JP2003121459A - Electric characteristic measuring device and measuring method - Google Patents
Electric characteristic measuring device and measuring methodInfo
- Publication number
- JP2003121459A JP2003121459A JP2001316852A JP2001316852A JP2003121459A JP 2003121459 A JP2003121459 A JP 2003121459A JP 2001316852 A JP2001316852 A JP 2001316852A JP 2001316852 A JP2001316852 A JP 2001316852A JP 2003121459 A JP2003121459 A JP 2003121459A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- displacement
- measuring
- electrical
- electrical characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measuring Leads Or Probes (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体材料、金属
材料、セラミックス材料、有機材料、及び液体状態にあ
るこれら材料の電気抵抗率等の電気特性を測定する装置
及び方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor material, a metal material, a ceramic material, an organic material, and an apparatus and method for measuring electric characteristics such as electric resistivity of these materials in a liquid state.
【0002】[0002]
【従来の技術】近年、半導体装置等のますますの高密度
化や高性能化に伴い、半導体装置に使用される半導体材
料、金属材料やこれらの材料による薄膜に関して、電気
抵抗率等の電気特性を測定することがますます重要とな
っている。これらの材料の電気特性を測定する方法とし
て、4探針法と呼ばれる測定方法が一般的に用いられて
いる。2. Description of the Related Art In recent years, as semiconductor devices have become higher in density and higher in performance, semiconductor materials used for semiconductor devices, metal materials, and thin films made of these materials have electrical characteristics such as electrical resistivity. It is becoming more and more important to measure. As a method for measuring the electrical characteristics of these materials, a measuring method called a 4-probe method is generally used.
【0003】一般に用いられる4探針法では、等間隔l
(通常は、0.5〜1mm程度)で直線状に並べた4本
の探針を被測定材料に接触させ、4本の探針の内の外側
に配置した2本の探針間に一定の電流Iを流し、4本の
探針の内の内側に配置した2本の探針によって被測定対
象に生じる電圧Vを測定するものである。この4探針法
によれば、2探針法による探針と被測定材料の接触抵抗
に起因する問題も除去できるという特徴を有している。In the commonly used four-point probe method, equal intervals l
Contact the material to be measured with four probes arranged in a straight line (usually about 0.5 to 1 mm) and set a fixed distance between the two probes arranged outside of the four probes. The current I is applied to measure the voltage V generated in the object to be measured by the two probes arranged inside the four probes. The 4-probe method has a feature that it can eliminate the problem caused by the contact resistance between the probe and the material to be measured by the 2-probe method.
【0004】4探針法によれば、探針間の間隔lと比較
して被測定材料が十分に大きく、またその厚さdも十分
に大きい場合には、電気抵抗率の値ρは、電圧Vと電流
Iを用いて次式(1)から求められる。
ρ=(V/I)2πl [Ω・cm] …(1)
但し、被測定材料が小さい場合や、その厚さdが薄い場
合は補正が必要である。たとえば、半導体基板の拡散層
や薄膜材料のようにl≫dの場合には、電気抵抗率の値
ρは次式(2)のように近似的に求めることになる。
ρ=4.54V/dl [Ω・cm] …(2)
さらに、4つの探針を直線上ではなく、たとえば方形の
各頂点に配置した場合についても、電流および電圧から
電気抵抗率を決定する方法も報告されている。いずれの
場合も、4探針法を用いて電気抵抗率を正確に測定する
に際して、探針を立てる領域において被測定材料の面積
が十分広く、またその領域において物性が十分均一であ
ること、被測定材料の温度上昇を抑えるために電流Iを
流し過ぎないこと、さらに、外側の2本の探針と被測定
材料間の接触抵抗が所定電流の供給に支障をきたさない
ように探針を被測定材料に十分に押しつけることなどの
各条件を満足することが求められている。According to the four-probe method, when the material to be measured is sufficiently large and the thickness d thereof is sufficiently large as compared with the interval 1 between the probes, the electrical resistivity value ρ is It is obtained from the following equation (1) using the voltage V and the current I. ρ = (V / I) 2πl [Ω · cm] (1) However, correction is necessary when the material to be measured is small or when the thickness d is small. For example, in the case of l >> d such as a diffusion layer of a semiconductor substrate or a thin film material, the electrical resistivity value ρ can be approximately calculated by the following equation (2). ρ = 4.54 V / dl [Ω · cm] (2) Furthermore, when the four probes are arranged not on a straight line but at each vertex of a rectangle, for example, the electrical resistivity is determined from the current and the voltage. Methods have also been reported. In either case, when the electrical resistivity is accurately measured using the 4-probe method, the area of the material to be measured is sufficiently large in the region where the probe is set up, and the physical properties are sufficiently uniform in that region. To prevent the temperature rise of the material to be measured, do not allow the current I to flow too much, and also to prevent the contact resistance between the two outer probes and the material to be measured from interfering with the supply of the predetermined current, cover the probe. It is required to satisfy each condition such as being sufficiently pressed against the measurement material.
【0005】[0005]
【発明が解決しようとする課題】従来の4探針法では、
通常、ガリウム砒素ウエハの場合や接触抵抗が問題にさ
れる場合については軟らかいオスミウム等の探針を用
い、また、探針の寿命を重視する場合には硬いタングス
テンカーバイド等の探針を用い、この探針を被測定材料
に接触させて測定を行っている。In the conventional 4-probe method,
Usually, in the case of gallium arsenide wafer or when contact resistance is a problem, a probe such as soft osmium is used. Measurement is performed by bringing the probe into contact with the material to be measured.
【0006】従来の4探針法を用いて電気抵抗率を測定
する場合、探針を被測定対象に通常40〜200グラム
の力で被測定対象の表面に押しつけて接触させている。
一方、4探針法では、先端の曲率半径が100〜300
μmの探針が用いられている。そのため、探針は、被測
定対象に単位面積当りかなりの圧力を加えることにな
り、探針の硬軟にかかわらず、被測定対象表面には不可
避的に圧痕が生じ、被測定対象を破壊に至らしめるとい
う問題点を有している。したがって、従来の4探針法は
破壊検査の1種であるといえる。When the electrical resistivity is measured using the conventional 4-probe method, the probe is normally pressed against the object to be measured and brought into contact with the surface of the object to be measured with a force of 40 to 200 grams.
On the other hand, in the 4-probe method, the radius of curvature of the tip is 100 to 300.
A μm probe is used. Therefore, the probe applies a considerable amount of pressure per unit area to the measured object, and irrespective of the hardness of the probe, dents are unavoidably generated on the surface of the measured object, resulting in destruction of the measured object. It has a problem of tightening. Therefore, it can be said that the conventional 4-probe method is one type of destructive inspection.
【0007】このため、この4探針法を、たとえば半導
体装置を作製するシリコン基板の測定に適用すると、そ
の表面にキズがつくことになり、測定後、その基板は半
導体装置の製造用としては使用することができない。Therefore, if this four-point probe method is applied to, for example, the measurement of a silicon substrate for manufacturing a semiconductor device, the surface will be scratched, and after the measurement, the substrate will be used for manufacturing a semiconductor device. Cannot be used.
【0008】このような問題を回避するために、シリコ
ン基板上において回路を作製する場所とは別の所定の場
所に、電気抵抗率を測定するための領域を設けることが
考えられる。しかしながら、半導体装置の高集積化が求
められているため、従来の4探針法が実施できる程度の
広い領域を確保することは実際上不可能である。このた
め、実際の半導体装置の製造ラインにおいては、半導体
装置作製用のシリコン基板とは別に、電気抵抗率を測定
するためのシリコン基板(ダミーウエハ)を用いてい
る。In order to avoid such a problem, it is conceivable to provide a region on the silicon substrate for measuring the electrical resistivity at a predetermined place different from the place where the circuit is formed. However, since high integration of the semiconductor device is required, it is practically impossible to secure a wide area in which the conventional four-point probe method can be implemented. Therefore, in an actual semiconductor device manufacturing line, a silicon substrate (dummy wafer) for measuring the electrical resistivity is used in addition to the silicon substrate for manufacturing the semiconductor device.
【0009】このダミーウエハは製造工程の各プロセス
段階で用いられることとなり、その結果、ダミーウエハ
の消費量は年間に消費される全シリコン基板の約20%
を占めるに至っている。したがって、シリコン基板の利
用効率は極めて低いといわざるを得ない。省エネルギー
および省資源を励行しなければならない現在の世界情勢
を鑑みると、ダミーウエハの使用量を減少させることは
大いに意義のあることである。そのためには、非破壊的
な電気抵抗率等の電気特性測定方法や測定装置が求めら
れている。This dummy wafer is used at each process step of the manufacturing process, and as a result, the consumption of the dummy wafer is about 20% of all silicon substrates consumed annually.
Have been occupied. Therefore, it must be said that the utilization efficiency of the silicon substrate is extremely low. In view of the current world situation where energy and resource conservation must be encouraged, it is of great significance to reduce the amount of dummy wafers used. For that purpose, there is a demand for a nondestructive method for measuring electric characteristics such as electric resistance and a measuring apparatus.
【0010】一方、省エネルギーや省資源の観点から、
金属の表面融解の研究が進められている。通常、多くの
材料は高温の融体を経由して製造されているが、このた
めには、物質を一度その融点あるいは液相線温度以上に
加熱して融解させる必要がある。ところが、物質の表面
の数原子層においては、融点よりも100℃以上低い温
度で液体と同じ構造になる表面融解という現象があるこ
とが報告されている。この現象のダイナミックスを原理
的に解明し、その原理を一般の物質の融解に利用できれ
ば大幅な消費エネルギーの低減が期待できる。表面融解
の研究の多くは従来、分子動力学法を用いて行われてい
るが、研究を進展させるためには、この現象を実験的に
直接観測する必要がある。On the other hand, from the viewpoint of energy saving and resource saving,
Research on surface melting of metals is underway. Usually, many materials are produced through a high temperature melt, but for this purpose, it is necessary to once heat a substance to a temperature above its melting point or liquidus temperature to melt it. However, it has been reported that, in a few atomic layers on the surface of a substance, there is a phenomenon called surface melting that has the same structure as a liquid at a temperature lower than the melting point by 100 ° C. or more. If the dynamics of this phenomenon are elucidated in principle and the principle can be applied to the melting of ordinary substances, a significant reduction in energy consumption can be expected. Most of the researches on surface melting have been conducted by using the molecular dynamics method, but in order to advance the research, it is necessary to directly observe this phenomenon experimentally.
【0011】表面融解を実験する1つ方法として、表面
融解にともなう金属表面の電気抵抗率の変化を測定する
ことが考えられているが、従来の4探針法では、前述し
たように40〜200グラムの力で探針を被測定対象表
面に押しつけるため、表面融解層を破壊することにな
り、所望の測定を行うことが不可能となる。したがっ
て、上記のような研究・開発を推進する上でも、非破壊
的な電気抵抗率等の電気特性測定方法や測定装置が求め
られている。As a method of experimenting with surface melting, it has been considered to measure a change in electrical resistivity of a metal surface due to surface melting. In the conventional 4-probe method, as described above, Since the probe is pressed against the surface to be measured with a force of 200 grams, the surface melted layer is destroyed, and it becomes impossible to perform the desired measurement. Therefore, in order to promote the research and development as described above, there is a demand for a non-destructive method and apparatus for measuring electric characteristics such as electric resistivity.
【0012】そこで、本発明は前記した従来の問題点を
解決し、被測定対象の電気特性を非破壊的に測定するこ
とを目的とする。また、被測定材料の表面に探針による
圧痕を与えることなく、また、表面融解層を破壊するこ
となく、電気抵抗率等の電気特性を測定する電気特性測
定装置を提供することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to nondestructively measure the electrical characteristics of an object to be measured. Another object of the present invention is to provide an electric characteristic measuring device for measuring electric characteristics such as electric resistivity without giving an indentation by a probe on the surface of a material to be measured and without destroying a surface melting layer. .
【0013】[0013]
【課題を解決するための手段】本発明は、電気特性測定
装置及び測定方法において、探針として原子間力顕微鏡
等の走査プローブ顕微鏡が備えるカンチレバーなどの微
小探針を用い、原子間力の範囲で圧力あるいは変位を制
御して、微小探針を被測定材料に接触させる。これによ
って、微小探針の被測定対象への接触圧力を原子間力の
範囲に制御しながら4探針法による測定を実施すること
が可能となり、電気抵抗率の接触圧力依存性あるいは変
位依存性を求めることができる。According to the present invention, in an electric characteristic measuring apparatus and measuring method, a fine probe such as a cantilever included in a scanning probe microscope such as an atomic force microscope is used as a probe, and a range of atomic force is used. The microprobe is brought into contact with the material to be measured by controlling the pressure or displacement with. This makes it possible to perform measurement by the 4-probe method while controlling the contact pressure of the microprobe to the object to be measured within the range of the atomic force, and the contact pressure dependence or displacement dependence of the electrical resistivity. Can be asked.
【0014】そして、この依存性がなくなる圧力におい
て、微小探針と被測定対象との間に電気的な接触が実現
されたと考えることができる。このようにして微小探針
と被測定対象の間に電気的な接触を形成して測定するこ
とによって、被測定対象の表面に圧痕を与えずに電気抵
抗率等の電気特性を測定することができる。It can be considered that electrical contact is realized between the microprobe and the object to be measured at the pressure at which this dependence disappears. By forming an electrical contact between the microprobe and the object to be measured in this way, it is possible to measure the electrical characteristics such as the electrical resistivity without making an impression on the surface of the object to be measured. it can.
【0015】本発明の電気特性測定装置は、複数の微小
探針と、各微小探針を少なくとも一軸方向に個別に制御
可能とする探針制御手段と、各微小探針と被測定対象と
の間の変位又は各微小探針と被測定対象との間に働く力
を検出する検出手段と、各微小探針の少なくとも一対を
測定端子とする測定手段とを備える。探針制御手段は検
出手段の出力に基づいて各微小探針を一軸方向で位置制
御し、測定手段は測定端子間の電気的検出に基づいて被
測定対象の電気特性を測定する。The electrical characteristic measuring apparatus of the present invention comprises a plurality of microprobes, probe control means capable of individually controlling each microprobe in at least one axial direction, and each microprobe and the object to be measured. The detection means detects a displacement between them or a force acting between each microprobe and the object to be measured, and a measurement means having at least one pair of each microprobe as a measurement terminal. The probe control means controls the position of each micro probe in the uniaxial direction based on the output of the detection means, and the measurement means measures the electrical characteristics of the object to be measured based on the electrical detection between the measurement terminals.
【0016】探針制御手段は、微小探針と被測定対象と
の間の変位、又は各微小探針と被測定対象との間に働く
力を原子間力の範囲となるように制御することによっ
て、微小探針が被測定対象に加える力を低減させる。測
定手段は、この状態で微小探針間において電気的な検出
を行って電気特性を測定する。The probe control means controls the displacement between the minute probe and the object to be measured or the force acting between each minute probe and the object to be measured so as to fall within the range of the atomic force. This reduces the force applied by the microprobe to the object to be measured. In this state, the measuring means performs electrical detection between the microprobes to measure the electrical characteristics.
