシプロピル、メタク
リル酸ラウリルなどのメタクリル酸エステル;The polymer (A) may contain units derived from other copolymerizable monomers as long as it is soluble in the liquid medium used in the slurry composition of the present invention.
Examples of the copolymerizable monomer include n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, hydroxypropyl acrylate, and the like. Acrylic esters such as lauryl acrylate; n-butyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, hydroxypropyl methacrylate, lauryl methacrylate, etc. Methacrylic acid ester of
【0014】クロトン酸メチル、クロトン酸エチル、ク
ロトン酸プロピル、クロトン酸ブチル、クロトン酸イソ
ブチル、クロトン酸n−アミル、クロトン酸イソアミ
ル、クロトン酸n−ヘキシル、クロトン酸2−エチルヘ
キシル、クロトン酸ヒドロキシプロピルなどのクロトン
酸エステル;メタクリル酸ジメチルアミノエチル、メタ
クリル酸ジエチルアミノエチルなどのアミノ基含有メタ
クリル酸エステル;メトキシポリエチレングリコールモ
ノメタクリレートなどのアルコキシ基含有メタクリル酸
エステル;アルキル基にリン酸残基、スルホン酸残基、
ホウ酸残基などを有するアクリル酸エステルまたはメタ
クリル酸エステル;アクリル酸、メタクリル酸、クロト
ン酸、イソクロトン酸などのエチレン性不飽和モノカル
ボン酸;マレイン酸、フマル酸、シトラコン酸、メサコ
ン酸、グルタコン酸、イタコン酸などの不飽和ジカルボ
ン酸およびその酸無水物;が挙げられる。これらの単量
体は2種以上併用してもよく、これらの単量体単位の含
有量の合計は35モル%以下、好ましくは20モル%以
下である。Methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, isobutyl crotonate, n-amyl crotonate, isoamyl crotonate, n-hexyl crotonate, 2-ethylhexyl crotonate, hydroxypropyl crotonate, etc. Crotonic acid esters; amino group-containing methacrylic acid esters such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate; alkoxy group-containing methacrylic acid esters such as methoxy polyethylene glycol monomethacrylate; phosphoric acid residues and sulfonic acid residues in alkyl groups ,
Acrylic acid ester or methacrylic acid ester having a boric acid residue or the like; ethylenically unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid; maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid , Unsaturated dicarboxylic acids such as itaconic acid and acid anhydrides thereof. Two or more of these monomers may be used in combination, and the total content of these monomer units is 35 mol% or less, preferably 20 mol% or less.
【0015】本発明の電極用スラリー組成物において、
ポリマー(A)は単独でバインダーとして用いることが
できるが、他のポリマーと併用してもよい。中でも、ガ
ラス転移温度(Tg)が−80〜0℃でN−メチルピロ
リドン不溶分が50重量%以上であるポリマー(B)と
併用することが好ましい。ポリマー(A)とポリマー
(B)の量の割合は特に限定されないが、(ポリマー
(A)の量):(ポリマー(B)の量)の比が通常1:
10〜10:1、好ましくは1:5〜5:1、より好ま
しくは1:3〜3:1である。ポリマー(B)を併用す
ることにより、結着性とレート特性のバランスをさらに
向上させることができる。また、電極の柔軟性が増し、
活物質の剥離を防止することができる。In the electrode slurry composition of the present invention,
The polymer (A) can be used alone as a binder, but may be used in combination with another polymer. Above all, it is preferably used in combination with the polymer (B) having a glass transition temperature (Tg) of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more. The ratio of the amounts of polymer (A) and polymer (B) is not particularly limited, but the ratio of (amount of polymer (A)) :( amount of polymer (B)) is usually 1:
It is 10 to 10: 1, preferably 1: 5 to 5: 1, more preferably 1: 3 to 3: 1. By using the polymer (B) together, the balance between the binding property and the rate property can be further improved. Also, the flexibility of the electrode increases,
It is possible to prevent peeling of the active material.
【0016】ポリマー(B)のTgは、−80〜0℃、
好ましくは−60〜−5℃、より好ましくは−50〜−
10℃である。Tgが高すぎると、電極の柔軟性が低下
し、充放電を繰り返した際に活物質の集電体からの剥離
が起きやすくなる。また、Tgが低すぎると電池容量の
低下を招く場合がある。The Tg of the polymer (B) is -80 to 0 ° C,
Preferably -60 to -5 ° C, more preferably -50 to-.
It is 10 ° C. If the Tg is too high, the flexibility of the electrode is reduced, and the active material is likely to peel from the current collector when charging and discharging are repeated. If Tg is too low, the battery capacity may decrease.
【0017】ポリマー(B)は電極用スラリー組成物に
用いられる液状媒体や電解液に溶解しにくいものである
ことが好ましい。汎用される液状媒体であるN−メチル
ピロリドン(NMP)に対するポリマー(B)の不溶分
は、50重量%以上、好ましくは60重量%以上、より
好ましくは70重量%以上である。NMP不溶分量が過
度に小さいと活物質の結着持続性が低下する場合があ
る。The polymer (B) is preferably one which is difficult to dissolve in the liquid medium or the electrolytic solution used in the electrode slurry composition. The insoluble content of the polymer (B) in N-methylpyrrolidone (NMP), which is a commonly used liquid medium, is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more. If the NMP insoluble content is too small, the binding durability of the active material may decrease.
【0018】ポリマー(B)が液状媒体や電解液に溶解
しにくい性質を発現するためには、架橋構造を有するこ
とが好ましい。架橋構造を有するポリマーは、例えば、
その重合の際に、原料の一部に多官能エチレン性不飽和
単量体を用いて重合することで得られる。多官能エチレ
ン性不飽和単量体の使用量は、使用する全単量体量に対
する割合が、好ましくは0.3〜5重量%、より好まし
くは0.5〜3重量%である。In order for the polymer (B) to exhibit the property of being hardly dissolved in a liquid medium or an electrolytic solution, it preferably has a crosslinked structure. The polymer having a crosslinked structure is, for example,
It can be obtained by using a polyfunctional ethylenically unsaturated monomer as a part of the raw material during the polymerization. The amount of the polyfunctional ethylenically unsaturated monomer used is preferably 0.3 to 5% by weight, more preferably 0.5 to 3% by weight, based on the total amount of the monomers used.
【0019】多官能エチレン性不飽和単量体の例として
は、ジビニルベンゼンなどのジビニル化合物;エチレン
ジグリコールジメタクリレート、ジエチレングリコール
ジメタクリレート、エチレングリコールジメタクリレー
トなどのジメタクリル酸エステル類;トリメチロールプ
ロパントリメタクリレートなどのトリメタクリル酸エス
テル類;ポリエチレングリコールジアクリレート、1,
3−ブチレングリコールジアクリレートなどのジアクリ
ル酸エステル類;トリメチロールプロパントリアクリレ
ートなどのトリアクリル酸エステル類;が挙げられる。
また、ブタジエン、イソプレンなどの共役ジエン化合物
を共重合させたポリマーを用いる場合は、重合温度、重
合転化率および分子量調整剤の量などの重合反応条件を
適宜調整することにより架橋ポリマーとすることができ
る。Examples of polyfunctional ethylenically unsaturated monomers are divinyl compounds such as divinylbenzene; dimethacrylic acid esters such as ethylene diglycol dimethacrylate, diethylene glycol dimethacrylate, and ethylene glycol dimethacrylate; trimethylolpropane tri. Trimethacrylates such as methacrylate; polyethylene glycol diacrylate, 1,
And diacrylic acid esters such as 3-butylene glycol diacrylate; triacrylic acid esters such as trimethylolpropane triacrylate.
When a polymer obtained by copolymerizing a conjugated diene compound such as butadiene or isoprene is used, a crosslinked polymer may be obtained by appropriately adjusting the polymerization reaction conditions such as the polymerization temperature, the polymerization conversion rate and the amount of the molecular weight modifier. it can.
【0020】ポリマー(B)として好ましく用いること
ができるものとしては、例えば、アクリル酸2−エチル
ヘキシル−メタクリル酸−メタクリロニトリル−ジエチ
レングリコールジメタクリレート共重合体、アクリル酸
ブチル−アクリロニトリル−ジエチレングリコールジメ
タクリレート共重合体、アクリル酸ブチル−アクリル酸
−トリメチロールプロパントリメタクリレート共重合体
などのアクリルゴム、アクリロニトリル−ブタジエンゴ
ム、ブタジエンゴム、メタクリル酸メチル−ブタジエン
ゴムなどのゴム質重合体が挙げられる。中でも、アクリ
ルゴム、アクリロニトリル−ブタジエンゴムが特に好ま
しい。The polymer (B) that can be preferably used is, for example, 2-ethylhexyl acrylate-methacrylic acid-methacrylonitrile-diethylene glycol dimethacrylate copolymer, butyl acrylate-acrylonitrile-diethylene glycol dimethacrylate copolymer. Examples thereof include acrylic rubbers such as coalesced butyl acrylate-acrylic acid-trimethylolpropane trimethacrylate copolymers, and rubbery polymers such as acrylonitrile-butadiene rubber, butadiene rubber, and methyl methacrylate-butadiene rubber. Among them, acrylic rubber and acrylonitrile-butadiene rubber are particularly preferable.
【0021】ポリマー(B)の製法は特に限定されな
い。例えば、上記した各単量体成分を、乳化重合法、懸
濁重合法、分散重合法または溶液重合法などの公知の重
合法により重合して得ることができる。中でも乳化重合
法が、液状媒体に分散したときの粒子径および粒子形状
が良好なので好ましい。The method for producing the polymer (B) is not particularly limited. For example, each of the above-mentioned monomer components can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method. Among them, the emulsion polymerization method is preferable because it has a good particle size and particle shape when dispersed in a liquid medium.
【0022】またポリマー(B)以外のポリマーとし
て、アクリル酸エチル−スチレン−ジエチレングリコー
ルジメタクリレート共重合体やアクリル酸2−エチルヘ
キシル−メタクリル酸−スチレン共重合体などのスチレ
ン単位を有するポリマー;ポリフッ化ビニリデンやポリ
テトラフルオロエチレンなどの含フッ素ポリマー;など
をポリマー(A)と併用してもよい。As a polymer other than the polymer (B), a polymer having a styrene unit such as an ethyl acrylate-styrene-diethylene glycol dimethacrylate copolymer or a 2-ethylhexyl acrylate-methacrylic acid-styrene copolymer; polyvinylidene fluoride Or a fluorine-containing polymer such as polytetrafluoroethylene; and the like may be used in combination with the polymer (A).
【0023】本発明のスラリー組成物に用いられる活物
質は、電池やキャパシタの種類により適宜選択される。
リチウムイオン二次電池に用いる場合、活物質は、通常
のリチウムイオン二次電池で使用されるものであれば、
いずれであっても用いることができる。正極活物質とし
ては、例えば、LiCoO2、LiNiO2、LiMn
O2、LiMn 2O4などのリチウム含有複合金属酸化
物;TiS2、TiS3、非晶質MoS 3などの遷移金
属硫化物;Cu2V2O3、非晶質V2O−P2O5、
MoO3、V2O5、V6O13などの遷移金属酸化
物;が例示される。さらに、ポリアセチレン、ポリ−p
−フェニレンなどの導電性高分子を用いることもでき
る。Active material used in the slurry composition of the present invention
The quality is appropriately selected depending on the type of battery or capacitor.
When used in a lithium-ion secondary battery, the active material is usually
If it is used in the lithium ion secondary battery of
Either can be used. As a positive electrode active material
For example, LiCoOTwo, LiNiOTwo, LiMn
OTwo, LiMn TwoOFourLithium-containing composite metal oxidation such as
Thing; TiSTwo, TiSThree, Amorphous MoS ThreeTransition money such as
Genus sulfide; CuTwoVTwoOThree, Amorphous VTwoOPTwoO5,
MoOThree, VTwoO5, V6OThirteenTransition metal oxidation such as
Thing; is illustrated. Furthermore, polyacetylene, poly-p
-A conductive polymer such as phenylene can also be used.
It
【0024】また、負極活物質としては、例えば、アモ
ルファスカーボン、グラファイト、天然黒鉛、メゾカー
ボンマイクロビーズ(MCMB)、ピッチ系炭素繊維な
どの炭素質材料、ポリアセン等の導電性高分子などが挙
げられる。活物質の形状や大きさについては特に制限は
なく、機械的改質法により表面に導電付与剤を付着させ
たものも使用できる。Examples of the negative electrode active material include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene. . The shape and size of the active material are not particularly limited, and those having a conductivity-imparting agent attached to the surface by a mechanical modification method can also be used.
【0025】電気化学キャパシタに用いる場合、活物質
は、通常の電気化学キャパシタで使用されるものであれ
ば、いずれも用いることができる。正極および負極の活
物質としては、例えば、活性炭が挙げられる。When used in an electrochemical capacitor, any active material may be used as long as it is used in a usual electrochemical capacitor. Examples of the active material for the positive electrode and the negative electrode include activated carbon.
【0026】活物質の量は特に制限されないが、全ポリ
マー量に対して重量基準で好ましくは20〜1000
倍、より好ましくは30〜500倍、特に好ましくは4
0〜200倍になるように配合する。活物質量が過度に
少ないと、集電体に形成された活物質層に不活性な部分
が多くなり、電極としての機能が不十分になることがあ
る。また、活物質量が過度に多いと活物質が集電体に十
分固定されず脱落しやすくなる。The amount of the active material is not particularly limited, but it is preferably 20 to 1000 by weight based on the total amount of polymer.
Times, more preferably 30 to 500 times, particularly preferably 4 times.
It is blended so as to be 0 to 200 times. When the amount of the active material is excessively small, the active material layer formed on the current collector has many inactive portions, and the function as the electrode may be insufficient. Further, when the amount of the active material is excessively large, the active material is not sufficiently fixed to the current collector and is likely to fall off.
【0027】本発明の電極用スラリー組成物に用いる液
状媒体は、ポリマー(A)を溶解するものであれば特に
制限されないが、ポリマー(B)を併用する場合には、
ポリマー(B)が溶解しないものが好ましい。具体的に
は、N−メチルピロリドン、N,N−ジメチルアセトア
ミド、ジメチルホルムアミドなどのアミド類が挙げられ
る。中でもN−メチルピロリドンが、集電体への塗布性
やポリマー(B)の分散性が良好なので特に好ましい。The liquid medium used for the electrode slurry composition of the present invention is not particularly limited as long as it dissolves the polymer (A), but when the polymer (B) is used in combination,
It is preferable that the polymer (B) is not dissolved. Specific examples thereof include amides such as N-methylpyrrolidone, N, N-dimethylacetamide, and dimethylformamide. Among them, N-methylpyrrolidone is particularly preferable because it has good coatability on the current collector and dispersibility of the polymer (B).
【0028】本発明のスラリー組成物をリチウムイオン
二次電池の正極に用いる場合は、導電付与剤を配合する
ことが好ましい。導電付与剤としては、アセチレンブラ
ック、ケッチェンブラック、グラファイト、導電性ポリ
マー、金属粉末などが挙げられる。導電付与剤の使用量
は、正極活物質100重量部あたり、通常、1〜10重
量部、好ましくは2〜7重量部である。When the slurry composition of the present invention is used for the positive electrode of a lithium ion secondary battery, it is preferable to add a conductivity imparting agent. Examples of the conductivity imparting agent include acetylene black, Ketjen black, graphite, conductive polymers, and metal powders. The amount of the conductivity imparting agent used is usually 1 to 10 parts by weight, preferably 2 to 7 parts by weight, per 100 parts by weight of the positive electrode active material.
【0029】上記のスラリー組成物には、その他必要に
応じて粘度調整剤、流動化剤などを添加してもよい。If necessary, a viscosity modifier, a fluidizing agent, etc. may be added to the above slurry composition.
【0030】本発明の電極用スラリー組成物は、前記各
成分を混合して製造される。混合方法および混合順序は
特に限定されない。例えば、ポリマー(B)を液状媒体
に分散させた分散液にポリマー(A)と活物質と導電付
与剤を加え、混合機により混合して製造できる。混合機
としては、ボールミル、サンドミル、顔料分散機、らい
潰機、超音波分散機、ホモジナイザー、プラネタリーミ
キサーなどを用いることができる。The electrode slurry composition of the present invention is produced by mixing the above components. The mixing method and mixing order are not particularly limited. For example, it can be produced by adding the polymer (A), the active material and the conductivity-imparting agent to a dispersion liquid in which the polymer (B) is dispersed in a liquid medium, and mixing them with a mixer. As the mixer, a ball mill, a sand mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or the like can be used.
【0031】本発明の電極は、上記のスラリー組成物を
用いて製造される。電極の製造法としては、例えば、上
記のスラリー組成物を金属箔などの集電体に塗布し、乾
燥して形成される。電極には、活物質が集電体表面に形
成されたマトリックス中に分散して固定される。The electrode of the present invention is manufactured using the above slurry composition. As an electrode manufacturing method, for example, the above slurry composition is applied to a current collector such as a metal foil and dried to form the electrode. The active material is dispersed and fixed to the electrodes in a matrix formed on the surface of the current collector.
【0032】集電体としては、導電性材料からなるもの
であれば特に制限されないが、通常、鉄、銅、アルミニ
ウム、ニッケル、ステンレスなどの金属製のものが用い
られる。形状も特に制限されないが、厚さ0.001〜
0.5mmのシート状のものが好ましい。The current collector is not particularly limited as long as it is made of a conductive material, but usually metal such as iron, copper, aluminum, nickel and stainless is used. The shape is not particularly limited, but the thickness is 0.001 to 0.001.
A 0.5 mm sheet is preferable.
【0033】スラリー組成物の集電体への塗布方法も特
に制限されない。例えば、ドクターブレード法、ディッ
プ法、リバースロール法、ダイレクトロール法、グラビ
ア法、エクストルージョン法、ハケ塗りなどによって塗
布される。塗布する量も特に制限されないが、乾燥した
後に形成される活物質を含む混合層の厚さが通常0.0
05〜5mm、好ましくは0.01〜2mmとなるよう
に調整される。The method of applying the slurry composition to the current collector is not particularly limited. For example, it is applied by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating or the like. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material formed after drying is usually 0.0
It is adjusted to be 05 to 5 mm, preferably 0.01 to 2 mm.
【0034】乾燥方法も特に制限されず、例えば温風、
熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電
子線などの照射による乾燥が挙げられる。乾燥条件は、
応力集中が起こって活物質層に亀裂が入ったり、活物質
層が集電体から剥離しない程度の速度範囲の中で、でき
るだけ早く液状媒体が除去できるように調整する。更
に、乾燥後の集電体をプレスすることにより電極を安定
させてもよい。プレス方法は、金型プレスやロールプレ
スなどの方法が挙げられる。The drying method is not particularly limited, and for example, warm air,
Examples of the method include drying with hot air or low humidity air, vacuum drying, and drying with irradiation with (far) infrared rays or electron beams. The drying conditions are
Adjustment is made so that the liquid medium can be removed as soon as possible within a speed range where stress concentration causes cracks in the active material layer and the active material layer does not separate from the current collector. Furthermore, the electrode may be stabilized by pressing the current collector after drying. Examples of the pressing method include a die pressing method and a roll pressing method.
【0035】本発明のリチウムイオン二次電池は、上記
の電極を有する。上記の電極は正極または負極のいずれ
か一方に用いてもよいし、両方に用いてもよいが、特に
正極に用いることが好ましい。リチウムイオン二次電池
は、電極や、後述する電解液を含み、必要に応じてセパ
レーター等の部品を用いて、常法に従って製造される。
製造方法の具体例としては、まず、正極と負極とをセパ
レータを介して重ね合わせ、電池形状に応じて巻く、折
るなどして、電池容器に入れ、電解液を注入して封口板
を用いて封口する。また必要に応じてエキスパンドメタ
ルや、ヒューズ、PTC素子などの過電流防止素子、リ
ード板などを入れ、電池内部の圧力上昇、過充放電の防
止をする事もできる。電池の形状は、コイン型、ボタン
型、シート型、円筒型、角形、扁平型などいずれであっ
てもよい。The lithium ion secondary battery of the present invention has the above electrode. The above electrode may be used for either one of the positive electrode and the negative electrode, or may be used for both, but it is particularly preferably used for the positive electrode. The lithium ion secondary battery includes an electrode and an electrolytic solution described later, and is manufactured according to a conventional method using components such as a separator as necessary.
As a specific example of the manufacturing method, first, a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and the positive electrode and the negative electrode are wound according to the shape of the battery, folded, or the like, placed in a battery container, and an electrolytic solution is injected to use a sealing plate. Seal. Further, if necessary, an expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, etc. may be inserted to prevent a pressure increase in the battery and an overcharge / discharge. The shape of the battery may be any of coin type, button type, sheet type, cylindrical type, prismatic type, flat type and the like.
【0036】電解液は、リチウムイオン二次電池用に通
常用いられるものであれば特に限定されず、負極活物
質、正極活物質の種類に応じて電池としての機能を発揮
するものを選択すればよい。例えば、電解質を溶媒に溶
解した液状の電解液や、さらに溶媒により膨潤するポリ
マーをゲル化剤として添加したゲル状の電解液を用いる
ことができる。電解質としては、例えば、公知のリチウ
ム塩がいずれも使用でき、LiClO 4、LiBF4、
LiPF6、LiCF3SO3、LiCF3CO2、L
iAsF6、LiSbF6、LiB10Cl10、Li
AlCl4、LiCl、LiBr、LiB(C2H5)
4、CF3SO3Li、CH3SO3Li、LiCF3
SO3、LiC4F9SO3、Li(CF3SO2)2
N、低級脂肪酸カルボン酸リチウムなどが挙げられる。The electrolyte solution is used for lithium ion secondary batteries.
