JP2003094058A - Method for treating water - Google Patents
Method for treating waterInfo
- Publication number
- JP2003094058A JP2003094058A JP2001295511A JP2001295511A JP2003094058A JP 2003094058 A JP2003094058 A JP 2003094058A JP 2001295511 A JP2001295511 A JP 2001295511A JP 2001295511 A JP2001295511 A JP 2001295511A JP 2003094058 A JP2003094058 A JP 2003094058A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- filtration
- liquid
- membrane module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内圧式中空糸膜モ
ジュールを用いた水処理方法に関する。TECHNICAL FIELD The present invention relates to a water treatment method using an internal pressure type hollow fiber membrane module.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】中空糸
膜モジュールを用いた濾過方式としては、大きく分けて
クロスフロー濾過とデッドエンド(全量)濾過がある。
クロスフロー濾過は、膜モジュールの被処理液の供給側
から濃縮側へ被処理液と同じ線速を与え、膜面又は膜内
部に蓄積するファウリング物質を液線速により除去しな
がら液を循環させて濾過を行う部分濾過方法である。デ
ッドエンド濾過は、膜モジュールの濃縮液排出口側を閉
じて、液を循環させることなしに、膜モジュールに入っ
た被処理液を全て濾過する方法である。2. Description of the Related Art Filtration methods using a hollow fiber membrane module are roughly classified into cross-flow filtration and dead end (total volume) filtration.
Cross-flow filtration gives the same linear velocity as the liquid to be treated from the supply side of the liquid to be treated of the membrane module to the concentration side, and circulates the liquid while removing the fouling substances accumulated on the membrane surface or inside the membrane by the liquid linear velocity. This is a partial filtration method in which filtration is performed. The dead end filtration is a method in which the concentrated liquid outlet side of the membrane module is closed and all the liquid to be treated that has entered the membrane module is filtered without circulating the liquid.
【0003】一般的にクロスフロー濾過は、液線速によ
り膜のファウリングが抑えられる長所がある反面、液を
循環させるため濾過に要する動力が大きくなる短所があ
り、逆にデッドエンド濾過は、所要動力が小さくなる長
所がある反面、膜のファウリングが顕著となる短所があ
る。ファウリングは、膜自体の構造は変化しないが、目
詰まりや付着層の形成によって膜の機能が低下する現象
をいう。Generally, the cross-flow filtration has an advantage that the fouling of the membrane is suppressed by the liquid linear velocity, but on the other hand, it has a disadvantage that the power required for the filtration is large because the liquid is circulated. On the contrary, the dead-end filtration is While it has the advantage of requiring less power, it has the drawback of significantly fouling the membrane. Fouling is a phenomenon in which the structure of the film itself does not change, but the function of the film deteriorates due to clogging or the formation of an adhesion layer.
【0004】本発明は、中空糸膜を用いた水処理方法に
おいて、低コスト、低動力運転をすることができ、膜の
ファウリングを低減できるため、高い膜分離性能を長期
間維持できる水処理法を提供することを課題とする。The present invention is a water treatment method using a hollow fiber membrane, which can be operated at low cost and with low power and can reduce membrane fouling, so that high membrane separation performance can be maintained for a long period of time. The challenge is to provide the law.
【0005】[0005]
【課題を解決するための手段】本発明者は、内圧式中空
糸膜による水処理にデッドエンド濾過を適用し、低圧か
つ定圧で濾過運転をすることで、上記課題を解決できる
ことを見出し、本発明を完成した。The present inventor has found that the above problems can be solved by applying dead end filtration to water treatment by an internal pressure type hollow fiber membrane and performing filtration operation at low pressure and constant pressure. Completed the invention.
【0006】即ち本発明は、上記課題の解決手段とし
て、被処理液を貯留タンクから内圧式中空糸膜モジュー
ルに送液して濾過を行う水処理方法であり、被処理液の
濾過を縦置きに設置した内圧式中空糸膜モジュールの膜
下端側から送液してデッドエンド濾過により行い、濾過
時における膜間差圧が1〜20kPaの範囲内で、かつ
一定の膜間差圧により運転する水処理方法を提供する。That is, the present invention is, as a means for solving the above problems, a water treatment method in which a liquid to be treated is sent from a storage tank to an internal pressure type hollow fiber membrane module for filtration, and the liquid to be treated is vertically filtered. The internal pressure type hollow fiber membrane module installed in the above is fed from the lower end side of the membrane to perform dead end filtration, and the transmembrane pressure difference during filtration is in the range of 1 to 20 kPa, and the operation is performed at a constant transmembrane pressure difference. A water treatment method is provided.
【0007】[0007]
【発明の実施の形態】以下、図面により本発明の一実施
形態を説明する。図1は、本発明の水処理方法を説明す
るための処理フローを示す概念図である。本発明は図1
に示す処理フローに限定されるものではなく、必要に応
じて当業者において通常なされる他の処理工程を付加す
ることができる。DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing a treatment flow for explaining the water treatment method of the present invention. The present invention is shown in FIG.
It is not limited to the processing flow shown in (1), and other processing steps usually performed by those skilled in the art can be added if necessary.
【0008】原水供給ライン10から貯留タンク1に送
液貯留された被処理液は、そのまま又は被処理液中の懸
濁質(SS)濃度やSSの大きさ等に応じて凝集剤によ
り凝集処理した後、被処理液供給ライン11を経て縦置
きに設置された内圧式中空糸膜モジュール2の膜下端側
に送液される。このとき、貯留タンク1から中空糸膜モ
ジュール2への送液は、低圧かつ定圧で濾過運転を行う
ため、水頭差を利用するものであることが望ましい。7
は開閉弁(流量調整弁)である。The liquid to be treated which has been sent from the raw water supply line 10 to the storage tank 1 is agglomerated with the aggregating agent as it is or according to the concentration of suspended solids (SS) in the liquid to be treated and the size of SS. After that, the liquid is fed to the lower end side of the membrane of the internal pressure type hollow fiber membrane module 2 installed vertically through the liquid to be treated supply line 11. At this time, it is desirable that the liquid transfer from the storage tank 1 to the hollow fiber membrane module 2 uses the head difference because the filtration operation is performed at a low pressure and a constant pressure. 7
Is an on-off valve (flow control valve).
【0009】凝集剤は、無機系凝集剤、有機系凝集剤又
はこれらを組み合わせて用いることができる。As the aggregating agent, an inorganic aggregating agent, an organic aggregating agent or a combination of these may be used.
【0010】無機系凝集剤としては、ポリ塩化アルミニ
ウム、ポリ塩化鉄、硫酸第二鉄、硫酸アルミニウム、ベ
ントナイト等を挙げることができる。Examples of the inorganic flocculant include polyaluminum chloride, polyiron chloride, ferric sulfate, aluminum sulfate, bentonite and the like.
【0011】有機系凝集剤としては、ポリアクリルアミ
ド、カチオン性ポリアクリルアミド系、カチオン性ポリ
(メタ)アクリル酸エステル系、ポリアミン系、ポリジ
シアンジアミド系、低分子有機アミン、ポリアクリル酸
ナトリウム、アニオン性ポリ(メタ)アクリル酸エステ
ル系、アニオン性ポリアクリルアミド系等のノニオン
性、カチオン性、アニオン性高分子又は低分子凝集剤等
を挙げることができる。Examples of the organic coagulant include polyacrylamide, cationic polyacrylamide, cationic poly (meth) acrylic acid ester, polyamine, polydicyandiamide, low molecular organic amine, sodium polyacrylate, anionic polyamine. Examples thereof include nonionic, cationic, anionic polymers such as (meth) acrylic acid ester-based and anionic polyacrylamide-based or low-molecular aggregating agents.
【0012】内圧式中空糸膜モジュール2で用いる中空
糸膜5としては、酢酸セルロース系中空糸膜、ポリスル
ホン系中空糸膜、ポリアクリロニトリル系中空糸膜等を
挙げることができるが、これらの中でも膜のファウリン
グを抑制し易いとの観点から酢酸セルロース系中空糸膜
が好ましく、外表面側の細孔より内表面側の細孔の方が
小さい孔径のものが内圧式として好適である。Examples of the hollow fiber membrane 5 used in the internal pressure type hollow fiber membrane module 2 include cellulose acetate type hollow fiber membranes, polysulfone type hollow fiber membranes, polyacrylonitrile type hollow fiber membranes, and the like. From the viewpoint that it is easy to suppress fouling, the cellulose acetate-based hollow fiber membrane is preferable, and those having a smaller pore size on the inner surface side than the pores on the outer surface side are suitable as the internal pressure type.
【0013】中空糸膜モジュール2の構造は特に限定さ
れず、縦置きに設置した中空糸膜モジュールの中空糸膜
下端側に被処理液供給口を少なくとも1つ有していれば
よく、濃縮液排出口は必要応じて設けることができる。
好ましくは、中空糸膜の上端側が封止された片端封止構
造のものがよく、透過液取出口は胴部に少なくとも1つ
備えていればよい。The structure of the hollow fiber membrane module 2 is not particularly limited as long as it has at least one liquid feed port for the liquid to be treated at the lower end side of the hollow fiber membrane module installed vertically. The discharge port can be provided if necessary.
Preferably, the hollow fiber membrane has a one-end sealing structure in which the upper end side is sealed, and at least one permeate outlet may be provided in the body.
【0014】内圧式中空糸膜モジュール2においては、
所定条件下でデッドエンド濾過され、透過液は透過液ラ
イン12から透過液タンク3に送られて貯水される。In the internal pressure type hollow fiber membrane module 2,
Dead-end filtration is performed under a predetermined condition, and the permeated liquid is sent from the permeated liquid line 12 to the permeated liquid tank 3 and stored therein.
【0015】デッドエンド濾過は、濃縮液を排出せず
に、透過液ライン12への透過液の一方的な排出を、膜
間差圧1〜20kPaの範囲内で、かつ一定にして運転
する。In the dead end filtration, the concentrated liquid is not discharged, and the one-way discharge of the permeated liquid to the permeated liquid line 12 is carried out within the range of the transmembrane pressure difference of 1 to 20 kPa and constant.
【0016】膜間差圧は、貯留タンク1の液面と中空糸
膜モジュール2からの透過液ライン12の排出口との高
低差(Δh)及び中空糸膜モジュール2の内部液圧力損
失によって決定されるものであり、上記のとおり、貯留
タンク1と中空糸膜モジュール2との水頭差を利用し
て、被処理液を送液することが望ましい。但し、被処理
液の粘度が高い場合や中空糸膜モジュールを構成する中
空糸膜の内径が小さいなどの場合には、中空糸膜内部の
圧力損失が高くなり過ぎるため、送液ポンプ6を利用し
て送液することで、膜間差圧を調整することもできる。The transmembrane pressure difference is determined by the height difference (Δh) between the liquid level of the storage tank 1 and the outlet of the permeate line 12 from the hollow fiber membrane module 2 and the internal liquid pressure loss of the hollow fiber membrane module 2. As described above, it is desirable to send the liquid to be treated by utilizing the head difference between the storage tank 1 and the hollow fiber membrane module 2. However, when the viscosity of the liquid to be treated is high or when the inner diameter of the hollow fiber membrane that constitutes the hollow fiber membrane module is small, the pressure loss inside the hollow fiber membrane becomes too high, and therefore the liquid feed pump 6 is used. Then, the transmembrane pressure can be adjusted by sending the liquid.
【0017】膜間差圧は1〜20kPa、好ましくは1
〜15kPaである。膜間差圧が1kPa以上である
と、実用上要求される透水速度を維持することができ、
20kPa以下であると、膜の目詰まりを防止でき、長
期間、安定した透水速度を得ることができる。The transmembrane pressure difference is 1 to 20 kPa, preferably 1
It is ~ 15 kPa. When the transmembrane pressure difference is 1 kPa or more, the water permeation rate required for practical use can be maintained,
When it is 20 kPa or less, clogging of the membrane can be prevented, and a stable water permeation rate can be obtained for a long period of time.
【0018】また、膜間差圧が一定でない場合には、濾
過性能が不安定となり、透水速度がばらつくために濾過
運転の管理が難しく、透過液の濁度やCOD等がばらつ
くために透過液の再利用が難しくなる。Further, when the transmembrane pressure difference is not constant, the filtration performance becomes unstable and the permeation rate varies, which makes it difficult to control the filtration operation, and the turbidity and COD of the permeate also vary. Will be difficult to reuse.
【0019】なお、膜間差圧を一定にするとは、完全に
同一の場合が望ましいが、濾過運転の実状を考慮すると
共に、本発明の目的を損なわない範囲として、±20%
程度、好ましくは±10%程度の誤差がある場合も含ま
れる。It is desirable that the transmembrane pressure be kept constant in the same case. However, considering the actual condition of the filtration operation, the range which does not impair the object of the present invention is ± 20%.
It also includes the case where there is an error of about ± 10%.
【0020】膜間差圧を一定に維持する方法は特に限定
されるものではなく、減圧弁9を透過液ライン12に設
ける方法が簡便であり、送液ポンプ6を使用する場合
は、インバーター方式のポンプを用い、圧力の変動に応
じて回転数を変化させる方法を適用する。The method for maintaining the transmembrane pressure difference constant is not particularly limited, and the method of providing the pressure reducing valve 9 in the permeate line 12 is simple, and when the liquid feed pump 6 is used, the inverter system is used. The method of changing the number of rotations according to the pressure fluctuation is applied by using the pump.
【0021】このようにして、低圧(膜間差圧が1〜2
0kPa)で、かつ定圧(膜間差圧が一定)で濾過運転
することにより、低動力運転をすることができるほか、
高圧運転の場合に比べて装置の耐圧性を考慮することが
不要であるため、装置に要するコストを低減できる。更
に、定圧運転することにより、定量運転を適用した場合
に比べて、デッドエンド濾過では顕著であった膜のファ
ウリングを抑制することができる。In this way, the low pressure (transmembrane pressure difference is 1-2
By operating the filtration at 0 kPa) and at a constant pressure (the transmembrane pressure difference is constant), low power operation can be performed.
Since it is not necessary to consider the pressure resistance of the device as compared with the case of high pressure operation, the cost required for the device can be reduced. Further, by performing the constant pressure operation, it is possible to suppress the fouling of the membrane, which was conspicuous in the dead end filtration, as compared with the case where the fixed amount operation is applied.
【0022】濾過運転の過程において、濾過能力を維持
するため、定期的に水又は空気による逆圧洗浄を行うこ
とが望ましい。In the course of the filtration operation, it is desirable to carry out back pressure washing with water or air periodically in order to maintain the filtration capacity.
【0023】逆圧洗浄媒体として水を用いた場合は、逆
圧ポンプ16を作動させることにより、透過液タンク3
内の透過液を逆圧洗浄ライン15及び透過液ライン12
を経て中空糸膜モジュール2の透過液取出口(透過液ラ
イン12)側から圧入する。そして、中空糸膜を逆圧洗
浄すると共に、開閉弁18を操作することにより、濃縮
液を濃縮液排出ライン13から系外に排出するか、又は
濃縮液返送ライン13から貯留タンク1に返送する。When water is used as the back pressure cleaning medium, the permeate tank 3 is activated by operating the back pressure pump 16.
The permeated liquid in the back pressure cleaning line 15 and the permeated liquid line 12
After that, the hollow fiber membrane module 2 is press-fitted from the permeated liquid outlet (permeated liquid line 12) side. Then, the hollow fiber membrane is back-pressure washed and the on-off valve 18 is operated to discharge the concentrate from the concentrate discharge line 13 to the outside of the system, or to return the concentrate from the concentrate return line 13 to the storage tank 1. .
【0024】逆圧洗浄時には、洗浄力を高めるため、ポ
ンプ17を作動させ、薬液タンク4内の薬液を透過液に
混入させることが望ましい。薬液としては次亜塩素酸ナ
トリウム水溶液を挙げることができ、薬液の添加量は、
次亜塩素酸ナトリウム水溶液を用いた場合は、逆圧洗浄
後における中空糸膜内の残留塩素濃度が5〜100mg
/Lになるように調整する。At the time of back pressure cleaning, it is desirable to operate the pump 17 to mix the chemical liquid in the chemical liquid tank 4 with the permeated liquid in order to enhance the cleaning power. Examples of the chemical solution include an aqueous solution of sodium hypochlorite, and the addition amount of the chemical solution is
When a sodium hypochlorite aqueous solution is used, the residual chlorine concentration in the hollow fiber membrane after back pressure washing is 5 to 100 mg.
Adjust to become / L.
【0025】本発明の水処理方法は、汚水処理場等にお
ける活性汚泥等を含む排水、各種施設の排水及び家庭排
水の処理、その他懸濁質を含む排水、更には河川、湖沼
等の浄化処理等に適用することができる。The water treatment method of the present invention is a treatment of wastewater containing activated sludge, etc. in wastewater treatment plants, wastewater of various facilities and domestic wastewater, wastewater containing other suspended solids, and further purification treatment of rivers, lakes and marshes. Etc. can be applied.
【0026】[0026]
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例によって限定さ
れるものではない。The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by these examples.
【0027】実施例1
図1に示す処理フローにより、次の方法により水処理を
行った。被処理水として活性汚泥処理水を用いた。被処
理水を貯留タンク1から中空糸膜モジュール2に水頭差
(Δh=約1m)により送液し、膜面積0.5m2の中
空糸膜モジュールによりデッドエンド濾過した。中空糸
膜は、酢酸セルロース中空糸膜(FUC1582、ダイ
セル化学工業(株)製)を用い、デッドエンド濾過は、
膜間差圧10kPaで、かつ定圧濾過を行った。なお、
図2〜図4に示す運転時間範囲において、貯留タンク1
内にポリ硫酸第二鉄を100mg/L添加して凝集処理
を行った。また、30分に1回の頻度で、透過水に注入
されて希釈された次亜塩素酸ナトリウム水溶液により、
1分間、10m/dayにて逆圧洗浄を行った。Example 1 Water treatment was carried out by the following method according to the treatment flow shown in FIG. Activated sludge treated water was used as water to be treated. The water to be treated was sent from the storage tank 1 to the hollow fiber membrane module 2 with a water head difference (Δh = about 1 m), and dead end filtration was performed with the hollow fiber membrane module having a membrane area of 0.5 m 2 . As the hollow fiber membrane, a cellulose acetate hollow fiber membrane (FUC1582, manufactured by Daicel Chemical Industries, Ltd.) is used, and dead end filtration is
A constant pressure filtration was performed at a transmembrane pressure difference of 10 kPa. In addition,
In the operating time range shown in FIGS. 2 to 4, the storage tank 1
Ferric polysulfate was added therein in an amount of 100 mg / L for aggregation treatment. In addition, once every 30 minutes, by the sodium hypochlorite aqueous solution diluted by being injected into the permeate,
Back pressure washing was performed at 10 m / day for 1 minute.
【0028】1日に数回の割合で、実透水速度(20
℃、10kPa換算値,m/day)、被処理水及び透
過液中の濁度(NTU)を測定し、数週間に1回の割合
で、被処理水及び透過液中のCODを(mg/L)測定
し、総窒素(T−N)濃度(mg/L)、総リン(T−
P)濃度(mg/L)を携帯型分析計(DR/201
0、HACH社製)にて測定した。結果を図2〜図4に
示す。The actual permeation rate (20
℃, 10kPa conversion value, m / day), turbidity (NTU) in the water to be treated and permeate was measured, and COD in the water to be treated and permeate was measured once every several weeks (mg / day). L) measured, total nitrogen (TN) concentration (mg / L), total phosphorus (T-
P) Concentration (mg / L) for portable analyzer (DR / 201
0, manufactured by HACH). The results are shown in FIGS.
【0029】図2〜図4から明らかなとおり、被処理液
及び透過液の両方において、全ての測定項目で2000
時間もの長期間にわたり、経時的な安定性が確認され
た。As is apparent from FIGS. 2 to 4, 2000 were measured in all measurement items in both the liquid to be treated and the permeate.
Stability over time was confirmed over a long period of time.
【0030】実施例2
中空糸膜としてポリエーテルスルホン中空糸膜(FUS
1582、ダイセル化学工業(株)製)を用い、凝集剤
処理をしていないほかは実施例1と同様にして、濾過運
転を行った。実透水速度(m/day)の経時変化を図
5に示す。Example 2 As a hollow fiber membrane, a polyether sulfone hollow fiber membrane (FUS
1582, manufactured by Daicel Chemical Industries, Ltd. was used, and filtration operation was performed in the same manner as in Example 1 except that the coagulant treatment was not performed. FIG. 5 shows the change over time in the actual water permeability (m / day).
【0031】実施例3
中空糸膜としてポリアクリロニトリル中空糸膜(FUY
1581、ダイセル化学工業(株)製)を用い、凝集剤
処理をしていないほかは実施例1と同様にして、濾過運
転を行った。実透水速度(m/day)の経時変化を図
5に示す。Example 3 A polyacrylonitrile hollow fiber membrane (FUY) was used as the hollow fiber membrane.
1581, manufactured by Daicel Chemical Industries, Ltd., and filtration operation was performed in the same manner as in Example 1 except that the flocculant treatment was not performed. FIG. 5 shows the change over time in the actual water permeability (m / day).
【0032】比較例1
膜間差圧を10kPaとし、凝集剤処理をしていないほ
かは実施例1と同様にして、濾過運転を行った。実透水
速度(m/day)の経時変化を図5に示す。Comparative Example 1 A filtration operation was performed in the same manner as in Example 1 except that the transmembrane pressure difference was set to 10 kPa and no coagulant treatment was performed. FIG. 5 shows the change over time in the actual water permeability (m / day).
【0033】図5から明らかなとおり、実施例2、3と
比べると、大きな膜間差圧で運転したにも拘わらず、比
較例1は透水速度が低かった。As is clear from FIG. 5, compared with Examples 2 and 3, the water permeability of Comparative Example 1 was low, even though the membrane was operated at a large transmembrane pressure difference.
【0034】[0034]
【発明の効果】本発明の水処理法を適用することによ
り、低動力かつ低運転コストで濾過処理をすることがで
きる。更に、デッドエンド濾過を適用していながらも、
膜のファウリングを抑制できるので、長期間、安定した
濾過能力を維持することができる。By applying the water treatment method of the present invention, filtration treatment can be performed with low power and low operating cost. Furthermore, while applying dead end filtration,
Since fouling of the membrane can be suppressed, stable filtration capacity can be maintained for a long period of time.
【図1】 本発明の水処理方法を説明するための処理フ
ローの概念図。FIG. 1 is a conceptual diagram of a treatment flow for explaining a water treatment method of the present invention.
【図2】 実施例1の実透水速度の測定結果を示す図。FIG. 2 is a diagram showing a measurement result of an actual water permeation rate in Example 1.
【図3】 実施例1の濁度の測定結果を示す図。FIG. 3 is a view showing a measurement result of turbidity of Example 1.
【図4】 実施例1のCOD、T−N、T−Pの測定結
果を示す図。FIG. 4 is a diagram showing measurement results of COD, TN, and TP in Example 1.
【図5】 実施例2、3、比較例1の測定結果を示す
図。FIG. 5 is a diagram showing measurement results of Examples 2 and 3 and Comparative Example 1.
1 貯留タンク 2 内圧式中空糸膜モジュール 3 透過液タンク 4 薬液タンク 1 Storage tank 2 Internal pressure type hollow fiber membrane module 3 Permeate tank 4 Chemical liquid tank
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中塚 修志 兵庫県姫路市網干区新在家1239 ダイセル 化学工業株式会社総合研究所内 Fターム(参考) 4D006 GA02 HA03 HA95 KA01 KA03 KB13 KC03 KC13 KC16 KD08 KD24 KE06R KE22Q KE23Q MA01 MC18X MC39X MC62 MC63X PA01 PB08 4D015 BA22 BB05 BB08 CA01 CA14 DA04 DA06 DA13 DA16 DA32 DB02 DB03 DB12 DB14 DB23 DB24 DC06 DC07 DC08 EA37 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Shuji Nakatsuka 1239 Daicel New House, Aboshi Ward, Himeji City, Hyogo Prefecture Chemical Industry Co., Ltd. F-term (reference) 4D006 GA02 HA03 HA95 KA01 KA03 KB13 KC03 KC13 KC16 KD08 KD24 KE06R KE22Q KE23Q MA01 MC18X MC39X MC62 MC63X PA01 PB08 4D015 BA22 BB05 BB08 CA01 CA14 DA04 DA06 DA13 DA16 DA32 DB02 DB03 DB12 DB14 DB23 DB24 DC06 DC07 DC08 EA37
Claims (5)
膜モジュールに送液して濾過を行う水処理方法であり、
被処理液の濾過を縦置きに設置した内圧式中空糸膜モジ
ュールの膜下端側から送液してデッドエンド濾過により
行い、濾過時における膜間差圧が1〜20kPaの範囲
内で、かつ一定の膜間差圧により運転する水処理方法。1. A water treatment method for feeding a liquid to be treated from a storage tank to an internal pressure type hollow fiber membrane module for filtration.
The liquid to be treated is filtered from the lower end side of the internal pressure type hollow fiber membrane module installed vertically by dead end filtration, and the transmembrane pressure difference during filtration is within a range of 1 to 20 kPa and is constant. Water treatment method operating by transmembrane pressure difference.
ルへの送液が、貯留タンクと膜モジュールとの水頭差を
利用するものである請求項1記載の水処理方法。2. The water treatment method according to claim 1, wherein the liquid transfer from the storage tank to the internal pressure type hollow fiber membrane module utilizes a head difference between the storage tank and the membrane module.
る請求項1又は2記載の水処理方法。3. The water treatment method according to claim 1, wherein the liquid to be treated is treated with a coagulant as a pretreatment.
行って洗浄排水を内圧式中空糸膜モジュールの膜下端側
から排出する請求項1〜3のいずれか1記載の水処理方
法。4. The water treatment method according to any one of claims 1 to 3, wherein backwashing is periodically performed from the permeate outlet side to discharge the washing wastewater from the lower end side of the internal pressure type hollow fiber membrane module. .
糸膜が、酢酸セルロース系中空糸膜である請求項1〜4
のいずれか1記載の水処理方法。5. The hollow fiber membrane used in the internal pressure type hollow fiber membrane module is a cellulose acetate-based hollow fiber membrane.
The water treatment method according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295511A JP2003094058A (en) | 2001-09-27 | 2001-09-27 | Method for treating water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295511A JP2003094058A (en) | 2001-09-27 | 2001-09-27 | Method for treating water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003094058A true JP2003094058A (en) | 2003-04-02 |
Family
ID=19116936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001295511A Pending JP2003094058A (en) | 2001-09-27 | 2001-09-27 | Method for treating water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003094058A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108946872A (en) * | 2017-05-18 | 2018-12-07 | 三菱重工环境·化学工程株式会社 | Biological treatment device, bioremediation and program |
JP2020516452A (en) * | 2017-04-12 | 2020-06-11 | ガンブロ・ルンディア・エービーGambro Lundia Ab | Filtration device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05168872A (en) * | 1991-12-17 | 1993-07-02 | Kurita Water Ind Ltd | Membrane separation device |
JPH05285349A (en) * | 1992-04-03 | 1993-11-02 | Nitto Denko Corp | Membrane separator |
JPH05329339A (en) * | 1991-01-29 | 1993-12-14 | Fuji Photo Film Co Ltd | Filtering apparatus |
JPH06277664A (en) * | 1993-01-29 | 1994-10-04 | Daicel Chem Ind Ltd | Method and apparatus for clarifying surface flowing water with membrane |
JP2000084377A (en) * | 1998-09-17 | 2000-03-28 | Tohoku Electric Power Co Inc | Removal of membrane contaminated substance for tubular membrane device |
JP2000140585A (en) * | 1998-09-02 | 2000-05-23 | Toray Ind Inc | Operation of membrane separation apparatus, and membrane separation apparatus |
-
2001
- 2001-09-27 JP JP2001295511A patent/JP2003094058A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05329339A (en) * | 1991-01-29 | 1993-12-14 | Fuji Photo Film Co Ltd | Filtering apparatus |
JPH05168872A (en) * | 1991-12-17 | 1993-07-02 | Kurita Water Ind Ltd | Membrane separation device |
JPH05285349A (en) * | 1992-04-03 | 1993-11-02 | Nitto Denko Corp | Membrane separator |
JPH06277664A (en) * | 1993-01-29 | 1994-10-04 | Daicel Chem Ind Ltd | Method and apparatus for clarifying surface flowing water with membrane |
JP2000140585A (en) * | 1998-09-02 | 2000-05-23 | Toray Ind Inc | Operation of membrane separation apparatus, and membrane separation apparatus |
JP2000084377A (en) * | 1998-09-17 | 2000-03-28 | Tohoku Electric Power Co Inc | Removal of membrane contaminated substance for tubular membrane device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020516452A (en) * | 2017-04-12 | 2020-06-11 | ガンブロ・ルンディア・エービーGambro Lundia Ab | Filtration device |
JP7158406B2 (en) | 2017-04-12 | 2022-10-21 | ガンブロ・ルンディア・エービー | filtration device |
CN108946872A (en) * | 2017-05-18 | 2018-12-07 | 三菱重工环境·化学工程株式会社 | Biological treatment device, bioremediation and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2276705B1 (en) | Environmentally friendly hybrid microbiological control technologies for cooling towers | |
Singh et al. | Introduction to membrane processes for water treatment | |
EP1140705B1 (en) | Method and apparatus for microfiltration | |
JP5929195B2 (en) | Fresh water production apparatus and operation method thereof | |
JP5549591B2 (en) | Fresh water production method and fresh water production apparatus | |
US20190135671A1 (en) | Systems and Methods for Multi-Stage Fluid Separation | |
WO2007129530A1 (en) | Process for producing freshwater | |
WO2013111826A1 (en) | Desalination method and desalination device | |
JP6194887B2 (en) | Fresh water production method | |
EP3441368B1 (en) | Water treatment method | |
JP2016128142A (en) | Rejection rate improving method of semipermeable membrane | |
JP2009006209A (en) | Cleaning method of hollow fiber membrane module | |
JP2009072766A (en) | Water treating method | |
JP2003094058A (en) | Method for treating water | |
Huang et al. | Pilot-plant study of a high recovery membrane filtration process for drinking water treatment | |
JP2004082020A (en) | Operation method of hollow fiber membrane module | |
JP2005177744A (en) | Producing apparatus of reclaimed water and producing method of reclaimed water | |
JP3813101B2 (en) | Operation method of hollow fiber membrane module | |
JP4119331B2 (en) | Car wash wastewater treatment equipment | |
JP4087318B2 (en) | Operation method of water purification system | |
JP2016159241A (en) | Membrane filtration system | |
JP2015006643A (en) | Method and device for treating organic material-containing water | |
WO2016193855A1 (en) | Reverse osmosis based potable water system with improved yield | |
JP2000000566A (en) | Intensive water treatment method | |
JP2002248325A (en) | Method for cleaning separation membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111025 |