JP2003192327A - Method of and device for producing metallic element- doped silicon oxide powder - Google Patents
Method of and device for producing metallic element- doped silicon oxide powderInfo
- Publication number
- JP2003192327A JP2003192327A JP2001393329A JP2001393329A JP2003192327A JP 2003192327 A JP2003192327 A JP 2003192327A JP 2001393329 A JP2001393329 A JP 2001393329A JP 2001393329 A JP2001393329 A JP 2001393329A JP 2003192327 A JP2003192327 A JP 2003192327A
- Authority
- JP
- Japan
- Prior art keywords
- silicon oxide
- gas
- metal
- powder
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Silicon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種機能性を有す
る金属元素ドープ酸化珪素粉末の製造方法及びその製造
装置に関するもので、特にリチウムイオン二次電池用負
極材に適した金属元素ドープ酸化珪素粉末の製造方法及
びその製造装置に関する。TECHNICAL FIELD The present invention relates to a method for producing a metal element-doped silicon oxide powder having various functionalities and an apparatus for producing the same, and particularly to a metal element-doped silicon oxide suitable for a negative electrode material for a lithium ion secondary battery. The present invention relates to a powder manufacturing method and a manufacturing apparatus thereof.
【0002】[0002]
【従来の技術】近年、携帯型の電子機器、通信機器等の
著しい発展に伴い、経済性と機器の小型化、軽量化の観
点から、高エネルギー密度の二次電池が強く要望されて
いる。従来、この種の二次電池の高容量化策として、例
えば、負極材料にV、Si、B、Zr、Sn等の酸化物
及びそれらの複合酸化物を用いる方法(特開平5−17
4818号公報、特開平6−60867号公報他)、溶
湯急冷した金属酸化物を負極材として適用する方法(特
開平10−294112号公報)、負極材料に酸化珪素
を用いる方法(特許第2997741号公報)、負極材
料にSi2N2O及びGe2N2Oを用いる方法(特開平1
1−102705号公報)等が知られている。2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, etc., a high energy density secondary battery has been strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn or a composite oxide thereof as a negative electrode material (Japanese Patent Laid-Open No. 5-17)
No. 4818, Japanese Unexamined Patent Publication No. 6-60867, etc.), a method of applying a melt-quenched metal oxide as a negative electrode material (Japanese Unexamined Patent Publication No. 10-294112), a method of using silicon oxide as a negative electrode material (Japanese Patent No. 2997741) Gazette), a method of using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (JP-A-1
No. 1-102705) and the like are known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の方法では、充放電容量が上がり、エネルギー密度が
高くなるものの、サイクル性が不十分であったり、市場
の要求特性には未だ不十分であったりし、必ずしも満足
でき得るものではなく、さらなるエネルギー密度の向上
が望まれていた。However, in the above conventional method, although the charge / discharge capacity and the energy density are increased, the cycle property is insufficient and the required characteristics of the market are still insufficient. However, it is not always satisfactory, and further improvement in energy density has been desired.
【0004】その中でも、負極材料に酸化珪素を用いる
方法(特許第2997741号公報)では、非常に高容
量のリチウムイオン二次電池は得られるものの、サイク
ル性が不十分である。Among them, the method of using silicon oxide as the negative electrode material (Japanese Patent No. 2997741) gives a lithium ion secondary battery having a very high capacity, but the cycle performance is insufficient.
【0005】本発明は上記事情に鑑みなされたものであ
り、高容量でかつサイクル低下のなく、しかも初回充放
電時における不可逆容量の少ないリチウムイオン二次電
池用負極材として適した金属元素ドープ酸化珪素粉末の
製造方法及びその製造装置を提供することを目的とす
る。The present invention has been made in view of the above circumstances, and is a metal element-doped oxidation suitable as a negative electrode material for a lithium ion secondary battery, which has a high capacity, does not cause cycle deterioration, and has a small irreversible capacity during initial charge / discharge. An object of the present invention is to provide a silicon powder manufacturing method and a manufacturing apparatus thereof.
【0006】[0006]
【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するために鋭意検討を行
い、特に潜在的に高容量化が図れると考えられる酸化珪
素について種々検討を行った結果、酸化珪素に他の金属
元素を原子状に分散、ドープさせ、この金属元素ドープ
酸化珪素粉末を負極材として用いることで、高容量を維
持しつつサイクル劣化のない、しかも初回充放電時の不
可逆容量の少ないリチウムイオン二次電池が製造できる
ことを見出し、本発明を完成した。Means for Solving the Problems and Modes for Carrying Out the Invention The inventors of the present invention have made extensive studies to achieve the above-mentioned object, and have made various studies on silicon oxide, which is considered to have a particularly high capacity. As a result, silicon oxide was atomically dispersed and doped with another metal element, and by using this metal element-doped silicon oxide powder as a negative electrode material, there was no cycle deterioration while maintaining a high capacity, and the initial charging was performed. The present invention has been completed by finding that a lithium ion secondary battery having a small irreversible capacity during discharge can be manufactured.
【0007】従って、本発明は(1)二酸化珪素粉末を
含む混合原料粉末を不活性ガスの存在下もしくは減圧下
1100〜1600℃の温度範囲で加熱し、酸化珪素ガ
スを発生させる一方、珪素以外の金属もしくは金属化合
物又はそれらの混合物を加熱し、金属蒸気ガスを発生さ
せ、上記酸化珪素ガスと上記金属蒸気ガスとの混合ガス
を100〜500℃に冷却した基体表面に析出させるこ
とを特徴とする金属元素ドープ酸化珪素粉末の製造方
法、及び、(2)二酸化珪素粉末を含む混合原料を反応
させて酸化珪素ガスを発生させる反応室Aと、珪素以外
の金属もしくは金属化合物又はそれらの混合物を加熱し
て金属蒸気ガスを発生させる反応室Bと、反応室Aと反
応室Bを接続し、上記2種類のガスを混合、搬送させる
ガス搬送ラインと、搬送された混合ガスを冷却した基体
表面に析出させる析出室とを有する金属元素ドープ酸化
珪素の製造装置を提供する。Therefore, according to the present invention, (1) a mixed raw material powder containing a silicon dioxide powder is heated in the temperature range of 1100 to 1600 ° C. in the presence of an inert gas or under reduced pressure to generate a silicon oxide gas, while other than silicon. The metal or metal compound or mixture thereof is heated to generate a metal vapor gas, and a mixed gas of the silicon oxide gas and the metal vapor gas is deposited on a substrate surface cooled to 100 to 500 ° C. And (2) a reaction chamber A in which a mixed raw material containing silicon dioxide powder is reacted to generate a silicon oxide gas, and a metal or metal compound other than silicon or a mixture thereof. A reaction chamber B that is heated to generate a metal vapor gas, and a gas transfer line that connects the reaction chamber A and the reaction chamber B and mixes and transfers the two types of gas described above; Providing an apparatus for manufacturing a metal element doped silicon oxide having a a feed has been mixed gas deposition chamber to deposit the cooled substrate surface.
【0008】以下、本発明について更に詳しく説明す
る。The present invention will be described in more detail below.
【0009】本発明の金属元素ドープ酸化珪素粉末の製
造方法において、酸化珪素ガスを発生させる原料として
は、二酸化珪素粉末とこれを還元する粉末との混合物を
用いる。具体的な還元粉末としては、金属珪素化合物、
炭素含有粉末等が挙げられるが、特に金属珪素粉末を用
いたものが、反応性を高める、収率を高めるといっ
た点で効果的であり、好ましく用いられる。In the method for producing a metal element-doped silicon oxide powder of the present invention, a mixture of silicon dioxide powder and a powder for reducing the same is used as a raw material for generating silicon oxide gas. Specific reduction powders include metallic silicon compounds,
Carbon-containing powders and the like can be mentioned. Particularly, powders using metallic silicon powder are effective in terms of enhancing reactivity and yield and are preferably used.
【0010】この場合、二酸化珪素とこれを還元する粉
末との割合は適宜選定されるが、SiOx(x=0.9
〜1.6、特に1.0〜1.2)で示される酸化珪素を
形成し得るように選定される。In this case, the ratio of silicon dioxide to the powder for reducing it is appropriately selected, but SiO x (x = 0.9)
.About.1.6, especially 1.0 to 1.2).
【0011】本発明では、上記混合原料粉末を反応室A
内において1100〜1600℃、好ましくは1200
〜1500℃の温度に加熱、保持し、酸化珪素ガスを生
成させる。反応温度が1100℃未満では、反応が進行
し難く生産性が低下してしまうし、1600℃を超える
と、混合原料粉末が溶融して逆に反応性が低下したり、
炉材の選定が困難になる恐れがある。In the present invention, the above mixed raw material powder is added to the reaction chamber A.
Within 1100 to 1600 ° C, preferably 1200
It is heated and maintained at a temperature of up to 1500 ° C. to generate silicon oxide gas. If the reaction temperature is lower than 1100 ° C, the reaction is difficult to proceed and the productivity is lowered. If the reaction temperature is higher than 1600 ° C, the mixed raw material powder is melted to lower the reactivity.
It may be difficult to select the furnace material.
【0012】一方、酸化珪素にドープさせる金属元素
は、上記混合粉末以外(珪素以外)の金属もしくは金属
化合物又はそれら混合物を反応室B内で加熱、保持し、
金属ガスを発生させる。この場合、加熱温度は酸化珪素
にドープさせる金属の蒸気圧及びあらかじめ設定された
金属ドープ量によって決定され、例えば、酸化珪素に同
等量ドープさせたい場合には、ほぼ酸化珪素ガスと同じ
蒸気圧となる温度に設定すれば良い。なお、ここで金属
元素の蒸気圧が酸化珪素の蒸気圧に近い金属元素をドー
プさせる場合においては、酸化珪素ガス発生原料と金属
元素発生原料とを混合し、1つの反応室で同時に行うこ
ともできる。On the other hand, as the metal element to be doped into silicon oxide, a metal or metal compound other than the above-mentioned mixed powder (other than silicon) or a mixture thereof is heated and held in the reaction chamber B,
Generates metal gas. In this case, the heating temperature is determined by the vapor pressure of the metal to be doped into silicon oxide and the preset metal doping amount. For example, when it is desired to dope silicon oxide in the same amount, the heating temperature is almost the same as that of silicon oxide gas. The temperature should be set to Here, in the case of doping a metal element in which the vapor pressure of the metal element is close to the vapor pressure of silicon oxide, the silicon oxide gas generating raw material and the metal element generating raw material may be mixed and performed simultaneously in one reaction chamber. it can.
【0013】この場合、上記炉内雰囲気は不活性ガスも
しくは減圧下であるが、熱力学的に減圧下の方が反応性
が高く、低温反応が可能となるため、減圧下で行うこと
が望ましい。In this case, the atmosphere in the furnace is an inert gas or under reduced pressure, but thermodynamically under reduced pressure has higher reactivity and a low temperature reaction is possible, so it is desirable to carry out under reduced pressure. .
【0014】また、上記酸化珪素にドープさせる金属
は、導電性を付与することが可能なこと、リチウムイオ
ンのドープ、脱ドープに適した結晶構造(スピネル構
造)の制御が可能なことを考慮すると、Al、B、C
a、K、Na、Li、Ge、Mg、Co及びSnの1種
又は2種以上が好ましく用いられる。Further, considering that the above-mentioned metal to be doped into silicon oxide can impart conductivity, and can control a crystal structure (spinel structure) suitable for doping and dedoping of lithium ions. , Al, B, C
One or more of a, K, Na, Li, Ge, Mg, Co and Sn are preferably used.
【0015】なお、上記酸化珪素にドープさせる金属の
ドープ量は、特に限定されず、目的、用途に応じて適宜
選定されるが、一般的には、ドープ後の酸化珪素粉末の
全体(重量)に対して3〜70重量%、好ましくは5〜
50重量%程度とすることができる。この金属のドープ
量が3%より少ないとその効果を有効に発現することが
できない場合があり、また70重量%より多いと、Si
Oの含有量が低下し、充放電容量が低下することとな
り、結果的にSiOの能力を十分発揮させることができ
ない場合がある。The amount of the metal to be doped into the silicon oxide is not particularly limited and may be appropriately selected depending on the purpose and application. Generally, the total amount (weight) of the silicon oxide powder after the doping is the same. 3 to 70% by weight, preferably 5 to
It can be about 50% by weight. If the doping amount of this metal is less than 3%, the effect may not be effectively exhibited, and if it is more than 70% by weight, Si
The content of O is reduced and the charge / discharge capacity is reduced, and as a result, the capacity of SiO may not be fully exhibited.
【0016】上記反応室A及びB内で生成した2種類の
ガスは、ガス搬送ライン内で混合され、この混合ガスは
ガス搬送ラインを介して析出室に供給する。The two kinds of gases produced in the reaction chambers A and B are mixed in the gas transfer line, and this mixed gas is supplied to the deposition chamber through the gas transfer line.
【0017】この場合、搬送ラインは、1000℃を超
え1300℃以下、より好ましくは1100〜1200
℃に加熱、保持することが望ましい。ここで、搬送管を
加熱する目的は、搬送管内壁への酸化珪素蒸気の析出防
止であり、搬送管の温度が1000℃以下では、酸化珪
素ガスを含む混合ガスが搬送管内壁に析出・付着し、運
転上支障を生じ、安定的な連続運転ができなくなる恐れ
がある。逆に1300℃を超える温度に加熱しても、そ
れ以上の効果は見られないばかりか、電力コストの上昇
を招いてしまう。In this case, the conveying line has a temperature of more than 1000 ° C. and 1300 ° C. or less, more preferably 1100 to 1200.
It is desirable to heat and hold at ℃. Here, the purpose of heating the carrier pipe is to prevent deposition of silicon oxide vapor on the inner wall of the carrier pipe, and when the temperature of the carrier pipe is 1000 ° C. or less, a mixed gas containing silicon oxide gas is deposited and adheres to the inner wall of the carrier pipe. However, there is a risk that operation will be hindered and stable continuous operation may not be possible. On the contrary, even if it is heated to a temperature of more than 1300 ° C., no further effect is seen, and the power cost is increased.
【0018】上記析出室には、冷媒により冷却された基
体が配置され、この析出室内に導入された上記混合ガス
がこの冷却基体に接触、冷却されることにより、この基
体上に酸化珪素を含む生成物が析出する。ここで、基体
表面の温度は100〜500℃に制御する必要がある。
基体表面の温度が100℃未満では、生成物のBET比
表面積が300m2/gより大きくなり、表面酸化によ
り不活性な二酸化珪素の割合が大きくなり、リチウムイ
オン二次電池負極材として用いた場合、高容量の電池が
得られない。逆に基体表面の温度が500℃より高いと
BET比表面積が3m2/g未満となり、活性が低下
し、高容量の電池が得られない。なお、基体表面温度に
よるBET比表面積の変化の原因については定かではな
いが、基体表面の温度を上げることにより、析出物表面
の活性が高まり、その結果、融着により緻密化し、BE
T比表面積が低下するものと推測される。また、基体表
面の温度については、析出室内温度(析出室ヒーターに
より加熱)及び冷媒の種類、流量の組合せにより制御さ
れる。また、冷媒の種類については特に限定しないが、
水、熱媒といった液体、空気、窒素といった気体がその
目的によって使われる。また、基体の種類も特に限定し
ないが、加工性の点で、SUSやモリブデン、タングス
テンといった高融点金属が好適に用いられる。A substrate cooled by a cooling medium is placed in the deposition chamber, and the mixed gas introduced into the deposition chamber is brought into contact with and cooled by the cooling substrate to contain silicon oxide on the substrate. The product precipitates. Here, it is necessary to control the temperature of the substrate surface to 100 to 500 ° C.
When the surface temperature of the substrate is lower than 100 ° C., the BET specific surface area of the product becomes larger than 300 m 2 / g, and the ratio of inactive silicon dioxide due to surface oxidation becomes large. When used as a negative electrode material for a lithium ion secondary battery. , I can't get a high capacity battery. On the contrary, when the temperature of the substrate surface is higher than 500 ° C., the BET specific surface area becomes less than 3 m 2 / g, the activity is lowered, and a high capacity battery cannot be obtained. The cause of the change in the BET specific surface area depending on the surface temperature of the substrate is not clear, but the activity of the precipitate surface is increased by increasing the temperature of the substrate surface.
It is presumed that the T specific surface area decreases. The temperature of the substrate surface is controlled by the combination of the temperature in the deposition chamber (heated by the deposition chamber heater), the type of refrigerant, and the flow rate. The type of refrigerant is not particularly limited,
Liquids such as water and heat medium, and gases such as air and nitrogen are used depending on the purpose. The type of the base is not particularly limited, but a refractory metal such as SUS, molybdenum, or tungsten is preferably used in terms of workability.
【0019】上記基体上に析出した金属元素ドープ酸化
珪素は、掻き取り等の適宜な手段により回収する。ま
た、回収した酸化珪素粉末は、必要により適宜手段で粉
砕し、所望の粒径とすることができる。The metal element-doped silicon oxide deposited on the substrate is collected by an appropriate means such as scraping. Further, the recovered silicon oxide powder can be crushed by an appropriate means to obtain a desired particle size, if necessary.
【0020】上記方法に用いる装置としては、例えば図
1に示すような装置を用いることができる。ここで、図
1において、1は反応炉Aであり、この反応炉A1内に
マッフルA2が配設されている。このマッフルA2内は
反応室A3となっており、この反応室A3内に二酸化珪
素粉末を含む混合原料粉末4を収容する原料容器A5が
配置されている。また、マッフルA2を取り囲むように
ヒーター6が配設され、このヒーター6により上記混合
原料4が加熱され、酸化珪素ガスが発生するようになっ
ている。なお、7は断熱材である。As the apparatus used in the above method, for example, the apparatus shown in FIG. 1 can be used. Here, in FIG. 1, reference numeral 1 is a reaction furnace A, and a muffle A2 is arranged in the reaction furnace A1. A reaction chamber A3 is formed in the muffle A2, and a raw material container A5 for containing the mixed raw material powder 4 containing silicon dioxide powder is arranged in the reaction chamber A3. Further, a heater 6 is arranged so as to surround the muffle A2, and the mixed raw material 4 is heated by the heater 6 to generate a silicon oxide gas. In addition, 7 is a heat insulating material.
【0021】一方、8は反応炉Bであり、上記と同様
に、この反応炉B8内にマッフルB9が配設され、この
マッフルB9内が反応室B10となっており、この反応
室B10内に他の金属もしくは金属化合物又はそれらの
混合物の粉末11を収容する原料容器B12が配置され
ている。また、マッフルB9を取り囲むようにヒーター
13が配設され、このヒーター13により上記粉末11
が加熱され、金属元素ガスが発生するようになってい
る。なお、14は断熱材である。On the other hand, 8 is a reaction furnace B, and similarly to the above, a muffle B9 is arranged in this reaction furnace B8, and the inside of this muffle B9 is a reaction chamber B10, and inside this reaction chamber B10. A raw material container B12 for containing a powder 11 of another metal or a metal compound or a mixture thereof is arranged. Further, a heater 13 is arranged so as to surround the muffle B9, and the powder 13 is provided by the heater 13.
Is heated to generate metal element gas. In addition, 14 is a heat insulating material.
【0022】また、15は、上記両反応室A3及びB1
0に連通し、これら反応室A3及びB10において生成
した上記酸化珪素ガス及び金属元素ガスが流入、混合さ
れる搬送ラインで、ヒーター16が埋設されている。上
記搬送ライン15は、更に内部に析出室17が形成され
た析出槽18の該析出室17に連通し、上記各反応室A
3及びB10内で発生した2種類のガスは、搬送ライン
15で混合し、搬送ライン15を通って上記析出槽18
内の析出室17に導入される。この析出室17内にはヒ
ーター19が配設されていると共に、基体20が配設さ
れている。この基体20内には冷却通路が形成されてお
り、冷媒導入管21より冷媒通路に供給された冷媒によ
り上記基体20が冷却され、上記酸化珪素を含む混合ガ
スがこの冷却基体20に接触、冷却されることにより、
基体20上に金属元素ドープ酸化珪素粉末が析出される
ようになっている。なお、22は冷媒排出管である。ま
た、冷却基体20には熱電対23が埋設され、冷却基体
20表面温度を測定することができる。24は真空ポン
プであり、この真空ポンプ24を作動させることによ
り、析出室17、搬送ライン15、更に両反応室A3及
びB10内が減圧されるようになっている。Further, 15 is both reaction chambers A3 and B1.
The heater 16 is embedded in a transfer line which communicates with 0 and in which the silicon oxide gas and the metal element gas generated in the reaction chambers A3 and B10 flow in and are mixed. The transfer line 15 communicates with the deposition chamber 17 of the deposition tank 18 in which the deposition chamber 17 is further formed, and each of the reaction chambers A
2 and the two kinds of gas generated in B10 are mixed in the transfer line 15 and passed through the transfer line 15 and the deposition tank 18
It is introduced into the deposition chamber 17 inside. A heater 19 and a substrate 20 are provided in the deposition chamber 17. A cooling passage is formed in the base body 20, and the base body 20 is cooled by the coolant supplied from the coolant introducing pipe 21 to the coolant passage, and the mixed gas containing the silicon oxide comes into contact with the cooling base body 20 and is cooled. By being
A metal element-doped silicon oxide powder is deposited on the substrate 20. Reference numeral 22 is a refrigerant discharge pipe. Further, a thermocouple 23 is embedded in the cooling base 20, and the surface temperature of the cooling base 20 can be measured. Reference numeral 24 denotes a vacuum pump. By operating this vacuum pump 24, the deposition chamber 17, the transfer line 15, and the reaction chambers A3 and B10 are depressurized.
【0023】次に、本発明で得られた金属元素ドープ酸
化珪素は、これを負極材としてリチウムイオン二次電池
を製造することができる。Next, the metal element-doped silicon oxide obtained in the present invention can be used as a negative electrode material to manufacture a lithium ion secondary battery.
【0024】この場合、得られたリチウムイオン二次電
池は、上記負極活物質を用いる点に特徴を有し、その他
の正極、負極、電解質、セパレータ等の材料および電池
形状等は限定されない。たとえば、正極活物質としては
LiCoO2、LiNiO2、LiMn2O4、V2O6、M
nO2、TiS2、MoS2等の遷移金属の酸化物および
カルコゲン化合物等が用いられる。電解質としては、た
とえば、過塩素酸リチウム等のリチウム塩を含む非水溶
液が用いられ、非水溶媒としてはプロピレンカーボネー
ト、エチレンカーボネート、ジメトキシエタン、γ−ブ
チロラクトン、2−メチルテトラヒドロフラン等の単体
または2種類以上を組合せて用いられる。また、それ以
外の種々の非水系電解質や固体電解質も使用できる。In this case, the obtained lithium ion secondary battery is characterized by using the above-mentioned negative electrode active material, and other materials such as the positive electrode, the negative electrode, the electrolyte and the separator and the battery shape are not limited. For example, as the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 6 , M
Oxides of transition metals such as nO 2 , TiS 2 and MoS 2 and chalcogen compounds are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like alone or in two kinds. The above is used in combination. In addition, various other non-aqueous electrolytes and solid electrolytes can also be used.
【0025】また、本発明の金属元素ドープ酸化珪素
は、黒鉛等導電剤を添加することができ、この場合にお
いても導電剤の種類は特に限定されず、構成された電池
において、分解や変質を起こさない電子伝導性の材料で
あれば良く、具体的にはAl、Ti、Fe、Ni、C
u、Zn、Ag、Sn、Si等の金属粉末や金属繊維、
又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフ
ェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、P
AN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いるこ
とができる。The metal element-doped silicon oxide of the present invention may be added with a conductive agent such as graphite, and in this case, the kind of the conductive agent is not particularly limited, and decomposition or deterioration of the constructed battery is prevented. Any electron-conducting material that does not cause it may be used. Specifically, Al, Ti, Fe, Ni, C
metal powder or metal fiber such as u, Zn, Ag, Sn, Si,
Or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch-based carbon fiber, P
Graphite such as AN-based carbon fibers and various resin fired bodies can be used.
【0026】[0026]
【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明は下記実施例に限定されるも
のではない。なお、下記例でwt%は重量%を示す。The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, wt% means% by weight.
【0027】[実施例1]図1に示す製造装置を用いて、
Tiドープ酸化珪素粉末を製造した。酸化珪素ガス発生
原料は、二酸化珪素粉末(BET比表面積=約200m
2/g)粉末と金属珪素粉末(BET比表面積=約3m2
/g)を等量モルの割合で攪拌混合機を用いて混合した
混合粉末であり、反応室A3の有効容積が15Lの反応
炉A1内に200g仕込んだ。一方、Tiガス発生原料
としてTiを用い、これを反応室B10の有効容積が1
5Lの反応炉B8内に200g仕込んだ。次に真空ポン
プ24を用いて、炉内を0.1Torr以下に減圧した
後、ヒーター6及びヒーター13を加熱し、反応炉Aを
1350℃(SiO蒸気圧 3Torr)、反応炉Bを
2100℃(Ti蒸気圧 3Torr)に加熱保持し
た。一方で、搬送ライン15を1100℃に、析出槽1
8を850℃に加熱保持し、冷媒導入管21に水を5N
L/min流入し、SUS製の基体20を冷却した。な
お、この時の基体20の表面温度は熱電対23により測
定され、約180℃であった。この運転を5時間行った
後、室温まで冷却し、観察を行った結果、基体20上に
黒色物210gの生成が認められた。この黒色物を分析
した結果、BET比表面積=35m2/g、Ti含有量
=43wt%のTiドープ酸化珪素であった。Example 1 Using the manufacturing apparatus shown in FIG. 1,
A Ti-doped silicon oxide powder was produced. The silicon oxide gas generating raw material is silicon dioxide powder (BET specific surface area = about 200 m
2 / g) powder and metallic silicon powder (BET specific surface area = about 3 m 2
/ G) was mixed in an equimolar ratio using a stirring mixer, and 200 g was charged in a reaction furnace A1 having an effective volume of 15 L in the reaction chamber A3. On the other hand, Ti is used as a Ti gas generating raw material, and the effective volume of the reaction chamber B10 is 1
200 g was charged in a 5 L reactor B8. Next, using a vacuum pump 24, after decompressing the inside of the furnace to 0.1 Torr or less, the heater 6 and the heater 13 are heated, the reaction furnace A is 1350 ° C. (SiO vapor pressure 3 Torr), and the reaction furnace B is 2100 ° C. ( The Ti vapor pressure was kept at 3 Torr) by heating. On the other hand, the transfer line 15 was set to 1100 ° C.
8 is heated and held at 850 ° C.
L / min was introduced to cool the SUS substrate 20. The surface temperature of the substrate 20 at this time was measured by the thermocouple 23 and was about 180 ° C. After this operation was performed for 5 hours, it was cooled to room temperature and observed. As a result, formation of 210 g of a black material was found on the substrate 20. As a result of analyzing this black material, it was Ti-doped silicon oxide having a BET specific surface area of 35 m 2 / g and a Ti content of 43 wt%.
【0028】次に、この中間体100gを2Lアルミナ
製ボールミルにて粉砕、媒体としてφ5mmアルミナボ
ール1000g、溶液としてヘキサン500gを用い、
1rpmの回転条件にて湿式粉砕を行った。粉砕後のT
iドープ酸化珪素粉末は、平均粒子径7.3μm、BE
T比表面積=40.2m2/g、Ti含有量=42.5
wt%の粉末であった。Next, 100 g of this intermediate was pulverized with a ball mill made of 2 L alumina, using 1000 g of φ5 mm alumina balls as a medium and 500 g of hexane as a solution.
Wet grinding was performed under the rotation condition of 1 rpm. T after crushing
The i-doped silicon oxide powder has an average particle size of 7.3 μm, BE
T specific surface area = 40.2 m 2 / g, Ti content = 42.5
It was a powder of wt%.
【0029】電池評価
次に、以下の方法で、得られたTiドープ酸化珪素粉末
を負極活物質として用いた電池評価を行った。 Battery Evaluation Next, battery evaluation was carried out by using the obtained Ti-doped silicon oxide powder as a negative electrode active material by the following method.
【0030】まず、得られたTiドープ酸化珪素粉末に
人造黒鉛(平均粒子径5μm)を炭素の割合が40wt
%となるように加え、混合物を製造した。この混合物に
ポリフッ化ビニリデンを10wt%加え、更にN−メチ
ルピロリドンを加え、スラリーとし、このスラリーを厚
さ20μmの銅箔に塗布し、120℃で1時間乾燥後、
ローラープレスにより電極を加圧成形し、最終的には2
0mmに打ち抜き、負極とした。First, artificial graphite (average particle diameter 5 μm) was added to the obtained Ti-doped silicon oxide powder at a carbon ratio of 40 wt.
% To make a mixture. Polyvinylidene fluoride was added to this mixture in an amount of 10 wt% and N-methylpyrrolidone was further added to form a slurry. The slurry was applied to a copper foil having a thickness of 20 μm and dried at 120 ° C. for 1 hour.
The electrode is pressure-molded by a roller press, and finally 2
It was punched out to 0 mm and used as a negative electrode.
【0031】ここで、得られた負極の充放電特性を評価
するために、対極にリチウム箔を使用し、非水電解質と
して六フッ化リンリチウムをエチレンカーボネートと
1,2−ジメトキシエタンの1/1(体積比)混合液に
1モル/Lの濃度で溶解した非水電解質溶液を用い、セ
パレーターに厚さ30μmのポリエチレン製微多孔質フ
ィルムを用いた評価用リチウムイオン二次電池を作製し
た。Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium phosphorus hexafluoride was used as a non-aqueous electrolyte in 1 / of ethylene carbonate and 1,2-dimethoxyethane. A lithium ion secondary battery for evaluation was prepared using a nonaqueous electrolyte solution dissolved in a 1 (volume ratio) mixed solution at a concentration of 1 mol / L and using a polyethylene microporous film having a thickness of 30 μm as a separator.
【0032】作製したリチウムイオン二次電池は、一晩
室温で放置した後、二次電池充放電試験装置((株)ナ
ガノ製)を用い、テストセルの電圧が0Vに達するまで
1mAの定電流で充電を行い、0Vに達した後は、セル
電圧を0Vに保つように電流を減少させて充電を行っ
た。そして、電流値が20μAを下回った時点で充電を
終了した。放電は1mAの定電流で行い、セル電圧が
1.8Vを上回った時点で放電を終了し、放電容量を求
めた。The produced lithium ion secondary battery was left overnight at room temperature and then, using a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.), a constant current of 1 mA was applied until the voltage of the test cell reached 0V. After reaching 0 V, the current was reduced so as to keep the cell voltage at 0 V, and then charging was performed. Then, the charging was terminated when the current value fell below 20 μA. The discharge was performed at a constant current of 1 mA, the discharge was terminated when the cell voltage exceeded 1.8 V, and the discharge capacity was obtained.
【0033】以上の充放電試験を繰り返し、評価用リチ
ウムイオン二次電池の10サイクル後の充放電試験を行
った。その結果、初回充電容量:920mAh/g、初
回放電容量:850mAh/g、初回充放電時の効率:
92.4%、10サイクル目の放電容量:780mAh
/g、10サイクル後のサイクル保持率:91.7%の
高容量であり、かつ初回充放電効率及びサイクル性に優
れたリチウムイオン二次電池であることが確認された。The above charge / discharge test was repeated to perform a charge / discharge test after 10 cycles of the evaluation lithium ion secondary battery. As a result, initial charge capacity: 920 mAh / g, initial discharge capacity: 850 mAh / g, efficiency during initial charge / discharge:
92.4%, discharge capacity at 10th cycle: 780 mAh
/ G, cycle retention rate after 10 cycles: High capacity of 91.7%, and it was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.
【0034】[実施例2]実施例1と同様な方法でLiド
ープ酸化珪素を製造した。Liガス発生原料としてはL
iを用い、グローブボックス内にてLi粉末200gを
ポリエチレン製袋に入れ、密封した状態を維持したま
ま、反応炉B内に仕込んだ。反応炉Bは770℃(Li
蒸気圧 3Torr)に加熱保持した。その他は実施例
1と同様である。その結果、基体20表面に黒色物22
0gの生成物を製造することができた。この黒色物を分
析した結果、BET比表面積=28m2/g、Li含有
量=51wt%のLiドープ酸化珪素であった。次に実
施例1と同様な方法で粉砕を行い、平均粒子径7.1μ
m、BET比表面積=37.5m2/gの粉末を得た。[Example 2] Li-doped silicon oxide was produced in the same manner as in Example 1. L as a Li gas generating raw material
Using i, 200 g of Li powder was put in a polyethylene bag in the glove box, and charged into the reaction furnace B while maintaining a sealed state. Reactor B is 770 ° C. (Li
The vapor pressure was kept at 3 Torr). Others are the same as in the first embodiment. As a result, a black material 22 is formed on the surface of the substrate 20.
It was possible to produce 0 g of product. As a result of analyzing this black material, it was found that the Li-doped silicon oxide had a BET specific surface area of 28 m 2 / g and a Li content of 51 wt%. Next, pulverization was performed in the same manner as in Example 1 to obtain an average particle size of 7.1 μm.
m, BET specific surface area = 37.5 m 2 / g of powder was obtained.
【0035】得られたLiドープ酸化珪素粉末を負極材
とし、実施例1と同様な方法で電池評価を行った結果、
初回充電容量:780mAh/g、初回放電容量:75
0mAh/g、初回充放電時の効率:96.2%、10
サイクル目の放電容量:730mAh/g、10サイク
ル後のサイクル保持率:97.3%のサイクル性の優れ
たリチウムイオン二次電池であることが確認された。Using the obtained Li-doped silicon oxide powder as a negative electrode material, battery evaluation was carried out in the same manner as in Example 1, and as a result,
Initial charge capacity: 780 mAh / g, Initial discharge capacity: 75
0 mAh / g, efficiency at first charge / discharge: 96.2%, 10
It was confirmed that the lithium-ion secondary battery was excellent in cycle performance with the discharge capacity at the cycle cycle: 730 mAh / g and the cycle retention rate after 10 cycles: 97.3%.
【0036】[比較例]反応炉Bに金属、金属化合物を仕
込まず、反応炉Bを加熱しない他は実施例1と同様な方
法で、金属元素をドープしない酸化珪素粉末を製造し
た。その結果、純度99.5%の酸化珪素を120g製
造できた。次に実施例1と同様な方法で粉砕を行い、平
均粒子径8.1μm、BET比表面積=35.2m2/
gの金属元素を含まない高純度酸化珪素粉末を得た。Comparative Example A silicon oxide powder not doped with a metal element was produced in the same manner as in Example 1 except that the reaction furnace B was not charged with a metal or a metal compound and the reaction furnace B was not heated. As a result, 120 g of silicon oxide having a purity of 99.5% could be manufactured. Next, pulverization was performed in the same manner as in Example 1 to obtain an average particle size of 8.1 μm and a BET specific surface area = 35.2 m 2 /
A high-purity silicon oxide powder containing no g of a metal element was obtained.
【0037】得られた酸化珪素粉末を負極材とし、実施
例1と同様に電池評価を行った。その結果、初回充電容
量:900mAh/g、初回放電容量:650mAh/
g、初回充放電時の効率:72.2%、10サイクル目
の放電容量:500mAh/g、10サイクル後のサイ
クル保持率:76.9%の高容量ではあるが、明らかに
実施例に比べサイクル性の劣る二次電池であった。Using the obtained silicon oxide powder as a negative electrode material, battery evaluation was performed in the same manner as in Example 1. As a result, initial charge capacity: 900 mAh / g, initial discharge capacity: 650 mAh /
g, efficiency at first charge / discharge: 72.2%, discharge capacity at 10th cycle: 500 mAh / g, cycle retention rate after 10 cycles: 76.9%, which is a high capacity, but clearly compared to the examples. The secondary battery was inferior in cycleability.
【0038】[0038]
【発明の効果】本発明の金属元素ドープ酸化珪素をリチ
ウムイオン二次電池負極活物質として用いることで、高
容量でかつ初回充放電効率及びサイクル特性の優れたリ
チウムイオン二次電池を得ることができる。By using the metal element-doped silicon oxide of the present invention as a negative electrode active material for a lithium ion secondary battery, it is possible to obtain a lithium ion secondary battery having high capacity and excellent initial charge / discharge efficiency and cycle characteristics. it can.
【図1】本発明の一実施例に係る製造装置の概略断面図
である。FIG. 1 is a schematic sectional view of a manufacturing apparatus according to an embodiment of the present invention.
1 反応炉A 2 マッフルA 3 反応室A 4 混合原料粉末 5 原料容器A 6 ヒーター 7 断熱材 8 反応炉B 9 マッフルB 10 反応室B 11 金属粉末 12 原料容器B 13 ヒーター 14 断熱材 15 搬送ライン 16 ヒーター 17 析出室 18 析出槽 19 ヒーター 20 基体 21 冷媒導入管 22 冷媒排出管 23 熱電対 24 真空ポンプ 1 Reactor A 2 muffle A 3 Reaction chamber A 4 Mixed raw material powder 5 Raw material container A 6 heater 7 insulation 8 Reactor B 9 Muffle B 10 Reaction chamber B 11 Metal powder 12 Raw material container B 13 heater 14 Insulation 15 Transport line 16 heater 17 Deposition chamber 18 deposition tank 19 heater 20 base 21 Refrigerant introduction pipe 22 Refrigerant discharge pipe 23 thermocouple 24 vacuum pump
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒又 幹夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 籾井 一磨 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 (72)発明者 宮脇 悟 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社群馬事業所内 Fターム(参考) 4G072 AA24 AA38 BB05 GG03 HH14 LL03 MM01 RR11 UU30 5H029 AJ02 AJ03 AJ05 AL02 AL11 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ15 CJ28 CJ30 DJ16 HJ14 5H050 AA02 AA07 AA08 BA16 CB02 CB11 FA17 GA02 GA10 GA16 GA27 GA29 HA14 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Mikio Aramata 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Gakuin Co., Ltd. Gunma Office (72) Inventor Kazuma Umai 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Gakuin Co., Ltd. Gunma Office (72) Inventor Satoru Miyawaki 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Gakuin Co., Ltd. Gunma Office F term (reference) 4G072 AA24 AA38 BB05 GG03 HH14 LL03 MM01 RR11 UU30 5H029 AJ02 AJ03 AJ05 AL02 AL11 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ15 CJ28 CJ30 DJ16 HJ14 5H050 AA02 AA07 AA08 BA16 CB02 CB11 FA17 GA02 GA10 GA16 GA27 GA29 HA14
Claims (3)
活性ガスの存在下もしくは減圧下1100〜1600℃
の温度範囲で加熱し、酸化珪素ガスを発生させる一方、
珪素以外の金属もしくは金属化合物又はそれらの混合物
を加熱し、金属蒸気ガスを発生させ、上記酸化珪素ガス
と上記金属蒸気ガスとの混合ガスを100〜500℃に
冷却した基体表面に析出させることを特徴とする金属元
素ドープ酸化珪素粉末の製造方法。1. A mixed raw material powder containing silicon dioxide powder is heated to 1100 to 1600 ° C. in the presence of an inert gas or under reduced pressure.
While heating in the temperature range of 1 to generate silicon oxide gas,
A metal other than silicon, a metal compound, or a mixture thereof is heated to generate a metal vapor gas, and a mixed gas of the silicon oxide gas and the metal vapor gas is deposited on a substrate surface cooled to 100 to 500 ° C. A method for producing a silicon oxide powder doped with a metal element.
Li、Ge、Mg、Co及びSnから選ばれる1種又は
2種以上であることを特徴とする請求項1記載の金属元
素ドープ酸化珪素粉末の製造方法。2. The metal is Al, B, Ca, K, Na,
The method for producing a metal element-doped silicon oxide powder according to claim 1, which is one or more selected from Li, Ge, Mg, Co and Sn.
せて酸化珪素ガスを発生させる反応室Aと、珪素以外の
金属もしくは金属化合物又はそれらの混合物を加熱して
金属蒸気ガスを発生させる反応室Bと、反応室Aと反応
室Bを接続し、上記2種類のガスを混合、搬送させるガ
ス搬送ラインと、搬送された混合ガスを冷却した基体表
面に析出させる析出室とを有する金属元素ドープ酸化珪
素の製造装置。3. A reaction chamber A for reacting a mixed raw material containing silicon dioxide powder to generate a silicon oxide gas, and a reaction chamber for heating a metal or metal compound other than silicon or a mixture thereof to generate a metal vapor gas. B, a metal transport line for connecting the reaction chamber A and the reaction chamber B, a gas transport line for mixing and transporting the above-mentioned two kinds of gas, and a deposition chamber for depositing the transported mixed gas on the cooled substrate surface Silicon oxide manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001393329A JP3852579B2 (en) | 2001-12-26 | 2001-12-26 | Method and apparatus for producing metal element-doped silicon oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001393329A JP3852579B2 (en) | 2001-12-26 | 2001-12-26 | Method and apparatus for producing metal element-doped silicon oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003192327A true JP2003192327A (en) | 2003-07-09 |
JP3852579B2 JP3852579B2 (en) | 2006-11-29 |
Family
ID=27600356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001393329A Expired - Fee Related JP3852579B2 (en) | 2001-12-26 | 2001-12-26 | Method and apparatus for producing metal element-doped silicon oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852579B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259697A (en) * | 2004-03-08 | 2005-09-22 | Samsung Sdi Co Ltd | Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery |
JP2007290919A (en) * | 2006-04-26 | 2007-11-08 | Shin Etsu Chem Co Ltd | METHOD FOR PRODUCING SiOx (x<1) |
JP2009070825A (en) * | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery |
JP2009078949A (en) * | 2007-09-26 | 2009-04-16 | Nippon Steel Materials Co Ltd | Manufacturing method and manufacturing apparatus for sio powder |
JP2010073651A (en) * | 2008-09-22 | 2010-04-02 | Toshiba Corp | Negative electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery |
US8048339B2 (en) | 2006-12-19 | 2011-11-01 | Samsung Sdi Co., Ltd. | Porous anode active material, method of preparing the same, and anode and lithium battery employing the same |
KR20120005008A (en) | 2009-04-01 | 2012-01-13 | 나믹스 코포레이션 | Electrode material, method for producing same, and lithium ion secondary battery |
CN102484248A (en) * | 2009-09-10 | 2012-05-30 | 株式会社大阪钛技术 | Silicon oxide and anode material for lithium ion secondary cell |
US8377591B2 (en) | 2003-12-26 | 2013-02-19 | Nec Corporation | Anode material for secondary battery, anode for secondary battery and secondary battery therewith |
WO2013141024A1 (en) * | 2012-03-22 | 2013-09-26 | Shin-Etsu Chemical Co., Ltd. | Method and system for the production of silicon oxide deposit |
US20140106231A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
US20140106221A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide for anode active material of secondary battery |
WO2014061973A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Method for preparing silicon oxide |
US8906557B2 (en) | 2006-04-17 | 2014-12-09 | Samsung Sdi Co., Ltd. | Anode active material and method of preparing the same |
WO2018074175A1 (en) * | 2016-10-19 | 2018-04-26 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide negative electrode material and production method therefor |
WO2019031516A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社村田製作所 | Negative electrode active substance and production method thereof, battery, and electronic device |
WO2019031518A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社村田製作所 | Negative electrode active substance and production method thereof, thin-film electrode, battery, battery pack, electronic device, electric vehicle, power storage device and power system |
WO2019103499A1 (en) * | 2017-11-24 | 2019-05-31 | 주식회사 엘지화학 | Anode active material for lithium secondary battery, and preparation method therefor |
CN111936422A (en) * | 2018-03-30 | 2020-11-13 | 株式会社大阪钛技术 | Method for producing silicon oxide powder and negative electrode material |
KR102299178B1 (en) * | 2020-04-16 | 2021-09-07 | 주식회사 테라테크노스 | Devices and methods for silicon oxide and anode material of silicon oxide |
KR20210128094A (en) * | 2020-04-16 | 2021-10-26 | 주식회사 테라테크노스 | Devices and methods for silicon oxide and anode material of silicon oxide |
US20220085372A9 (en) * | 2020-04-16 | 2022-03-17 | Tera Technos Co., Ltd | Device and method of preparing siox, and siox anode material |
WO2022178798A1 (en) * | 2021-02-26 | 2022-09-01 | 上海杉杉科技有限公司 | Porous negative electrode active material and manufacturing method therefor |
US11569495B2 (en) | 2018-01-30 | 2023-01-31 | Lg Energy Solution, Ltd. | Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium ion secondary battery including the negative electrode |
KR20230040297A (en) * | 2021-09-15 | 2023-03-22 | 주식회사 포스코실리콘솔루션 | Silicon based modeled body and continuous manufactured method of silicon oxide using the same |
CN116830308A (en) * | 2023-03-09 | 2023-09-29 | 宁德时代新能源科技股份有限公司 | Silicon-based negative electrode active material, secondary battery, and electric device |
KR20240024774A (en) | 2022-08-15 | 2024-02-26 | 테크원 가부시키가이샤 | Composites and composite manufacturing methods |
WO2024095539A1 (en) * | 2022-11-01 | 2024-05-10 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide and method for producing same |
CN118299549A (en) * | 2024-06-05 | 2024-07-05 | 贝特瑞新材料集团股份有限公司 | Negative electrode material and battery |
-
2001
- 2001-12-26 JP JP2001393329A patent/JP3852579B2/en not_active Expired - Fee Related
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8377591B2 (en) | 2003-12-26 | 2013-02-19 | Nec Corporation | Anode material for secondary battery, anode for secondary battery and secondary battery therewith |
US8709653B2 (en) | 2004-03-08 | 2014-04-29 | Samsung Sdi Co., Ltd. | Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same |
US9012082B2 (en) | 2004-03-08 | 2015-04-21 | Samsung Sdi Co., Ltd. | Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same |
JP2005259697A (en) * | 2004-03-08 | 2005-09-22 | Samsung Sdi Co Ltd | Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery |
US8906557B2 (en) | 2006-04-17 | 2014-12-09 | Samsung Sdi Co., Ltd. | Anode active material and method of preparing the same |
JP2007290919A (en) * | 2006-04-26 | 2007-11-08 | Shin Etsu Chem Co Ltd | METHOD FOR PRODUCING SiOx (x<1) |
US8562869B2 (en) | 2006-12-19 | 2013-10-22 | Samsung Sdi Co., Ltd. | Porous anode active material, method of preparing the same, and anode and lithium battery employing the same |
US8048339B2 (en) | 2006-12-19 | 2011-11-01 | Samsung Sdi Co., Ltd. | Porous anode active material, method of preparing the same, and anode and lithium battery employing the same |
JP2009070825A (en) * | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery |
JP2009078949A (en) * | 2007-09-26 | 2009-04-16 | Nippon Steel Materials Co Ltd | Manufacturing method and manufacturing apparatus for sio powder |
JP2010073651A (en) * | 2008-09-22 | 2010-04-02 | Toshiba Corp | Negative electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery |
KR20120005008A (en) | 2009-04-01 | 2012-01-13 | 나믹스 코포레이션 | Electrode material, method for producing same, and lithium ion secondary battery |
EP2477260A4 (en) * | 2009-09-10 | 2013-08-21 | Osaka Titanium Technologies Co | Silicon oxide and anode material for lithium ion secondary cell |
EP2477260A1 (en) * | 2009-09-10 | 2012-07-18 | OSAKA Titanium Technologies Co., Ltd. | Silicon oxide and anode material for lithium ion secondary cell |
CN102484248A (en) * | 2009-09-10 | 2012-05-30 | 株式会社大阪钛技术 | Silicon oxide and anode material for lithium ion secondary cell |
WO2013141024A1 (en) * | 2012-03-22 | 2013-09-26 | Shin-Etsu Chemical Co., Ltd. | Method and system for the production of silicon oxide deposit |
US9790095B2 (en) | 2012-03-22 | 2017-10-17 | Shin-Etsu Chemical Co., Ltd. | Method and system for the production of silicon oxide deposit |
US20140106221A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide for anode active material of secondary battery |
US10084183B2 (en) * | 2012-10-16 | 2018-09-25 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
CN103958407A (en) * | 2012-10-16 | 2014-07-30 | Lg化学株式会社 | Method for preparing silicon oxide |
WO2014061973A1 (en) * | 2012-10-16 | 2014-04-24 | 주식회사 엘지화학 | Method for preparing silicon oxide |
US9741462B2 (en) | 2012-10-16 | 2017-08-22 | Lg Chem, Ltd. | Method of manufacturing silicon oxide |
US20140106231A1 (en) * | 2012-10-16 | 2014-04-17 | Lg Chem, Ltd. | Silicon oxide-carbon composite and method of manufacturing the same |
CN103974905A (en) * | 2012-10-16 | 2014-08-06 | Lg化学株式会社 | Silicon oxide-carbon composite and method for preparing same |
WO2018074175A1 (en) * | 2016-10-19 | 2018-04-26 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide negative electrode material and production method therefor |
JP7092860B2 (en) | 2016-10-19 | 2022-06-28 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide-based negative electrode material and its manufacturing method |
CN109417168B (en) * | 2016-10-19 | 2021-11-26 | 株式会社大阪钛技术 | Silicon oxide-based negative electrode material and method for producing same |
CN109417168A (en) * | 2016-10-19 | 2019-03-01 | 株式会社大阪钛技术 | Silicon oxide series negative electrode material and its manufacturing method |
CN113394389A (en) * | 2016-10-19 | 2021-09-14 | 株式会社大阪钛技术 | Silicon oxide-based negative electrode material and method for producing same |
JP2021052014A (en) * | 2016-10-19 | 2021-04-01 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide-based negative electrode material and manufacturing method of the same |
JPWO2018074175A1 (en) * | 2016-10-19 | 2019-07-25 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide based negative electrode material and method for manufacturing the same |
CN110998928A (en) * | 2017-08-09 | 2020-04-10 | 株式会社村田制作所 | Negative electrode active material, method for producing same, thin-film electrode, battery pack, electronic device, electric vehicle, power storage device, and power system |
CN110998928B (en) * | 2017-08-09 | 2023-09-26 | 株式会社村田制作所 | Negative electrode active material and method for producing same |
JPWO2019031516A1 (en) * | 2017-08-09 | 2020-04-16 | 株式会社村田製作所 | Negative electrode active material, method for manufacturing the same, battery, and electronic device |
US20200176760A1 (en) * | 2017-08-09 | 2020-06-04 | Murata Manufacturing Co., Ltd. | Negative electrode active material, production method of same, thin-film electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
JPWO2019031518A1 (en) * | 2017-08-09 | 2020-04-16 | 株式会社村田製作所 | Negative electrode active material and method for manufacturing the same, thin film electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
US11631843B2 (en) * | 2017-08-09 | 2023-04-18 | Murata Manufacturing Co., Ltd. | Negative electrode active material, production method of same, thin-film electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
WO2019031516A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社村田製作所 | Negative electrode active substance and production method thereof, battery, and electronic device |
WO2019031518A1 (en) * | 2017-08-09 | 2019-02-14 | 株式会社村田製作所 | Negative electrode active substance and production method thereof, thin-film electrode, battery, battery pack, electronic device, electric vehicle, power storage device and power system |
KR102288124B1 (en) | 2017-11-24 | 2021-08-11 | 주식회사 엘지에너지솔루션 | Negative electrode active material for lithium secondarty battery and perparing method thereof |
US12009515B2 (en) | 2017-11-24 | 2024-06-11 | Lg Energy Solution, Ltd. | Negative electrode active material for lithium secondary battery and preparation method thereof |
KR20190060697A (en) * | 2017-11-24 | 2019-06-03 | 주식회사 엘지화학 | Negative electrode active material for lithium secondarty battery and perparing method thereof |
WO2019103499A1 (en) * | 2017-11-24 | 2019-05-31 | 주식회사 엘지화학 | Anode active material for lithium secondary battery, and preparation method therefor |
US11569495B2 (en) | 2018-01-30 | 2023-01-31 | Lg Energy Solution, Ltd. | Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium ion secondary battery including the negative electrode |
CN111936422B (en) * | 2018-03-30 | 2024-06-21 | 株式会社大阪钛技术 | Method for producing silicon oxide powder and negative electrode material |
CN111936422A (en) * | 2018-03-30 | 2020-11-13 | 株式会社大阪钛技术 | Method for producing silicon oxide powder and negative electrode material |
EP3922601A4 (en) * | 2020-04-16 | 2022-05-25 | Tera Technos Co., Ltd. | Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material |
WO2021210739A1 (en) * | 2020-04-16 | 2021-10-21 | 주식회사 테라테크노스 | Apparatus and method for producing silicon oxides, and silicon oxide negative electrode material |
US20220085372A9 (en) * | 2020-04-16 | 2022-03-17 | Tera Technos Co., Ltd | Device and method of preparing siox, and siox anode material |
KR20210128094A (en) * | 2020-04-16 | 2021-10-26 | 주식회사 테라테크노스 | Devices and methods for silicon oxide and anode material of silicon oxide |
KR102323341B1 (en) * | 2020-04-16 | 2021-11-08 | 주식회사 테라테크노스 | Devices and methods for silicon oxide and anode material of silicon oxide |
KR102299178B1 (en) * | 2020-04-16 | 2021-09-07 | 주식회사 테라테크노스 | Devices and methods for silicon oxide and anode material of silicon oxide |
WO2022178798A1 (en) * | 2021-02-26 | 2022-09-01 | 上海杉杉科技有限公司 | Porous negative electrode active material and manufacturing method therefor |
KR102543368B1 (en) | 2021-09-15 | 2023-06-15 | 주식회사 포스코실리콘솔루션 | Silicon based modeled body and continuous manufactured method of silicon oxide using the same |
WO2023043228A1 (en) * | 2021-09-15 | 2023-03-23 | 주식회사 포스코실리콘솔루션 | Silicon-based molded body and method for continuously preparing silicon oxide by using same |
KR20230040297A (en) * | 2021-09-15 | 2023-03-22 | 주식회사 포스코실리콘솔루션 | Silicon based modeled body and continuous manufactured method of silicon oxide using the same |
KR20240024774A (en) | 2022-08-15 | 2024-02-26 | 테크원 가부시키가이샤 | Composites and composite manufacturing methods |
DE112022001997T5 (en) | 2022-08-15 | 2024-04-04 | Tec One Co., Ltd. | Composite material and process for producing the composite material |
WO2024095539A1 (en) * | 2022-11-01 | 2024-05-10 | 株式会社大阪チタニウムテクノロジーズ | Silicon oxide and method for producing same |
CN116830308A (en) * | 2023-03-09 | 2023-09-29 | 宁德时代新能源科技股份有限公司 | Silicon-based negative electrode active material, secondary battery, and electric device |
WO2024183065A1 (en) * | 2023-03-09 | 2024-09-12 | 宁德时代新能源科技股份有限公司 | Silicon-based negative electrode active material, secondary battery, and electric device |
CN118299549A (en) * | 2024-06-05 | 2024-07-05 | 贝特瑞新材料集团股份有限公司 | Negative electrode material and battery |
CN118299549B (en) * | 2024-06-05 | 2024-09-17 | 贝特瑞新材料集团股份有限公司 | Negative electrode material and battery |
Also Published As
Publication number | Publication date |
---|---|
JP3852579B2 (en) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3852579B2 (en) | Method and apparatus for producing metal element-doped silicon oxide powder | |
US10622626B2 (en) | Negative electrode material for secondary battery with non-aqueous electrolyte, method for manufacturing negative electrode material for secondary battery with non-aqueous electrolyte, and lithium ion secondary battery | |
JP4207055B2 (en) | Method for producing SiOx (x <1) | |
JP4734701B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
JP4742413B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
JP3921931B2 (en) | Cathode active material and non-aqueous electrolyte battery | |
US8377411B2 (en) | Preparation of lithium sulfide | |
JP4734700B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
JP2003160328A (en) | Lithium-containing silicon oxide powder and method for production thereof | |
JP2011184292A (en) | Method for preparing insertion compound of alkali metal, insertion compound of alkali metal, electrode active material, anode, battery and electrochromic device | |
KR100595362B1 (en) | Lithium-Nickel complex oxide for Cathode Material of Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Same and Cathode Material containing the Same | |
JP4724911B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2002117831A (en) | Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte secondary battery | |
CN111373583A (en) | Positive electrode active material for lithium ion secondary battery and method for producing same | |
JP4491947B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
JP7420790B2 (en) | Method of manufacturing a rechargeable high energy battery with an anion-redox active composite cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3852579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150915 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |