JP2003179311A - GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR - Google Patents
GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFORInfo
- Publication number
- JP2003179311A JP2003179311A JP2001378179A JP2001378179A JP2003179311A JP 2003179311 A JP2003179311 A JP 2003179311A JP 2001378179 A JP2001378179 A JP 2001378179A JP 2001378179 A JP2001378179 A JP 2001378179A JP 2003179311 A JP2003179311 A JP 2003179311A
- Authority
- JP
- Japan
- Prior art keywords
- gan
- layer
- substrate
- ridge
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、GaN系半導体レ
ーザ素子及びその作製方法に関し、更に詳細には、閾電
流値が低く、しかも動作電圧の低い、光ピックアップ等
の光源として最適な半導体レーザ素子、及びその作製方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN-based semiconductor laser device and a method for manufacturing the same, and more specifically, a semiconductor laser device having a low threshold current value and a low operating voltage, which is optimum as a light source for an optical pickup or the like. , And a manufacturing method thereof.
【0002】[0002]
【従来の技術】サファイア基板又はGaN基板上にGa
N系化合物半導体層の積層構造を備えるGaN系半導体
レーザ素子は、紫外線領域から緑色に至る短波長域の光
を発光する発光素子として注目されていて、例えばコン
タクト層と上部クラッド層とをエアリッジ型に加工した
電流狭窄構造を備える半導体レーザ素子が開発され、商
品化されている。Ga on a sapphire or GaN substrate.
A GaN-based semiconductor laser device having a laminated structure of N-based compound semiconductor layers has been attracting attention as a light-emitting device that emits light in a short wavelength range from an ultraviolet region to a green region. For example, a contact layer and an upper clad layer are air-ridge type. A semiconductor laser device having a current constriction structure processed into the above has been developed and commercialized.
【0003】従来から、種々のエアリッジ型のGaN系
半導体レーザ素子が提案されていて、例えば、特開20
00−91696号公報は、以下に説明するようなエア
リッジ型のGaN系半導体レーザ素子を開示している。
ここで、図4を参照して、従来のエアリッジ型のGaN
系半導体レーザ素子の一つの典型例として特開2000
−91696号公報に開示されたGaN系半導体レーザ
素子を構成を説明する。図4は、従来のエアリッジ型の
GaN系半導体レーザ素子の構成を示す断面図である。
従来のGaN系半導体レーザ素子16は、図4に示すよ
うに、サファイア基板1のc面{(1−100)面}上
に、AlGaNバッファ層2、GaN層3、n−GaN
層4、n−InGaNクラック防止層5、n−第1クラ
ッド層6、MQW発光層7、p−第2クラッド層8、p
−低温GaN成長層9、p−第3クラッド層10、及び
p−GaNコンタクト層11の積層構造を備えている。Various air ridge type GaN-based semiconductor laser devices have been proposed in the past.
JP-A-00-91696 discloses an air-ridge type GaN-based semiconductor laser device as described below.
Here, referring to FIG. 4, a conventional air ridge type GaN is used.
JP-A-2000-2000 as a typical example of a semiconductor laser device
The structure of the GaN-based semiconductor laser device disclosed in Japanese Patent Publication No. 91696 will be described. FIG. 4 is a sectional view showing the structure of a conventional air-ridge type GaN-based semiconductor laser device.
As shown in FIG. 4, the conventional GaN-based semiconductor laser device 16 has an AlGaN buffer layer 2, a GaN layer 3, and an n-GaN on the c-plane {(1-100) plane} of the sapphire substrate 1.
Layer 4, n-InGaN crack prevention layer 5, n-first cladding layer 6, MQW light emitting layer 7, p-second cladding layer 8, p
-A low temperature GaN growth layer 9, a p-third clad layer 10, and a p-GaN contact layer 11 are laminated.
【0004】積層構造のうちp−低温GaN成長層9、
p−第3クラッド層10、及びp−GaNコンタクト層
11は、ストライプ状リッジ構造として形成されてい
て、p−GaNコンタクト層11上にはp側電極12
が、また、n−GaN層4の上部層からp−第2クラッ
ド層8までの積層構造はリッジ構造と同じ方向に延在す
るメサ構造として形成され、露出したn−GaN層4上
にn側電極13が形成されている。電流狭窄を行い、か
つpn接合の露出部を保護するために、p側電極12及
びn側電極13を除いて、リッジ構造の両側面、p−第
2クラッド層8の平坦部の上面、n−GaN層4の上
面、及びp−第2クラッド層8からn−GaN層4まで
の側面にSiO2 膜14が形成されている。Of the laminated structure, the p-low temperature GaN growth layer 9,
The p-third cladding layer 10 and the p-GaN contact layer 11 are formed as a stripe ridge structure, and the p-side electrode 12 is formed on the p-GaN contact layer 11.
However, the laminated structure from the upper layer of the n-GaN layer 4 to the p-second cladding layer 8 is formed as a mesa structure extending in the same direction as the ridge structure, and n is exposed on the exposed n-GaN layer 4. The side electrode 13 is formed. In order to perform current constriction and protect the exposed portion of the pn junction, both side surfaces of the ridge structure, the upper surface of the flat portion of the p-second cladding layer 8, except the p-side electrode 12 and the n-side electrode 13, The SiO 2 film 14 is formed on the upper surface of the GaN layer 4 and the side surfaces from the p-second cladding layer 8 to the n-GaN layer 4.
【0005】[0005]
【発明が解決しようとする課題】ところで、光ディスク
への書き込み/読み出しを行う光ピックアップの光源等
にGaN系半導体レーザ素子を利用する際には、低消費
電力化の要請から従来より更に閾値電流値の低いGaN
系半導体レーザ素子が要求されている。半導体レーザ素
子の閾値電流値Ithは、次式で与えられる。
Ith=Jth×W×L
ここで、Jthは閾値電流密度、Wは半導体レーザ素子の
ストライプ幅(活性層幅)、Lはストライプ長(活性層
長さ)である。この式から判るように、閾電流値を下げ
るためには、ストライプの長さ及び幅を小さくすること
が必要であって、ストライプ幅は閾値電流値を決める重
要なパラメータであり、従来のエアリッジ型半導体レー
ザ素子でも、ストライプ幅が狭い方がより低い閾値電流
値になっている。By the way, when a GaN-based semiconductor laser device is used as a light source of an optical pickup for writing / reading to / from an optical disk, a threshold current value is further increased than before in order to reduce power consumption. Low GaN
System semiconductor laser devices are required. The threshold current value I th of the semiconductor laser device is given by the following equation. I th = J th × W × L where J th is the threshold current density, W is the stripe width (active layer width) of the semiconductor laser element, and L is the stripe length (active layer length). As can be seen from this equation, in order to lower the threshold current value, it is necessary to reduce the stripe length and width, and the stripe width is an important parameter that determines the threshold current value. Even in the semiconductor laser device, the smaller the stripe width, the lower the threshold current value.
【0006】しかし、上述した従来のエアリッジ型Ga
N系半導体レーザ素子では、以下に挙げる理由から、ス
トライプ状の電流注入領域を細くして閾値電流値を下げ
ることが難しかった。第1には、RIE法等により積層
構造をエッチングしてストライプ状リッジ構造を形成す
る際、リソグラフィー処理の限界からストライプ状の電
流注入領域、つまりリッジ幅を2μm以下に制御するの
は、極めて困難であるからである。更には、リッジ幅を
狭くするほど、p−コンタクト層とp側電極との接触面
積が小さくなって接触抵抗が大きくなるために、動作電
圧が高くなるという問題が生じるからである。However, the conventional air ridge type Ga described above is used.
In the N-based semiconductor laser device, it was difficult to reduce the threshold current value by narrowing the stripe-shaped current injection region for the following reasons. First, it is extremely difficult to control the stripe-shaped current injection region, that is, the ridge width to 2 μm or less, due to the limitation of the lithography process when the laminated structure is etched by the RIE method or the like to form the stripe-shaped ridge structure. Because it is. Furthermore, the narrower the ridge width, the smaller the contact area between the p-contact layer and the p-side electrode and the larger the contact resistance, which causes a problem that the operating voltage increases.
【0007】第2には、RIE法等によって積層構造を
エッチングしてリッジ構造を形成する際のエッチング精
度の問題である。閾値電流値を出来るだけ下げ、かつ横
方向の屈折率差を大きくして横モードの安定性を高める
ために、活性層の直上まで、例えば活性層上0.15μ
m程度までエッチングすることが必要である。しかし、
実際には、積層構造を構成する各成長膜に膜厚分布があ
ったり、RIE法等によるエッチング際のエッチングレ
ートにもばらつきが出ることから、制御性良くエッチン
グしてリッジ構造を形成することは非常に困難であっ
て、オーバーエッチングして活性層に損傷を与えたり、
逆にエッチング残りが生じたりするために、レーザ特性
にばらつきが生じるからである。Second, there is a problem of etching accuracy when the ridge structure is formed by etching the laminated structure by the RIE method or the like. In order to reduce the threshold current value as much as possible and increase the lateral refractive index difference to enhance the stability of the transverse mode, for example, 0.15 μm above the active layer.
It is necessary to etch to about m. But,
Actually, since each growth film constituting the laminated structure has a film thickness distribution and the etching rate at the time of etching by the RIE method or the like also varies, it is difficult to form a ridge structure by etching with good controllability. It is very difficult to do over-etching and damage the active layer,
On the contrary, this is because the laser characteristics vary due to etching residue.
【0008】そこで、別の電流狭窄構造が、特開200
0−58981号公報に開示されている。ここで、図5
を参照して、特開2000−58981号公報に開示さ
れているGaN系半導体レーザ素子の構成を説明する。
従来のGaN系半導体レーザ素子20は、図5に示すよ
うに、サファイア基板22の(11−20)面上に、n
型GaNコンタクト層24、n型AlGaNクラッド層
26、n型光ガイド層28、<1−100>方向の幅1
μmのストライプ状開口部30を有する厚さ2000Å
のSiO2 マスク32、開口部30内に形成されたn型
GaN光ガイド層34、InGaN系量子井戸構造活性
層36と、p型GaN光ガイド層38、p型AlGaN
クラッド層40、及びp型GaNコンタクト層42から
なる積層構造を備えている。Therefore, another current constriction structure is disclosed in Japanese Patent Laid-Open No.
No. 0-58981. Here, FIG.
The configuration of the GaN-based semiconductor laser device disclosed in Japanese Patent Laid-Open No. 2000-58981 will be described with reference to FIG.
As shown in FIG. 5, the conventional GaN-based semiconductor laser device 20 has an n-type on the (11-20) plane of a sapphire substrate 22.
-Type GaN contact layer 24, n-type AlGaN cladding layer 26, n-type optical guide layer 28, width 1 in the <1-100> direction
2000 Å Thickness with stripe-shaped opening 30 of μm
SiO 2 mask 32, an n-type GaN light guide layer 34 formed in the opening 30, an InGaN-based quantum well structure active layer 36, a p-type GaN light guide layer 38, and a p-type AlGaN
The layered structure includes a clad layer 40 and a p-type GaN contact layer 42.
【0009】本GaN系半導体レーザ素子20では、積
層構造のうち、p型光ガイド層38、p型AlGaNク
ラッド層40、及びp型GaNコンタクト層42は、段
差状の活性層36上にストライプリッジ部として形成さ
れている。また、SiO2 マスク32、n型光ガイド層
28、n型AlGaNクラッド層26、及びn型GaN
コンタクト層24の上部層までの積層構造は、ストライ
プリッジ部と同じ方向に延在するメサ構造として形成さ
れ、露出したn型GaNコンタクト層24上にn側電極
44が形成されている。また、ストライプリッジ部の全
面及び露出したSiO2 マスク32上に、p側電極46
が形成されている。In the present GaN-based semiconductor laser device 20, the p-type optical guide layer 38, the p-type AlGaN cladding layer 40, and the p-type GaN contact layer 42 of the laminated structure are striped ridges on the stepped active layer 36. Is formed as a part. In addition, the SiO 2 mask 32, the n-type light guide layer 28, the n-type AlGaN cladding layer 26, and the n-type GaN
The laminated structure up to the upper layer of the contact layer 24 is formed as a mesa structure extending in the same direction as the stripe ridge portion, and the n-side electrode 44 is formed on the exposed n-type GaN contact layer 24. Further, the p-side electrode 46 is formed on the entire surface of the stripe ridge portion and on the exposed SiO 2 mask 32.
Are formed.
【0010】本GaN系半導体レーザ素子20では、開
口部30の領域以外のSiO2 マスク32によって電流
狭窄構造が形成されている。そして、SiO2 マスク3
2を使った選択成長法によって、n型GaN光ガイド層
34、活性層36、p型GaN光ガイド層38、p型A
lGaNクラッド層40、及びp型GaNコンタクト層
42を成長させて、リッジ構造を形成している。しか
し、InGaN層をストライプ状に選択成長させる際
に、SiO2 マスク32からSiが飛来し、再成長の初
期過程において悪影響を及ぼす。このために、急峻な界
面を有するInGaN層を形成することが、実際には難
しく、活性層の発光効率を低下させてしまうという問題
があって、これも実用化が難しい。In the present GaN-based semiconductor laser device 20, the current confinement structure is formed by the SiO 2 mask 32 other than the region of the opening 30. And the SiO 2 mask 3
N-type GaN light guide layer 34, active layer 36, p-type GaN light guide layer 38, p-type A
The lGaN cladding layer 40 and the p-type GaN contact layer 42 are grown to form a ridge structure. However, when the InGaN layer is selectively grown in a stripe shape, Si flies from the SiO 2 mask 32 and adversely affects the initial process of re-growth. For this reason, it is actually difficult to form an InGaN layer having a steep interface, and there is a problem that the luminous efficiency of the active layer is reduced, which is also difficult to put into practical use.
【0011】そこで、本発明の目的は、従来のエアリッ
ジ型GaN系半導体レーザ素子より、閾値電流値が低
く、かつ動作電圧も低く、光ピックアップ等の光源とし
て最適なGaN系半導体レーザ素子を提供することであ
る。Therefore, an object of the present invention is to provide a GaN-based semiconductor laser device which has a lower threshold current value and a lower operating voltage than the conventional air-ridge type GaN-based semiconductor laser device and which is optimal as a light source for an optical pickup or the like. That is.
【0012】[0012]
【課題を解決するための手段】本発明者は、上記課題を
解決する研究の過程で、<1−100>方向、またはそ
れに近い例えば<1−100>±10°の方向に延在
し、ストライプ幅が1μm、高さが0.5μmで、頂部
が基板主面と同じ(0001)面を有するストライプ状
リッジ部を備えた段差基板47を用意し、その段差基板
47上に、図6に示すように、InGaN層48を成膜
する実験1を行った。Means for Solving the Problems In the course of research for solving the above problems, the present inventor has extended in the <1-100> direction, or a direction close thereto, for example, <1-100> ± 10 °, A stepped substrate 47 having a stripe-shaped ridge portion having a stripe width of 1 μm, a height of 0.5 μm, and a top portion having the same (0001) plane as the substrate main surface was prepared. As shown, Experiment 1 for forming the InGaN layer 48 was conducted.
【0013】その結果は、図6に示すように、成長速度
及びV族/III族モル比などの成長条件を最適化する
ことにより、リッジ部上、つまり(0001)面上のI
nGaN層48aの膜厚が最も厚く、次いでリッジ部脇
の基板主面上のInGaN層48cの膜厚が厚く、リッ
ジ部の側壁に沿って成長し、(11−22)面の成長面
を有するInGaN層48bの膜厚が最も薄く、しかも
その膜厚が極めて薄くできることが判った。つまり、リ
ッジ部の側壁に沿って成長したInGaN層48bの膜
厚が極めて薄いので、実質的にリッジ部上にのみストラ
イプ状のInGaN層48aを活性層として形成するこ
とができ、また、リッジ部上のInGaN層48aのス
トライプ幅がリッジ部の頂部のストライプ幅と密接に関
係することも判った。特に、In0.07Ga0.93N/In
0.02Ga0.98N量子井戸活性層の成長では、リッジ部の
側壁に沿った(11−22)面での成長速度が遅く、リ
ッジ構造の頂部上の(0001)面上にのみ実質的に成
長させることも可能であることが判った。これは、図7
に示すTEM写真の写しも明確に示されている。尚、図
7の元のTEM写真は、参考写真として、明細書に合わ
せて提出している。As a result, as shown in FIG. 6, by optimizing the growth conditions such as the growth rate and the group V / group III molar ratio, I on the ridge portion, that is, on the (0001) plane
The nGaN layer 48a has the largest film thickness, the InGaN layer 48c on the main surface of the substrate next to the ridge part has the largest film thickness, grows along the side wall of the ridge part, and has a (11-22) plane growth surface. It has been found that the thickness of the InGaN layer 48b is the thinnest and the thickness can be extremely thin. That is, since the thickness of the InGaN layer 48b grown along the side wall of the ridge portion is extremely thin, the stripe-shaped InGaN layer 48a can be formed as an active layer substantially only on the ridge portion, and the ridge portion can be formed. It was also found that the stripe width of the upper InGaN layer 48a is closely related to the stripe width at the top of the ridge. In particular, In 0.07 Ga 0.93 N / In
In the growth of the 0.02 Ga 0.98 N quantum well active layer, the growth rate on the (11-22) plane along the sidewall of the ridge is slow, and the growth is substantially performed only on the (0001) plane on the top of the ridge structure. It turns out that it is also possible. This is shown in Figure 7.
A clear copy of the TEM photograph shown in FIG. The original TEM photograph of FIG. 7 is submitted as a reference photograph together with the specification.
【0014】また、本発明者は、図8に示すように、上
述の段差基板47上にAlGaN層を形成する実験2を
行った。その結果、成長温度800℃〜1040℃で成
長させたAlGaN層は、リッジ部上のAlGaN層4
9aのAl%が最も低く、次いでリッジ部脇の基板主面
上のAlGaN層49cのAl%が低く、リッジ部の側
壁に沿って成長し、(11−22)面の成長面を有する
AlGaN層49bのAl%が最も高いことが判った。
例えば、1003℃でp型クラッド層を成長させたと
き、リッジ部上のAlGaN層49aのAl%は8.7
%、(11−22)面の成長面を有するAlGaN層4
9bのAl%は14.1%であった。Mgをドープした
p型AlGaN層の電気抵抗はAl組成が高いほど大き
くなる。従って、1003℃でp型クラッド層を成長さ
せることにより、リッジ部の側壁に沿って成長した(1
1−22)面の成長面を有するAlGaN層49bの電
気抵抗は、リッジ部上のAlGaN層49aの電気抵抗
に比べて高くなることが判った。逆に、成長温度105
3℃では、リッジ部上のAlGaN層49aのAl%は
13.6%、(11−22)面の成長面を有するAlG
aN層49bのAl%は5.0%であった。The present inventor also conducted an experiment 2 for forming an AlGaN layer on the stepped substrate 47 as shown in FIG. As a result, the AlGaN layer grown at the growth temperature of 800 ° C. to 1040 ° C. is the AlGaN layer 4 on the ridge portion.
9a has the lowest Al%, then the AlGaN layer 49c on the main surface of the substrate on the side of the ridge has the lowest Al%, grows along the side wall of the ridge, and has an (11-22) -faced growth surface. It was found that the Al% of 49b was the highest.
For example, when the p-type cladding layer is grown at 1003 ° C., the Al% of the AlGaN layer 49a on the ridge is 8.7.
%, AlGaN layer 4 having a (11-22) plane of growth
The Al% of 9b was 14.1%. The electrical resistance of the Mg-doped p-type AlGaN layer increases as the Al composition increases. Therefore, by growing the p-type cladding layer at 1003 ° C., the p-type cladding layer was grown along the sidewall of the ridge (1
It was found that the electric resistance of the AlGaN layer 49b having the 1-22) plane was higher than that of the AlGaN layer 49a on the ridge. Conversely, the growth temperature 105
At 3 ° C., the Al% of the AlGaN layer 49a on the ridge portion is 13.6%, and the AlG having a (11-22) plane growth surface.
The Al% of the aN layer 49b was 5.0%.
【0015】以上の実験から、800℃以上1040℃
以下の成長温度でAlGaN層を段差基板上に形成して
Al組成を制御することにより、リッジ部上の電気抵抗
の低い電流注入領域と、リッジ部上以外の領域の電流狭
窄領域とを作り分けることができることが判った。From the above experiment, 800 ° C. or more and 1040 ° C.
By forming an AlGaN layer on the stepped substrate at the following growth temperature and controlling the Al composition, a current injection region having a low electric resistance on the ridge portion and a current constriction region other than the ridge portion are formed separately. It turns out that I can do it.
【0016】上記目的を達成するために、上述の知見に
基づいて、本発明に係るGaN系半導体レーザ素子は、
基板の主面と同じ面方位の頂部を有するストライプ状リ
ッジ部を基板主面上に備える基板と、基板のリッジ部上
にエピタキシャル成長し、リッジ部の頂部上に成膜さ
れ、主面と同じ面方位を成長面とする上面部と、リッジ
部の側壁上に成膜され、所定の面方位の成長面を有する
傾斜面部と、リッジ部脇の基板主面上に成膜され、主面
と同じ面方位を成長面とする平坦部とを有する第1のG
aN系化合物半導体層と、第1の化合物半導体層上に第
1の化合物半導体層に沿って実質的に同じ形状で積層さ
れ、活性層を含むGaN系化合物半導体層の積層構造と
を備えていることを特徴としている。In order to achieve the above object, the GaN-based semiconductor laser device according to the present invention is based on the above findings.
A substrate having a striped ridge portion having a top portion in the same plane direction as the main surface of the substrate on the main surface of the substrate, and a film epitaxially grown on the ridge portion of the substrate and formed a film on the top of the ridge portion. Same as the main surface, which is formed on the upper surface with the growth surface in the azimuth direction, on the sidewall of the ridge portion, on the side surface of the ridge portion, and on the main surface of the substrate on the side of the ridge portion. A first G having a flat portion having a plane orientation as a growth surface
An aN-based compound semiconductor layer and a stacked structure of a GaN-based compound semiconductor layer including an active layer, which is stacked on the first compound semiconductor layer along the first compound semiconductor layer in substantially the same shape. It is characterized by that.
【0017】本発明で、GaN系化合物半導体とは、少
なくともGa 及びNを含むIII 族窒化物化合物半導体を
言い、例えばGaN、AlGaN、InGaN、AlG
aInN、AlBGaInNである。本発明で、リッジ
部の断面形状は、頂部の上面が基板の主面と同じ面方位
である限り、制約はないものの、好ましくは、台形又は
長方形である。尚、通常、リッジ構造の幅は、5μm以
下、高さは0.1μm以上である。上記ストライプ状リ
ッジ部は、基板の主面上に形成されていても良く、また
基板の主面上に形成されたGaN系化合物半導体層に形
成されていても良い。更には、リッジ部の形成方法には
制約はなく、例えば基板又は基板上のGaN系化合物半
導体層をエッチングしてリッジ部を形成しても良く、ま
た基板上にGaN系化合物半導体層をリッジ状に選択成
長させてリッジ部を形成しても良い。In the present invention, the GaN compound semiconductor means a group III nitride compound semiconductor containing at least Ga and N, and is, for example, GaN, AlGaN, InGaN, AlG.
aInN and AlBGaInN. In the present invention, the cross-sectional shape of the ridge portion is preferably trapezoidal or rectangular, although there is no limitation as long as the top surface of the top portion has the same plane orientation as the main surface of the substrate. The ridge structure usually has a width of 5 μm or less and a height of 0.1 μm or more. The striped ridge portion may be formed on the main surface of the substrate, or may be formed on the GaN-based compound semiconductor layer formed on the main surface of the substrate. Further, the method of forming the ridge portion is not limited, and for example, the substrate or the GaN-based compound semiconductor layer on the substrate may be etched to form the ridge portion, or the GaN-based compound semiconductor layer may be formed on the substrate in a ridge shape. Alternatively, the ridge portion may be formed by selective growth.
【0018】本発明の好適な実施態様では、主面が(0
001)面であり、リッジ部の延在方位が<1−100
>±10°の範囲にあり、傾斜面部の成長面が(11−
22)面である。そして、活性層は、発光領域として機
能する上面部と、上面部より膜厚が薄く、発光性が低く
て実質的に発光に寄与しない傾斜面部とを有するInG
aN系量子井戸構造層として形成され、上部クラッド層
は、電気抵抗が低く電流注入領域として機能する上面部
と、電気抵抗が上面部より高く電流狭窄領域として機能
する傾斜面部とを有するAlGaN系化合物半導体層に
より形成され、上側電極の下のGaNコンタクト層が、
上側電極と同じ形状で上部クラッド層上に積層されてい
る。In a preferred embodiment of the present invention, the main surface is (0
001) plane, and the extension direction of the ridge is <1-100
Within the range of> ± 10 °, the growth surface of the inclined surface portion is (11-
22) surface. The active layer has an upper surface portion that functions as a light emitting region, and an inclined surface portion that is thinner than the upper surface portion and has a low light emitting property and that does not substantially contribute to light emission.
The upper cladding layer is formed as an aN-based quantum well structure layer, and the upper clad layer has an upper surface portion having a low electric resistance and functioning as a current injection region, and an inclined surface portion having a higher electric resistance than the upper surface portion and functioning as a current confinement region. A GaN contact layer formed of a semiconductor layer and below the upper electrode,
It is laminated on the upper clad layer in the same shape as the upper electrode.
【0019】本発明の好適な実施態様では、活性層の上
面部の幅を細く、例えば1μm以下に細くできるので、
従来のGaN系半導体レーザ素子に比べて、閾電流値を
小さくできる。また、上側電極とGaNコンタクト層と
の接触面積を大きくできるので、従来のGaN系半導体
レーザ素子に比べて、動作電圧を低くできる。In a preferred embodiment of the present invention, the width of the upper surface of the active layer can be made narrow, for example, 1 μm or less,
The threshold current value can be made smaller than that of the conventional GaN-based semiconductor laser device. Further, since the contact area between the upper electrode and the GaN contact layer can be increased, the operating voltage can be lowered as compared with the conventional GaN-based semiconductor laser device.
【0020】本発明に係る段差基板上のエピタキシャル
成長法は、基板の主面と同じ面方位の頂部を有するスト
ライプ状リッジ部を基板主面に備える段差基板上に、G
aN系化合物半導体層をエピタキシャル成長させる方法
であって、リッジ部の頂部上に成膜され、主面と同じ面
方位を成長面とする上面部と、リッジ部の側壁上に成膜
され、所定の面方位の成長面を有する傾斜面部と、リッ
ジ部脇の基板主面上に成膜され、主面と同じ面方位を成
長面とする平坦部とを有するGaN系化合物半導体層を
基板のリッジ部上にエピタキシャル成長させる工程を有
し、GaN系化合物半導体層をエピタキシャル成長させ
る工程では、少なくとも成長温度及び原料ガスのV/II
I 比を含む成長条件を調整して上面部及び傾斜面部の成
長速度比を制御し、かつリッジ部のリッジ幅及びリッジ
高さを調節することにより、所望の膜厚及び幅の上面部
及び上面部より膜厚の薄い傾斜面部を有するGaN系化
合物半導体層を成膜することを特徴としている。According to the epitaxial growth method on a stepped substrate according to the present invention, G is formed on a stepped substrate having a striped ridge portion having a top portion in the same plane orientation as the main surface of the substrate on the main surface of the substrate.
A method for epitaxially growing an aN-based compound semiconductor layer, which is formed on a top portion of a ridge portion, a top surface portion having a growth plane in the same plane orientation as the main surface, and a side wall of the ridge portion. The ridge portion of the substrate is a GaN-based compound semiconductor layer having an inclined surface portion having a growth surface with a plane orientation and a flat portion formed on the main surface of the substrate next to the ridge portion and having a growth surface in the same plane orientation as the main surface. In the step of epitaxially growing the GaN-based compound semiconductor layer, at least the growth temperature and V / II of the source gas are included.
By adjusting the growth conditions including the I ratio to control the growth rate ratio of the upper surface portion and the inclined surface portion, and by adjusting the ridge width and the ridge height of the ridge portion, the upper surface portion and the upper surface of the desired film thickness and width can be obtained. It is characterized in that a GaN-based compound semiconductor layer having an inclined surface portion having a smaller film thickness than that of the above portion is formed.
【0021】本発明方法では、エピタキシャル成長法の
種類には制約はなく、例えばMOCVD法を好適に採用
できる。本発明方法を適用してGaN系半導体レーザ素
子を作製する方法は、基板の(0001)面主面と同じ
面方位の頂部を有し、<1−100>±10°の範囲の
方位に延在するストライプ状リッジ部を備える段差基板
上にGaN系半導体レーザ素子を作製する方法であっ
て、請求項4に記載の段差基板上のエピタキシャル成長
方法に従って、800℃以上1040℃以下の成長温度
で、それぞれ、(0001)面を有する上面部及び(1
1−22)面を有する傾斜面部を備える、InGaN系
量子井戸構造の活性層、及びAlGaN系化合物半導体
層からなる上部クラッド層を成膜し、活性層は、発光領
域として機能する上面部と、上面部より膜厚が薄く、発
光性が低くて実質的に発光に寄与しない傾斜面部とを有
し、上部クラッド層は、電気抵抗が低く電流注入領域と
して機能する上面部と、電気抵抗が上面部より高く電流
狭窄領域として機能する傾斜面部とを有するようにした
ことを特徴としている。本発明方法により、ストライプ
幅を1μm以下のリッジ構造を備えたGaN系半導体レ
ーザ素子を作製することができる。In the method of the present invention, the type of epitaxial growth method is not limited, and for example, the MOCVD method can be preferably adopted. A method for producing a GaN-based semiconductor laser device by applying the method of the present invention has a top portion having the same plane orientation as the main surface of the (0001) plane of the substrate and extends in an orientation of <1-100> ± 10 °. A method for producing a GaN-based semiconductor laser device on a stepped substrate having an existing striped ridge portion, wherein the growth temperature is 800 ° C. or higher and 1040 ° C. or lower according to the epitaxial growth method on the stepped substrate according to claim 4. An upper surface portion having a (0001) plane and a (1
An active layer having an InGaN-based quantum well structure and an upper clad layer composed of an AlGaN-based compound semiconductor layer, the active layer having an upper surface portion functioning as a light emitting region; The upper clad layer has an inclined surface portion that is thinner than the upper surface portion, has a low light emitting property, and does not substantially contribute to light emission. The upper clad layer has an upper surface portion that has a low electric resistance and functions as a current injection region. It is characterized by having an inclined surface portion which is higher than the portion and functions as a current confinement region. By the method of the present invention, a GaN-based semiconductor laser device having a ridge structure with a stripe width of 1 μm or less can be manufactured.
【0022】[0022]
【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。尚、以下の実施形態例で示す成膜方法、化合
物半導体層の組成及び膜厚、リッジ幅、プロセス条件等
は、本発明の理解を容易にするための一つの例示であっ
て、本発明はこの例示に限定されるものではない。半導体レーザ素子の実施形態例1
本実施形態例は、本発明に係るGaN系半導体レーザ素
子をGaN基板上に形成したGaN系半導体レーザ素子
に適用した例であって、図1は本実施形態例のGaN系
半導体レーザ素子の構成を示す模式的断面図である。本
実施形態例のGaN系半導体レーザ素子60は、図1に
示すように、(1000)面を主面とし、<1−100
>方向、またはそれに近い例えば<1−100>±10
°の方向にストライプ幅1μm、高さ1.5μmのリッ
ジ部61を備えたn型GaN基板62上に、順次、成膜
された、n−Al0.08Ga0.92Nクラッド層64、n−
GaNガイド層66、In0.07Ga0.93N/In0.02G
a0.98N量子井戸活性層68、p−GaNガイド層7
0、キャリア濃度が約1×1017cm-3のp−Al0.08
Ga0.92Nクラッド層72、及びキャリア濃度が約1×
1018cm-3のp−GaNコンタクト層74の積層構造
を備えている。リッジ部61は、基板62の主面と同じ
面方位の(0001)面を有する頂部を有する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings by way of example embodiments. The film forming method, the composition and film thickness of the compound semiconductor layer, the ridge width, the process conditions and the like shown in the following embodiments are merely examples for facilitating the understanding of the present invention. It is not limited to this example. Embodiment Example 1 of Semiconductor Laser Device This embodiment example is an example in which the GaN-based semiconductor laser device according to the present invention is applied to a GaN-based semiconductor laser device formed on a GaN substrate, and FIG. FIG. 3 is a schematic cross-sectional view showing the configuration of the GaN-based semiconductor laser device of FIG. As shown in FIG. 1, the GaN-based semiconductor laser device 60 of the present embodiment has a (1000) plane as a main surface and <1-100.
> Direction or close thereto, for example <1-100> ± 10
The n-Al 0.08 Ga 0.92 N cladding layer 64, n- formed in order on the n-type GaN substrate 62 provided with the ridge portion 61 having a stripe width of 1 μm and a height of 1.5 μm in the direction of °.
GaN guide layer 66, In 0.07 Ga 0.93 N / In 0.02 G
a 0.98 N quantum well active layer 68, p-GaN guide layer 7
0, p-Al 0.08 with carrier concentration of about 1 × 10 17 cm -3
Ga 0.92 N cladding layer 72, and carrier concentration is about 1 ×
It has a laminated structure of 10 −18 cm −3 p-GaN contact layer 74. The ridge portion 61 has a top portion having a (0001) plane with the same plane orientation as the main surface of the substrate 62.
【0023】n−AlGaNクラッド層64は、リッジ
部上に(0001)面を有する上面部64aと、(11
−22)面の傾斜面を有する傾斜面部64bと、傾斜部
64bの下端から(0001)面に沿って延びる平坦部
64cとから構成されていて、n型GaN基板62のリ
ッジ部61を埋め込んでいる。n−GaNガイド層6
6、活性層68、p−GaNガイド層70、及びp−A
lGaNクラッド層72は、n−AlGaNクラッド層
64に沿って同じ形状で形成されている。The n-AlGaN cladding layer 64 has an upper surface portion 64a having a (0001) plane on the ridge portion and a (11)
It is composed of an inclined surface portion 64b having an inclined surface of −22) surface and a flat portion 64c extending from the lower end of the inclined portion 64b along the (0001) surface and burying the ridge portion 61 of the n-type GaN substrate 62. There is. n-GaN guide layer 6
6, active layer 68, p-GaN guide layer 70, and p-A
The lGaN clad layer 72 is formed in the same shape along the n-AlGaN clad layer 64.
【0024】p−GaNコンタクト層74は、p−Al
GaNクラッド層72の上面部72a上にのみ形成さ
れ、更に、p−GaNコンタクト層74の領域を除い
て、p−AlGaNクラッド層72上にSiO2 膜から
なる保護膜76が成膜されている。また、Ni/Pt/
Au金属膜などのp側電極78がp−GaNコンタクト
層74上に形成されている。つまり、p側電極78の下
のp−GaNコンタクト層74が、p側電極78と同じ
形状でp−AlGaNクラッド層72上に積層されてい
る。また、GaN基板62の裏面の中央領域には、n側
電極79が形成されていて、その両側には、保護膜76
が成膜されている。The p-GaN contact layer 74 is made of p-Al.
It is formed only on the upper surface portion 72a of the GaN clad layer 72, and a protective film 76 made of a SiO 2 film is further formed on the p-AlGaN clad layer 72 except for the region of the p-GaN contact layer 74. . In addition, Ni / Pt /
A p-side electrode 78 such as an Au metal film is formed on the p-GaN contact layer 74. That is, the p-GaN contact layer 74 under the p-side electrode 78 is laminated on the p-AlGaN cladding layer 72 in the same shape as the p-side electrode 78. Further, an n-side electrode 79 is formed in the central region of the back surface of the GaN substrate 62, and protective films 76 are formed on both sides of the n-side electrode 79.
Is deposited.
【0025】GaN系半導体レーザ素子60では、リッ
ジ部61の幅、高さを適切な値に設定し、かつ、n−A
lGaNクラッド層64及び量子井戸活性層68の(0
001)面及び(11−22)面の成長速度比を、成長
温度、原料ガスのV/III 比などの成長条件を調整する
ことにより、リッジ部61上の活性層のストライプ幅を
制御することができる。本実施形態例では、活性層68
のストライプ幅は、0.5μmである。また、p−Al
GaNクラッド層72は、傾斜面部72bの電気抵抗が
上面部72aの電気抵抗より高いので、注入電流がp−
AlGaNクラッド層72の傾斜面部72bにリークし
難い。よって、光出力−注入電流特性が良好である。更
には、p側電極78及びp−GaNコンタクト層74の
面積を面積を大きくすることができるので、動作電圧を
低減することができる。In the GaN-based semiconductor laser device 60, the width and height of the ridge portion 61 are set to appropriate values, and n-A
(0 of the lGaN clad layer 64 and the quantum well active layer 68
The stripe width of the active layer on the ridge portion 61 is controlled by adjusting the growth rate ratio of the (001) plane and the (11-22) plane to the growth temperature and the V / III ratio of the source gas. You can In the present embodiment example, the active layer 68
Has a stripe width of 0.5 μm. In addition, p-Al
In the GaN clad layer 72, since the electric resistance of the inclined surface portion 72b is higher than that of the upper surface portion 72a, the injection current is p−.
It is difficult to leak to the inclined surface portion 72b of the AlGaN cladding layer 72. Therefore, the light output-injection current characteristic is good. Furthermore, since the areas of the p-side electrode 78 and the p-GaN contact layer 74 can be increased, the operating voltage can be reduced.
【0026】半導体レーザ素子の実施形態例2
本実施形態例は、本発明に係るGaN系半導体レーザ素
子をサファイア基板上に形成したGaN系半導体レーザ
素子に適用した例であって、図2は本実施形態例のGa
N系半導体レーザ素子の構成を示す模式的断面図であ
る。本実施形態例のGaN系半導体レーザ素子80は、
図2に示すように、基板がサファイア基板82であるこ
と、サファイア基板82上にn−GaNコンタクト層8
4が設けられていること、(0001)面を主面とし、
<1−100>方向、またはそれに近い例えば<1−1
00>±10°の方向に延在するストライプ幅1μm、
高さ1.5μmのリッジ部83がn−GaNコンタクト
層84に設けられていること、n−GaNコンタクト層
84の上層部から上の積層構造がリッジ部と同じ方向に
延在するメサ構造として形成されていること、及びn側
電極86がn−GaNコンタクト層84上に設けられて
いることを除いて、実施形態例1の半導体レーザ素子6
0と同じ構成を備えていて、実施形態例1のGaN系半
導体レーザ素子60と同じ効果を奏することができる。 Embodiment 2 of Semiconductor Laser Device This embodiment is an example in which the GaN-based semiconductor laser device according to the present invention is applied to a GaN-based semiconductor laser device formed on a sapphire substrate, and FIG. Ga of the embodiment example
It is a typical sectional view showing the composition of the N type semiconductor laser device. The GaN-based semiconductor laser device 80 of the present embodiment example is
As shown in FIG. 2, the substrate is a sapphire substrate 82, and the n-GaN contact layer 8 is formed on the sapphire substrate 82.
4 is provided, the main surface is the (0001) plane,
<1-100> direction or close thereto, for example, <1-1
Stripe width 1 μm extending in the direction of 00> ± 10 °,
A ridge portion 83 having a height of 1.5 μm is provided in the n-GaN contact layer 84, and a stacked structure above the upper layer portion of the n-GaN contact layer 84 extends in the same direction as the ridge portion. The semiconductor laser device 6 according to the first embodiment except that the n-side electrode 86 is formed and the n-side electrode 86 is provided on the n-GaN contact layer 84.
The GaN-based semiconductor laser device 60 has the same structure as that of the GaN semiconductor laser device 60 according to the first embodiment and can achieve the same effect as that of the GaN-based semiconductor laser device 60 of the first embodiment.
【0027】本実施形態例では、サファイア基板82を
使用しているが、SiC基板を使用してもよい。また、
サファイア基板82或いはSiC基板上に低温緩衝層を
介して、積層構造を形成しても良い。更に、これらの基
板上にGaN層をエピタキシャル成長させる際には、横
方向成長を利用して欠陥低減領域を作製し、その上に積
層構造を形成も良い。Although the sapphire substrate 82 is used in this embodiment, a SiC substrate may be used. Also,
A laminated structure may be formed on the sapphire substrate 82 or the SiC substrate via a low temperature buffer layer. Further, when the GaN layer is epitaxially grown on these substrates, it is also possible to form the defect reduction region by utilizing lateral growth and form the laminated structure on it.
【0028】半導体レーザ素子の作製方法の実施形態例
本実施形態例は、本発明に係る半導体レーザ素子の作製
方法を上述のGaN系半導体レーザ素子60に適用した
実施形態の一例であって、図3(a)から(c)は、そ
れぞれ、本実施形態例に従って半導体レーザ素子を作製
する際の工程毎の断面図である。先ず、図3(a)に示
すように、n型GaN基板62の(0001)面をRI
E法によりエッチングして、<1−100>方向、また
はそれに近い方向、例えば<1−100>±10°の方
向に、リッジ幅Wが1μm、高さHが1.5μmのリッ
ジ部61を形成する。 Example of Embodiment of Method for Manufacturing Semiconductor Laser Device This embodiment is an example of an embodiment in which the method for manufacturing a semiconductor laser device according to the present invention is applied to the GaN-based semiconductor laser device 60 described above. 3 (a) to 3 (c) are cross-sectional views of respective steps when manufacturing a semiconductor laser device according to the present embodiment example. First, as shown in FIG. 3A, the (0001) plane of the n-type GaN substrate 62 is RI.
Etching is performed by the E method to form a ridge portion 61 having a ridge width W of 1 μm and a height H of 1.5 μm in a <1-100> direction or a direction close thereto, for example, a <1-100> ± 10 ° direction. Form.
【0029】次いで、図3(b)に示すように、リッジ
部61上にMOCVD法により成長温度1000℃で、
n−Al0.08Ga0.92Nクラッド層64をエピタキシャ
ル成長させる。これにより、リッジ部61上に(000
1)面を有する上面部64aと、(11−22)面の成
長面を有する傾斜面部64bと、傾斜部64bの下端か
らn型GaN基板62の(0001)面に沿って延びる
平坦部64cとから構成され、n型GaN基板62のリ
ッジ部を埋め込んだ、n−AlGaNクラッド層64が
形成される。Then, as shown in FIG. 3B, the ridge portion 61 is grown by MOCVD at a growth temperature of 1000 ° C.
The n-Al 0.08 Ga 0.92 N cladding layer 64 is epitaxially grown. As a result, (000
1) a top surface portion 64a having a surface, an inclined surface portion 64b having a (11-22) surface growth surface, and a flat portion 64c extending from the lower end of the inclined portion 64b along the (0001) surface of the n-type GaN substrate 62. The n-AlGaN clad layer 64 is formed by filling the ridge portion of the n-type GaN substrate 62.
【0030】続いて、n−AlGaNクラッド層64上
に、MOCVD法によって成長温度1000℃で、n−
GaNガイド層66、In0.07Ga0.93N/In0.02G
a0. 98N量子井戸活性層68、p−GaNガイド層7
0、p−Al0.08Ga0.92Nクラッド層72及びp−G
aNコンタクト層74を順次エピタキシャル成長させ
て、図3(b)に示すように、積層構造を形成する。Then, on the n-AlGaN cladding layer 64, an n-type is formed by MOCVD at a growth temperature of 1000.degree.
GaN guide layer 66, In 0.07 Ga 0.93 N / In 0.02 G
a 0. 98 N quantum well active layer 68, p-GaN guide layer 7
0, p-Al 0.08 Ga 0.92 N cladding layer 72 and p-G
The aN contact layer 74 is sequentially epitaxially grown to form a laminated structure as shown in FIG.
【0031】本実施形態例の方法では、積層構造を形成
する際、各層の(0001)面及び(11−22)面の
成長速度比は、成長温度、原料ガスのV/III 比などの
成長条件を調整し、かつリッジ部61の幅、高さを適切
な値にすることにより、リッジ部61上の各層の厚さと
幅を制御することができる。本実施形態例では、成長温
度を1000℃とし、n−AlGaNクラッド層64及
びp−AlGaNクラッド層72を成膜する際の原料ガ
スのV/III 比は10000である。In the method of this embodiment, when forming a laminated structure, the growth rate ratio of the (0001) plane and the (11-22) plane of each layer is determined by the growth temperature, the V / III ratio of the source gas, and the like. By adjusting the conditions and setting the width and height of the ridge portion 61 to appropriate values, the thickness and width of each layer on the ridge portion 61 can be controlled. In the present embodiment, the growth temperature is 1000 ° C., and the V / III ratio of the source gas when the n-AlGaN cladding layer 64 and the p-AlGaN cladding layer 72 are formed is 10,000.
【0032】これにより、p−AlGaNクラッド層7
2の(0001)面及び(11−22)面のAl組成
は、それぞれ、8.7%及び14.1%になって、自然
に、(0001)面を有する上面部が電流注入領域にな
り、(11−22)面を成長面とする傾斜面部が電流狭
窄領域となる。また、量子井戸活性層68は、(11−
22)面で成長速度が遅くて、殆ど成長しない一方、
(0001)面で成長速度が速いので、リッジ部61上
の(0001)面にのみ成長させることができる。よっ
て、活性層の幅として、例えば1μmより小さい幅の狭
い導波路構造を作ることができる。As a result, the p-AlGaN cladding layer 7 is formed.
The Al compositions of the (0001) plane and the (11-22) plane of No. 2 are 8.7% and 14.1%, respectively, and the upper surface portion having the (0001) plane naturally becomes the current injection region. , The inclined surface portion having the (11-22) plane as a growth surface serves as a current constriction region. In addition, the quantum well active layer 68 is (11-
22) surface has a slow growth rate and hardly grows,
Since the growth rate is high on the (0001) plane, it can be grown only on the (0001) plane on the ridge portion 61. Therefore, as the width of the active layer, for example, a narrow waveguide structure having a width smaller than 1 μm can be formed.
【0033】次いで、p−GaNコンタクト層74上に
選択的にNi/Pt/Au金属多層膜などからなるp側
電極78を形成し、続いてp側電極78をマスクとして
RIE法でリッジ部61上の領域以外のp−GaNコン
タクト層74をエッチングして、例えば幅を0.1μm
以上のp−GaNコンタクト層74にし、図3(c)に
示すように、p−AlGaNクラッド層72の傾斜面部
及び平坦部を露出させる。次に、図示しないが、GaN
基板62の裏面にn側電極79を設け、更に保護膜76
を成膜する。Next, a p-side electrode 78 made of a Ni / Pt / Au metal multilayer film or the like is selectively formed on the p-GaN contact layer 74, and then the ridge portion 61 is formed by the RIE method using the p-side electrode 78 as a mask. The p-GaN contact layer 74 other than the upper region is etched to have a width of 0.1 μm, for example.
The p-GaN contact layer 74 is formed as described above, and the inclined surface portion and the flat portion of the p-AlGaN cladding layer 72 are exposed as shown in FIG. Next, although not shown, GaN
An n-side electrode 79 is provided on the back surface of the substrate 62, and a protective film 76 is further provided.
To form a film.
【0034】本実施形態例では、n型GaN基板62上
にGaN系半導体レーザ素子60を作製する方法を例に
して説明したが、サファイア基板82上にGaN系半導
体レーザ素子80(図2参照)を作製する際も、ほぼ同
様に適用できる。但し、その際には、サファイア基板8
2上にGaNの低温成長層を設けたり、横方向成長法を
適用したりして、n−GaNコンタクト層84の下地層
を形成することが好ましい。In this embodiment, the method of manufacturing the GaN-based semiconductor laser device 60 on the n-type GaN substrate 62 has been described as an example, but the GaN-based semiconductor laser device 80 on the sapphire substrate 82 (see FIG. 2). The same can be applied to the case of manufacturing. However, in that case, the sapphire substrate 8
It is preferable to form a base layer of the n-GaN contact layer 84 by providing a low-temperature growth layer of GaN or applying a lateral growth method on the second layer.
【0035】[0035]
【発明の効果】本発明によれば、基板のリッジ部上にエ
ピタキシャル成長し、リッジ部上の上面部と、リッジ部
の側壁に沿って成長した傾斜面部と、リッジ部脇の平坦
部とを有する第1のGaN系化合物半導体層と、第1の
化合物半導体層上に第1の化合物半導体層に沿って実質
的に同じ形状で積層され、活性層を含むGaN系化合物
半導体層の積層構造とを有する半導体レーザ素子を形成
することにより、極めて幅の狭い導波路構造を持ったG
aN系半導体レーザ素子を実現し、それによりしきい電
流値を低減することができる。また、上側電極の下のG
aNコンタクト層を上側電極と同じ形状で上部クラッド
層上に積層することにより、電極面積が大きくなり、動
作電圧が低いGaN系半導体レーザ素子を実現すること
ができる。また、本発明方法は、本発明に係るGaN系
半導体レーザ素子を好適に作製する方法を実現し、RI
E法等で活性層の直上まで化合物半導体層をエッチング
してリッジ部を形成する工程を必要としないので、レー
ザ特性がばらつかず、歩留まりが向上する。本発明方法
を適用することにより、GaN系半導体レーザ素子の低
消費電力化、高信頼化、及び歩留まり向上化を図ること
ができる。According to the present invention, the substrate is epitaxially grown on the ridge portion of the substrate and has an upper surface portion on the ridge portion, an inclined surface portion grown along the side wall of the ridge portion, and a flat portion beside the ridge portion. A first GaN-based compound semiconductor layer and a laminated structure of a GaN-based compound semiconductor layer that is laminated on the first compound semiconductor layer along the first compound semiconductor layer in substantially the same shape and includes an active layer. By forming a semiconductor laser device having a G having an extremely narrow waveguide structure,
It is possible to realize an aN semiconductor laser device and reduce the threshold current value. Also, G under the upper electrode
By stacking the aN contact layer on the upper clad layer in the same shape as the upper electrode, a GaN-based semiconductor laser device having a large electrode area and a low operating voltage can be realized. Further, the method of the present invention realizes a method for suitably manufacturing the GaN-based semiconductor laser device of the present invention, and RI
Since the step of etching the compound semiconductor layer to just above the active layer by the E method or the like to form the ridge portion is not required, the laser characteristics do not vary and the yield is improved. By applying the method of the present invention, it is possible to achieve lower power consumption, higher reliability, and higher yield of the GaN-based semiconductor laser device.
【図1】実施形態例1のGaN系半導体レーザ素子の構
成を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing the configuration of a GaN-based semiconductor laser device according to a first embodiment.
【図2】実施形態例2のGaN系半導体レーザ素子の構
成を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the configuration of a GaN-based semiconductor laser device according to a second embodiment.
【図3】図3(a)から(c)は、それぞれ、本実施形
態例に従って半導体レーザ素子を作製する際の工程毎の
断面図である。FIG. 3A to FIG. 3C are cross-sectional views for each step in manufacturing a semiconductor laser device according to the present embodiment example.
【図4】従来のエアリッジ型のGaN系半導体レーザ素
子の構成を示す断面図である。FIG. 4 is a sectional view showing a configuration of a conventional air ridge type GaN-based semiconductor laser device.
【図5】従来の別のエアリッジ型のGaN系半導体レー
ザ素子の構成を示す断面図である。FIG. 5 is a cross-sectional view showing the structure of another conventional air ridge type GaN-based semiconductor laser device.
【図6】段差基板上のGaN層の模式的断面図である。FIG. 6 is a schematic cross-sectional view of a GaN layer on a stepped substrate.
【図7】TEM写真の写しである。FIG. 7 is a copy of a TEM photograph.
【図8】段差基板上のAlGaN層の模式的断面図であ
る。FIG. 8 is a schematic cross-sectional view of an AlGaN layer on a stepped substrate.
1……サファイア基板、2……AlGaNバッファ層、
3……GaN層、4……n−GaN層、5……n−In
GaNクラック防止層、6……n−第1クラッド層、7
……MQW発光層、8……p−第2クラッド層、9……
p−低温GaN成長層、10……p−第3クラッド層、
11……p−GaNコンタクト層、12……p側電極、
13……n側電極、14……SiO2 膜、16……従来
のGaN系半導体レーザ素子、20……従来の別のGa
N系半導体レーザ素子、22……サファイア基板、24
……n型GaNコンタクト層、26……n型AlGaN
クラッド層、28……n型光ガイド層、30……ストラ
イプ状開口部、32……SiO2 マスク、34……n型
GaN光ガイド層、36……InGaN/InGaN量
子井戸構造活性層、38……p型GaN光ガイド層、4
0……p型AlGaNクラッド層、42……p型GaN
コンタクト層、44……n側電極、46……p側電極、
60……実施形態例1のGaN系半導体レーザ素子、6
1……リッジ構造、62……n型GaN基板、64……
n−Al0.08Ga0.92Nクラッド層、64a……上面
部、64b……傾斜面部、64c……平坦部、66……
n−GaNガイド層、68……In0.07Ga0.93N/I
n0.02Ga0.98N量子井戸活性層、70……p−GaN
ガイド層、72……p−Al0.08Ga0.92Nクラッド
層、74……p−GaNコンタクト層、76……保護
膜、78……p側電極、79……n側電極、80……実
施形態例2のGaN系半導体レーザ素子、82……サフ
ァイア基板、83……リッジ構造、84……n−GaN
コンタクト層、86……n側電極。1 ... Sapphire substrate, 2 ... AlGaN buffer layer,
3 ... GaN layer, 4 ... n-GaN layer, 5 ... n-In
GaN crack prevention layer, 6 ... n-first cladding layer, 7
...... MQW light emitting layer, 8 ...... p-second cladding layer, 9 ......
p-low temperature GaN growth layer, 10 ... p-third cladding layer,
11 ... p-GaN contact layer, 12 ... p-side electrode,
13 ... N-side electrode, 14 ... SiO 2 film, 16 ... Conventional GaN-based semiconductor laser device, 20 ... Another conventional Ga
N-based semiconductor laser device, 22 ... Sapphire substrate, 24
... n-type GaN contact layer, 26 ... n-type AlGaN
Cladding layer, 28 ... N-type light guide layer, 30 ... Stripe-shaped opening, 32 ... SiO 2 mask, 34 ... N-type GaN light guide layer, 36 ... InGaN / InGaN quantum well structure active layer, 38 ... P-type GaN optical guide layer, 4
0 ... p-type AlGaN cladding layer, 42 ... p-type GaN
Contact layer, 44 ... n side electrode, 46 ... p side electrode,
60 ... GaN-based semiconductor laser device of Example 1, 6
1 ... ridge structure, 62 ... n-type GaN substrate, 64 ...
n-Al 0.08 Ga 0.92 N cladding layer, 64a ... upper surface portion, 64b ... inclined surface portion, 64c ... flat portion, 66 ...
n-GaN guide layer, 68 ... In 0.07 Ga 0.93 N / I
n 0.02 Ga 0.98 N quantum well active layer, 70 ... p-GaN
Guide layer, 72 ... p-Al 0.08 Ga 0.92 N cladding layer, 74 ... p-GaN contact layer, 76 ... Protective film, 78 ... P-side electrode, 79 ... N-side electrode, 80 ... Embodiment Example 2 GaN-based semiconductor laser device, 82 ... Sapphire substrate, 83 ... Ridge structure, 84 ... n-GaN
Contact layer, 86 ... n-side electrode.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 簗嶋 克典 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5F073 AA14 AA45 AA74 CA07 CB02 CB05 DA05 DA35 EA23 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsunori Yasushima 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni -Inside the corporation F-term (reference) 5F073 AA14 AA45 AA74 CA07 CB02 CB05 DA05 DA35 EA23
Claims (6)
ストライプ状リッジ部を基板主面上に備える基板と、 基板のリッジ部上にエピタキシャル成長し、リッジ部の
頂部上に成膜され、主面と同じ面方位を成長面とする上
面部と、リッジ部の側壁上に成膜され、所定の面方位の
成長面を有する傾斜面部と、リッジ部脇の基板主面上に
成膜され、主面と同じ面方位を成長面とする平坦部とを
有する第1のGaN系化合物半導体層と、 第1の化合物半導体層上に第1の化合物半導体層に沿っ
て実質的に同じ形状で積層され、活性層を含むGaN系
化合物半導体層の積層構造とを備えていることを特徴と
するGaN系半導体レーザ素子。1. A substrate comprising a striped ridge portion having a top portion in the same plane orientation as the main surface of the substrate on the main surface of the substrate, and epitaxially grown on the ridge portion of the substrate to form a film on the top of the ridge portion, A film is formed on the upper surface part having the same plane orientation as the main surface as the growth surface, on the side wall of the ridge portion, on the inclined surface portion having the growth surface with a predetermined plane orientation, and on the substrate main surface on the side of the ridge portion. A first GaN-based compound semiconductor layer having a flat portion whose growth surface has the same plane orientation as the main surface, and a substantially same shape on the first compound semiconductor layer along the first compound semiconductor layer. A GaN-based semiconductor laser device, comprising: a laminated structure of GaN-based compound semiconductor layers including an active layer.
面上に形成されたGaN系化合物半導体層に形成されて
いることを特徴とする請求項1に記載のGaN系半導体
レーザ素子。2. The GaN-based semiconductor laser device according to claim 1, wherein the striped ridge portion is formed on a GaN-based compound semiconductor layer formed on the main surface of the substrate.
の延在方位が<1−100>±10°の範囲にあり、傾
斜面部の成長面が(11−22)面であることを特徴と
する請求項1又は2に記載のGaN系半導体レーザ素
子。3. The main surface is a (0001) plane, the extension direction of the ridge is in the range of <1-100> ± 10 °, and the growth surface of the inclined surface is a (11-22) plane. The GaN-based semiconductor laser device according to claim 1 or 2.
部と、上面部より膜厚が薄く、発光性が低くて実質的に
発光に寄与しない傾斜面部とを有するInGaN系量子
井戸構造層として形成され、 上部クラッド層は、電気抵抗が低く電流注入領域として
機能する上面部と、電気抵抗が上面部より高く電流狭窄
領域として機能する傾斜面部とを有するAlGaN系化
合物半導体層により形成され、 上側電極の下のGaNコンタクト層が、上側電極と同じ
形状で上部クラッド層上に積層されていることを特徴と
する請求項1から3のうちのいずれか1項に記載のGa
N系半導体レーザ素子。4. The InGaN-based quantum well structure layer, wherein the active layer has an upper surface portion that functions as a light emitting region, and an inclined surface portion that is thinner than the upper surface portion and has a low light emitting property and does not substantially contribute to light emission. The upper clad layer is formed of an AlGaN-based compound semiconductor layer having an upper surface portion having a low electric resistance and functioning as a current injection region, and an inclined surface portion having a higher electric resistance than the upper surface portion and functioning as a current confinement region. 4. The Ga according to claim 1, wherein the GaN contact layer under the electrode is laminated on the upper clad layer in the same shape as the upper electrode.
N-based semiconductor laser device.
ストライプ状リッジ部を基板主面に備える段差基板上
に、GaN系化合物半導体層をエピタキシャル成長させ
る方法であって、 リッジ部の頂部上に成膜され、主面と同じ面方位を成長
面とする上面部と、リッジ部の側壁上に成膜され、所定
の面方位の成長面を有する傾斜面部と、リッジ部脇の基
板主面上に成膜され、主面と同じ面方位を成長面とする
平坦部とを有するGaN系化合物半導体層を基板のリッ
ジ部上にエピタキシャル成長させる工程を有し、 GaN系化合物半導体層をエピタキシャル成長させる工
程では、少なくとも成長温度及び原料ガスのV/III 比
を含む成長条件を調整して上面部及び傾斜面部の成長速
度比を制御し、かつリッジ部のリッジ幅及びリッジ高さ
を調節することにより、所望の膜厚及び幅の上面部及び
上面部より膜厚の薄い傾斜面部を有するGaN系化合物
半導体層を成膜することを特徴とする段差基板上のエピ
タキシャル成長法。5. A method of epitaxially growing a GaN-based compound semiconductor layer on a stepped substrate having a striped ridge portion having a top portion in the same plane orientation as the main surface of the substrate on the main surface of the substrate, the method comprising: A top surface portion having a growth surface in the same plane orientation as the main surface, an inclined surface portion having a growth surface with a predetermined plane orientation formed on the sidewall of the ridge portion, and the substrate main surface on the side of the ridge portion. A step of epitaxially growing a GaN-based compound semiconductor layer, which is formed on the ridge portion of the substrate and has a flat portion having a growth surface in the same plane orientation as the main surface, and a step of epitaxially growing the GaN-based compound semiconductor layer Then, the growth conditions including at least the growth temperature and the V / III ratio of the source gas are adjusted to control the growth rate ratio of the upper surface portion and the inclined surface portion, and to adjust the ridge width and the ridge height of the ridge portion. Thus, an epitaxial growth method on a stepped substrate, characterized in that a GaN-based compound semiconductor layer having an upper surface portion having a desired film thickness and width and an inclined surface portion having a film thickness thinner than the upper surface portion is formed.
の頂部を有し、<1−100>±10°の範囲の方位に
延在するストライプ状リッジ部を備える段差基板上にG
aN系半導体レーザ素子を作製する方法であって、 請求項5に記載の段差基板上のエピタキシャル成長方法
に従って、800℃以上1040℃以下の成長温度で、
それぞれ、(0001)面を有する上面部及び(11−
22)面を有する傾斜面部を備える、InGaN系量子
井戸構造の活性層、及びAlGaN系化合物半導体層か
らなる上部クラッド層を成膜し、 活性層は、発光領域として機能する上面部と、上面部よ
り膜厚が薄く、発光性が低くて実質的に発光に寄与しな
い傾斜面部とを有し、上部クラッド層は、電気抵抗が低
く電流注入領域として機能する上面部と、電気抵抗が上
面部より高く電流狭窄領域として機能する傾斜面部とを
有するようにしたことを特徴とするGaN系半導体レー
ザ素子の作製方法。6. A stepped substrate having a striped ridge portion having a top portion having the same plane orientation as the (0001) plane main surface of the substrate and extending in an orientation range of <1-100> ± 10 °
A method for manufacturing an aN-based semiconductor laser device, comprising: a growth temperature of 800 ° C. or higher and 1040 ° C. or lower according to the epitaxial growth method on a stepped substrate according to claim 5.
An upper surface portion having a (0001) plane and a (11-
22) an active layer having an InGaN-based quantum well structure and an upper clad layer made of an AlGaN-based compound semiconductor layer having an inclined surface portion having a plane, and the active layer has an upper surface portion that functions as a light emitting region and an upper surface portion. The upper cladding layer has an inclined surface portion that is thinner and has a low light emitting property and does not substantially contribute to light emission. A method for manufacturing a GaN-based semiconductor laser device, characterized in that the GaN-based semiconductor laser device has a high inclined surface portion that functions as a current confinement region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001378179A JP2003179311A (en) | 2001-12-12 | 2001-12-12 | GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001378179A JP2003179311A (en) | 2001-12-12 | 2001-12-12 | GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003179311A true JP2003179311A (en) | 2003-06-27 |
Family
ID=19185978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001378179A Pending JP2003179311A (en) | 2001-12-12 | 2001-12-12 | GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003179311A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190980A (en) * | 2004-12-08 | 2006-07-20 | Sharp Corp | Nitride semiconductor light emitting device and manufacturing method thereof |
JP2006303471A (en) * | 2005-03-24 | 2006-11-02 | Sanyo Electric Co Ltd | Nitride semiconductor light emitting element and manufacturing method thereof |
JP2010062213A (en) * | 2008-09-01 | 2010-03-18 | Sharp Corp | Nitride semiconductor light-emitting device and method of manufacturing the same |
WO2010055635A1 (en) * | 2008-11-13 | 2010-05-20 | パナソニック株式会社 | Nitride semiconductor device |
JP2010161426A (en) * | 2005-03-24 | 2010-07-22 | Sanyo Electric Co Ltd | Method of producing nitride semiconductor light-emitting device, and nitride semiconductor light-emitting device |
US7807490B2 (en) | 2004-03-31 | 2010-10-05 | Sanyo Electric Co., Ltd. | Manufacturing method of nitride semiconductor device and nitride semiconductor device |
US7899102B2 (en) | 2008-06-20 | 2011-03-01 | Sony Corporation | Semiconductor laser, method for manufacturing semiconductor laser, optical disk device, and optical pickup |
US8519416B2 (en) | 2006-03-22 | 2013-08-27 | Future Light, Llc | Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device |
JP2021513741A (en) * | 2018-02-07 | 2021-05-27 | アレディア | Emitters, light emitting devices and related display screens and manufacturing methods |
JP2022547670A (en) * | 2019-09-06 | 2022-11-15 | プレッシー・セミコンダクターズ・リミテッド | LED precursors incorporating strain-relaxed structures |
-
2001
- 2001-12-12 JP JP2001378179A patent/JP2003179311A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7807490B2 (en) | 2004-03-31 | 2010-10-05 | Sanyo Electric Co., Ltd. | Manufacturing method of nitride semiconductor device and nitride semiconductor device |
JP2006190980A (en) * | 2004-12-08 | 2006-07-20 | Sharp Corp | Nitride semiconductor light emitting device and manufacturing method thereof |
JP2006303471A (en) * | 2005-03-24 | 2006-11-02 | Sanyo Electric Co Ltd | Nitride semiconductor light emitting element and manufacturing method thereof |
JP2010161426A (en) * | 2005-03-24 | 2010-07-22 | Sanyo Electric Co Ltd | Method of producing nitride semiconductor light-emitting device, and nitride semiconductor light-emitting device |
US8519416B2 (en) | 2006-03-22 | 2013-08-27 | Future Light, Llc | Method of fabricating nitride-based semiconductor light-emitting device and nitride-based semiconductor light-emitting device |
US7899102B2 (en) | 2008-06-20 | 2011-03-01 | Sony Corporation | Semiconductor laser, method for manufacturing semiconductor laser, optical disk device, and optical pickup |
JP2010062213A (en) * | 2008-09-01 | 2010-03-18 | Sharp Corp | Nitride semiconductor light-emitting device and method of manufacturing the same |
WO2010055635A1 (en) * | 2008-11-13 | 2010-05-20 | パナソニック株式会社 | Nitride semiconductor device |
JP2010118559A (en) * | 2008-11-13 | 2010-05-27 | Panasonic Corp | Nitride semiconductor device |
US8816366B2 (en) | 2008-11-13 | 2014-08-26 | Panasonic Corporation | Nitride semiconductor device |
JP2021513741A (en) * | 2018-02-07 | 2021-05-27 | アレディア | Emitters, light emitting devices and related display screens and manufacturing methods |
JP7382943B2 (en) | 2018-02-07 | 2023-11-17 | アレディア | Emitters, light emitting devices and related display screens and manufacturing methods |
JP2022547670A (en) * | 2019-09-06 | 2022-11-15 | プレッシー・セミコンダクターズ・リミテッド | LED precursors incorporating strain-relaxed structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001095446A1 (en) | Semiconductor laser device, and method of manufacturing the same | |
JPH11298090A (en) | Nitride semiconductor element | |
JP2008028374A (en) | Nitride semiconductor laser device | |
JP3487251B2 (en) | Nitride semiconductor laser device | |
JP2003179311A (en) | GaN SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR | |
JP4991025B2 (en) | Nitride semiconductor laser device | |
JP2002270971A (en) | Nitride semiconductor element | |
WO2017017928A1 (en) | Nitride semiconductor laser element | |
JP3951973B2 (en) | Nitride semiconductor device | |
JP2000196201A (en) | Nitride semiconductor laser element | |
JP3933637B2 (en) | Gallium nitride semiconductor laser device | |
JP2008028375A (en) | Nitride semiconductor laser device | |
JP2004311964A (en) | Nitride semiconductor element and its manufacturing method | |
JP2002261393A (en) | Nitride semiconductor device | |
JP5023567B2 (en) | Nitride semiconductor laser device | |
JP2000307193A (en) | Semiconductor laser, its manufacture, semiconductor device and manufacture of the same | |
JP4955195B2 (en) | Nitride semiconductor device | |
JP2004179532A (en) | Semiconductor light emitting element and semiconductor device | |
JP2005101536A (en) | Nitride semiconductor laser element | |
JP3439161B2 (en) | Nitride light emitting device | |
JP3857417B2 (en) | Nitride semiconductor device | |
JP2007049209A (en) | Semiconductor optical device and manufacturing method thereof | |
JP3963632B2 (en) | Semiconductor optical device equipment | |
JP5532082B2 (en) | Nitride semiconductor laser device | |
JP4660333B2 (en) | Nitride semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Effective date: 20040316 Free format text: JAPANESE INTERMEDIATE CODE: A7423 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040604 |