【0017】測定手段は、探針制御手段によって微小探
針と被測定対象との間の変位や圧力を変えながら電気特
性を検出し、検出した電気特性と検出手段で検出した圧
力変化又は変位変化に基づいて電気特性の接触圧力依存
性又は変位依存性を測定する。また、測定手段は、測定
した電気特性の接触圧力依存性又は変位依存性に基づ
き、この依存性がなくなる圧力あるいは変位を求め、こ
の圧力あるいは変位を電気特性を測定する基準圧力又は
基準変位とする。探針制御手段は、この基準圧力又は基
準変位となるように微小探針の位置を制御する。これに
よって、被測定対象や測定位置にかかわらず、常に安定
した測定条件で測定することができる。The measuring means detects electric characteristics while changing the displacement and pressure between the microprobe and the object to be measured by the probe control means, and detects the detected electric characteristics and the pressure change or displacement change detected by the detecting means. The contact pressure dependence or displacement dependence of the electrical characteristics is measured based on Further, the measuring means obtains a pressure or displacement that eliminates this dependency based on the contact pressure dependency or displacement dependency of the measured electrical characteristic, and uses this pressure or displacement as the reference pressure or reference displacement for measuring the electrical characteristic. . The probe control means controls the position of the micro probe so that the reference pressure or the reference displacement is obtained. As a result, regardless of the object to be measured or the measurement position, it is possible to always perform measurement under stable measurement conditions.
【0018】測定する電気特性は、たとえば、電気抵抗
率やこの電気抵抗率から求める電気伝導率とすることが
できる。さらに、この電気抵抗率や電気伝導率を指標と
して被測定対象の表面融解特性を求めることができる。
また、電気伝導率をウィデマン・フランツ則に適用する
ことにより被測定対象の熱伝導率を評価することもでき
る。また、電気特性測定装置が備える複数の微小探針の
配置は種々の形態とすることができる。4探針法による
場合には、たとえば、4本の微小探針を等間隔で直線状
に配置する形態、4本の微小探針を方形の各頂点に配置
する形態等とすることができる。微小探針を方形配置し
た場合には、非常に微小な領域における測定が可能とな
る。また、上記の一つの測定点を測定する他、微小探針
からなる少なくとも二組の測定端子をそれぞれ異なる軸
方向に沿って配置する形態によって、電流方向が異なる
複数の測定点を測定することができる。The electrical characteristic to be measured can be, for example, the electrical resistivity or the electrical conductivity obtained from this electrical resistivity. Further, the surface melting property of the object to be measured can be obtained using the electric resistivity and the electric conductivity as indexes.
In addition, the thermal conductivity of the object to be measured can be evaluated by applying the electrical conductivity to the Wiedemann-Franz rule. Further, the plurality of microprobes arranged in the electrical characteristic measuring device can be arranged in various forms. In the case of the four-probe method, for example, a configuration in which four micro-tips are linearly arranged at equal intervals and a configuration in which four micro-tips are arranged at each vertex of a square can be adopted. When the microprobes are arranged in a square shape, it is possible to measure in a very small area. In addition to measuring one of the above measurement points, it is possible to measure a plurality of measurement points with different current directions by arranging at least two sets of measurement terminals consisting of microprobes along different axial directions. it can.
【0019】本発明の電気特性測定方法は、複数の微小
探針と被測定対象との間の変位又は各微小探針と被測定
対象との間に働く力を検出する工程と、検出手段の出力
に基づいて複数の微小探針を個別に制御して少なくとも
一軸方向に位置制御する工程と、各微小探針を測定端子
としこの測定端子間の電気的検出に基づいて被測定対象
の電気特性を測定する工程の各工程を備える。本発明の
電気特性測定方法は、電気特性を圧力又は変位を変化さ
せながら測定することによって電気特性の接触圧力依存
性又は変位依存性を測定する。また、電気特性の接触圧
力依存性又は変位依存性に基づいて、この依存性が見ら
れなくなる圧力値又は変位値を求め、この値を電気特性
値を測定する基準値とする。The electrical characteristic measuring method of the present invention comprises a step of detecting a displacement between a plurality of micro-tips and an object to be measured or a force acting between each micro-tip and the object to be measured, and a step of detecting means. Based on the process of individually controlling a plurality of micro-tips based on the output to control the position in at least one axis direction, and using each micro-tip as a measurement terminal, the electrical characteristics of the measured object based on the electrical detection between the measurement terminals. Each step of the step of measuring The electric characteristic measuring method of the present invention measures the contact pressure dependency or the displacement dependency of the electric characteristic by measuring the electric characteristic while changing the pressure or the displacement. Further, based on the contact pressure dependency or the displacement dependency of the electrical characteristic, a pressure value or a displacement value at which this dependency is not seen is obtained, and this value is used as a reference value for measuring the electrical characteristic value.
【0020】本発明によれば、半導体装置の製造ライン
においては、直接に製造用の基板を用いて電気抵抗率の
測定が可能となり、また、この測定によって基板表面に
圧痕は生じないため、測定後も当該基板を製造プロセス
に戻すことが可能となる。したがって、電気抵抗率の測
定のためにダミーウエハを用いる必要が無くなり、使用
される全シリコン基板に対するダミーウエハの割合を大
幅に減少し、シリコン基板の利用効率が非常に高くなる
ことが期待できる。According to the present invention, in a semiconductor device manufacturing line, it is possible to directly measure the electrical resistivity of a substrate for production, and the measurement does not cause an indentation on the substrate surface. After that, the substrate can be returned to the manufacturing process. Therefore, it is not necessary to use a dummy wafer for measuring the electric resistivity, the ratio of the dummy wafer to all the silicon substrates used can be significantly reduced, and it can be expected that the utilization efficiency of the silicon substrate will be very high.
【0021】また、原子間力レベルの非常に小さな力で
微小探針を被測定対象に接触させるために、金属表面の
数原子層で発現する表面融解層を破壊することなく、表
面融解過程を電気抵抗率の変化として検出できる可能性
となる。材料の融解の低温化に関する研究に適用するこ
とができる。Further, in order to bring the microprobe into contact with the object to be measured with a force having a very small atomic force level, the surface melting process can be carried out without destroying the surface melting layer which appears in several atomic layers of the metal surface. There is a possibility that it can be detected as a change in electrical resistivity. It can be applied to research on low temperature melting of materials.
【0022】[0022]
【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しながら詳細に説明する。図1は本発明の電気特
性測定装置の概略を説明するための概略図を示してい
る。図1において、電気特性測定装置1は、被測定対象
Sの表面と接触し測定端子として使用する複数の微小探
針2、微小探針2の位置を制御し被測定対象Sの表面と
接触させる探針制御手段3、微小探針2と被測定対象S
の表面との接触状態を圧力や変位で検出する検出手段
6、微小探針2を測定端子とする電気的検出に基づいて
被測定対象Sの電気特性を測定する測定手段7、被測定
対象Sを支持するステージ11、及び前記各手段を全体
的に制御する制御手段12を備える。電気特性測定装置
1は、探針制御手段3と検出手段6によって微小探針2
を被測定対象Sに対して所定の位置に制御した後、測定
手段7によって微小探針2を測定端子として被測定対象
Sを電気的に検出し、電気特性を測定する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a schematic diagram for explaining the outline of the electrical characteristic measuring apparatus of the present invention. In FIG. 1, an electric characteristic measuring device 1 controls a plurality of microprobes 2 that are in contact with the surface of the measurement target S and are used as measurement terminals, and the positions of the microprobes 2 are in contact with the surface of the measurement target S. Probe control means 3, minute probe 2, and object S to be measured
Detecting means 6 for detecting the contact state with the surface of the object by pressure or displacement, measuring means 7 for measuring the electrical characteristics of the measured object S based on electrical detection using the microprobe 2 as a measuring terminal, and the measured object S. And a control means 12 for controlling the respective means as a whole. The electrical characteristic measuring device 1 includes a fine probe 2 by the probe control means 3 and the detection means 6.
Is controlled to a predetermined position with respect to the object S to be measured, and then the object S to be measured is electrically detected by the measuring means 7 using the microprobe 2 as a measurement terminal to measure the electrical characteristics.
【0023】なお、4探針法を適用する場合には、少な
くとも4本の微小探針2a〜2dを配置する。この微小
探針2a〜2dは、所定間隔を開けて直線状に配置する
他、方形の各頂点に配置する構成とすることができる。
また、探針制御手段3を構成するピエゾ素子4及びピエ
ゾ制御部5、検出手段6についても、微小探針2a〜2
dの個数に応じて、ピエゾ素子4a〜4d、ピエゾ制御
部5a〜5d、検出手段6a〜6dを備える。When applying the 4-probe method, at least four microprobes 2a to 2d are arranged. The microprobes 2a to 2d may be arranged linearly at a predetermined interval, or may be arranged at each vertex of a square.
Further, with respect to the piezo element 4, the piezo control unit 5, and the detection unit 6 which constitute the probe control unit 3, the micro-probes 2a to 2a are also included.
Piezoelectric elements 4a to 4d, piezoelectric control units 5a to 5d, and detecting means 6a to 6d are provided according to the number of d.
【0024】以下、図1では、4探針法を適用した構成
例について説明する。各微小探針2a〜2dは導電性を
備えると共に、探針制御手段3によってZ軸方向(垂直
軸方向)に移動自在としている。探針制御手段3は、各
微小探針2a〜2dを取り付けて各微小探針2a〜2d
を直接に移動するピエゾ素子4a〜4d、及び各ピエゾ
素子4a〜4dに対して印加する電圧を個別に制御する
ピエゾ制御部5a〜5dを備え、各ピエゾ素子4a〜4
dはそれぞれ対応する各ピエゾ制御部5a〜5dによっ
て各微小探針2a〜2dのZ軸方向にそれぞれ個別に位
置制御される。なお、微小探針2a〜2dは、たとえば
原子間力顕微鏡のカンチレバーを用いて構成することが
できる。In the following, an example of the structure to which the 4-probe method is applied will be described with reference to FIG. Each of the microprobes 2a to 2d has conductivity and is movable in the Z-axis direction (vertical axis direction) by the probe control means 3. The probe control means 3 attaches the microprobes 2a to 2d and attaches the microprobes 2a to 2d.
Of the piezo elements 4a to 4d that directly move the piezo elements, and piezo control units 5a to 5d that individually control the voltage applied to the piezo elements 4a to 4d.
The position of d is individually controlled in the Z-axis direction of each of the microprobes 2a to 2d by the corresponding piezo control unit 5a to 5d. The microprobes 2a to 2d can be configured by using a cantilever of an atomic force microscope, for example.
【0025】検出手段6a〜6dは各微小探針2a〜2
dに設けられ、各微小探針2a〜2dと被測定対象Sと
の間に働く力、あるいは各微小探針2a〜2dと被測定
対象Sとの間の変位を検出し、検出信号をピエゾ制御部
5a〜5dに送る。検出手段6a〜6dは、カンチレバ
ーの変化を検出することによって、微小探針と被測定対
象との間に働く力あるいは変位を求めることができる。
カンチレバーの変化は、カンチレバーが被測定材料と接
触する際の原子間力に応じて生じる。このカンチレバー
の変化の検出は、細く絞ったレーザ光をカンチレバー探
針の背面に照射し、反射してくるレーザ光を位置敏感検
出器で検出する方法(光てこ法)の他に、レーザ光を用
いずにカンチレバー探針の曲がり量を直接測定できるカ
ンチレバーを用いることもできる。The detecting means 6a to 6d are the microprobes 2a to 2d, respectively.
The force acting between each of the microprobes 2a to 2d and the measurement target S or the displacement between each of the microprobes 2a to 2d and the measurement target S is detected, and the detection signal is detected by the piezo sensor. It is sent to the control units 5a to 5d. The detecting means 6a to 6d can detect the force or displacement acting between the microprobe and the object to be measured by detecting the change in the cantilever.
The change of the cantilever occurs according to the atomic force when the cantilever comes into contact with the material to be measured. This change in the cantilever can be detected by irradiating the back of the cantilever probe with a laser beam that has been narrowed down and detecting the reflected laser beam with a position sensitive detector (optical lever method). It is also possible to use a cantilever that can directly measure the bending amount of the cantilever probe without using it.
【0026】ピエゾ制御部5a〜5dは、検出手段6a
〜6dから送られた検出信号に基づいて、各微小探針2
a〜2dと被測定対象Sとの間に働く力、あるいは各微
小探針2a〜2dと被測定対象Sとの間の変位がそれぞ
れ所定値となるように、各ピエゾ素子4a〜4dに対し
て印加する電圧を個別に制御する。本発明に適用する探
針制御手段3は、微小探針2と被測定対象Sとの間の距
離を原子間力の範囲内で制御することができるため、微
小探針2が被測定対象Sの表面に圧痕を与えることな
く、微小探針2と被測定対象Sとの間に電流が流れる程
度に接近させて接触させ、これによって被測定対象Sを
電気的に検出することができる。The piezo control units 5a-5d have a detecting means 6a.
Each microprobe 2 based on the detection signal sent from
a to 2d and the measured object S, or the displacement between each microprobe 2a to 2d and the measured object S becomes a predetermined value, with respect to each piezo element 4a to 4d The voltage to be applied is controlled individually. Since the probe control means 3 applied to the present invention can control the distance between the micro probe 2 and the measurement target S within the range of the atomic force, the micro probe 2 measures the measurement target S. It is possible to electrically detect the object S to be measured by bringing the microprobe 2 and the object S to be measured into close contact with each other to the extent that a current flows, without making an indentation on the surface.
【0027】一方、測定手段7は、定電流電源8と電圧
測定部9と電気特性算出部10を備える。定電流電源8
は、4本の微小探針の内の2本の微小探針2a,2dに
定電流を供給し、探針制御手段3によって被測定対象S
の表面に接触させた微小探針2a,2dを通して被測定
対象Sに電流を流す。また、電圧測定部9は、4本の微
小探針の内の2本の微小探針2b,2c間の電圧を測定
することで、被測定対象Sの微小探針2c,2b間の電
圧を検出する。電気特性算出部10は、電圧測定部9で
検出した電圧を用いて被測定対象Sの電気特性を算出す
る。電気特性算出部10は、電気抵抗率や電気伝導率等
の電気特性を求める他、微小探針と被測定対象との間に
働く力や変位を変化させながら測定することによって、
電気抵抗率や電気伝導率の接触圧力依存性を求めること
ができる。On the other hand, the measuring means 7 comprises a constant current power source 8, a voltage measuring section 9 and an electric characteristic calculating section 10. Constant current power supply 8
Supplies a constant current to the two microprobes 2a and 2d out of the four microprobes, and the probe control means 3 causes the measured object S to be measured.
An electric current is passed through the object S to be measured through the microprobes 2a and 2d that are in contact with the surface of In addition, the voltage measuring unit 9 measures the voltage between the two microprobes 2b and 2c of the four microprobes to determine the voltage between the microprobes 2c and 2b of the measurement target S. To detect. The electrical characteristic calculation unit 10 calculates the electrical characteristic of the measurement target S using the voltage detected by the voltage measurement unit 9. The electric characteristic calculation unit 10 obtains electric characteristics such as electric resistivity and electric conductivity, and also performs measurement while changing force and displacement acting between the microprobe and the object to be measured.
It is possible to obtain the contact pressure dependence of the electrical resistivity and the electrical conductivity.
【0028】なお、制御手段12は、ピエゾ制御部5、
及び測定手段7(定電流電源8,電圧測定部9,電気特
性算出部10)を制御し、探針制御手段3による各微小
探針2の位置制御、及び位置制御後の測定手段7による
測定制御など、動作手順を含む電気特性測定装置1全体
の制御を行う。The control means 12 includes a piezo controller 5,
And the measuring means 7 (constant current power supply 8, voltage measuring section 9, electric characteristic calculating section 10) are controlled, the position control of each microprobe 2 by the probe control means 3, and the measurement by the measuring means 7 after the position control. The entire electric characteristic measuring device 1 including the operation procedure such as control is controlled.
【0029】次に、図2の本発明の電気特性測定方法の
手順を説明するためのフローチャート、及び図3の微小
探針の制御状態を示す概略図を用いて、本発明の電気特
性測定方法の手順を説明する。はじめに、被測定対象S
を電気特性測定装置1が備えるステージ11上にセット
する。なお、ステージ11はX軸方向及びY軸方向に移
動可能とすることで、被測定対象S上の測定位置と微小
探針とのX軸,Y軸方向の位置決めを行うことができ
る。また、Z軸方向に移動可能とすることで、被測定対
象SのZ方向の位置決めを行うことができる。Z軸方向
の位置決めは、被測定対象Sをステージ11上へにセッ
トする際に微小探針2との距離を大きくとる他、ピエゾ
素子4の可動範囲を超える位置合わせに用いることがで
きる。なお、Z軸方向の位置決めは、ステージ11をZ
軸方向に移動する他、ピエゾ素子4全体を支持する支持
部(図示していない)をZ軸方向に移動することによっ
ても行うことができる。Next, the electric characteristic measuring method of the present invention will be described with reference to the flow chart for explaining the procedure of the electric characteristic measuring method of the present invention of FIG. 2 and the schematic diagram showing the control state of the microprobe of FIG. The procedure will be described. First, the measured object S
Is set on the stage 11 included in the electrical characteristic measuring apparatus 1. The stage 11 is movable in the X-axis direction and the Y-axis direction, so that the measurement position on the measurement target S and the micro probe can be positioned in the X-axis and Y-axis directions. Further, by making the movable in the Z-axis direction, the measurement target S can be positioned in the Z-direction. Positioning in the Z-axis direction can be used not only to increase the distance from the microprobe 2 when setting the measurement target S on the stage 11 but also to perform alignment beyond the movable range of the piezo element 4. For positioning in the Z-axis direction, move the stage 11 to Z
In addition to moving in the axial direction, this can also be done by moving a supporting portion (not shown) that supports the entire piezo element 4 in the Z-axis direction.
【0030】被測定対象Sをステージ11上に配置した
後、ステージ11あるいはピエゾ素子4の支持部をZ軸
方向に制御し、被測定対象Sと微小探針2の間の距離が
ピエゾ素子4の可動範囲に入る範囲で、且つ一定の距離
にセットする(図3(a))(ステップS1)。本発明
の電気特性測定装置1は、複数の各微小探針について、
被測定対象Sとの間に働く力あるいは変位をそれぞれ個
別に位置制御して各微小探針の先端を被測定対象Sの表
面に原子間力の範囲内に接触させた後(以下のステップ
S2〜ステップS7)、電気特性の測定を行う(以下の
ステップS8)。この複数の微小探針の位置制御は、各
微小探針を同時に行うことも、あるいは順に行うことも
できる。以下のステップS2〜ステップS7は、複数の
微小探針の位置制御を順に行う例について示している。After the object S to be measured is placed on the stage 11, the stage 11 or the supporting portion of the piezo element 4 is controlled in the Z-axis direction, and the distance between the object S to be measured and the microprobe 2 is set to the piezo element 4. Is set within a movable range and at a constant distance (FIG. 3A) (step S1). The electrical characteristic measuring apparatus 1 of the present invention is, for each of the plurality of microprobes,
After the force or displacement acting on the object S to be measured is individually controlled to bring the tip of each microprobe into contact with the surface of the object S to be measured within the range of the atomic force (step S2 below). Up to step S7), electrical characteristics are measured (step S8 below). The position control of the plurality of micro-tips can be performed simultaneously for each micro-tip, or sequentially. Steps S2 to S7 below show an example in which the position control of a plurality of microprobes is sequentially performed.
【0031】複数の微小探針2(図1の構成例では微小
探針2a〜2d)から位置制御を行う微小探針2を選択
し(ステップS2)、選択した微小探針2を支持するピ
エゾ素子4に対して、対応するピエゾ制御部5から電圧
を印加すると共に(ステップS3)、検出手段6によっ
て微小探針2に加わる力あるいは変位を検出する(ステ
ップS4)。ピエゾ制御部5は、検出手段6の検出値を
取り込み、取り込んだ検出値があらかじめ設定した所定
値と比較し(ステップS5)、検出値が所定値となるよ
うにステップS3においてピエゾ素子4に印加する電圧
を調整する。微小探針2が被測定対象Sに近づくに従
い、検出部6が検出する圧力又は変位の出力値は大きく
なり、逆に、微小探針2が被測定対象Sから遠ざかるに
従い、検出部6の出力値は小さくなる。このステップS
3〜ステップS5を繰り返すことによって微小探針2を
位置制御する。A microprobe 2 for position control is selected from a plurality of microprobes 2 (microprobes 2a to 2d in the configuration example of FIG. 1) (step S2), and a piezo supporting the selected microprobe 2 is selected. A voltage is applied to the element 4 from the corresponding piezo control section 5 (step S3), and the force or displacement applied to the microprobe 2 is detected by the detection means 6 (step S4). The piezo controller 5 fetches the detection value of the detecting means 6, compares the fetched detection value with a preset predetermined value (step S5), and applies it to the piezo element 4 in step S3 so that the detection value becomes the predetermined value. Adjust the voltage to be used. The output value of the pressure or displacement detected by the detection unit 6 increases as the microprobe 2 approaches the measurement target S, and conversely, as the microprobe 2 moves away from the measurement target S, the output of the detection unit 6 increases. The value becomes smaller. This step S
The position of the fine probe 2 is controlled by repeating 3 to step S5.
【0032】なお、微小探針2の位置制御に用いる所定
値は、被測定対象Sの電気特性の接触圧力依存性又は変
位依存性において、この依存性がなくなる圧力値又は変
位値を用いる。これによって、電気特性値を測定するた
めの圧力あるいは変位の基準値を定めることができ、均
一な測定条件で測定することができる。この基準値を求
める手順は、図4を用いて後述する。ピエゾ制御部5
は、前記位置制御によって求めた電圧に固定し、被測定
対象Sに対する微小探針2の位置を定める(ステップS
6)。The predetermined value used for the position control of the microprobe 2 is a pressure value or displacement value that eliminates this dependency in the contact pressure dependency or displacement dependency of the electrical characteristics of the object S to be measured. Thereby, the reference value of pressure or displacement for measuring the electric characteristic value can be determined, and the measurement can be performed under uniform measurement conditions. The procedure for obtaining this reference value will be described later with reference to FIG. Piezo controller 5
Is fixed to the voltage obtained by the position control, and the position of the microprobe 2 with respect to the measured object S is determined (step S
6).
【0033】各微小探針2について、前記ステップS2
〜ステップS6の工程を繰り返し、全微小探針2の位置
を定める。図3(b)は、被測定対象Sの表面形状に応
じて各微小探針2a〜2dを個別に位置制御した状態を
模式的に示している。本発明の電気特性測定によれば、
各微小探針2a〜2dを個別に位置制御することによっ
て、被測定対象Sの微小な表面形状に対して、各微小探
針2a〜2dを同じ条件で接触させることができ、微小
領域の電気特性の測定が可能となる。なお、微小探針の
位置制御を同時に行う場合には、各ピエゾ制御部5a〜
5dが各ピエゾ素子4a〜4dを同時にかつ個別に制御
する(ステップS7)。For each microprobe 2, step S2
The process of step S6 is repeated to determine the positions of all the microprobes 2. FIG. 3B schematically shows a state in which the position of each of the microprobes 2a to 2d is individually controlled according to the surface shape of the measurement target S. According to the electrical characteristic measurement of the present invention,
By individually controlling the position of each of the microprobes 2a to 2d, the microprobes 2a to 2d can be brought into contact with the microscopic surface shape of the measurement target S under the same condition, and the electric power of the microregion can be reduced. It is possible to measure the characteristics. In addition, when simultaneously performing the position control of the microprobes, the piezoelectric control units 5a to 5a.
5d controls each piezo element 4a-4d simultaneously and individually (step S7).
【0034】全微小探針2の位置が定まった後、測定手
段7によって各微小探針2を測定端子として被測定対象
Sの電気的な検出を行い、電気特性を測定する。たとえ
ば、直線状に配置した微小探針2a〜2dを用いて4探
針法によって被測定対象Sの電気的な検出を行う場合に
は、定電流電源8によって4本の微小探針の内の2本の
微小探針2a,2dに定電流を供給し、微小探針2a,
2dを通して被測定対象Sに電流を流す。被測定対象S
に通電された電流は、被測定対象Sが備える電気特性に
応じて流れる。電圧測定部9は、4本の微小探針の内の
2本の微小探針2b,2c間の電圧を測定する。測定電
圧から、被測定対象Sの微小探針2c,2b間を流れる
電流、及び電気特性に依存した電圧が検出される。After the positions of all the microprobes 2 are determined, the measuring means 7 electrically detects the object S to be measured by using each microprobe 2 as a measurement terminal, and measures the electrical characteristics. For example, in the case of electrically detecting the object S to be measured by the 4-probe method using the fine probes 2a to 2d arranged in a straight line, the constant-current power source 8 can be used to select one of the four fine probes. By supplying a constant current to the two microprobes 2a, 2d,
A current is passed through the object S to be measured through 2d. Target S
The current supplied to the device flows according to the electrical characteristics of the measured object S. The voltage measuring unit 9 measures the voltage between two microprobes 2b and 2c of the four microprobes. From the measurement voltage, the current flowing between the microprobes 2c and 2b of the measurement target S and the voltage depending on the electrical characteristics are detected.
【0035】電気特性算出部10は、求めた電圧から被
測定対象Sの電気特性を求める。たとえば、被測定対象
Sの電気抵抗率の値ρは、被測定材料が微小探針間に間
隔lよりも十分に大きく、またその厚さdも十分に大き
い場合には前記式(1)のρ=(V/I)2πl [Ω
・cm]によって、また、被測定材料が小さい場合や、
その厚さdが薄い場合には前記式(2)のρ=4.54
V/dl [Ω・cm]によって近似的に求めることがで
きる。The electrical characteristic calculation unit 10 obtains the electrical characteristic of the measured object S from the obtained voltage. For example, the value ρ of the electrical resistivity of the object S to be measured is expressed by the above formula (1) when the material to be measured is sufficiently larger than the interval 1 between the microprobes and the thickness d thereof is also sufficiently large. ρ = (V / I) 2πl [Ω
・ When the material to be measured is small,
When the thickness d is thin, ρ = 4.54 in the equation (2).
It can be approximately calculated by V / dl [Ω · cm].
【0036】電気特性算出部10は、上記電気抵抗率の
他、この電気抵抗率をウィデマン・フランツ則に適用し
て熱伝導率を求めることができる。なお、ウィデマン・
フランツ則は、金属の熱伝導率Kc(伝導電子による)
と電気伝導率σ(なお、ここでは電気抵抗率ρに代えて
電気伝導率σで説明する)の比が絶対温度に比例するこ
とであり、Kc=L0σTで表される。ここで、L0は
ローレンツ数として知られる定数である。また、電気特
性算出部10は、微小探針と被測定対象との間に働く力
や変位を変化させながら測定することによって、電気抵
抗率や熱伝導率の接触圧力依存性や変位依存性を求める
ことができる。In addition to the above-mentioned electrical resistivity, the electrical characteristic calculation unit 10 can apply this electrical resistivity to the Wiedemann-Franz rule to obtain the thermal conductivity. By the way,
Franz's rule is that the thermal conductivity Kc of metal (due to conduction electrons)
And electrical conductivity σ (here, electrical conductivity σ is used instead of electrical resistivity ρ) is proportional to the absolute temperature, and is represented by Kc = L 0 σT. Here, L 0 is a constant known as Lorentz number. Further, the electrical characteristic calculation unit 10 measures the contact pressure dependency or the displacement dependency of the electrical resistivity or the thermal conductivity by changing the force or the displacement acting between the micro probe and the measurement target while changing the force. You can ask.
【0037】次に、電気特性の依存性、及びこの依存性
を求める手順について、図4に示す電気特性図を用いて
説明する。被測定対象の電気特性は、測定に用いる探針
の接触圧力あるいは変位に対して依存性を有している。
したがって、探針を被測定対象に接触させることによっ
て被測定対象の電気特性を測定する際、図4に示すよう
に、探針の接触圧力あるいは探針と被測定対象との間の
距離を変化させると、測定される電気特性も変化するこ
とになる。Next, the dependence of the electrical characteristics and the procedure for obtaining this dependence will be described with reference to the electrical characteristics diagram shown in FIG. The electrical characteristics of the object to be measured have a dependency on the contact pressure or displacement of the probe used for measurement.
Therefore, when the electrical characteristics of the measured object are measured by bringing the probe into contact with the measured object, the contact pressure of the probe or the distance between the probe and the measured object is changed as shown in FIG. If so, the measured electrical characteristics will also change.
【0038】そこで、電気特性の測定条件を一定なもの
とするために、電気特性の接触圧力依存性又は変位依存
性において、この依存性がなくなる圧力値又は変位値を
基準値として用いる。例えば、図4中において、電気抵
抗率ρの接触圧力依存性又は変位依存性がなくなる圧力
あるいは変位(図4中のA)を求め、この圧力値又は変
位値を基準値とする。したがって、この基準値を用いて
電気特性を測定することによって、一定の測定条件の元
での電気特性を得ることができる。Therefore, in order to make the measurement condition of the electric characteristic constant, the pressure value or the displacement value in which the dependence of the electric characteristic depends on the contact pressure or the displacement is used as a reference value. For example, in FIG. 4, the pressure or displacement (A in FIG. 4) at which the contact pressure dependency or displacement dependency of the electrical resistivity ρ disappears is determined, and this pressure value or displacement value is used as a reference value. Therefore, by measuring the electric characteristic using this reference value, the electric characteristic under a constant measurement condition can be obtained.
【0039】電気特性の依存性を求める手順は、前記図
2に示したフローチャートのステップS1〜ステップS
8と同様の工程によって、所定の圧力値あるいは変位値
における電気特性を測定する。次に、ステップS5にお
ける所定の圧力値あるいは変位値を変更し、再度ステッ
プS1〜ステップS8の工程を繰り返し、異なる圧力値
あるいは変位値における電気特性を測定する。上記所定
の圧力値あるいは変位値の変更と、変更した所定値に基
づく電気特性の測定を繰り返すことによって図4に示す
ような電気特性の依存性を示す電気特性図を得ることが
できる。The procedure for obtaining the dependency of the electrical characteristics is performed in steps S1 to S of the flow chart shown in FIG.
By the same process as in 8, the electric characteristic at a predetermined pressure value or displacement value is measured. Next, the predetermined pressure value or displacement value in step S5 is changed, and the steps S1 to S8 are repeated again to measure the electrical characteristics at different pressure values or displacement values. By repeating the change of the predetermined pressure value or the displacement value and the measurement of the electric characteristic based on the changed predetermined value, the electric characteristic diagram showing the dependence of the electric characteristic as shown in FIG. 4 can be obtained.
【0040】また、4探針法による測定において、4本
の微小探針からなる測定端子の組みを2組それぞれ異な
る軸方向(たとえば、X軸方向及びY軸方向)に配置す
る構成とすることによって、被測定対象Sにおける電気
特性の方向性ついても測定することができる。In the measurement by the four-point probe method, two sets of measuring terminals each including four micro-tips are arranged in different axial directions (for example, X-axis direction and Y-axis direction). Thus, it is possible to measure the directivity of the electrical characteristics of the measured object S.
【0041】本発明の実施の態様によれば、微小探針を
原子間力の範囲の圧力で制御して被測定材料に接触させ
ることができるため、被測定対象の表面に微小探針によ
る圧痕を与えずに、電気抵抗率等の電気特性を測定する
ことが可能となる。また、探針として走査プローブ顕微
鏡の探針を用いることによって、非常に微小な領域にお
ける測定も可能になる。According to the embodiment of the present invention, since the fine probe can be contacted with the material to be measured by controlling the pressure within the range of the atomic force, the indentation by the fine probe on the surface of the object to be measured. It is possible to measure electrical characteristics such as electrical resistivity without giving Further, by using the probe of the scanning probe microscope as the probe, it is possible to measure in a very small area.
【0042】本発明の電気特性測定を半導体製造に適用
することによって、半導体装置の製造ラインにおいて、
直接、製造用の基板を用いて電気抵抗率の測定が可能と
なり、また、この測定によって基板表面に圧痕は生じさ
せないため、測定後も当該基板を製造プロセスに戻すこ
とが可能となる。したがって、電気抵抗率の測定のため
にダミーウエハを用いる必要は無くなり、使用される全
シリコン基板に対するダミーウエハの割合を大幅に減少
させることができ、シリコン基板の利用効率を高めるこ
とが期待できる。By applying the electrical characteristic measurement of the present invention to semiconductor manufacturing, in a semiconductor device manufacturing line,
The electrical resistivity can be directly measured using the manufacturing substrate, and since the measurement does not cause an indentation on the substrate surface, the substrate can be returned to the manufacturing process even after the measurement. Therefore, it is not necessary to use the dummy wafer for measuring the electrical resistivity, the ratio of the dummy wafer to all the silicon substrates used can be significantly reduced, and the utilization efficiency of the silicon substrate can be expected to be improved.
【0043】また、本発明の電気特性測定によれば、原
子間力レベルの非常に小さな力で探針を被測定対象に接
触させるため、金属表面の数原子層で発現する表面融解
層を破壊することなく、表面融解過程を電気抵抗率の変
化として検出できる。表面融解過程の解析は、材料の融
解を低温化に適用することができる。Further, according to the electrical characteristic measurement of the present invention, since the probe is brought into contact with the object to be measured with a force having a very small atomic force level, the surface melting layer developed in several atomic layers of the metal surface is destroyed. Without this, the surface melting process can be detected as a change in electrical resistivity. Analysis of the surface melting process can be applied to lowering the melting of materials.
【0044】さらに、本発明の電気特性測定装置によれ
ば、探針を含めた駆動系、測定系、及び制御系を全て被
測定材料の片側(上側)に構成できるため、被測定材料
の状態や形状にかかわらず自由度の高い測定が可能とな
る。たとえば、試料をるつぼ中に設置し、加熱しながら
試料の電気抵抗率を測定することができる。従来の4探
針法では、加熱によって試料が融解した場合、探針を試
料に強く押しつけているために探針が溶融試料と反応し
てしまい、特に金属試料に関しては測定が不可能となる
という問題があり、たとえ測定が継続できたとしても、
その反応により試料が化学的に汚染され、所期の物質に
対する電気抵抗率を測定することは不可能である。これ
に対して、本発明の電気特性測定によれば、原子間力レ
ベルの非常に小さな力で探針を材料に接触させるため、
探針と試料の間で著しい化学反応が起こることはなく、
溶融金属を含めた液体試料の電気抵抗率等の電気特性の
測定に適用することができる。Further, according to the electrical characteristic measuring apparatus of the present invention, since the drive system including the probe, the measuring system, and the control system can all be configured on one side (upper side) of the material to be measured, the state of the material to be measured can be measured. It enables high degree of freedom measurement regardless of shape and shape. For example, the sample can be placed in a crucible and the electrical resistivity of the sample can be measured while heating. In the conventional 4-probe method, when the sample is melted by heating, the probe reacts with the melted sample because the probe is strongly pressed against the sample, and it becomes impossible to measure especially the metal sample. There is a problem and even if the measurement can be continued,
The reaction chemically pollutes the sample, and it is impossible to measure the electrical resistivity of the intended substance. On the other hand, according to the electrical property measurement of the present invention, since the probe is brought into contact with the material with a very small atomic force level,
There is no significant chemical reaction between the probe and the sample,
It can be applied to measurement of electric characteristics such as electric resistivity of a liquid sample including molten metal.
【0045】溶融金属の電気抵抗率はそれ自身で非常に
重要な物性値であり、また、この電気抵抗率を用いてウ
ィデマン・フランツ則から熱伝導度の値を求めることが
できる。溶融金属の熱伝導度の値は、材料プロセス・シ
ミュレーションにおいて入力データとして非常に重要な
物性値であり、本発明の電気特性測定を用いることによ
って測定が容易となり、データ・ベースの構築に有効な
手段となる。The electric resistivity of the molten metal is a very important physical property value by itself, and the electric conductivity can be used to determine the value of thermal conductivity from the Wiedemann-Franz law. The value of the thermal conductivity of the molten metal is a very important physical property value as input data in the material process simulation, and it becomes easy to measure by using the electrical property measurement of the present invention, which is effective for the construction of a data base. It becomes a means.
【0046】[0046]
【発明の効果】以上説明したように、本発明の電気特性
測定装置及び測定方法によれば、被測定対象の電気特性
を非破壊的に測定することができる。また、被測定材料
の表面に探針による圧痕を与えることなく、また、表面
融解層を破壊することなく、電気抵抗率等の電気特性を
測定することができる。As described above, according to the electric characteristic measuring apparatus and the measuring method of the present invention, the electric characteristic of the object to be measured can be measured nondestructively. Further, it is possible to measure the electrical characteristics such as the electrical resistivity without giving an indentation by the probe to the surface of the material to be measured and without destroying the surface fusion layer.
【図1】本発明の電気特性測定装置の概略を説明するた
めの概略図である。FIG. 1 is a schematic diagram for explaining an outline of an electric characteristic measuring device of the present invention.
【図2】本発明の電気特性測定方法の手順を説明するた
めのフローチャートである。FIG. 2 is a flowchart for explaining the procedure of the electrical characteristic measuring method of the present invention.
【図3】本発明の電気特性測定における微小探針の制御
状態を示す概略図である。FIG. 3 is a schematic diagram showing a control state of a microprobe in electric characteristic measurement of the present invention.
【図4】本発明の電気特性の依存性、及び依存性を求め
る手順を説明するための電気特性図である。FIG. 4 is an electric characteristic diagram for explaining the dependence of the electric characteristics of the present invention and a procedure for obtaining the dependence.
1…電気特性測定装置、2,2a〜2d…微小探針、3
…探針制御手段、4,4a〜4d…ピエゾ素子、5,5
a〜5d…ピエゾ制御部、6,6a〜6d…検出手段、
7…測定手段、8…定電流電源、9…電圧測定部、10
…電気特性算出部、11…ステージ、12…制御手段。1 ... Electrical characteristic measuring device, 2, 2a-2d ... Micro probe, 3
... Probe control means 4,4a-4d ... Piezo elements 5,5
a to 5d ... Piezo controller, 6, 6a to 6d ... Detection means,
7 ... Measuring means, 8 ... Constant current power source, 9 ... Voltage measuring unit, 10
... electric characteristic calculation unit, 11 ... stage, 12 ... control means.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小嶋 理恵 東京都目黒区祐天寺2丁目16番1−202号 Fターム(参考) 2G011 AA15 AC14 AC31 AE03 2G028 AA04 BB11 BC01 CG02 HN11 4M106 AA01 BA01 DD06 DH51 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Rie Kojima 2-162-1202 Yutenji, Meguro-ku, Tokyo F-term (reference) 2G011 AA15 AC14 AC31 AE03 2G028 AA04 BB11 BC01 CG02 HN11 4M106 AA01 BA01 DD06 DH51
Claims (7)
なくとも一軸方向に個別に制御可能とする探針制御手段
と、前記各微小探針と被測定対象との間の変位又は各微
小探針と被測定対象との間に働く力を検出する検出手段
と、前記各微小探針の少なくとも一対を測定端子とする
測定手段とを備え、前記探針制御手段は、前記検出手段
の出力に基づいて各微小探針を前記一軸方向に位置制御
し、前記測定手段は、測定端子間の電気的検出に基づい
て被測定対象の電気特性を測定する電気特性測定装置。1. A plurality of microprobes, probe control means capable of individually controlling each of the microprobes in at least one axial direction, displacement between each of the microprobes, and an object to be measured. The probe control means includes a detection means for detecting a force acting between the microprobe and the object to be measured, and a measurement means having at least one pair of the microprobes as measurement terminals. An electrical characteristic measuring device that controls the position of each micro probe in the uniaxial direction based on the output, and the measuring means measures the electrical characteristic of the object to be measured based on the electrical detection between the measuring terminals.
記検出手段で検出した圧力変化又は変位変化に基づいて
電気特性の接触圧力依存性又は変位依存性を測定する、
請求項1記載の電気特性測定装置。2. The measuring means measures the contact pressure dependency or the displacement dependency of the electrical characteristic based on the detected electrical characteristic and the pressure change or the displacement change detected by the detecting means.
The electrical characteristic measuring device according to claim 1.
存性又は変位依存性に基づいて、前記電気特性を測定す
る基準圧力又は基準変位を求める、請求項2記載の電気
特性測定装置。3. The electrical characteristic measuring device according to claim 2, wherein the measuring unit obtains a reference pressure or a reference displacement for measuring the electrical characteristic based on the contact pressure dependency or the displacement dependency of the electrical characteristic.
項1乃至3の何れか一つに記載の電気特性測定装置。4. The electrical characteristic measuring device according to claim 1, wherein the electrical characteristic is electrical resistivity.
位又は各微小探針と被測定対象との間に働く力を検出す
る工程と、前記検出手段の出力に基づいて、前記複数の
微小探針を個別に制御して少なくとも一軸方向に位置制
御する工程と、前記各微小探針を測定端子とし、当該測
定端子間の電気的検出に基づいて被測定対象の電気特性
を測定する工程を備える、電気特性測定方法。5. A step of detecting a displacement between a plurality of micro-tips and an object to be measured or a force acting between each micro-tip and the object to be measured, and based on an output of the detecting means, The step of individually controlling a plurality of micro-tips to control the position in at least one axis direction, and each micro-tip as a measurement terminal, and measuring the electrical characteristics of the object to be measured based on electrical detection between the measurement terminals. A method for measuring electrical characteristics, comprising the step of:
ながら測定し、電気特性の接触圧力依存性又は変位依存
性を測定する、請求項5記載の電気特性測定方法。6. The electrical characteristic measuring method according to claim 5, wherein the electrical characteristic is measured while changing the pressure or the displacement, and the contact pressure dependency or the displacement dependency of the electrical characteristic is measured.
依存性に基づき、当該依存性がなくなる圧力値又は変位
値を電気特性値を測定する基準値とする、請求項6記載
の電気特性測定方法。7. The electrical characteristic measurement according to claim 6, wherein based on the contact pressure dependency or the displacement dependency of the electrical characteristic, the pressure value or the displacement value at which the dependency disappears is used as a reference value for measuring the electrical characteristic value. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001316852A JP2003121459A (en) | 2001-10-15 | 2001-10-15 | Electric characteristic measuring device and measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001316852A JP2003121459A (en) | 2001-10-15 | 2001-10-15 | Electric characteristic measuring device and measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003121459A true JP2003121459A (en) | 2003-04-23 |
Family
ID=19134800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001316852A Withdrawn JP2003121459A (en) | 2001-10-15 | 2001-10-15 | Electric characteristic measuring device and measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003121459A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007108098A (en) * | 2005-10-17 | 2007-04-26 | Seiko Instruments Inc | Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics |
JP2008071916A (en) * | 2006-09-14 | 2008-03-27 | Fuji Electric Device Technology Co Ltd | Testing method of semiconductor device |
JP2008089404A (en) * | 2006-10-02 | 2008-04-17 | Kagawa Univ | Surface characteristic analysis apparatus, surface characteristic analysis method, and probe unit |
KR101562278B1 (en) | 2014-07-03 | 2015-10-21 | (주)다솔이엔지 | Surface resistance measuring apparatus with four point probe |
JP2017223493A (en) * | 2016-06-14 | 2017-12-21 | 日立化成株式会社 | Electrical characteristic measurement device and electrical characteristic measurement method |
JP2021048200A (en) * | 2019-09-17 | 2021-03-25 | 株式会社国際電気セミコンダクターサービス | Resistivity measuring instrument and manufacturing method of semiconductor device |
-
2001
- 2001-10-15 JP JP2001316852A patent/JP2003121459A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007108098A (en) * | 2005-10-17 | 2007-04-26 | Seiko Instruments Inc | Measuring probe, measuring instrument of surface characteristics, and measuring method of surface characteristics |
JP4665704B2 (en) * | 2005-10-17 | 2011-04-06 | セイコーインスツル株式会社 | Measuring probe, surface characteristic measuring apparatus, and surface characteristic measuring method |
JP2008071916A (en) * | 2006-09-14 | 2008-03-27 | Fuji Electric Device Technology Co Ltd | Testing method of semiconductor device |
JP2008089404A (en) * | 2006-10-02 | 2008-04-17 | Kagawa Univ | Surface characteristic analysis apparatus, surface characteristic analysis method, and probe unit |
JP4613264B2 (en) * | 2006-10-02 | 2011-01-12 | 国立大学法人 香川大学 | Surface characteristic analyzer |
KR101562278B1 (en) | 2014-07-03 | 2015-10-21 | (주)다솔이엔지 | Surface resistance measuring apparatus with four point probe |
JP2017223493A (en) * | 2016-06-14 | 2017-12-21 | 日立化成株式会社 | Electrical characteristic measurement device and electrical characteristic measurement method |
JP2021048200A (en) * | 2019-09-17 | 2021-03-25 | 株式会社国際電気セミコンダクターサービス | Resistivity measuring instrument and manufacturing method of semiconductor device |
JP7374682B2 (en) | 2019-09-17 | 2023-11-07 | 株式会社国際電気セミコンダクターサービス | Resistivity measuring instrument, semiconductor device manufacturing method, and resistivity measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7492176B2 (en) | Prober and probe contact method | |
US7360437B2 (en) | Devices for evaluating material properties, and related processes | |
US9140612B2 (en) | Measuring seebeck coefficient | |
US9316545B2 (en) | Scanning measurement of Seebeck coefficient of a heated sample | |
JP2008032697A (en) | Temperature sensor, temperature conditioning device, and temperature control device and method | |
US7633309B2 (en) | Inspection method, inspection apparatus and computer-readable storage medium storing program for inspecting an electrical property of an object | |
KR20090058440A (en) | Microcantilever heater-thermometer with integrated temperature-compensated strain sensor | |
JP2007311389A (en) | Prober, and probe contact method | |
JP2011185697A (en) | Thermoelectric material evaluation device and thermoelectric characteristic evaluation method | |
WO2017138380A1 (en) | Inspection jig, inspection jig set, and substrate inspection device | |
JP2003121459A (en) | Electric characteristic measuring device and measuring method | |
JP2012231040A (en) | Temperature calibration apparatus and temperature calibration method | |
JP3687030B2 (en) | Micro surface temperature distribution measurement method and apparatus therefor | |
Weir et al. | An electrical microheater technique for high-pressure and high-temperature diamond anvil cell experiments | |
KR101363269B1 (en) | Quarts crystal microbalance system minimizing frequency variation along temperature variation | |
CN105203825A (en) | Manufacturing method of micro measuring electrode, measuring method of thermoelectrical potential and related device | |
JP2007019094A (en) | Semiconductor testing device | |
US20130272338A1 (en) | Methods and systems for improved membrane based calorimeters | |
CN214150510U (en) | Transmission electron microscope high-resolution in-situ temperature difference pressurizing chip | |
KR102638346B1 (en) | Heater temperature control method, heater and mount | |
EP1906161A1 (en) | Devices for evaluating material properties, and related processes | |
JP2007324181A (en) | Prober and probing method | |
JP2008170259A (en) | Evaluating substrate of thermoelectric material, and package/collective evaluation device for the thermoelectric material | |
JP4273265B2 (en) | Sensor for measuring thermal conductivity of high-temperature liquid substances | |
Revaz et al. | A device for measurements of the temperature response to single discharges with high local resolution and fast response time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050104 |