There is no particular limitation as long as it is a commonly used one, and the negative electrode active material
Functions as a battery depending on the quality and type of positive electrode active material
Just choose what you want to do. For example, dissolve the electrolyte in a solvent
Dissolved liquid electrolyte or poly swellable by solvent
Use a gel-type electrolytic solution with mer added as a gelling agent
be able to. As the electrolyte, for example, known lithium
You can use any of these salts, LiClO Four, LiBFFour,
LiPF6, LiCFThreeSOThree, LiCFThreeCOTwo, L
iAsF6, LiSbF6, LiB10Cl10, Li
AlClFour, LiCl, LiBr, LiB (CTwoH5)
Four, CFThreeSOThreeLi, CHThreeSOThreeLi, LiCFThree
SOThree, LiCFourF9SOThree, Li (CFThreeSOTwo)Two
N, lower fatty acid carboxylate lithium, etc. may be mentioned.
【0037】電解質を溶解させる溶媒は通常用いられる
ものであれば特に限定されず、プロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、ジプロピ
ルカーボネート、メチルエチルカーボネートなどのカー
ボネート類;γ−ブチルラクトンなどのラクトン類;ト
リメトキシメタン、1,2−ジメトキシエタン、ジエチ
ルエーテル、2−エトキシエタン、テトラヒドロフラ
ン、2−メチルテトラヒドロフランなどのエーテル類;
ジメチルスルホキシドなどのスルホキシド類;1,3−
ジオキソラン、4―メチル−1,3―ジオキソランなど
のオキソラン類;アセトニトリルやニトロメタンなどの
含窒素化合物;ギ酸メチル、酢酸メチル、酢酸エチル、
酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル
などの有機酸エステル類;リン酸トリエステルなどの無
機酸エステル類;ジグライム類;トリグライム類;スル
ホラン類;3−メチル−2−オキサゾリジノンなどのオ
キサゾリジノン類;1,3−プロパンスルトン、1,4
−ブタンスルトン、ナフタスルトンなどのスルトン類;
などが使用でき、中でもカーボネート類が好ましい。こ
れらの溶媒は単独で用いても二種以上の混合溶媒として
用いてもよい。ゲル状の電解質を用いるときは、ニトリ
ル系重合体、アクリル系重合体、フッ素系重合体、アル
キレンオキサイド重合体などのゲル化剤を加えることが
できる。The solvent for dissolving the electrolyte is not particularly limited as long as it is usually used, and carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and methyl ethyl carbonate; γ- Lactones such as butyl lactone; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran;
Sulfoxides such as dimethyl sulfoxide; 1,3-
Oxolanes such as dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; methyl formate, methyl acetate, ethyl acetate,
Organic acid esters such as butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as phosphoric acid triesters; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; 1 , 3-Propane sultone, 1,4
-Sultones such as butane sultone, naphthal sultone;
Etc. can be used, and carbonates are preferable. These solvents may be used alone or as a mixed solvent of two or more kinds. When using a gel electrolyte, a gelling agent such as a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer can be added.
【0038】[0038]
【実施例】以下に、実施例を挙げて本発明を説明する
が、本発明はこれに限定されるものではない。なお、本
実施例における部および%は、特に断りがない限り重量
基準である。実施例および比較例中の試験および評価は
以下の方法で行った。
(1)電解液溶媒膨潤度
ポリマーの電解液溶媒に対する膨潤度は、ポリマー0.
2gをN−メチルピロリドン(NMP)10ミリリット
ルに溶解させた液をポリテトラフロオロエチレン製シー
トにキャストして乾燥して得たキャストフィルム4cm
2の重量を測定した後、エチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネートの5種の溶媒を
容量で1:1:1:1:1に混合した混合溶剤中に温度
60℃にて72時間浸漬し、引き上げてタオルペーパー
で拭きとってすぐに重量を測定し、(浸漬後重量)/
(浸漬前重量)の値を電解液溶媒膨潤度とした。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. The parts and% in the examples are based on weight unless otherwise specified. The tests and evaluations in Examples and Comparative Examples were carried out by the following methods. (1) Electrolytic solution solvent swelling degree The swelling degree of the polymer in the electrolytic solution solvent is 0.
Cast film 4 cm obtained by casting a liquid obtained by dissolving 2 g in 10 ml of N-methylpyrrolidone (NMP) on a sheet made of polytetrafluoroethylene and drying the sheet.
After the weight of 2 was measured, it was mixed with 5 kinds of solvents of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate in a volume ratio of 1: 1: 1: 1: 1 at a temperature of 60 ° C. Immerse at 72 hours, and pull up and wipe with towel paper to measure the weight immediately (weight after immersion) /
The value of (weight before immersion) was defined as the electrolytic solution solvent swelling degree.
【0039】(2)NMP不溶分量
ポリマーのNMP不溶分量は、ポリマー0.2gをNM
P20ミリリットルに室温で24時間浸漬した後、80
メッシュの篩で濾過し、篩上の成分を乾燥して求めた重
量の、元のポリマー重量に対する百分率で示す。
(3)ガラス転移温度(Tg)
ポリマーのTgは、示差走査型熱量計(DSC)によ
り、10℃/分で昇温して測定した。(2) NMP insoluble content The NMP insoluble content of the polymer is 0.2 g of the polymer.
After soaking in 20 ml of P at room temperature for 24 hours,
The weight obtained by filtering with a mesh sieve and drying the components on the sieve is shown as a percentage with respect to the original polymer weight. (3) Glass transition temperature (Tg) The Tg of a polymer was measured with a differential scanning calorimeter (DSC) at a temperature of 10 ° C./min.
【0040】(4)ピール強度正極の製造
正極用スラリーをアルミニウム箔(厚さ20μm)にド
クターブレード法によって均一に塗布し、120℃、4
5分間乾燥機で乾燥した。さらに真空乾燥機にて0.6
kPa、120℃で2時間減圧乾燥した後、2軸のロー
ルプレスによって電極密度が3.3g/cm3となるよ
うに圧縮して正極を得た。負極の製造
負極スラリーを銅箔(厚さ18μm)にドクターブレー
ド法によって均一に塗布し、正極と同様の条件で乾燥し
た。2軸のロールプレスによって電極密度が1.4g/
cm3となるように圧縮して負極を得た。ピール強度の測定
電極(正極または負極)を幅3cm×長さ9cmの矩形
に切り、電極表面にテープ(セロテープ:ニチバン社
製、JIS Z 1522に規定)を貼り付け、電極を
固定し、テープを50mm/分の速度で180°方向に
剥離したときの強度(N/cm)を10回測定し、その
平均値を求めた。この値が大きいほど結着強度が高く、
活物質が集電体から剥離しにくいことを示す。(4) Manufacture of Peel Strength Positive Electrode The positive electrode slurry was uniformly applied to an aluminum foil (thickness 20 μm) by a doctor blade method, and 120 ° C., 4
It was dried in a dryer for 5 minutes. 0.6 in a vacuum dryer
After drying under reduced pressure at 120 ° C. and kPa for 2 hours, the positive electrode was obtained by compressing with a biaxial roll press so that the electrode density was 3.3 g / cm 3 . Production of Negative Electrode The negative electrode slurry was uniformly applied to a copper foil (thickness 18 μm) by the doctor blade method, and dried under the same conditions as the positive electrode. The electrode density is 1.4 g /
A negative electrode was obtained by compressing to have a size of cm 3 . Peel strength measurement Electrode (positive electrode or negative electrode) is cut into a rectangle with a width of 3 cm and a length of 9 cm, and a tape (cellophane tape: manufactured by Nichiban Co., JIS Z 1522) is attached to the electrode surface, and the electrode is fixed, and the tape is fixed. The strength (N / cm) when peeled in the 180 ° direction at a speed of 50 mm / min was measured 10 times, and the average value thereof was obtained. The larger this value, the higher the binding strength,
It shows that the active material is not easily peeled off from the current collector.
【0041】(5)電池容量コイン型電池(正極評価用)の製造
正極評価では、負極としては金属リチウムを用いた。
(4)と同様にして製造した正極を直径15mmの円形
に切り抜き、直径18mm、厚さ25μmの円形ポリプ
ロピレン製多孔膜からなるセパレーターを介在させて、
負極の金属リチウムが接触するように配置した。セパレ
ーターとは反対側の金属リチウム上にエキスパンドメタ
ルを入れ、ポリプロピレン製パッキンを設置したステン
レス鋼製のコイン型外装容器(直径20mm、高さ1.
8mm、ステンレス鋼厚さ0.25mm)中に収納し
た。この容器中に電解液を空気が残らないように注入
し、ポリプロピレン製パッキンを介して外装容器に厚さ
0.2mmのステンレス鋼のキャップをかぶせて固定
し、電池缶を封止して、直径20mm、厚さ約2mmの
コイン型電池(正極評価用)を製造した。電解液はエチ
レンカーボネート/メチルエチルカーボネート=1/2
(20℃での体積比)混合液にLiPF6が1モル/リ
ットルの濃度で溶解した溶液を用いた。(5) Production of battery capacity coin type battery (for positive electrode evaluation) In the positive electrode evaluation, metallic lithium was used as the negative electrode.
A positive electrode manufactured in the same manner as in (4) was cut out into a circle having a diameter of 15 mm, and a separator made of a circular polypropylene porous membrane having a diameter of 18 mm and a thickness of 25 μm was interposed,
It was arranged so that the metallic lithium of the negative electrode was in contact. A coin-type outer container made of stainless steel (diameter: 20 mm, height: 1. mm), in which expanded metal was placed on metallic lithium on the side opposite to the separator, and polypropylene packing was installed.
8 mm, stainless steel thickness 0.25 mm). The electrolyte was poured into this container so that no air remained, and a 0.2 mm-thick stainless steel cap was put on the outer container via a polypropylene packing to fix it, and the battery can was sealed to a diameter of A coin type battery (for positive electrode evaluation) having a thickness of 20 mm and a thickness of about 2 mm was manufactured. Electrolyte solution is ethylene carbonate / methyl ethyl carbonate = 1/2
(Volume ratio at 20 ° C.) A solution in which LiPF 6 was dissolved in the mixed solution at a concentration of 1 mol / liter was used.
【0042】コイン型電池(負極評価用)の製造
負極評価では、正極としては金属リチウムを用いた。
(4)と同様にして製造した負極を直径15mmの円形
に切り抜き、セパレーターを介在させて、正極の金属リ
チウムが接触するように配置した。セパレーターとは反
対側の金属リチウム上にエキスパンドメタルを入れコイ
ン型外装容器中に収納し、後の工程は正極評価用電池と
同様にしてコイン型電池(負極評価用)を製造した。な
お、セパレーターおよびコイン型外装容器も、正極評価
用と同種のものを用いた。電池容量の測定
上記の方法で製造したコイン型電池を用いて、正極の評
価においては3Vから4.2Vまで、負極の評価におい
ては0Vから1.2Vまで、所定の温度で0.1Cの定
電流法によって測定した3サイクル目の放電容量(初期
放電容量)として電池容量を求めた。単位はmAh/g
(活物質当たり)である。 Manufacture of coin type battery (for negative electrode evaluation) In negative electrode evaluation, metallic lithium was used as the positive electrode.
The negative electrode manufactured in the same manner as in (4) was cut out into a circle with a diameter of 15 mm, and was placed so that the lithium metal of the positive electrode was in contact with it with a separator interposed. Expanded metal was put on metallic lithium on the side opposite to the separator and housed in a coin type outer container, and a coin type battery (for negative electrode evaluation) was manufactured in the same manner as the battery for positive electrode evaluation in the subsequent steps. The separator and the coin type outer container were also of the same type as those used for positive electrode evaluation. Measurement of Battery Capacity Using the coin-type battery manufactured by the above method, the positive electrode was evaluated at 3 V to 4.2 V, and the negative electrode was evaluated at 0 V to 1.2 V at a predetermined temperature of 0.1 C. The battery capacity was obtained as the discharge capacity at the third cycle (initial discharge capacity) measured by the current method. Unit is mAh / g
(Per active material).
【0043】(6)充放電サイクル特性
初期放電容量の測定と同様にして3サイクル目および5
0サイクル目の放電容量を測定し、3サイクル目の放電
容量に対する50サイクル目の放電容量の割合を百分率
で算出した。この値が大きいほど容量減が少ないことを
示す。
(7)充放電レート特性
測定条件を、定電流量を1Cに変更したほかは、初期放
電容量の測定と同様に各定電流量における3サイクル目
の放電容量を測定した。3サイクル目における0.1C
での放電容量に対する1Cでの放電容量の割合を百分率
で算出した。この値が大きいほど、高速充放電が可能な
ことを示す。(6) Charging / discharging cycle characteristics Similarly to the measurement of the initial discharging capacity, the third cycle and the fifth cycle
The discharge capacity at the 0th cycle was measured, and the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 3rd cycle was calculated as a percentage. The larger this value is, the smaller the capacity decrease is. (7) The charge and discharge rate characteristic measurement conditions were the same as the initial discharge capacity except that the constant current amount was changed to 1 C, and the discharge capacity at the third cycle at each constant current amount was measured. 0.1C in the 3rd cycle
The ratio of the discharge capacity at 1C to the discharge capacity at was calculated as a percentage. The larger this value is, the faster the charge / discharge is possible.
【0044】実施例1
溶液重合で製造したエチレン−アクリロニトリル共重合
体(エチレン単位22モル%、アクリロニトリル単位7
8モル%)1.5部をNMPに溶解した溶液に、活物質
としてコバルト酸リチウム100部、導電付与剤として
アセチレンブラック(電気化学社製:HS−100)3
部を混合し、固形分が77%となるようにさらにNMP
を添加して、プラネタリーミキサーで攪拌・混合して均
一な正極用スラリーを得た。このスラリーを用いて正極
電極を作製した。ポリマーの組成および電解液溶剤膨潤
度、ピール強度、25℃で測定した電池容量、充放電サ
イクル特性および充放電レート特性を測定した結果を表
1に示す。 Example 1 Ethylene-acrylonitrile copolymer produced by solution polymerization (ethylene unit: 22 mol%, acrylonitrile unit: 7)
8 mol%) in a solution of 1.5 parts in NMP, 100 parts of lithium cobalt oxide as an active material, and acetylene black (HS-100) manufactured by Denki Kagaku as a conductivity-imparting agent.
Parts are mixed, and further NMP is performed so that the solid content becomes 77%.
Was added and stirred and mixed with a planetary mixer to obtain a uniform positive electrode slurry. A positive electrode was produced using this slurry. Table 1 shows the results of measuring the polymer composition, the degree of solvent swelling in the electrolytic solution, the peel strength, the battery capacity measured at 25 ° C., the charge / discharge cycle characteristics, and the charge / discharge rate characteristics.
【0045】実施例2〜8、比較例1〜3
ポリマーとして表1に示す組成、製法のものを用いたほ
かは、実施例1と同様に各種特性を測定した。結果を表
1に示す。 Examples 2 to 8 and Comparative Examples 1 to 3 Various characteristics were measured in the same manner as in Example 1 except that the polymer having the composition and production method shown in Table 1 was used. The results are shown in Table 1.
【0046】実施例9
懸濁重合で製造したアクリロニトリル−アクリル酸メチ
ル−メタクリル酸メチル共重合体(アクリロニトリル単
位80モル%、アクリル酸メチル単位14モル%、メタ
クリル酸メチル単位6モル%)5部をNMPに溶解した
溶液に、活物質としてMCMB95部を混合し、固形分
が68%となるようにさらにNMPを添加して、攪拌・
混合して均一な負極用スラリーを得た。このスラリーを
用いて負極電極を作製した。実施例1と同様に各種特性
を測定した結果を表1に示す。 Example 9 5 parts of an acrylonitrile-methyl acrylate-methyl methacrylate copolymer produced by suspension polymerization (80 mol% of acrylonitrile unit, 14 mol% of methyl acrylate unit, 6 mol% of methyl methacrylate unit) To a solution dissolved in NMP, 95 parts of MCMB as an active material is mixed, NMP is further added so that the solid content becomes 68%, and the mixture is stirred.
By mixing, a uniform slurry for negative electrode was obtained. A negative electrode was produced using this slurry. Table 1 shows the results of measuring various characteristics as in Example 1.
【0047】[0047]
【表1】 [Table 1]
【0048】電解液溶媒に対する膨潤度が小さく、かつ
結着性に優れたポリマーを含有する本発明のスラリーを
用いて製造された電極は、ピール強度が大きく、高い結
着性能を示した。また、この電極を有するリチウムイオ
ン二次電池は、高い電池容量と良好なサイクル特性を有
し、かつレート特性にも優れるものであった(実施例1
〜9)。一方、アクリロニトリル単独の重合体では、電
解液溶媒膨潤性は優れるが、結着性が劣った(比較例
1)。また、アクリロニトリル成分が少ないものや、組
み合わせる単量体単位の割合が多すぎるものは、電解液
溶媒に対する膨潤性が劣り、結着性も劣る(比較例2〜
3)。そして、これらを用いた電極を有するリチウムイ
オン二次電池は、電池容量、サイクル特性、レート特性
のいずれにおいても本発明品に比べ劣るものであった。The electrode produced by using the slurry of the present invention containing a polymer having a low degree of swelling in an electrolytic solution solvent and excellent in binding property had a large peel strength and exhibited a high binding performance. In addition, the lithium ion secondary battery having this electrode had a high battery capacity, good cycle characteristics, and excellent rate characteristics (Example 1).
~ 9). On the other hand, the polymer of acrylonitrile alone was excellent in the solvent swellability of the electrolytic solution, but inferior in the binding property (Comparative Example 1). Further, those having a small acrylonitrile component, or those having a too large proportion of monomer units to be combined have poor swelling properties in an electrolytic solution solvent and poor binding properties (Comparative Examples 2 to 2).
3). Then, the lithium ion secondary battery having electrodes using these was inferior to the product of the present invention in all of the battery capacity, cycle characteristics and rate characteristics.
【0049】実施例10
溶液重合で製造したエチレン−アクリロニトリル共重合
体(エチレン単位18モル%、アクリロニトリル単位8
2モル%)0.8部をNMPに溶解した溶液と、乳化重
合で製造したアクリル酸エチル−スチレン−ジエチレン
グリコールジメタクリレート共重合体1.5部をNMP
に分散した分散液を混合した。この混合液に活物質とし
てコバルト酸リチウム100部、導電付与剤としてアセ
チレンブラック(電気化学社製:HS−100)5部を
加え、固形分が75%となるようにさらにNMPを添加
して、プラネタリーミキサーを用いて攪拌・混合して均
一な正極用スラリーを得た。このスラリーを用いて正極
電極を作製した。共重合体の組成及び電解液溶剤膨潤
度、ピール強度、30℃で測定した電池容量、60℃で
測定した高温充放電サイクル特性および高温充放電レー
ト特性の結果を表2に示す。 Example 10 Ethylene-acrylonitrile copolymer produced by solution polymerization (18 mol% ethylene units, 8 acrylonitrile units)
(2 mol%) 0.8 parts dissolved in NMP and 1.5 parts ethyl acrylate-styrene-diethylene glycol dimethacrylate copolymer produced by emulsion polymerization NMP
The dispersion liquid dispersed in was mixed. To this mixed liquid, 100 parts of lithium cobalt oxide as an active material and 5 parts of acetylene black (HS-100 manufactured by Denki Kagaku Co., Ltd.) as a conductivity imparting agent were added, and NMP was further added so that the solid content became 75%, The mixture was stirred and mixed using a planetary mixer to obtain a uniform positive electrode slurry. A positive electrode was produced using this slurry. Table 2 shows the composition of the copolymer, the degree of electrolytic solution swelling, the peel strength, the battery capacity measured at 30 ° C, the high temperature charge / discharge cycle characteristics and the high temperature charge / discharge rate characteristics measured at 60 ° C.
【0050】実施例11〜18、比較例4,5
ポリマーとして表2に示す組成のものを用いたほかは、
実施例10と同様に各種特性を測定した。結果を表2に
示す。 Examples 11 to 18 and Comparative Examples 4 and 5, except that polymers having the compositions shown in Table 2 were used,
Various characteristics were measured in the same manner as in Example 10. The results are shown in Table 2.
【0051】[0051]
【表2】 [Table 2]
【0052】表2に示すように、本発明のスラリー組成
物がポリマー(A)以外のポリマーを含有する場合で
も、該スラリーを用いて製造した電極は、ピール強度が
大きく、高い結着性能を示した。また、この電極を有す
るリチウムイオン二次電池は、高い電池容量を有し、か
つ良好な高温充放電サイクル特性およびレート特性を示
した。特に、ガラス転移温度(Tg)が−80〜0℃で
N−メチルピロリドン不溶分が50重量%以上であるポ
リマー(B)を含有する場合、さらに良好な電池特性を
示した(実施例10〜18)。一方、ポリマー(A)に
代えてアクリロニトリル単独の重合体を用いた場合、お
よびアクリロニトリル成分が少なく、組み合わせる単量
体単位の割合が多すぎるものを用いた場合は、結着性が
劣る(比較例4、5)。そして、これらを用いた電極を
有するリチウムイオン二次電池は、電池容量、サイクル
特性、レート特性のいずれにおいても本発明品に比べ劣
るものであった。As shown in Table 2, even when the slurry composition of the present invention contains a polymer other than the polymer (A), the electrode produced using the slurry has a large peel strength and a high binding performance. Indicated. In addition, the lithium ion secondary battery having this electrode has a high battery capacity and exhibits excellent high temperature charge / discharge cycle characteristics and rate characteristics. In particular, when the polymer (B) having a glass transition temperature (Tg) of −80 to 0 ° C. and an N-methylpyrrolidone insoluble content of 50% by weight or more was contained, better battery characteristics were exhibited (Examples 10 to 10). 18). On the other hand, when a polymer of acrylonitrile alone is used instead of the polymer (A) and when a polymer having a small acrylonitrile component and an excessively large proportion of monomer units to be combined is used, the binding property is poor (Comparative Example 4, 5). Then, the lithium ion secondary battery having electrodes using these was inferior to the product of the present invention in all of the battery capacity, cycle characteristics and rate characteristics.
【0053】[0053]
【発明の効果】本発明の電極用スラリー組成物を用いる
と、電解液に対する膨潤性が低く、活物質の結着性に優
れた電極が得られるので、各種電池や電気化学キャパシ
タなどの電極の製造に好適に使用できる。特にリチウム
イオン二次電池の正極用として優れており、この電極を
備えたリチウムイオン二次電池は、高い充放電容量と良
好なサイクル特性を有し、かつレート特性にも優れる。EFFECT OF THE INVENTION When the electrode slurry composition of the present invention is used, an electrode having a low swelling property in an electrolytic solution and an excellent binding property of an active material can be obtained. It can be suitably used for production. In particular, it is excellent as a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery including this electrode has a high charge / discharge capacity, good cycle characteristics, and excellent rate characteristics.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 雅裕 神奈川県川崎市川崎区夜光一丁目2番1号 日本ゼオン株式会社総合開発センター内 Fターム(参考) 4J002 AC032 AC072 BG042 BG101 BM003 CE003 DA016 DA026 DE056 DE096 DG026 EP017 EU027 GQ00 5H029 AJ03 AJ05 AJ06 AK03 AK05 AK16 AL06 AL07 AL08 AL12 AL16 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 DJ08 EJ12 HJ01 HJ02 HJ14 5H050 AA07 AA08 AA12 BA17 CA02 CA08 CA09 CA11 CA20 CB07 CB08 CB09 CB20 DA11 EA23 FA02 HA01 HA02 HA10 HA11 HA14 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masahiro Yamakawa 1-2-1, Yokou, Kawasaki-ku, Kawasaki-shi, Kanagawa Zeon Corporation, General Development Center F term (reference) 4J002 AC032 AC072 BG042 BG101 BM003 CE003 DA016 DA026 DE056 DE096 DG026 EP017 EU027 GQ00 5H029 AJ03 AJ05 AJ06 AK03 AK05 AK16 AL06 AL07 AL08 AL12 AL16 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 DJ08 EJ12 HJ01 HJ02 HJ14 5H050 AA07 AA08 AA12 BA17 CA02 CA08 CA09 CA11 CA20 CB07 CB08 CB09 CB20 DA11 EA23 FA02 HA01 HA02 HA10 HA11 HA14
Claims (4)
リル由来の繰り返し単位含有量が60〜95モル%であ
り、炭素数2〜4の1−オレフィンおよび一般式(1)
で表される化合物 CH2=CR1−COOR2 (1) (式中、R1は水素原子またはメチル基、R2は炭素数
3以下のアルキル基を示す。)から選ばれる少なくとも
1種の単量体由来の繰り返し単位含有量が5〜30モル
%であるポリマー(A)と、活物質と、ポリマー(A)
を溶解する液状媒体とを含有する電極用スラリー組成
物。1. A repeating unit content derived from acrylonitrile or methacrylonitrile is 60 to 95 mol%, a 1-olefin having 2 to 4 carbon atoms and a general formula (1).
A compound represented by the formula CH 2 ═CR 1 —COOR 2 (1) (in the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 3 or less carbon atoms). Polymer (A) having a repeating unit content of 5 to 30 mol% derived from a monomer, an active material, and polymer (A)
A slurry composition for an electrode, which comprises a liquid medium that dissolves.
かつN−メチルピロリドン不溶分含有量が50重量%以
上であるポリマー(B)をさらに含む請求項1記載の電
極用スラリー組成物。2. The glass transition temperature is −80 to 0 ° C.,
The slurry composition for an electrode according to claim 1, further comprising a polymer (B) having an N-methylpyrrolidone insoluble content of 50% by weight or more.
組成物を用いて製造された電極。3. An electrode manufactured using the slurry composition for an electrode according to claim 1.
オン二次電池。4. A lithium ion secondary battery having the electrode according to claim 3.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001329072A JP4200349B2 (en) | 2001-10-26 | 2001-10-26 | Slurry composition for electrode, electrode and lithium ion secondary battery |
US10/493,491 US7316864B2 (en) | 2001-10-26 | 2002-10-25 | Slurry composition, electrode and secondary cell |
PCT/JP2002/011075 WO2003036744A1 (en) | 2001-10-26 | 2002-10-25 | Slurry composition, electrode and secondary cell |
CNB028246853A CN100435391C (en) | 2001-10-26 | 2002-10-25 | Slurry composition for electrode, electrode and secondary cell |
KR1020047006182A KR100960757B1 (en) | 2001-10-26 | 2002-10-25 | Slurry composition, electrode and secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001329072A JP4200349B2 (en) | 2001-10-26 | 2001-10-26 | Slurry composition for electrode, electrode and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003132893A true JP2003132893A (en) | 2003-05-09 |
JP4200349B2 JP4200349B2 (en) | 2008-12-24 |
Family
ID=19145033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001329072A Expired - Fee Related JP4200349B2 (en) | 2001-10-26 | 2001-10-26 | Slurry composition for electrode, electrode and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4200349B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033173A1 (en) * | 2004-09-22 | 2006-03-30 | Hitachi Chemical Company, Ltd. | Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device |
US7700234B2 (en) * | 2003-04-24 | 2010-04-20 | Zeon Corporation | Binder for electrode of lithium ion secondary battery |
JP2011076916A (en) * | 2009-09-30 | 2011-04-14 | Nippon Zeon Co Ltd | Binder for secondary battery electrode, secondary battery electrode, and secondary battery |
JP2011513911A (en) * | 2008-04-16 | 2011-04-28 | エルジー・ケム・リミテッド | Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition |
JP2011100665A (en) * | 2009-11-06 | 2011-05-19 | Mitsubishi Rayon Co Ltd | Binder resin composition for electrode |
JP2012256541A (en) * | 2011-06-09 | 2012-12-27 | Nippon Zeon Co Ltd | Electrode for secondary battery, binder for secondary battery electrode, method for manufacturing electrode, and secondary battery |
JP2013098139A (en) * | 2011-11-04 | 2013-05-20 | Hitachi Chemical Co Ltd | Binder resin material for energy device electrode, energy device electrode and energy device |
JP2013122914A (en) * | 2011-11-11 | 2013-06-20 | Mitsubishi Rayon Co Ltd | Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery |
US8530087B2 (en) | 2010-01-29 | 2013-09-10 | Hitachi, Ltd. | Secondary lithium battery |
US8603673B2 (en) | 2009-04-08 | 2013-12-10 | Sony Corporation | Negative electrode comprising vapor grown carbon fiber and polymer materials and nonaqueous electrolyte secondary battery |
WO2014098233A1 (en) * | 2012-12-20 | 2014-06-26 | 日立化成株式会社 | Binder resin material for energy device electrodes, energy device electrode, and energy device |
WO2018155712A1 (en) | 2017-02-27 | 2018-08-30 | 日立化成株式会社 | Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device |
JP2019164974A (en) * | 2018-03-14 | 2019-09-26 | 株式会社東芝 | Electrode, secondary cell, battery pack and vehicle |
CN114830380A (en) * | 2019-12-27 | 2022-07-29 | 日本瑞翁株式会社 | Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
JP2023501775A (en) * | 2020-05-29 | 2023-01-19 | 蜂巣能源科技股▲ふん▼有限公司 | Positive electrode piece and its manufacturing method and use |
-
2001
- 2001-10-26 JP JP2001329072A patent/JP4200349B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7700234B2 (en) * | 2003-04-24 | 2010-04-20 | Zeon Corporation | Binder for electrode of lithium ion secondary battery |
WO2006033173A1 (en) * | 2004-09-22 | 2006-03-30 | Hitachi Chemical Company, Ltd. | Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device |
JPWO2006033173A1 (en) * | 2004-09-22 | 2008-05-15 | 日立化成工業株式会社 | Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device |
KR100935986B1 (en) * | 2004-09-22 | 2010-01-08 | 히다치 가세고교 가부시끼가이샤 | Binder resin composition for nonaqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device |
JP4636444B2 (en) * | 2004-09-22 | 2011-02-23 | 日立化成工業株式会社 | Binder resin composition for non-aqueous electrolyte system energy device electrode, non-aqueous electrolyte system energy device electrode, and non-aqueous electrolyte system energy device |
US8043747B2 (en) | 2004-09-22 | 2011-10-25 | Hitachi Chemical Company, Ltd. | Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device |
JP2011513911A (en) * | 2008-04-16 | 2011-04-28 | エルジー・ケム・リミテッド | Negative electrode material composition comprising polyacrylonitrile-acrylic acid copolymer binder, method for producing the same, and lithium secondary battery comprising the negative electrode material composition |
US9012088B2 (en) | 2008-04-16 | 2015-04-21 | Lg Chem, Ltd. | Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition |
US8603673B2 (en) | 2009-04-08 | 2013-12-10 | Sony Corporation | Negative electrode comprising vapor grown carbon fiber and polymer materials and nonaqueous electrolyte secondary battery |
JP2011076916A (en) * | 2009-09-30 | 2011-04-14 | Nippon Zeon Co Ltd | Binder for secondary battery electrode, secondary battery electrode, and secondary battery |
JP2011100665A (en) * | 2009-11-06 | 2011-05-19 | Mitsubishi Rayon Co Ltd | Binder resin composition for electrode |
US8530087B2 (en) | 2010-01-29 | 2013-09-10 | Hitachi, Ltd. | Secondary lithium battery |
JP2012256541A (en) * | 2011-06-09 | 2012-12-27 | Nippon Zeon Co Ltd | Electrode for secondary battery, binder for secondary battery electrode, method for manufacturing electrode, and secondary battery |
JP2013098139A (en) * | 2011-11-04 | 2013-05-20 | Hitachi Chemical Co Ltd | Binder resin material for energy device electrode, energy device electrode and energy device |
JP2013122914A (en) * | 2011-11-11 | 2013-06-20 | Mitsubishi Rayon Co Ltd | Binder resin for electrode for secondary battery, slurry for electrode for secondary battery containing the same, electrode for secondary battery, and secondary battery |
WO2014098233A1 (en) * | 2012-12-20 | 2014-06-26 | 日立化成株式会社 | Binder resin material for energy device electrodes, energy device electrode, and energy device |
JPWO2014098233A1 (en) * | 2012-12-20 | 2017-01-12 | 日立化成株式会社 | Binder resin material for energy device electrode, energy device electrode and energy device |
WO2018155713A1 (en) | 2017-02-27 | 2018-08-30 | 日立化成株式会社 | Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device |
WO2018155712A1 (en) | 2017-02-27 | 2018-08-30 | 日立化成株式会社 | Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device |
US11482706B2 (en) | 2017-02-27 | 2022-10-25 | Showa Denko Materials Co., Ltd. | Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device |
JP2019164974A (en) * | 2018-03-14 | 2019-09-26 | 株式会社東芝 | Electrode, secondary cell, battery pack and vehicle |
CN114830380A (en) * | 2019-12-27 | 2022-07-29 | 日本瑞翁株式会社 | Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
CN114830380B (en) * | 2019-12-27 | 2024-10-11 | 日本瑞翁株式会社 | Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
JP2023501775A (en) * | 2020-05-29 | 2023-01-19 | 蜂巣能源科技股▲ふん▼有限公司 | Positive electrode piece and its manufacturing method and use |
JP7475439B2 (en) | 2020-05-29 | 2024-04-26 | 蜂巣能源科技股▲ふん▼有限公司 | Positive electrode piece and its manufacturing method and use |
Also Published As
Publication number | Publication date |
---|---|
JP4200349B2 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1249882B1 (en) | Binder for use in electrolyte of lithium ion secondary cell and use thereof | |
JP4311002B2 (en) | Slurry composition for electrode, electrode and secondary battery | |
CN100435391C (en) | Slurry composition for electrode, electrode and secondary cell | |
JP4433509B2 (en) | Binder composition for lithium ion secondary battery electrode and use thereof | |
JP4178953B2 (en) | Secondary battery positive electrode slurry composition, secondary battery positive electrode and secondary battery | |
JP4736804B2 (en) | Binder for lithium ion secondary battery electrode | |
US6770397B1 (en) | Binder composition for lithium ion secondary battery electrodes and use thereof | |
JP2003223895A (en) | Slurry composition for secondary cell electrode, secondary cell electrode and secondary cell | |
JP4200349B2 (en) | Slurry composition for electrode, electrode and lithium ion secondary battery | |
JP2003100298A (en) | Secondary battery and binder composition for electrode thereof | |
JP4207443B2 (en) | Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery | |
JP4258614B2 (en) | Slurry composition for electrode, electrode and secondary battery | |
JP4412443B2 (en) | Thickener for lithium ion secondary battery negative electrode and lithium ion secondary battery | |
JP2002231251A (en) | Binder composition for lithium ion secondary battery electrode and lithium ion secondary battery | |
JP2001332265A (en) | Binder for lithium secondary battery electrode, and its usage | |
JP4337331B2 (en) | Slurry composition for electrode, electrode and lithium ion secondary battery | |
JP4751497B2 (en) | Lithium ion secondary battery electrode manufacturing method, electrode and battery | |
JP4329169B2 (en) | Binder for lithium ion secondary battery electrode and use thereof | |
KR101083129B1 (en) | 2 method for preparing slurry composition for electrode of secondary cell | |
JP2002033106A (en) | Slurry for lithium ion secondary battery electrode and its utilization | |
JP2001155737A (en) | Binder for electrode of lithium ion secondary cell and its utilization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080910 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080923 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4200349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |