JP2000140585A - Operation of membrane separation apparatus, and membrane separation apparatus - Google Patents
Operation of membrane separation apparatus, and membrane separation apparatusInfo
- Publication number
- JP2000140585A JP2000140585A JP11242803A JP24280399A JP2000140585A JP 2000140585 A JP2000140585 A JP 2000140585A JP 11242803 A JP11242803 A JP 11242803A JP 24280399 A JP24280399 A JP 24280399A JP 2000140585 A JP2000140585 A JP 2000140585A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- water
- treated
- separation
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、食品工業や医療分
野、飲料水製造分野、工業プロセス用水製造分野、排水
処理分野等で好適に利用される膜分離装置の運転方法お
よび膜分離装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a membrane separation apparatus and a membrane separation apparatus suitably used in the food industry, medical field, drinking water production field, industrial process water production field, wastewater treatment field and the like.
【0002】[0002]
【従来の技術】精密ろ過膜や限外ろ過膜などの分離膜
は、食品工業や医療分野、用水製造、排水処理分野等を
はじめとして様々な方面で利用されている。特に近年で
は、飲料水製造分野すなわち浄水処理過程においても分
離膜が使われるようになってきている。これは、分離膜
を用いることによって、従来の浄水処理における殺菌技
術である塩素処理では死なないクリプトスポリジウムな
どの病原性微生物を阻止でき、安全で水質良好な飲料水
を得ることが可能になるためである。2. Description of the Related Art Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, the medical field, water production, and wastewater treatment. Particularly in recent years, separation membranes have been used in the field of drinking water production, that is, in the purification process. This is because by using a separation membrane, it is possible to prevent pathogenic microorganisms such as cryptosporidium that do not die in chlorination, which is a sterilization technique in conventional water purification treatment, and it is possible to obtain safe and good-quality drinking water. It is.
【0003】用水製造や排水処理などの水処理に用いら
れる精密ろ過膜や限外ろ過膜は、圧力差を駆動力に分離
を行なう。ろ過には、ろ過流量が一定でろ過差圧が変化
する定流量ろ過と、ろ過差圧が一定でろ過流量が変化す
る定圧ろ過とがある。ろ過を継続し、分離膜面および分
離膜の細孔内に汚れが蓄積していくと、分離膜のろ過抵
抗(R)が増加する。一般に実プロセスでは、決められ
た量の水を処理する場合が多いので、定流量ろ過が行わ
れることが多いが、この場合、一定量のろ過水を得るた
めには、ろ過差圧を制御しなければならない。また、定
圧ろ過の場合、ろ過の継続に伴いろ過流量が低下してい
く。[0003] Microfiltration membranes and ultrafiltration membranes used in water treatment such as water production and wastewater treatment separate pressure differences into driving forces. There are two types of filtration: constant-flow filtration in which the filtration flow rate is constant and the filtration differential pressure changes, and constant-pressure filtration in which the filtration pressure is constant and the filtration flow rate changes. As the filtration is continued and dirt accumulates on the surface of the separation membrane and in the pores of the separation membrane, the filtration resistance (R) of the separation membrane increases. Generally, in a real process, a fixed amount of water is often treated because a fixed amount of water is treated.In this case, in order to obtain a fixed amount of filtered water, the filtration differential pressure is controlled. There must be. In the case of constant-pressure filtration, the filtration flow rate decreases as the filtration continues.
【0004】そこで、分離膜面の堆積物を剥がしたり、
閉塞した分離膜の細孔を開孔して処理能力を回復させる
ための手段として、分離膜面をフラッシングする方法
(特開平5−138166号公報)、エアーでスクラビ
ングする方法(特開昭61−263605号公報)、空
気などの気体や処理水、清澄水などの液体を膜の処理水
側から被処理水側へ透過させる、いわゆる逆洗などの物
理的洗浄方法(以後物理洗浄という)が提案されてい
る。従来技術では、この物理洗浄を一定時間毎に繰り返
しながらろ過運転を継続していた。[0004] Therefore, the sediment on the separation membrane surface is peeled off,
As a means for recovering the processing ability by opening the pores of the closed separation membrane, a method of flushing the surface of the separation membrane (JP-A-5-138166) and a method of scrubbing with air (JP-A-61-1986) No. 263605), and a physical cleaning method (hereinafter referred to as physical cleaning) such as so-called backwashing, in which a gas such as air, a liquid such as treated water, or clear water is transmitted from the treated water side of the membrane to the treated water side. Have been. In the prior art, the filtration operation was continued while repeating the physical cleaning at regular intervals.
【0005】また、物理洗浄だけでは除去できない膜の
汚れは、酸、アルカリ、界面活性剤、塩素等の酸化剤、
酵素等による薬液洗浄を数ヶ月毎に行い、分離膜の性能
回復を図るが、薬液洗浄についても、その実施時期を根
拠に基づいて設定する手法がなく、ろ過差圧の急上昇が
起こってから実施するのが一般的であった。[0005] Further, film stains that cannot be removed only by physical cleaning include oxidizing agents such as acids, alkalis, surfactants, and chlorine.
Chemical solution washing with enzymes etc. is performed every few months to recover the performance of the separation membrane.However, there is no method to set the timing of chemical solution washing based on the basis, and it is implemented after a sudden rise in filtration differential pressure It was common to do.
【0006】物理洗浄は、ろ過差圧の急激な上昇が起こ
らない程度に実施する必要があるが、あまり頻度が多い
と単位時間当りの処理量すなわち回収率が小さくなるた
め不利であり、被処理水水質が良く、膜のろ過抵抗の上
昇が小さい場合には、物理洗浄は少ない方が好ましい。It is necessary to carry out the physical cleaning to such an extent that a rapid rise in the filtration pressure difference does not occur. However, if the frequency is too high, the processing amount per unit time, that is, the recovery rate becomes small, which is disadvantageous. If the water quality is good and the rise in filtration resistance of the membrane is small, it is preferable that the physical cleaning be small.
【0007】また、河川水や湖沼水のように降雨などに
起因する水質変動が大きい被処理水の場合、不純物を多
量に含んだ高濁度被処理水が一時的に膜分離装置に供給
されることもあり、この場合、ろ過差圧の急激な上昇が
起こってしまい、分離膜モジュールや分離膜を破損させ
たり、物理洗浄を実施しても洗浄回復性が悪かったり、
運転を再開した場合にも再びろ過差圧が急上昇してしま
うなどの問題を生じていた。その結果、分離膜の寿命が
短くなり、処理コスト面から不利となる場合がしばしば
あった。In the case of water to be treated, such as river water or lake water, whose water quality fluctuates greatly due to rainfall or the like, high turbidity treated water containing a large amount of impurities is temporarily supplied to the membrane separation device. In this case, in this case, a sharp rise in the filtration differential pressure occurs, and the separation membrane module or the separation membrane is damaged, or the cleaning recovery is poor even if physical cleaning is performed,
Even when the operation is resumed, there have been problems such as the sudden rise in the filtration pressure difference. As a result, the life of the separation membrane is shortened, which is often disadvantageous in terms of processing cost.
【0008】また、薬液洗浄についても、その実施時期
の設定が難しく、一般にろ過差圧の急激な上昇が起こっ
てから実施する場合が多い。しかしながら、ろ過差圧の
急激な上昇が起こってから薬液洗浄を実施しても洗浄回
復性が悪く、運転を再開した場合にも再びろ過差圧が急
上昇してしまい、分離膜の寿命が極めて短くなるので処
理コスト面から不利となる。また、早目早目に薬液洗浄
を行なった場合、洗浄回復性が良く分離膜の寿命が長く
なるが、薬液洗浄の頻度が多くなるため、維持管理が煩
雑になり、処理コストの面からも不利となる。[0008] In addition, it is difficult to set the timing of chemical cleaning, and it is often the case that the cleaning is performed after a sharp rise in the filtration pressure difference. However, even if chemical cleaning is performed after a rapid rise in the filtration pressure difference, the cleaning recovery is poor, and even when the operation is restarted, the filtration pressure difference rises rapidly again, and the life of the separation membrane is extremely short. This is disadvantageous in terms of processing cost. In addition, when the chemical solution is washed early and early, the recovery performance is good and the life of the separation membrane is long, but the frequency of the chemical solution is increased, so that the maintenance is complicated and the processing cost is reduced. Disadvantageous.
【0009】[0009]
【発明が解決しようとする課題】一時的に不純物を多量
に含んだ高濁度被処理水が膜分離装置に供給された場
合、物理洗浄を、単に一定時間毎に繰り返すだけでは、
ろ過差圧の急激な上昇を防ぐことはできず、分離膜モジ
ュールや分離膜を破損させたり、物理洗浄を実施しても
洗浄回復性が悪かったり、運転を再開した場合にも再び
ろ過差圧が急上昇してしまうなどの問題を生じていた
が、従来技術では時間以外で最適な物理洗浄頻度を設定
する手段がなかった。薬液洗浄についても、最適な薬液
洗浄実施時期を根拠に基づいて設定する手段がなかっ
た。When high turbidity treated water containing a large amount of impurities is temporarily supplied to a membrane separation apparatus, physical cleaning is simply repeated at regular time intervals.
It is not possible to prevent a sudden increase in the filtration pressure difference.If the separation membrane module or separation membrane is damaged, the cleaning recovery is poor even if physical cleaning is performed, or if the operation is restarted, the filtration pressure difference will be reduced again. However, in the prior art, there is no means for setting an optimum physical cleaning frequency other than time. As for chemical cleaning, there is no means for setting the optimal chemical cleaning execution time based on the basis.
【0010】本発明は、上記従来技術の課題を解決せん
とするものであり、一定量(X0 )の不純物を分離膜で
除去する毎に洗浄を行なうことで、ろ過差圧の急上昇が
なく安全で、分離膜の寿命を延ばす膜分離装置の運転方
法および膜分離装置を提供することを目的とするもので
ある。The present invention has been made to solve the above-mentioned problems of the prior art. By performing washing every time a fixed amount (X 0 ) of impurities is removed by a separation membrane, a rapid increase in filtration pressure difference can be prevented. An object of the present invention is to provide a method of operating a membrane separation device and a membrane separation device that are safe and extend the life of the separation membrane.
【0011】[0011]
【課題を解決するための手段】すなわち本発明は、「被
処理水を分離膜に通過させて不純物を除去する膜分離装
置において、被処理水の濁度と膜透過流束(F)から分
離膜で除去した単位膜面積当りの不純物量(X)を算出
し、0.1g/m2 以上15g/m2 以下の不純物を分
離膜で除去する毎に物理洗浄を行なうことを特徴とする
膜分離装置の運転方法。」、「被処理水を分離膜に通過
させて不純物を除去する膜分離装置において、被処理水
の水質(A)と膜透過流束(F)から分離膜で除去した
単位膜面積当りの不純物量(X)を算出し、一定量(X
0 )の不純物を分離膜で除去する毎に薬液洗浄を行なう
ことを特徴とする膜分離装置の運転方法。」、「被処理
水を分離膜に通過させて不純物を除去する膜分離装置に
おいて、被処理水の水質(A)を測定する手段、および
水質(A)と膜透過流束(F)から分離膜で除去した単
位膜面積当りの不純物量(X)を算出する手段、および
一定量(X0 )の不純物を分離膜で除去する毎に洗浄を
行なう手段を具備したことを特徴とする膜分離装置。」
により基本的に達成される。The present invention relates to a membrane separation apparatus for removing impurities by passing the water to be treated through a separation membrane and separating the water from the turbidity of the water to be treated and the permeation flux (F). A film characterized by calculating an impurity amount (X) per unit film area removed by the film, and performing physical cleaning every time impurities of 0.1 g / m 2 or more and 15 g / m 2 or less are removed by the separation film. Operation method of separation device. "," In a membrane separation device for removing impurities by passing the water to be treated through the separation membrane, the water to be treated was removed from the water quality (A) and the permeate flux (F) by the separation membrane. The amount of impurities (X) per unit film area is calculated, and a certain amount (X
0 ) A method for operating a membrane separation apparatus, wherein a chemical solution is washed each time impurities are removed by a separation membrane. And "means for measuring the water quality (A) of the water to be treated, and separating the water from the water (A) and the membrane permeation flux (F) in the membrane separation apparatus for removing impurities by passing the water to be treated through the separation membrane. A membrane separation comprising means for calculating the amount of impurities (X) per unit film area removed by the film, and means for washing each time a fixed amount (X 0 ) of impurities is removed by the separation film. apparatus."
Is basically achieved by
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Embodiments of the present invention will be described below.
【0013】本発明の膜分離装置によるろ過運転は、被
処理水をポンプ等の加圧手段、または処理水側における
吸引手段を用いることにより、分離膜の被処理水側を高
い圧力として被処理水を分離膜モジュールに供給し、被
処理水の全量もしくは一部を分離膜の処理水側へ透過さ
せて清澄な透過液を得ることにより行われる。In the filtration operation of the membrane separation apparatus of the present invention, the pressure of the water to be treated is increased by using a pressurizing means such as a pump or a suction means on the side of the treated water so that the pressure of the water to be treated is increased. Water is supplied to the separation membrane module, and the whole or a part of the water to be treated is permeated to the treated water side of the separation membrane to obtain a clear permeate.
【0014】被処理水中に含まれる不純物のうち膜の細
孔より大きいものは、膜表面で阻止され、膜表面に蓄積
する。このため、膜の処理水側から被処理水側に向かっ
て清澄水や気体を流す逆流洗浄や、分離膜近傍に空気等
の気体を導入して分離膜を揺らし、膜表面に流れを与え
るエアースクラビング洗浄などの物理洗浄で膜表面に蓄
積した不純物を取り除きながらろ過を継続する。[0014] Of the impurities contained in the water to be treated, those that are larger than the pores of the membrane are blocked on the membrane surface and accumulate on the membrane surface. For this reason, backflow washing in which clear water or gas flows from the treated water side of the membrane toward the treated water side, or air that introduces a gas such as air near the separation membrane to shake the separation membrane and give a flow to the membrane surface Filtration is continued while removing impurities accumulated on the membrane surface by physical cleaning such as scrubbing cleaning.
【0015】この際、従来技術では、電磁弁等の自動開
閉弁をタイマー等で制御して、一定時間毎に物理洗浄を
繰り返すのが一般的であった。様々なろ過の運転データ
を詳細に解析、検討した結果、一定量以上の不純物を除
去すると急激にろ過差圧が上昇してしまい、安定運転の
継続が困難になることを見出した。さらに、一定量以上
の不純物を除去するまでは、分離膜表面に蓄積した不純
物が分離膜表面を保護し、フミン質等の溶解性の有機物
等が分離膜細孔内部に進入、吸着、蓄積するのを防ぐた
め、ろ過差圧の上昇は緩やかで、安定運転が可能になる
ため、物理洗浄を必要以上に多くすることは不利である
ことを見出した。In this case, in the prior art, the physical cleaning is generally repeated at regular intervals by controlling an automatic opening / closing valve such as a solenoid valve with a timer or the like. As a result of analyzing and examining various kinds of operation data of filtration in detail, it was found that when impurities of a certain amount or more were removed, the filtration differential pressure rapidly increased, and it became difficult to maintain stable operation. Until a certain amount or more of impurities are removed, the impurities accumulated on the separation membrane surface protect the separation membrane surface, and soluble organic substances such as humic substances enter, adsorb, and accumulate inside the separation membrane pores. In order to prevent this, it has been found that it is disadvantageous to increase the physical cleaning more than necessary because the rise in the filtration pressure difference is moderate and stable operation is possible.
【0016】さらに、薬液洗浄についても一定量の不純
物を除去した後に、ろ過差圧が薬液洗浄を実施すべき圧
力に到達することを、発明者らは多くの運転データの解
析結果から見出した。Further, the present inventors have found from the analysis results of many operation data that the filtration pressure difference reaches a pressure at which the chemical solution should be washed after removing a certain amount of impurities in the chemical solution washing.
【0017】そこで本発明は、時刻(t)における被処
理水の水質(At )と単位膜面積単位時間当りのろ過量
である膜透過流束(Ft )を用いて、前回の洗浄から時
刻(t)までに分離膜で除去した単位膜面積当たりの不
純物の量(Xt )を算出し、(Xt )が予め設定した単
位膜面積当たりの不純物量(X0 )に達する毎に洗浄を
実施する。前回の洗浄から時刻(t)までに分離膜で除
去した単位膜面積当たりの不純物の量(Xt )は、例え
ば下記(1)式により算出するが、特にこの式に限定さ
れず、各時刻において分離膜で除去した不純物の量が積
算(積分)されれば良い。Therefore, the present invention uses the water quality (A t ) of the water to be treated at time (t) and the membrane permeation flux (F t ), which is the amount of filtration per unit time of the unit membrane area, from the previous washing. The amount of impurities per unit film area (X t ) removed by the separation membrane by time (t) is calculated, and every time (X t ) reaches a preset amount of impurities per unit film area (X 0 ). Perform cleaning. The amount of impurities per unit film area (X t ) removed by the separation membrane from the previous cleaning to the time (t) is calculated by, for example, the following equation (1), but is not particularly limited to this equation. In the above, the amount of impurities removed by the separation membrane may be integrated (integrated).
【0018】 Xt =Σ(At ・Ft ・Δt) ・・・(1)式 ただし、Δtは、At 、Ft の測定間隔 本発明の被処理水は、本発明の主旨からいえば特に限定
されるものではないが、飲料水製造分野すなわち浄水処
理過程、用水製造や排水処理などの水処理用途には河川
水または湖沼水または地下水などが好ましい。また、近
年、恒久的な水不足解消策として飲料水の製造に逆浸透
法海水淡水化が採用されてきているが、逆浸透膜分離装
置の前処理に用いられる膜分離装置にも本発明は適用で
き、この場合、被処理水は海水が好ましい。さらに、下
水処理や屎尿処理の場合の活性汚泥含有水も本発明の被
処理水として採用でき好ましい。X t = Σ (A t · F t · Δt) (1) where Δt is the measurement interval of A t and F t The water to be treated of the present invention can be said from the gist of the present invention. Although not particularly limited, river water, lake water, groundwater, and the like are preferable in the field of drinking water production, that is, water treatment applications such as water purification processes, water production and wastewater treatment. In recent years, reverse osmosis seawater desalination has been adopted in drinking water production as a permanent solution to water shortage, but the present invention is also applied to a membrane separation device used for pretreatment of a reverse osmosis membrane separation device. In this case, the water to be treated is preferably seawater. Further, activated sludge-containing water in the case of sewage treatment or human waste treatment is also preferable as the water to be treated in the present invention.
【0019】ここで、被処理水の水質(A)とは、被処
理水中の不純物の濃度を表現する指標であり、例えば分
離膜の細孔径が1nm以上10μm以下の精密ろ過膜や
限外ろ過膜の場合、濁度、微粒子個数濃度、SS濃度、
MLSS濃度などが挙げられる。被処理原水が河川水ま
たは湖沼水または地下水または海水などの比較的低濁度
水の時は、濁度や微粒子個数濃度などを被処理水の水質
(A)とし、被処理原水が排水処理における活性汚泥含
有水や粉末活性炭含有水などの高濁度水の時は、SS濃
度やMLSS濃度などを被処理水の水質(A)とする。Here, the water quality (A) of the water to be treated is an index expressing the concentration of impurities in the water to be treated. For example, a microfiltration membrane having a pore diameter of 1 nm or more and 10 μm or less or an ultrafiltration membrane In the case of a membrane, turbidity, fine particle number concentration, SS concentration,
MLSS concentration and the like. When the raw water to be treated is relatively low turbidity water such as river water, lake water, groundwater or seawater, the turbidity and the concentration of fine particles are regarded as the quality of the water to be treated (A), and the raw water to be treated is used for wastewater treatment. In the case of high turbidity water such as activated sludge-containing water or powdered activated carbon-containing water, the SS concentration or the MLSS concentration is used as the quality (A) of the water to be treated.
【0020】濁度とは、カオリン1mg/lの溶液の濁
りを1度(=1mg/l)と定義する指標で、その測定
原理の違いから透過光濁度、散乱光濁度、積分光濁度が
あるが、測定方法は適宜選択されるべきものであり、特
に限定されるものではない。Turbidity is an index that defines the turbidity of a kaolin 1 mg / l solution as 1 degree (= 1 mg / l). Although there is a certain degree, the measuring method should be appropriately selected and is not particularly limited.
【0021】微粒子個数濃度とは、単位体積当りに予め
設定した大きさ以上の微粒子が含まれている個数をあら
わす指標で、一般的には光の散乱を利用して測定され
る。The particle number concentration is an index indicating the number of particles having a size equal to or larger than a predetermined size per unit volume, and is generally measured by utilizing light scattering.
【0022】SS濃度とは、懸濁物質濃度のことで、被
処理水を所定のろ紙でろ過することによって得られる物
質を、通常105〜110℃で2時間乾燥した後の重量
をもって表される指標である。The SS concentration is a concentration of a suspended substance, and is expressed by a weight of a substance obtained by filtering water to be treated through a predetermined filter paper, usually at 105 to 110 ° C. for 2 hours. It is an indicator.
【0023】MLSS濃度とは、蒸発皿上の被処理水
を、通常105〜110℃で2時間乾燥した後の重量を
もって表す指標であり、活性汚泥含有水等の濃度を表す
時に使われる指標である。The MLSS concentration is an index representing the weight of the water to be treated on the evaporating dish after drying it at usually 105 to 110 ° C. for 2 hours, and is an index used when expressing the concentration of activated sludge-containing water and the like. is there.
【0024】本発明においては、以上のような水質指標
を自動で測定できる装置を用いることが好ましく、被処
理水の水質(A)は、分離膜モジュールになるべく近い
被処理水側ライン中で一定時間毎になるべく多く測定さ
れ、データが膜分離装置に自動的に送られることが、単
位膜面積当りの不純物量(X)が精度良く算出されるた
め好ましいが、被処理水タンク等に貯留されている被処
理水の水質を不定時間毎にマニュアルで測定し、データ
を膜分離装置に入力しても構わない。In the present invention, it is preferable to use an apparatus capable of automatically measuring the water quality index as described above, and the water quality (A) of the water to be treated is constant in the water side line as close as possible to the separation membrane module. It is preferable to measure as much as possible every time and to automatically send data to the membrane separation device because the impurity amount (X) per unit membrane area can be accurately calculated. The quality of the water to be treated may be manually measured at irregular times, and the data may be input to the membrane separation device.
【0025】本発明における物理洗浄は、分離膜や膜モ
ジュール構造に適しており、その洗浄効果が高ければ、
本発明の主旨からして特に限定されないが、分離膜面を
フラッシングする、エアーでスクラビングする方法、空
気などの気体や処理水、清澄水などの液体あるいは酸、
アルカリ、界面活性剤、塩素等の酸化剤、酵素等による
薬液を膜の処理水側から被処理水側へ透過させる、いわ
ゆる逆洗などが採用でき、分離膜や分離膜モジュールの
形態や被処理水の水質などによって、適宜選択する。The physical cleaning according to the present invention is suitable for a separation membrane or a membrane module structure.
Although not particularly limited in the spirit of the present invention, flushing the separation membrane surface, a method of scrubbing with air, gas or treated water such as air, liquid or acid such as clear water,
So-called backwashing, in which a chemical solution such as an alkali, a surfactant, an oxidizing agent such as chlorine, or an enzyme is transmitted from the treated water side of the membrane to the treated water side, can be employed. It is appropriately selected according to the quality of the water.
【0026】また、本発明における薬液洗浄も、本発明
の主旨から行って特に限定されず、分離膜の材質や汚れ
の種類によって適宜選択されれば良い。酸、アルカリ、
界面活性剤、塩素等の酸化剤、酵素等の薬液を状況に応
じて選択する。The cleaning of the chemical solution in the present invention is also not particularly limited in view of the gist of the present invention, and may be appropriately selected depending on the material of the separation membrane and the type of dirt. Acid, alkali,
A surfactant, an oxidizing agent such as chlorine, and a chemical solution such as an enzyme are selected according to the situation.
【0027】また、予め設定した単位膜面積当りの不純
物量(X0 )は、分離膜の材質や細孔径、分離除去する
不純物の材質、大きさおよび測定された水質(A)の指
標などにより異なる。例えば、水質(A)が濁度の場
合、物理洗浄は0.1g/m2以上15g/m2 以下、
好ましくは0.2g/m2 以上12g/m2 以下、さら
に好ましくは0.5g/m2 以上10g/m2 以下程度
の単位膜面積当りの不純物量の不純物を除去する毎に行
うのが好ましい。ここで、X0 が15g/m2 より大き
くなると、急激にろ過差圧が上昇してしまい、安定運転
の継続が困難になる。また、X0 が0.1g/m2 より
小さいと、分離膜表面に蓄積した不純物による膜の保護
効果が得られず、フミン質等の溶解性の有機物等が分離
膜細孔内部に進入、吸着、蓄積するため好ましくない。The predetermined amount of impurities per unit membrane area (X 0 ) is determined by the material of the separation membrane, the pore diameter, the material and size of the impurities to be separated and removed, the index of the measured water quality (A), and the like. different. For example, when the water quality (A) is turbidity, the physical cleaning is 0.1 g / m 2 or more and 15 g / m 2 or less,
It is preferably carried out each time impurities of an amount of impurities per unit film area of about 0.2 g / m 2 to 12 g / m 2 , more preferably about 0.5 g / m 2 to 10 g / m 2 are removed. . Here, if X 0 is larger than 15 g / m 2 , the filtration pressure difference will increase rapidly, and it will be difficult to continue stable operation. On the other hand, if X 0 is less than 0.1 g / m 2 , the protective effect of the membrane due to impurities accumulated on the surface of the separation membrane cannot be obtained, and soluble organic substances such as humic substances enter into the pores of the separation membrane, Adsorption and accumulation are not preferred.
【0028】また同様に水質(A)が濁度の場合、薬液
洗浄は300g/m2 以上10000g/m2 以下が好
ましく、より好ましくは500g/m2 以上8000g
/m 2 以下、さらに好ましくは800g/m2 以上50
00g/m2 以下程度の単位膜面積当りの不純物量(X
0 )の不純物を除去する毎に行うのが好ましい。Similarly, when the water quality (A) is turbid,
Washing is 300g / mTwoMore than 10,000g / mTwoThe following is good
Preferably, more preferably 500 g / mTwoMore than 8000g
/ M TwoBelow, more preferably 800 g / mTwoMore than 50
00g / mTwoImpurity amount per unit film area (X
0It is preferable to carry out each time the impurities are removed.
【0029】さらに、ろ過差圧が高くなりすぎると不純
物が分離膜に押し込められ物理洗浄回復性が悪くなるの
で、一定量(X0 )の不純物を分離膜で除去する前にろ
過差圧が予め設定したろ過差圧(P0 )に達した場合、
この時点において物理洗浄を行なうことも好ましく採用
できる。Further, if the filtration pressure difference is too high, impurities are pushed into the separation membrane and the physical cleaning recovery is deteriorated. Therefore, before the removal of a certain amount (X 0 ) of impurities by the separation membrane, the filtration pressure difference is increased. When the set filtration pressure difference (P 0 ) is reached,
Performing physical cleaning at this time can also be preferably employed.
【0030】ここで、予め設定したろ過差圧(P0 )は
分離膜の材質や孔径によって異なるが、40kPa以上
200kPa以下であることが好ましく、より好ましく
は50kPa以上180kPa以下、さらに好ましく
は、60kPa以上150kPa以下程度である。Here, the preset filtration pressure difference (P 0 ) varies depending on the material and pore size of the separation membrane, but is preferably 40 kPa or more and 200 kPa or less, more preferably 50 kPa or more and 180 kPa or less, and further preferably 60 kPa or less. It is about 150 kPa or less.
【0031】本発明に用いられる分離膜は、本発明の主
旨からいえば特に限定されるものではないが、飲料水製
造分野すなわち浄水処理過程、用水製造や排水処理など
の水処理用途には、細孔径が1nm以上10μm以下の
いわゆる精密ろ過膜または限外ろ過膜に分類される分離
膜であることが好ましい。ここで、分離膜の細孔径は、
以下に述べる方法で測定する。すなわち、分離膜の透水
性(Lp )と水の膜透過速度(Jv )から、下記
(2)、(3)式の関係を使って計算して求める。The separation membrane used in the present invention is not particularly limited in view of the gist of the present invention. However, the separation membrane is used in the field of drinking water production, that is, in a water treatment process such as a water purification process, water production and wastewater treatment. It is preferable that the separation membrane is classified into a so-called microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less. Here, the pore diameter of the separation membrane is
It is measured by the method described below. That is, it is calculated from the water permeability (L p ) of the separation membrane and the membrane permeation velocity (J v ) of water using the relationship of the following equations (2) and (3).
【0032】 Jv =Lp ・ΔP ・・・(2)式 Lp =(H/L)・{Rp 2 /(8η)} ・・・(3)式 ここで、ΔPは膜間圧力差、Hは膜含水率、Lは膜厚、
Rp は細孔径、ηは水の粘性である。J v = L p · ΔP (2) Expression L p = (H / L) · {R p 2 / (8η)} (3) where ΔP is the transmembrane pressure. Difference, H is the film moisture content, L is the film thickness,
R p is the pore size and η is the viscosity of water.
【0033】また、分離膜の形状には、中空糸膜、管状
膜、平膜などがあり、いずれの形状のものでも本発明に
用いることができるが、一般的な飲料水製造分野すなわ
ち浄水処理過程、用水製造などの水処理用途には、装置
単位体積あたりの有効膜面積を大きくできる中空糸膜を
用いるのが好ましい。ここで、中空糸膜とは外径2mm
未満の円管状の分離膜、管状膜とは外径2mm以上の円
管状の分離膜である。The shape of the separation membrane includes a hollow fiber membrane, a tubular membrane, a flat membrane and the like, and any shape can be used in the present invention. It is preferable to use a hollow fiber membrane capable of increasing the effective membrane area per unit volume of the device for water treatment applications such as process and production of water. Here, the hollow fiber membrane has an outer diameter of 2 mm.
A tubular separation membrane having a diameter of less than 2 mm is a tubular separation membrane having an outer diameter of 2 mm or more.
【0034】さらに、分離膜の素材には、ポリアクリロ
ニトリル、ポリスルフォン、ポリフェニレンスルフォ
ン、ポリフェニレンスルフィドスルフォン、ポリフッ化
ビニリデン、酢酸セルロース、ポリエチレン、ポリプロ
ピレン、セラミック等の無機素材等を挙げることがで
き、本発明の主旨から言って特に限定されないが親水性
の素材であるポリアクリロニトリル、酢酸セルロース、
ポリフェニレンスルフォン、ポリフェニレンスルフィド
スルフォンが汚れにくく、洗浄回復性も良いため好まし
い。Further, examples of the material of the separation membrane include inorganic materials such as polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and ceramics. Polyacrylonitrile, which is not particularly limited but hydrophilic material from the gist of cellulose, cellulose acetate,
Polyphenylene sulphone and polyphenylene sulfide sulphone are preferable because they are hardly contaminated and have good cleaning recoverability.
【0035】膜分離装置の運転には、先に述べたように
定流量ろ過および定圧ろ過があり、いずれでも構わない
が、定流量ろ過運転が、一定の処理量を得ることができ
一般的で好ましい。As described above, the operation of the membrane separation apparatus includes the constant flow filtration and the constant pressure filtration. Either one may be used. However, the constant flow filtration operation can obtain a constant throughput and is generally used. preferable.
【0036】また、被処理水の分離膜への供給の仕方
で、被処理水の全量をろ過する全量ろ過運転と分離膜モ
ジュールに供給した被処理水の一部を被処理水に返送す
るクロスフローろ過運転がある。全量ろ過の場合、分離
膜で除去した不純物の量を正確に算出できるので本発明
に好適なろ過方式である。一方、クロスフローろ過は膜
面の流れによるせん断応力で、膜面に堆積した汚れの一
部を除去できる特徴があるが、本発明の主旨から言っ
て、分離膜で除去した不純物の量を正確に算出できない
ので、好ましくない。さらに、全量ろ過運転の方が操作
が単純で運転し易く、低圧で運転できるので、エネルギ
ーコストの低減につながり有利であり好ましい。これに
対し、クロスフローろ過は操作が複雑である、モジュー
ル内に被処理水を流しておかなければならないので、エ
ネルギー的にも不利である。[0036] Further, in the manner of supplying the water to be treated to the separation membrane, a total amount filtering operation for filtering the entire amount of the water to be treated and a cross-section for returning a part of the water to be treated supplied to the separation membrane module to the water to be treated. There is a flow filtration operation. In the case of total filtration, the amount of impurities removed by the separation membrane can be accurately calculated, so that this is a filtration method suitable for the present invention. On the other hand, cross-flow filtration is characterized by the ability to remove some of the dirt deposited on the membrane surface by the shear stress caused by the flow on the membrane surface, but from the gist of the present invention, the amount of impurities removed by the separation membrane can be accurately determined. It is not preferable because it cannot be calculated. Further, the total filtration operation is simple and easy to operate and can be operated at a low pressure, which leads to a reduction in energy cost and is advantageous and preferable. On the other hand, the cross-flow filtration is disadvantageous in terms of energy because the operation is complicated and the water to be treated must be flown in the module.
【0037】以下に具体的実施例を挙げて本発明を説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
【0038】[0038]
【実施例】実施例1 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.55m2
の加圧型中空糸膜モジュールを用いて、琵琶湖水の定流
量全ろ過を行った。膜分離装置を図1に示す。EXAMPLE 1 Polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm were bundled, about 50 cm long, and the effective membrane area was 0.55 m 2.
A constant flow rate total filtration of Lake Biwa water was performed using a pressurized hollow fiber membrane module. FIG. 1 shows a membrane separation device.
【0039】ろ過運転は、分離膜モジュール5の被処理
水側の加圧ポンプ2で被処理水を加圧供給した後、電磁
バルブ6aを閉じ、処理水を処理水タンク7に貯えるこ
とにより行った。膜透過流束(F)は1m3 /m2 ・d
とした。散乱光測定方式の濁度計3で被処理水タンク1
内の被処理水濁度(A)を(Δt)=5分毎に測定し
た。一定量(X0 )=3g/m2 の不純物をろ過する毎
に、物理洗浄として逆洗を1分、空気によるエアースク
ラビング洗浄を2分行った。逆洗は、処理水の一部を電
磁バルブ6eを介して逆洗水タンク8に貯えた逆洗水を
電磁バルブ6dを介して分離膜モジュール5の処理水側
から被処理水側に流し、電磁バルブ6aから逃がすこと
により行った。エアースクラビング洗浄は、分離膜モジ
ュール5の下部からエアーを導入し、中空糸膜を揺らす
ことで行ない、終了後、電磁バルブ6cを開いて分離膜
モジュール内の汚れた水を排水した。物理洗浄期間中は
電動バルブ6bは閉とした。The filtration operation is performed by pressurizing and supplying the water to be treated by the pressure pump 2 on the treated water side of the separation membrane module 5, closing the electromagnetic valve 6 a and storing the treated water in the treated water tank 7. Was. The membrane permeation flux (F) is 1 m 3 / m 2 · d
And Treated water tank 1 with turbidity meter 3 of scattered light measurement method
The turbidity of the water to be treated (A) was measured every (Δt) = 5 minutes. Each time impurities of a fixed amount (X 0 ) = 3 g / m 2 were filtered, back washing was performed for 1 minute as physical washing, and air scrubbing washing with air was performed for 2 minutes. In the backwashing, a part of the treated water is flowed from the treated water side of the separation membrane module 5 to the treated water side through the electromagnetic valve 6d through the backwash water stored in the backwash water tank 8 via the electromagnetic valve 6d. This was performed by releasing from the electromagnetic valve 6a. The air scrubbing was performed by introducing air from below the separation membrane module 5 and shaking the hollow fiber membrane. After completion, the electromagnetic valve 6c was opened to drain the contaminated water in the separation membrane module. During the physical cleaning period, the electric valve 6b was closed.
【0040】被処理水濁度の経時変化を図2に示す。被
処理水濁度は、2mg/lから100 mg/l程度の
範囲で変動し、これに伴い物理洗浄間隔も変化した。膜
で除去した単位膜面積当りの不純物量(X)は次式によ
りコンピュータ9で算出し、(X)が(X0 )=3g/
m2 より大きくなった時点で物理洗浄を行った。FIG. 2 shows the change over time in the turbidity of the water to be treated. The turbidity of the water to be treated is from 2 mg / l to 100 The value fluctuated in the range of about mg / l, and the physical cleaning interval also changed accordingly. The amount of impurities (X) per unit film area removed by the film is calculated by the computer 9 according to the following equation, where (X) is (X 0 ) = 3 g /
Physical cleaning was performed when the value became larger than m 2 .
【0041】 (X)=(Xi )+(Xi+1 )+(Xi+2 )+・・・ =(Ai ・F・Δt)+・・・ =(Ai ×1×5/(24×60))+・・・ 圧力センサー4で計測した、物理洗浄直後のろ過差圧の
経時変化を図3中に示す。1500時間の間に物理洗浄
は507回行い、1500時間運転後のろ過差圧は約7
0kPaで、ろ過差圧上昇を低く抑えられた。 比較例1 実施例1と同様同時期に平均孔径0.01μmのポリア
クリロニトリル製中空糸膜を束ねた、長さ約50cm、
有効膜面積0.55m2 の加圧型中空糸膜モジュールを
用いて、琵琶湖水の定流量全ろ過を行った。ろ過運転
は、分離膜の被処理水側の加圧ポンプで被処理水を加圧
供給することにより行った。ろ過線速度は1m/dとし
た。被処理水濁度は測定せず、除去した不純物量に関係
なく、3時間毎に、物理洗浄として透過水による逆洗を
1分、空気によるエアースクラビング洗浄を2分行っ
た。物理洗浄直後のろ過差圧の経時変化を図3中に示
す。1500時間運転で、物理洗浄回数は実施例1とほ
ぼ等しい500回行なったが、1500時間運転後のろ
過差圧は300kPa以上となり、運転継続困難となっ
た。 比較例2 実施例1と同様同時期に平均孔径0.01μmのポリア
クリロニトリル製中空糸膜を束ねた、長さ約50cm、
有効膜面積0.55m2 の加圧型中空糸膜モジュールを
用いて、琵琶湖水の定流量全ろ過を行った。ろ過運転
は、分離膜の被処理水側の加圧ポンプで被処理水を加圧
供給することにより行った。ろ過線速度は1m/dとし
た。被処理水濁度は測定せず、除去した不純物量に関係
なく、1時間毎に、物理洗浄として透過水による逆洗を
1分、空気によるエアースクラビング洗浄を2分行っ
た。物理洗浄直後のろ過差圧の経時変化を図3中に示
す。1500時間運転後のろ過差圧は約150kPaと
なり、実施例1より高いろ過差圧となった。また、15
00時間運転で、物理洗浄回数は実施例1のほぼ3倍の
1500回行なったので、回収率が低くなり不利であっ
た。 実施例2 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.35m2
の中空糸膜モジュールを用いて、琵琶湖水の定流量全ろ
過を行った。膜透過流束(F)は1m3 /m2 ・dとし
た。散乱光測定方式の濁度計で被処理水タンク内の被処
理水濁度(A)を(Δt)=5分毎に測定した。一定量
(X0 )=1500g/m2 の不純物をろ過する毎に、
塩酸、水酸化ナトリウム溶液、次亜塩素酸ナトリウム溶
液による薬液洗浄を実施した。膜で除去した単位膜面積
当りの不純物量(X)は次式によりコンピュータ9で算
出し、(X)が(X0 )=1500g/m2 より大きく
なった時点で時点で薬液洗浄を行った。 (X)=(Xi )+(Xi+1 )+(Xi+2 )+・・・ =(Ai ・F・Δt)+・・・ =(Ai ×1×5/(24×60))+・・・ 圧力センサー4で計測した物理洗浄直後のろ過差圧の経
時変化を図4中に示す。薬液洗浄後のろ過差圧は、運転
開始時にほぼ等しい10kPa程度まで回復し、その後
も安定運転を継続した。 比較例3 実施例2と同様に平均孔径0.01μmのポリアクリロ
ニトリル製中空糸膜を束ねた、長さ約50cm、有効膜
面積0.35m2 の中空糸膜モジュールを用いて、琵琶
湖水の定流量全ろ過を行った。ろ過線速度は1m/dと
した。被処理水濁度は測定せず、除去した不純物量に関
係なく、ろ過差圧が100kPaを超えてから、実施例
2と同様に塩酸、水酸化ナトリウム溶液、次亜塩素酸ナ
トリウム溶液で薬液洗浄を行った。物理洗浄直後のろ過
差圧の経時変化を図5中に示す。薬液洗浄後のろ過差圧
は、60kPa程度までしか回復しなかった。 比較例4 実施例2と同様に平均孔径0.01μmのポリアクリロ
ニトリル製中空糸膜モジュールを用いて、琵琶湖水の定
流量全ろ過を行った。ろ過線速度は1m/dとした。ろ
過差圧の経時変化を図6中に示す。被処理水濁度は測定
せず、除去した不純物量に関係なく、約600時間毎
に、実施例2と同様に塩酸、水酸化ナトリウム溶液、次
亜塩素酸ナトリウム溶液で薬液洗浄を行ったところ、洗
浄回復性は良かったが、薬液洗浄の頻度が増え、維持管
理、処理コストの面から不利であった。 実施例3 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.4m2 の
加圧型中空糸膜モジュールを用いて、琵琶湖水の定流量
全ろ過を行った。(X) = (X i ) + (X i + 1 ) + (X i + 2 ) +... = (A i · F · Δt) +... = (A i × 1 × 5) / (24 × 60)) +... The time-dependent change in the filtration pressure difference immediately after the physical cleaning measured by the pressure sensor 4 is shown in FIG. Physical washing was performed 507 times during 1500 hours, and the filtration pressure difference after operation for 1500 hours was about 7
At 0 kPa, the increase in the filtration pressure difference was suppressed low. Comparative Example 1 Polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm were bundled at the same time as in Example 1, and the length was about 50 cm.
Using a pressurized hollow fiber membrane module with an effective membrane area of 0.55 m 2 , a constant flow rate total filtration of Lake Biwa water was performed. The filtration operation was performed by pressurizing and supplying the water to be treated with a pressure pump on the side of the water to be treated of the separation membrane. The filtration linear velocity was 1 m / d. The turbidity of the water to be treated was not measured, and backwashing with permeated water was carried out every 3 hours for 1 minute and air scrubbing with air was carried out for 2 minutes every 3 hours, regardless of the amount of impurities removed. FIG. 3 shows a temporal change of the filtration pressure difference immediately after the physical cleaning. In the operation for 1500 hours, the number of physical washings was 500 times, which is almost the same as in Example 1. However, the filtration pressure difference after the operation for 1500 hours was 300 kPa or more, making it difficult to continue the operation. Comparative Example 2 Polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm were bundled at the same time as in Example 1, and the length was about 50 cm.
Using a pressurized hollow fiber membrane module with an effective membrane area of 0.55 m 2 , a constant flow rate total filtration of Lake Biwa water was performed. The filtration operation was performed by pressurizing and supplying the water to be treated with a pressure pump on the side of the water to be treated of the separation membrane. The filtration linear velocity was 1 m / d. The turbidity of the water to be treated was not measured, and backwashing with permeated water was performed for 1 minute and air scrubbing with air was performed for 2 minutes every hour, regardless of the amount of impurities removed. FIG. 3 shows a temporal change of the filtration pressure difference immediately after the physical cleaning. The filtration pressure difference after the operation for 1500 hours was about 150 kPa, which was higher than that in Example 1. Also, 15
In the 00-hour operation, the number of times of physical cleaning was 1500 times, which was almost three times that of Example 1, and the recovery rate was low, which was disadvantageous. Example 2 Polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm were bundled, about 50 cm in length, and the effective membrane area was 0.35 m 2.
The constant flow rate total filtration of Lake Biwa water was performed using the hollow fiber membrane module of No. The membrane permeation flux (F) was 1 m 3 / m 2 · d. The turbidity of the water to be treated (A) in the water tank to be treated was measured with a turbidity meter of a scattered light measurement method every (Δt) = 5 minutes. Each time an amount of impurities (X 0 ) = 1500 g / m 2 is filtered,
Chemical cleaning with hydrochloric acid, sodium hydroxide solution, and sodium hypochlorite solution was performed. The amount of impurities (X) per unit film area removed by the film was calculated by the computer 9 according to the following equation. When (X) became larger than (X 0 ) = 1500 g / m 2 , chemical cleaning was performed at the time. . (X) = (X i ) + (X i + 1 ) + (X i + 2 ) +... = (A i · F · Δt) +... = (A i × 1 × 5 / (24) × 60)) +... The temporal change of the filtration pressure difference immediately after the physical cleaning measured by the pressure sensor 4 is shown in FIG. The filtration pressure difference after the washing with the chemical solution recovered to about 10 kPa, which was almost the same at the start of the operation, and the stable operation was continued thereafter. Comparative Example 3 Using a hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.35 m 2 , which was a bundle of polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm as in Example 2, was used to determine the volume of Lake Biwa water. Flow rate total filtration was performed. The filtration linear velocity was 1 m / d. The turbidity of the water to be treated is not measured, and regardless of the amount of impurities removed, after the filtration pressure difference exceeds 100 kPa, the chemical solution is washed with hydrochloric acid, a sodium hydroxide solution, and a sodium hypochlorite solution as in Example 2. Was done. FIG. 5 shows the temporal change of the filtration pressure difference immediately after the physical cleaning. The filtration pressure difference after the cleaning with the chemical solution recovered only up to about 60 kPa. Comparative Example 4 In the same manner as in Example 2, a polyacrylonitrile-made hollow fiber membrane module having an average pore diameter of 0.01 μm was used to perform constant flow total filtration of Lake Biwa water. The filtration linear velocity was 1 m / d. FIG. 6 shows the change over time in the filtration pressure difference. The turbidity of the water to be treated was not measured, and the chemical was washed with hydrochloric acid, a sodium hydroxide solution, and a sodium hypochlorite solution every about 600 hours in the same manner as in Example 2 regardless of the amount of impurities removed. Although the cleaning recovery was good, the frequency of cleaning with the chemicals increased, which was disadvantageous in terms of maintenance and processing costs. Example 3 Using a pressurized hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.4 m 2 , in which polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm were bundled, constant-flow total filtration of Lake Biwa water was performed. went.
【0042】加速試験とするために、膜透過流束(F)
を3m3 /m2 ・dとした。散乱光測定方式の濁度計で
被処理水濁度を(Δt)=10分毎に測定した。一定量
(X 0 )=0.2g/m2 の不純物をろ過する毎に、物
理洗浄として逆洗を1分、空気によるエアースクラビン
グ洗浄を1分行った。実験期間中、被処理水濁度は、2
mg/lから15mg/l程度の範囲で変動し、これに
伴い物理洗浄間隔も変化した。実施例1と同様に、分離
膜で除去した単位膜面積当りの不純物量(X)をコンピ
ュータで算出し、(X)が=0.2g/m2 より大きく
なった時点で物理洗浄を行った。In order to perform an accelerated test, the membrane permeation flux (F)
3mThree/ MTwo・ It was d. With a turbidity meter that measures scattered light
The turbidity of the water to be treated was measured every (Δt) = 10 minutes. Fixed amount
(X 0) = 0.2 g / mTwoEach time impurities are filtered,
Air scrubbing with air for 1 minute for backwashing
Cleaning was performed for 1 minute. During the experiment, the turbidity of the treated water was 2
fluctuates in the range of about 15 mg / l to
Accordingly, the physical cleaning interval also changed. Separate as in Example 1.
The amount of impurities (X) per unit film area removed by the film
(X) = 0.2 g / mTwoBigger
Physical cleaning was performed at the time when it became.
【0043】実験開始10日後のろ過差圧は実験開始時
のろ過差圧から9kPaしか上昇しなかった。結果を表
1に示す。 実施例4 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.4m2 の
加圧型中空糸膜モジュールを用いて、琵琶湖水の定流量
全ろ過を行った。実験は実施例3と同時期、同様に行っ
た。The filtration pressure difference 10 days after the start of the experiment only increased by 9 kPa from the filtration pressure difference at the start of the experiment. Table 1 shows the results. Example 4 Using a pressurized hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.4 m 2 , which is a bundle of polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm, constant-flow total filtration of Lake Biwa water was performed. went. The experiment was performed in the same period as in Example 3.
【0044】加速試験とするために、膜透過流束(F)
を3m3 /m2 ・dとした。散乱光測定方式の濁度計で
被処理水濁度を(Δt)=10分毎に測定した。一定量
(X 0 )=8g/m2 の不純物をろ過する毎に、物理洗
浄として逆洗を1分、空気によるエアースクラビング洗
浄を1分行った。実験期間中、被処理水濁度は、2mg
/lから15mg/l程度の範囲で変動し、これに伴い
物理洗浄間隔も変化した。実施例1と同様に、分離膜で
除去した単位膜面積当りの不純物量(X)をコンピュー
タで算出し、(X)が=8g/m2 より大きくなった時
点で物理洗浄を行った。In order to conduct an accelerated test, the membrane permeation flux (F)
3mThree/ MTwo・ It was d. With a turbidity meter that measures scattered light
The turbidity of the water to be treated was measured every (Δt) = 10 minutes. Fixed amount
(X 0) = 8 g / mTwoEvery time impurities are filtered
1 minute of backwashing as clean, air scrubbing with air
Purification was performed for 1 minute. During the experiment, the turbidity of the water to be treated was 2 mg
/ L to 15mg / l range,
Physical wash intervals also changed. As in Example 1, the separation membrane
The amount of impurities (X) removed per unit film area is calculated by computer.
(X) = 8 g / mTwoWhen it gets bigger
Physical cleaning was performed at the point.
【0045】実験開始10日後のろ過差圧は実験開始時
のろ過差圧から13kPaしか上昇しなかった。結果を
表1に示す。 比較例5 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.4m2 の
加圧型中空糸膜モジュールを用いて、琵琶湖水の定流量
全ろ過を行った。実験は実施例3と同時期、同様に行っ
た。The filtration pressure difference 10 days after the start of the experiment only increased by 13 kPa from the filtration pressure difference at the start of the experiment. Table 1 shows the results. Comparative Example 5 Using a pressurized hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.4 m 2 , which was formed by bundling polyacrylonitrile hollow fiber membranes having an average pore diameter of 0.01 μm, constant-flow total filtration of Lake Biwa water was performed. went. The experiment was performed in the same period as in Example 3.
【0046】加速試験とするために、膜透過流束(F)
を3m3 /m2 ・dとした。散乱光測定方式の濁度計で
被処理水濁度を(Δt)=10分毎に測定した。一定量
(X 0 )=0.05g/m2 の不純物をろ過する毎に、
物理洗浄として逆洗を1分、空気によるエアースクラビ
ング洗浄を1分行った。実験期間中、被処理水濁度は、
2mg/lから15mg/l程度の範囲で変動し、これ
に伴い物理洗浄間隔も変化した。実施例1と同様に、分
離膜で除去した単位膜面積当りの不純物量(X)をコン
ピュータで算出し、(X)が=0.05g/m2 より大
きくなった時点で物理洗浄を行った。In order to perform an accelerated test, the membrane permeation flux (F)
3mThree/ MTwo・ It was d. With a turbidity meter that measures scattered light
The turbidity of the water to be treated was measured every (Δt) = 10 minutes. Fixed amount
(X 0) = 0.05 g / mTwoEach time impurities are filtered,
1 minute backwash as physical cleaning, air scrubbing with air
Cleaning was performed for 1 minute. During the experiment, the turbidity of the treated water was
It fluctuates in the range of about 2 mg / l to 15 mg / l.
As a result, the physical cleaning interval also changed. In the same manner as in Example 1,
The amount of impurities (X) per unit film area removed by film separation
(X) = 0.05 g / mTwoGreater than
Physical washing was performed at the time when it became sharp.
【0047】実験開始10日後のろ過差圧は実験開始時
のろ過差圧から31kPaも上昇した。結果を表1に示
す。 比較例6 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.4m2 の
加圧型中空糸膜モジュールを用いて、琵琶湖水の定流量
全ろ過を行った。実験は実施例3と同時期、同様に行っ
た。The filtration pressure difference 10 days after the start of the experiment increased by 31 kPa from the filtration pressure difference at the start of the experiment. Table 1 shows the results. Comparative Example 6 Using a pressurized hollow fiber membrane module having a length of about 50 cm and an effective membrane area of 0.4 m 2 , in which polyacrylonitrile hollow fiber membranes having an average pore size of 0.01 μm were bundled, constant-flow total filtration of Lake Biwa water was performed. went. The experiment was performed in the same period as in Example 3.
【0048】加速試験とするために、膜透過流束(F)
を3m3 /m2 ・dとした。散乱光測定方式の濁度計で
被処理水濁度を(Δt)=10分毎に測定した。一定量
(X 0 )=20g/m2 の不純物をろ過する毎に、物理
洗浄として逆洗を1分、空気によるエアースクラビング
洗浄を1分行った。実験期間中、被処理水濁度は、2m
g/lから15mg/l程度の範囲で変動し、これに伴
い物理洗浄間隔も変化した。実施例1と同様に、分離膜
で除去した単位膜面積当りの不純物量(X)をコンピュ
ータで算出し、(X)が=20g/m2 より大きくなっ
た時点で物理洗浄を行った。To perform an accelerated test, the permeation flux (F)
3mThree/ MTwo・ It was d. With a turbidity meter that measures scattered light
The turbidity of the water to be treated was measured every (Δt) = 10 minutes. Fixed amount
(X 0) = 20 g / mTwoEach time impurities are filtered,
Air scrubbing with air for 1 minute backwashing as washing
Washing was performed for 1 minute. During the experiment, the turbidity of the treated water was 2 m
g / l to about 15 mg / l.
The physical cleaning interval also changed. Separation membrane as in Example 1
The amount of impurities (X) per unit film area removed by
(X) = 20 g / mTwoGet bigger
At that time, physical cleaning was performed.
【0049】実験開始10日後のろ過差圧は実験開始時
のろ過差圧から55kPaも上昇した。結果を表1に示
す。The filtration pressure difference 10 days after the start of the experiment increased by 55 kPa from the filtration pressure difference at the start of the experiment. Table 1 shows the results.
【0050】[0050]
【表1】 [Table 1]
【0051】[0051]
【発明の効果】本発明は、被処理水の水質(A)と膜透
過流束(F)から分離膜で除去した不純物の量(X)を
算出し、一定量(X0 )の不純物を分離膜で除去する毎
に洗浄を行なうことを特徴とする膜分離装置おそびその
運転方法で、この方法によると、分離膜の寿命が長くな
り、分離膜の洗浄回復性が良く、最適な薬液洗浄時期を
設定でき、処理コストの面からも有利な膜分離装置の運
転方法および膜分離装置が提供される。According to the present invention, the amount (X) of impurities removed by the separation membrane is calculated from the water quality (A) of the water to be treated and the membrane permeation flux (F), and a certain amount (X 0 ) of impurities is removed. The membrane separation device is characterized by performing washing every time it is removed by the separation membrane, and according to this method, the life of the separation membrane is prolonged, the recovery of the separation membrane is improved, and the optimal chemical cleaning is performed. An operation method of a membrane separation apparatus and a membrane separation apparatus which can set a time and are advantageous in terms of processing cost are provided.
【図1】本発明の膜分離装置の一例を示すフロー図であ
る。FIG. 1 is a flowchart showing an example of the membrane separation device of the present invention.
【図2】実施例1の被処理水濁度の経時変化を示すグラ
フである。FIG. 2 is a graph showing the change over time in the turbidity of the water to be treated in Example 1.
【図3】実施例1、比較例1、比較例2の運転結果を示
すグラフである。FIG. 3 is a graph showing operation results of Example 1, Comparative Example 1, and Comparative Example 2.
【図4】本発明による薬液洗浄を行った場合の運転結果
例を示すグラフである。FIG. 4 is a graph showing an example of operation results when a chemical solution cleaning is performed according to the present invention.
【図5】従来法による薬液洗浄を行った場合の運転結果
例を示すグラフである(薬液洗浄時期が遅れた場合)。FIG. 5 is a graph showing an example of an operation result when a chemical cleaning is performed by a conventional method (when a chemical cleaning timing is delayed).
【図6】従来法による薬液洗浄を行った場合の運転結果
例を示すグラフである(早目早目に薬液洗浄を行なった
場合)。FIG. 6 is a graph showing an example of operation results when a chemical cleaning is performed by a conventional method (when a chemical cleaning is performed early and early).
【符号の説明】 1:被処理原水タンク 2:ポンプ等の加圧送液手段 3:被処理水水質(A)の測定手段 4:圧力センサー 5:分離膜モジュール 6:電磁バルブ 7:処理水タンク 8:逆洗水タンク 9:分離膜で除去した膜面積当りの不純物の量(X)を
算出する手段[Description of Signs] 1: Raw water tank to be treated 2: Pressurized liquid sending means such as a pump 3: Measurement means for water quality (A) to be treated 4: Pressure sensor 5: Separation membrane module 6: Electromagnetic valve 7: Treated water tank 8: Backwash water tank 9: Means for calculating the amount (X) of impurities per membrane area removed by the separation membrane
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 71/68 B01D 71/68 C02F 1/44 C02F 1/44 K H ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 71/68 B01D 71/68 C02F 1/44 C02F 1/44 K H
Claims (15)
去する膜分離装置において、被処理水の濁度と膜透過流
束(F)から分離膜で除去した単位膜面積当りの不純物
量(X)を算出し、0.1g/m2 以上15g/m2 以
下の範囲の不純物を分離膜で除去する毎に物理洗浄を行
なうことを特徴とする膜分離装置の運転方法。In a membrane separation apparatus for removing impurities by passing water to be treated through a separation membrane, impurities per unit membrane area removed by the separation membrane from the turbidity and the permeation flux (F) of the water to be treated. A method for operating a membrane separation apparatus, comprising calculating a quantity (X) and performing physical cleaning every time impurities in a range of 0.1 g / m 2 to 15 g / m 2 are removed by a separation membrane.
去する膜分離装置において、被処理水の水質(A)と膜
透過流束(F)から分離膜で除去した単位膜面積当りの
不純物量(X)を算出し、一定量(X0 )の不純物を分
離膜で除去する毎に薬液洗浄を行なうことを特徴とする
膜分離装置の運転方法。2. A membrane separation device for removing impurities by passing the water to be treated through a separation membrane, wherein the water quality (A) and the permeation flux (F) of the water to be treated are removed per unit membrane area by the separation membrane. A method of operating a membrane separation apparatus, comprising: calculating an impurity amount (X) of a solution and performing a chemical cleaning every time a fixed amount (X 0 ) of the impurity is removed by the separation membrane.
かつ一定の不純物量(X0 )が、300g/m2 以上1
0000g/m2 以下の範囲であることを特徴とする請
求項2に記載の膜分離装置の運転方法。3. The water quality (A) of the water to be treated is turbidity.
And a certain amount of impurities (X 0 ) is 300 g / m 2 or more and 1
3. The method for operating a membrane separation device according to claim 2, wherein the range is 0000 g / m 2 or less.
濃度またはSS濃度またはMLSS濃度であることを特
徴とする請求項2に記載の膜分離装置の運転方法。4. The method for operating a membrane separation apparatus according to claim 2, wherein the quality (A) of the water to be treated is a concentration of fine particles, a concentration of SS, or a concentration of MLSS.
水、または海水であることを特徴とする請求項1〜4の
いずれかに記載の膜分離装置の運転方法。5. The method according to claim 1, wherein said water to be treated is river water, lake water, groundwater, or seawater.
を特徴とする請求項1〜4のいずれかに記載の膜分離装
置の運転方法。6. The method for operating a membrane separation apparatus according to claim 1, wherein the water to be treated contains activated sludge.
求項1〜6のいずれかに記載の膜分離装置の運転方法。7. The method for operating a membrane separation device according to claim 1, wherein a total filtration operation is performed.
請求項1〜7のいずれかに記載の膜分離装置の運転方
法。8. The method for operating a membrane separation device according to claim 1, wherein a constant flow filtration operation is performed.
去する膜分離装置において、被処理水の水質(A)と膜
透過流束(F)から分離膜で除去した単位膜面積当りの
不純物量(X)を算出し、0.1g/m2 以上15g/
m2 以下の不純物を分離膜で除去した時刻とろ過差圧が
予め設定したろ過差圧(P0 )に達した時刻のいづれか
早い時刻において物理洗浄を行なうことを特徴とする膜
分離装置の運転方法。9. A membrane separation device for removing impurities by passing water to be treated through a separation membrane, wherein the water quality (A) of the water to be treated and the membrane flux (F) per unit membrane area removed by the separation membrane. Of impurities (X) of 0.1 g / m 2 or more and 15 g /
operation of the membrane separation device, wherein the physical cleaning is performed at the earlier of the time when the impurities of m 2 or less are removed by the separation membrane and the time when the filtration differential pressure reaches a preset filtration differential pressure (P 0 ). Method.
kPa以上200kPa以下であることを特徴とする請
求項9に記載の膜分離装置の運転方法。10. The filtration pressure difference (P 0 ) set in advance is 40
The method for operating a membrane separation device according to claim 9, wherein the pressure is not less than kPa and not more than 200 kPa.
下の精密ろ過膜または限外ろ過膜であることを特徴とす
る請求項1〜10のいずれかに記載の膜分離装置の運転
方法。11. The method for operating a membrane separation device according to claim 1, wherein the separation membrane is a microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less.
ル、酢酸セルロース、ポリフェニレンスルフォン、ポリ
フェニレンスルフィドスルフォンのいずれかから選ばれ
たものであるであることを特徴とする請求項1〜11の
いずれかに記載の膜分離装置の運転方法。12. The material according to claim 1, wherein the material of the separation membrane is selected from the group consisting of polyacrylonitrile, cellulose acetate, polyphenylene sulfone, and polyphenylene sulfide sulfone. Method for operating the membrane separation device of the present invention.
する請求項1〜12のいずれかに記載の膜分離装置の運
転方法。13. The method for operating a membrane separation device according to claim 1, wherein the separation membrane is a hollow fiber membrane.
除去する膜分離装置において、被処理水の水質(A)を
測定する手段、および水質(A)と膜透過流束(F)か
ら分離膜で除去した単位膜面積当りの不純物量(X)を
算出する手段、および一定量(X0 )の不純物を分離膜
で除去する毎に洗浄を行なう手段を具備したことを特徴
とする膜分離装置。14. A membrane separation apparatus for removing impurities by passing water to be treated through a separation membrane, means for measuring the water quality (A) of the water to be treated, and water quality (A) and membrane permeation flux (F). Means for calculating the amount of impurities (X) per unit film area removed from the separation film from the substrate, and means for washing each time a fixed amount (X 0 ) of impurities is removed by the separation film. Membrane separation device.
離装置の運転方法を用いたことを特徴とする造水方法。15. A fresh water producing method using the method for operating a membrane separation device according to any one of claims 1 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24280399A JP4135267B2 (en) | 1998-09-02 | 1999-08-30 | Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24820698 | 1998-09-02 | ||
JP10-248206 | 1998-09-02 | ||
JP24280399A JP4135267B2 (en) | 1998-09-02 | 1999-08-30 | Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000140585A true JP2000140585A (en) | 2000-05-23 |
JP2000140585A5 JP2000140585A5 (en) | 2005-08-04 |
JP4135267B2 JP4135267B2 (en) | 2008-08-20 |
Family
ID=26535932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24280399A Expired - Fee Related JP4135267B2 (en) | 1998-09-02 | 1999-08-30 | Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4135267B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002059163A (en) * | 2000-08-24 | 2002-02-26 | Kubota Corp | Method of maintaining and managing immersion type membrane separator |
JP2002336616A (en) * | 2001-05-16 | 2002-11-26 | Ngk Insulators Ltd | Membrane filtration method |
JP2003094058A (en) * | 2001-09-27 | 2003-04-02 | Daicel Chem Ind Ltd | Method for treating water |
JP2007014948A (en) * | 2005-06-09 | 2007-01-25 | Toray Ind Inc | Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram |
JP2007038212A (en) * | 2005-06-28 | 2007-02-15 | Toray Ind Inc | Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus |
JP2007185648A (en) * | 2005-09-01 | 2007-07-26 | Toray Ind Inc | Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus |
JP2008229583A (en) * | 2007-03-23 | 2008-10-02 | Metawater Co Ltd | Method for controlling operation of membrane filtration apparatus |
WO2011122289A1 (en) | 2010-03-30 | 2011-10-06 | 東レ株式会社 | Method for cleaning separation membrane module, and method for fresh water generation |
WO2013001914A1 (en) | 2011-06-29 | 2013-01-03 | 東レ株式会社 | Washing method for separation membrane module |
KR101345873B1 (en) * | 2013-07-26 | 2013-12-30 | 대림산업 주식회사 | Membrane process operating method |
US8918477B2 (en) | 2012-03-20 | 2014-12-23 | International Business Machines Corporation | Inter-domain replication of service information |
JP2016067967A (en) * | 2014-09-26 | 2016-05-09 | 三浦工業株式会社 | Cleaning method |
EP3057688A4 (en) * | 2013-10-15 | 2017-10-18 | Basf Se | Improving the chemical stability of filtration membranes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05317660A (en) * | 1992-05-21 | 1993-12-03 | Kurita Water Ind Ltd | Membrane separator |
JPH081158A (en) * | 1994-06-16 | 1996-01-09 | Daicel Chem Ind Ltd | Method for operating water purification system and water purifier |
JPH0929070A (en) * | 1995-07-24 | 1997-02-04 | Tohoku Electric Power Co Inc | Membrane separator for water treatment |
JPH10216486A (en) * | 1997-02-04 | 1998-08-18 | Kurita Water Ind Ltd | Operation controller for membrane separator |
-
1999
- 1999-08-30 JP JP24280399A patent/JP4135267B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05317660A (en) * | 1992-05-21 | 1993-12-03 | Kurita Water Ind Ltd | Membrane separator |
JPH081158A (en) * | 1994-06-16 | 1996-01-09 | Daicel Chem Ind Ltd | Method for operating water purification system and water purifier |
JPH0929070A (en) * | 1995-07-24 | 1997-02-04 | Tohoku Electric Power Co Inc | Membrane separator for water treatment |
JPH10216486A (en) * | 1997-02-04 | 1998-08-18 | Kurita Water Ind Ltd | Operation controller for membrane separator |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002059163A (en) * | 2000-08-24 | 2002-02-26 | Kubota Corp | Method of maintaining and managing immersion type membrane separator |
JP2002336616A (en) * | 2001-05-16 | 2002-11-26 | Ngk Insulators Ltd | Membrane filtration method |
JP4714367B2 (en) * | 2001-05-16 | 2011-06-29 | メタウォーター株式会社 | Membrane filtration method |
JP2003094058A (en) * | 2001-09-27 | 2003-04-02 | Daicel Chem Ind Ltd | Method for treating water |
JP2007014948A (en) * | 2005-06-09 | 2007-01-25 | Toray Ind Inc | Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram |
JP2007038212A (en) * | 2005-06-28 | 2007-02-15 | Toray Ind Inc | Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus |
JP2007185648A (en) * | 2005-09-01 | 2007-07-26 | Toray Ind Inc | Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus |
JP2008229583A (en) * | 2007-03-23 | 2008-10-02 | Metawater Co Ltd | Method for controlling operation of membrane filtration apparatus |
WO2011122289A1 (en) | 2010-03-30 | 2011-10-06 | 東レ株式会社 | Method for cleaning separation membrane module, and method for fresh water generation |
JP4968413B2 (en) * | 2010-03-30 | 2012-07-04 | 東レ株式会社 | Separation membrane module cleaning method and fresh water generation method |
WO2013001914A1 (en) | 2011-06-29 | 2013-01-03 | 東レ株式会社 | Washing method for separation membrane module |
US8918477B2 (en) | 2012-03-20 | 2014-12-23 | International Business Machines Corporation | Inter-domain replication of service information |
US8930493B2 (en) | 2012-03-20 | 2015-01-06 | International Business Machines Corporation | Inter-domain replication of service information |
US9313231B2 (en) | 2012-03-20 | 2016-04-12 | International Business Machines Corporation | Inter-domain replication of service information |
US9866593B2 (en) | 2012-03-20 | 2018-01-09 | International Business Machines Corporation | Inter-domain replication of service information |
US10116706B2 (en) | 2012-03-20 | 2018-10-30 | International Business Machines Corporation | Inter-domain replication of service information |
US10715553B2 (en) | 2012-03-20 | 2020-07-14 | International Business Machines Corporation | Inter-domain replication of service information |
KR101345873B1 (en) * | 2013-07-26 | 2013-12-30 | 대림산업 주식회사 | Membrane process operating method |
EP3057688A4 (en) * | 2013-10-15 | 2017-10-18 | Basf Se | Improving the chemical stability of filtration membranes |
US10569227B2 (en) | 2013-10-15 | 2020-02-25 | Basf Se | Improving the chemical stability of filtration membranes |
JP2016067967A (en) * | 2014-09-26 | 2016-05-09 | 三浦工業株式会社 | Cleaning method |
Also Published As
Publication number | Publication date |
---|---|
JP4135267B2 (en) | 2008-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0725669B1 (en) | Method and apparatus for recovering water from a sewer main | |
JP2001327967A (en) | Operating method and manufacturing method of membrane filtration plant | |
JP2000140585A (en) | Operation of membrane separation apparatus, and membrane separation apparatus | |
JPH11309351A (en) | Washing of hollow fiber membrane module | |
KR101050418B1 (en) | Intelligent High Efficiency Membrane Maintenance Cleaning System and Method | |
JP2000140585A5 (en) | ||
JPH06262173A (en) | Membrane purifying method for surface water with improved recovery rate and operation method of its device | |
JPH11169851A (en) | Water filter and its operation | |
Sowmya et al. | Studies on effective treatment of waste water using submerged ceramic membrane bioreactor | |
JP4979519B2 (en) | Operation method of membrane separation activated sludge treatment equipment | |
JP4631287B2 (en) | Permeation membrane cleaning method | |
JP2004057883A (en) | Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor | |
JP2018008192A (en) | Foulant quantification method | |
JPH06238136A (en) | Method for washing filter membrane module | |
JP2000033241A (en) | Operation of membrane separator | |
JP4454922B2 (en) | Control method of filtration apparatus using hollow fiber type separation membrane | |
JP2002035748A (en) | Water cleaning treatment apparatus using large pore size filter membrane member | |
JP3943748B2 (en) | Cleaning method for membrane filtration equipment | |
CN105592915B (en) | It is configured to the chemical cleaning method of the RO/NF separation membranous systems of two row | |
JPH05168873A (en) | Method for maintaining treating capacity of filter membrane | |
JPH09262444A (en) | Cleaning method of membrane module | |
JP4156984B2 (en) | Cleaning method for separation membrane module | |
JP4876391B2 (en) | Precoat liquid concentration control method | |
JPH06238135A (en) | Permeated flux recovery method for hollow fiber filter membrane module | |
JP4917792B2 (en) | Method for estimating the degree of contamination of separation membranes used in membrane separation activated sludge equipment. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080526 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |