JP2003063830A - Method for manufacturing porous glass preform - Google Patents
Method for manufacturing porous glass preformInfo
- Publication number
- JP2003063830A JP2003063830A JP2002170980A JP2002170980A JP2003063830A JP 2003063830 A JP2003063830 A JP 2003063830A JP 2002170980 A JP2002170980 A JP 2002170980A JP 2002170980 A JP2002170980 A JP 2002170980A JP 2003063830 A JP2003063830 A JP 2003063830A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- bulk density
- gas
- raw material
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はOVD法による光フ
ァイバ母材の製造方法、特にドープ材をドープしながら
ガラス微粒子堆積を行い、多孔質ガラス母材を製造する
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber preform by an OVD method, and more particularly to a method for producing a porous glass preform by depositing glass fine particles while doping a doping material.
【0002】[0002]
【従来の技術】高純度の多孔質ガラス母材(ガラス微粒
子堆積体ともいう)を合成する方法として、VAD法又
はOVD法が一般的である。これらの中で、OVD法
は、例えば特開昭48−73522号公報に示されるよ
うに、回転するガラスロッドの外周部にガラス原料ガス
の加水分解反応又は酸化反応により生成したガラス微粒
子を堆積、積層させ、母材外径を次第に大きくし、所定
量のガラス微粒子が堆積された後、堆積を停止する多層
付け方法である。2. Description of the Related Art The VAD method or the OVD method is generally used as a method for synthesizing a high-purity porous glass base material (also referred to as a glass particle deposit). Among them, the OVD method, for example, as disclosed in Japanese Patent Laid-Open No. 48-73222, deposits glass fine particles produced by a hydrolysis reaction or an oxidation reaction of a glass raw material gas on the outer peripheral portion of a rotating glass rod, This is a multi-layering method in which the outer diameter of the base material is gradually increased and the glass particles are deposited in a predetermined amount, and then the deposition is stopped.
【0003】OVD法による多層付け方法(外付け法)
については、種々の方法が検討され、開発されている
が、代表的な方法として回転する出発ロッドに対向させ
て複数本のガラス微粒子堆積用バーナーを配置し、前記
出発ロッドとバーナーとを平行に相対的に往復移動さ
せ、それぞれのバーナーの1方向への相対移動距離が多
孔質ガラス母材の全長よりも短くなるように設定してガ
ラス微粒子を堆積させる分割合成多層付け法(各相対移
動ごとのガラス微粒子堆積層はそれぞれのバーナーの移
動範囲に分割して形成される)、及び回転する出発ロッ
ドに対向させて1本又は複数本のガラス微粒子堆積用バ
ーナーを配置し、前記出発ロッドとバーナーとを平行に
相対的に往復移動させ、それぞれのバーナーの1方向へ
の相対移動距離が多孔質ガラス母材の全長よりも長くな
るように設定してガラス微粒子を堆積させる連続合成多
層付け法(各相対移動ごとにそれぞれのバーナーによる
ガラス微粒子堆積層が多孔質ガラス母材の全長にわたっ
て形成される)がある。Multi-layer attachment method by OVD method (external attachment method)
For various methods, various methods have been studied and developed.As a typical method, a plurality of glass particulate deposition burners are arranged facing a rotating starting rod, and the starting rod and the burner are arranged in parallel. Divided synthesis multi-layering method in which glass particles are deposited by setting the relative movement distance of each burner in one direction to be shorter than the entire length of the porous glass preform (relative movement for each relative movement). Glass fine particle deposition layer is formed by dividing the moving range of each burner), and one or more glass fine particle deposition burners are arranged so as to face the rotating starting rod. And relatively reciprocally move in parallel, and set so that the relative moving distance of each burner in one direction is longer than the entire length of the porous glass preform. Particles is continuous synthesis multilayer with methods of depositing (a soot layer by the respective burners for each mobile each relative is formed over the entire length of the porous glass preform).
【0004】前記分割合成多層付け法では、往復移動の
折り返し位置を一方向にずらせて行き、所定の距離だけ
折り返し位置が移動した時点で逆方向に移動させる操作
を繰り返す方法が、堆積効率がよく、多孔質ガラス母材
の長さ方向での外径変動も少なく、大型の多孔質ガラス
母材を効率よく製造できる方法である(特開平3−22
8845号公報)。In the above-mentioned division-synthesis multi-layering method, the method of shifting the turn-back position of the reciprocating movement in one direction and repeating the operation of moving the turn-back position in the opposite direction when the turn-back position is moved by a predetermined distance is repeated. A method for efficiently producing a large-sized porous glass preform with little variation in the outer diameter of the porous glass preform in the lengthwise direction (JP-A-3-22).
8845).
【0005】一方、ガラス微粒子堆積用バーナーにガラ
ス原料ガスとともにフッ素化合物を投入し、多孔質ガラ
ス母材を製造するとともにフッ素添加を行う技術が特開
2000−169172号公報に記載されている。同公
報にはフッ素添加に用いられるフッ素含有ガスとして
は、SF6 、SiF4 、C2 F6 、CF4 等が用いら
れ、ガラス微粒子堆積体形成時にフッ素を添加する際は
このフッ素含有ガスを他の原料ガスと共に火炎中で加水
分解してガラス微粒子を形成し、このガラス微粒子を石
英ターゲット上に堆積してフッ素含有ガラス微粒子堆積
体を形成することが記載されている。On the other hand, Japanese Patent Application Laid-Open No. 2000-169172 discloses a technique of introducing a fluorine compound together with a glass raw material gas into a burner for depositing fine glass particles to produce a porous glass base material and add fluorine. In the publication, SF 6 , SiF 4 , C 2 F 6 , CF 4 and the like are used as the fluorine-containing gas used for the addition of fluorine, and the fluorine-containing gas is used when fluorine is added when the glass particle deposit is formed. It is described that, together with other raw material gas, it is hydrolyzed in a flame to form glass fine particles, and the glass fine particles are deposited on a quartz target to form a fluorine-containing glass fine particle deposit body.
【0006】このようにガラス微粒子堆積工程でフッ素
添加を行う利点としてフッ素添加の焼結工程を新たに設
ける必要がないことや非常に添加量の少ないフッ素添加
が行えることがあげられる。しかし、問題点としては、
VAD法のような低嵩密度の多孔質ガラス母材を作る技
術では、多孔質ガラス母材の径方向の添加量安定化が難
しい(不可能ではないが非常に制御しにくい)ことや添
加量を増やすことが困難であることが挙げられる。As described above, the advantage of adding fluorine in the glass fine particle deposition step is that it is not necessary to newly provide a sintering step of adding fluorine, and fluorine can be added in a very small amount. However, the problem is that
In the technique of producing a porous glass base material having a low bulk density such as the VAD method, it is difficult to stabilize the addition amount in the radial direction of the porous glass base material (it is not impossible but very difficult to control), and the addition amount is large. Is difficult to increase.
【0007】上記公報でもガラス微粒子堆積工程でフッ
素添加を行うことはフッ素含有ガスが未反応のまま排気
される等、反応ガスの利用効率が悪いと記載されてい
る。従って、従来はガラス母材へのフッ素添加は多孔質
ガラス母材の焼結時に行われるのが一般的であった。ガ
ラス微粒子堆積工程(スス付け時)のフッ素添加量は
0.01〜0.2%であり、スス付け時にフッ素を多く
入れると原因は不明であるがスス(ガラス微粒子堆積
層)が割れてしまう。一方、焼結時ではフッ素添加量を
0.15〜0.7%とすることができる。The above publication also describes that the addition of fluorine in the step of depositing fine glass particles results in poor utilization efficiency of the reaction gas, for example, the fluorine-containing gas is exhausted unreacted. Therefore, conventionally, the addition of fluorine to the glass base material has generally been performed during the sintering of the porous glass base material. The amount of fluorine added in the step of depositing glass particles (at the time of sooting) is 0.01 to 0.2%. If a large amount of fluorine is added at the time of sooting, the cause is unknown, but the soot (glassy particle deposition layer) is broken. . On the other hand, the amount of fluorine added can be 0.15 to 0.7% during sintering.
【0008】[0008]
【発明が解決しようとする課題】本発明はガラス微粒子
堆積用バーナーにフッ素化合物を導入して多孔質ガラス
母材に微量のフッ素を添加することを主目的とする。こ
のフッ素添加の内容は、次のとおりである:
低濃度のフッ素添加(フッ素添加量として純シリカ
のレベルから0.01%以上0.2%以下まで屈折率が
低くなる程度)を径方向に制御性よく行う方法を提供す
ること、
多孔質ガラス母材に添加されているフッ素量を径方
向に均一とする技術を提供すること、及び
多孔質ガラス母材に添加されているフッ素量を径方
向に変化させ屈折率の段差を作る技術を提供すること。
上記において、フッ素量を径方向に均一とする意味
は、「略均一」とか「略一定」を意味するものとする。DISCLOSURE OF THE INVENTION The main object of the present invention is to introduce a fluorine compound into a burner for depositing fine glass particles to add a trace amount of fluorine to a porous glass base material. The contents of this fluorine addition are as follows: A low concentration of fluorine is added (the amount of added fluorine is from the level of pure silica to 0.01% or more and 0.2% or less) in the radial direction. To provide a method of performing controllability well, to provide a technique for making the amount of fluorine added to the porous glass base material uniform in the radial direction, and to change the amount of fluorine added to the porous glass base material to the radial direction. To provide a technique for making a step in the refractive index by changing the direction. In the above description, the meaning of making the amount of fluorine uniform in the radial direction means “substantially uniform” or “substantially constant”.
【0009】図1(A)に示される状態は、フッ素量が
径方向に均一である一例である。一方、図1(B)に示
される状態はフッ素量が不均一である一例である。図1
(C)は、段差を有する屈折率プロファイルを示す模式
図であり、図中、a,bの部分は、それぞれの部分にお
いてフッ素量が均一である。The state shown in FIG. 1A is an example in which the amount of fluorine is uniform in the radial direction. On the other hand, the state shown in FIG. 1B is an example in which the amount of fluorine is non-uniform. Figure 1
(C) is a schematic diagram showing a refractive index profile having steps, and in the figure, the portions a and b have a uniform amount of fluorine in each portion.
【0010】[0010]
【課題を解決するための手段】上記の目的は、本発明に
係る下記各発明によって達成することができる。
(1)出発ロッド上に層を重ねるように径方向にガラス
微粒子堆積体を成長させていくガラス微粒子堆積方法に
おいて、バーナーに可燃性ガス、助燃性ガス、ガラス原
料ガスとともにフッ素化合物ガスを投入することを特徴
とする多孔質ガラス母材の製造方法。
(2)出発ロッド上に堆積されるガラス微粒子堆積体の
嵩密度を0.60g/cm3 を越えて1.0g/cm3
以下の範囲で径方向にほぼ一定とすることを特徴とする
上記(1)の多孔質ガラス母材の製造方法。The above-mentioned objects can be achieved by the following inventions according to the present invention. (1) In a glass particle depositing method in which a glass particle deposit is grown in a radial direction so that a layer is stacked on a starting rod, a combustible gas, an auxiliary gas, and a fluorine compound gas are introduced into a burner together with a glass raw material gas. A method for producing a porous glass preform characterized by the above. (2) The bulk density of the glass fine particle deposited body deposited on the starting rod exceeds 0.60 g / cm 3 and 1.0 g / cm 3
The method for producing a porous glass preform according to the above (1), characterized in that the diameter is made substantially constant in the following range.
【0011】(3)ガラス原料ガスとフッ素化合物ガス
の混合比を一定とすることを特徴とする上記(2)の多
孔質ガラス母材の製造方法。
(4)ガラス原料ガスとフッ素化合物ガスの混合比を変
化させることを特徴とする上記(2)の多孔質ガラス母
材の製造方法。(3) The method for producing a porous glass preform according to the above (2), characterized in that the mixing ratio of the glass raw material gas and the fluorine compound gas is kept constant. (4) The method for producing a porous glass preform according to (2) above, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
【0012】(5)ガラス原料ガスとフッ素化合物ガス
の混合比を一定とし、且つ、出発ロッド上に堆積される
ガラス微粒子堆積体の嵩密度を0.60g/cm3 を越
えて1.0g/cm3 以下の範囲で径方向に変化させる
ことを特徴とする上記(1)の多孔質ガラス母材の製造
方法。
(6)出発ロッド上に堆積されるガラス微粒子堆積体の
嵩密度を0.1g/cm 3 以上0.60g/cm3 以下
の範囲とすることを特徴とする上記(1)の多孔質ガラ
ス母材の製造方法。(5) Glass raw material gas and fluorine compound gas
Are mixed on the starting rod and are deposited on the starting rod.
The bulk density of the glass particulate deposit is 0.60 g / cm.3Over
1.0g / cm3Radially change within the following range
Production of the porous glass preform according to the above (1), characterized in that
Method.
(6) of the glass particulate deposits deposited on the starting rod
Bulk density of 0.1 g / cm 30.60 g / cm or more3Less than
The porous glass according to (1) above, characterized in that
Manufacturing method of base metal.
【0013】(7)ガラス微粒子の成長とともにガラス
原料ガスとフッ素化合物ガスの混合比又は径方向の嵩密
度分布を変えることを特徴とする上記(6)の多孔質ガ
ラス母材の製造方法。
(8)所望のガラス微粒子堆積体径となるまでは、ガラ
ス微粒子の成長とともにガラス原料ガスとフッ素化合物
ガスの混合比を変え、且つ、出発ロッド上に堆積される
ガラス微粒子堆積層の嵩密度を0.1g/cm3 以上
0.60g/cm3以下の範囲とし、所望の径に達した
後は、嵩密度を0.60g/cm3 を越えて1.0g/
cm3 以下の範囲から選ばれる一定の嵩密度とし、且
つ、ガラス原料ガスとフッ素化合物ガスの混合比も一定
とすることを特徴とする上記(1)の多孔質ガラス母材
の製造方法。(7) The method for producing a porous glass preform according to the above (6), characterized in that the mixing ratio of the glass source gas and the fluorine compound gas or the bulk density distribution in the radial direction is changed as the glass particles grow. (8) Until the desired particle size of the glass particle deposit is reached, the mixing ratio of the glass raw material gas and the fluorine compound gas is changed as the glass particle grows, and the bulk density of the glass particle deposit layer deposited on the starting rod is changed. The volume density is set to 0.1 g / cm 3 or more and 0.60 g / cm 3 or less, and after reaching a desired diameter, the bulk density exceeds 0.60 g / cm 3 and 1.0 g / cm 3
The method for producing a porous glass preform according to the above (1), which has a constant bulk density selected from the range of 3 cm 3 or less and a constant mixing ratio of the glass raw material gas and the fluorine compound gas.
【0014】(9)所望のガラス微粒子堆積体径となる
までは、ガラス微粒子の成長とともにガラス原料ガスと
フッ素化合物ガスの混合比を変え、且つ、出発ロッド上
に堆積されるガラス微粒子堆積層の嵩密度を0.1g/
cm3 以上0.60g/cm3以下の範囲とし、所望の
径に達した後は、嵩密度を0.60g/cm3 を越えて
1.0g/cm3 以下の範囲から選ばれる一定の嵩密度
とし、且つ、ガラス原料ガスとフッ素化合物ガスの混合
比を変えることを特徴とする上記(1)の多孔質ガラス
母材の製造方法。
(10)複数本のガラス微粒子堆積用バーナーを使用す
ることを特徴とする上記(1)〜(9)のいずれか1つ
の多孔質ガラス母材の製造方法。(9) Until the desired particle size of the glass particle deposit is reached, the mixing ratio of the glass raw material gas and the fluorine compound gas is changed with the growth of the glass particle, and the glass particle deposit layer deposited on the starting rod is changed. Bulk density of 0.1 g /
cm 3 and more 0.60 g / cm 3 or less in the range, desired after reaching the diameter, constant bulk selected from 1.0 g / cm 3 or less in the range in the bulk density exceeds the 0.60 g / cm 3 The method for producing a porous glass preform according to (1) above, wherein the density is changed and the mixing ratio of the glass raw material gas and the fluorine compound gas is changed. (10) The method for producing a porous glass preform according to any one of the above (1) to (9), wherein a plurality of burners for depositing glass particles are used.
【0015】(11)前記ガラス微粒子堆積方法が回転
する出発ロッドに対向させて複数本のガラス微粒子堆積
用バーナーを配置し、前記出発ロッドとバーナーとを平
行に相対的に往復移動させ、それぞれのバーナーの1方
向への相対移動距離がガラス微粒子堆積体の全長よりも
短くなるように設定してガラス微粒子を堆積させる分割
合成多層付け法であることを特徴とする前記(1)〜
(9)のいずれか1つの多孔質ガラス母材の製造方法。(11) In the glass particulate deposition method, a plurality of glass particulate deposition burners are arranged so as to face a rotating starting rod, and the starting rod and the burner are relatively reciprocally moved in parallel to each other. (1) to (4), which is a divided synthetic multi-layering method in which glass fine particles are deposited by setting the relative movement distance of the burner in one direction to be shorter than the entire length of the glass fine particle deposit body.
(9) The method for producing a porous glass preform according to any one of (9).
【0016】(12)前記ガラス微粒子堆積方法が回転
する出発ロッドに対向させて1本又は複数本のガラス微
粒子堆積用バーナーを配置し、前記出発ロッドとバーナ
ーとを平行に相対的に往復移動させ、それぞれのバーナ
ーの1方向への相対移動距離がガラス微粒子堆積体の全
長よりも長くなるように設定してガラス微粒子を堆積さ
せる連続合成多層付け法であることを特徴とする前記
(1)の多孔質ガラス母材の製造方法。
(13)出発ロッド上に形成されるガラス微粒子堆積層
の嵩密度を0.80g/cm3 を越えて1.0g/cm
3 以下の範囲で径方向にほぼ一定とすることを特徴とす
る前記(12)の多孔質ガラス母材の製造方法。
(14)ガラス原料ガスとフッ素化合物ガスの混合比を
一定とすることを特徴とする前記(13)の多孔質ガラ
ス母材の製造方法。(12) In the method for depositing glass particles, one or a plurality of burners for depositing glass particles are arranged facing a rotating starting rod, and the starting rod and the burner are relatively reciprocally moved in parallel. The continuous synthetic multi-layering method of depositing glass particles by setting the relative movement distance of each burner in one direction to be longer than the entire length of the glass particle deposit body. A method for manufacturing a porous glass base material. (13) The bulk density of the glass fine particle deposition layer formed on the starting rod exceeds 0.80 g / cm 3 and is 1.0 g / cm 3.
The method for producing a porous glass preform according to the above (12), characterized in that the diameter is kept substantially constant in the range of 3 or less. (14) The method for producing a porous glass preform according to the above (13), wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is constant.
【0017】(15)ガラス原料ガスとフッ素化合物ガ
スの混合比を変化させることを特徴とする前記(13)
の多孔質ガラス母材の製造方法。
(16)ガラス原料ガスとフッ素化合物ガスの混合比を
一定とし、且つ、出発ロッド上に形成されるガラス微粒
子堆積層の嵩密度を0.80g/cm3 を越えて1.0
g/cm3 以下の範囲で径方向に変化させることを特徴
とする前記(12)の多孔質ガラス母材の製造方法。
(17)出発ロッド上に形成されるガラス微粒子堆積層
の嵩密度を0.1g/cm3 以上0.80g/cm3 以
下の範囲とすることを特徴とする前記(13)の多孔質
ガラス母材の製造方法。
(18)ガラス微粒子の成長とともにガラス原料ガスと
フッ素化合物ガスの混合比又は径方向の嵩密度分布を変
えることを特徴とする前記(17)の多孔質ガラス母材
の製造方法。(15) The above (13), wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
Of the porous glass base material of the above. (16) The mixing ratio of the glass raw material gas and the fluorine compound gas is kept constant, and the bulk density of the glass fine particle deposition layer formed on the starting rod exceeds 0.80 g / cm 3 and is 1.0.
The method for producing a porous glass preform according to the above (12), characterized in that the radial direction is changed within a range of g / cm 3 or less. (17) The porous glass matrix according to the above (13), characterized in that the bulk density of the glass fine particle deposition layer formed on the starting rod is in the range of 0.1 g / cm 3 or more and 0.80 g / cm 3 or less. Method of manufacturing wood. (18) The method for producing a porous glass preform according to the above (17), characterized in that the mixing ratio of the glass raw material gas and the fluorine compound gas or the bulk density distribution in the radial direction is changed as the glass fine particles grow.
【0018】(19)所望のガラス微粒子堆積体径とな
るまでは、ガラス微粒子の成長とともにガラス原料ガス
とフッ素化合物ガスの混合比を変え、且つ、出発ロッド
上に形成されるガラス微粒子堆積層の嵩密度を0.1g
/cm3 以上0.80g/cm 3 以下の範囲とし、所望
の径に達した後は、嵩密度を0.80g/cm3 を越え
て1.0g/cm3 以下の範囲から選ばれる一定の嵩密
度とし、且つ、ガラス原料ガスとフッ素化合物ガスの混
合比も一定とすることを特徴とする前記(12)の多孔
質ガラス母材の製造方法。
(20)所望のガラス微粒子堆積体径となるまでは、ガ
ラス微粒子の成長とともにガラス原料ガスとフッ素化合
物ガスの混合比を変え、且つ、出発ロッド上に堆積され
るガラス微粒子の嵩密度を0.1g/cm3 以上0.8
0g/cm3 以下の範囲とし、所望の径に達した後は、
嵩密度を0.80g/cm3 を越えて1.0g/cm3
以下の範囲から選ばれる一定の嵩密度とし、且つ、ガラ
ス原料ガスとフッ素化合物ガスの混合比を変えることを
特徴とする前記(12)の多孔質ガラス母材の製造方
法。(19) A desired glass particle deposition body diameter is obtained.
Until the glass raw material gas grows
The starting rod.
The bulk density of the glass fine particle deposition layer formed on the top is 0.1 g.
/ Cm30.80 g / cm or more 3The following range, desired
After reaching the diameter of 0.80g / cm3Beyond
1.0 g / cm3A certain volume selected from the following range
And the mixture of glass source gas and fluorine compound gas
The porosity of the above (12), characterized in that the mixing ratio is also constant.
Of manufacturing high quality glass base material.
(20) Until the desired glass particle deposit size is reached,
With the growth of lath particles, glass raw material gas and fluorination
The mixing ratio of the product gas is changed, and the gas is deposited on the starting rod.
The glass particles have a bulk density of 0.1 g / cm30.8 or more
0 g / cm3Set the following range, and after reaching the desired diameter,
Bulk density is 0.80 g / cm3Over 1.0g / cm3
It has a certain bulk density selected from the following range and
Changing the mixing ratio of the raw material gas and the fluorine compound gas
The method for producing the porous glass base material according to (12), which is characterized
Law.
【0019】(21)ガラス微粒子堆積用バーナーとし
て、バーナー火炎が多孔質ガラス堆積面に到達するまで
の間に可燃性ガス、助燃性ガス、原料ガス、フッ素化合
物ガスが一点に集まる構造を有する焦点型バーナーを用
いることを特徴とする前記(1)〜(20)のいずれか
1つの多孔質ガラス母材の製造方法。(21) As a burner for depositing fine glass particles, a focus having a structure in which a combustible gas, an auxiliary combustion gas, a raw material gas, and a fluorine compound gas gather at one point until the burner flame reaches the porous glass deposition surface. A method for producing a porous glass preform according to any one of the above (1) to (20), characterized in that a mold burner is used.
【0020】[0020]
【発明の実施の形態】最近、フッ素を極く微量添加した
いという要求が出て来ていてそのためにはスス付時にフ
ッ素添加するとよい。フッ素添加量と嵩密度の間には密
接な関係があり、外付け法であれば嵩密度の調整が可能
なことから半径方向のフッ素添加量を制御することがで
きる。これが本発明の最重要の特徴である。ここで径方
向とはガラス微粒子堆積体の光軸に垂直な断面の円にお
ける径の方向をいう。本発明者らはOVD法による多孔
質ガラス母材の製造において、ガラス原料ガスとフッ素
化合物ガスの混合比を一定とした場合、嵩密度0.6g
/cm3 (前記連続合成多層付け法の場合は0.8g/
cm3 )を境として母材半径方向のフッ素濃度が均一と
なるかならないかが定まることを見出した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Recently, there has been a demand for adding a very small amount of fluorine, and for that purpose, it is advisable to add fluorine when sooting. There is a close relationship between the amount of fluorine added and the bulk density, and since the bulk density can be adjusted by an external method, the amount of fluorine added in the radial direction can be controlled. This is the most important feature of the present invention. Here, the radial direction means a radial direction in a circle of a cross section perpendicular to the optical axis of the glass particle deposit body. In the production of the porous glass base material by the OVD method, the inventors have made the bulk density 0.6 g when the mixing ratio of the glass raw material gas and the fluorine compound gas is constant.
/ Cm 3 (0.8 g / in the case of the continuous synthetic multi-layering method)
It has been found that whether or not the fluorine concentration in the radial direction of the base material becomes uniform is determined at the boundary of cm 3 .
【0021】この場合、嵩密度が0.6g/cm3 (連
続合成多層付けでは0.8g/cm 3 )を越えてはフッ
素濃度が均一になるが、0.6g/cm3 (連続合成多
層付けでは0.8g/cm3 )以下では均一にならな
い。従って、フッ素を均一に添加したいときは、嵩密度
を0.6g/cm3 (連続合成多層付けでは0.8g/
cm3 )を越えて1.0g/cm3 以下とすればよい。
1.0g/cm3 より大きくすると母材の透明化工程で
問題が生じるので上限を1.0とした。そして、フッ素
を不均一に添加したいときは、嵩密度を0.1以上0.
6g/cm3 (連続合成多層付けでは0.8g/c
m3 )以下とすればよい。0.1g/cm3 より小さく
することは難しい(ススが割れてしまう)ので下限を
0.1とした。In this case, the bulk density is 0.6 g / cm.3(Communicating
0.8 g / cm for continuous multi-layering 3)
Elemental concentration becomes uniform, but 0.6g / cm3(Multiple continuous synthesis
0.8g / cm when layered3) The following should not be uniform
Yes. Therefore, if you want to add fluorine uniformly,
0.6 g / cm3(0.8g / in continuous synthetic multi-layering)
cm3) Over 1.0g / cm3The following may be done.
1.0 g / cm3If it is made larger, it becomes more transparent in the base material
Since there is a problem, the upper limit was set to 1.0. And fluorine
When it is desired to add non-uniformly, the bulk density should be 0.1 or more.
6 g / cm3(0.8g / c with continuous synthetic multilayering
m3) It should be as follows. 0.1 g / cm3Smaller
It is difficult to do so (the soot will crack), so set the lower limit.
It was set to 0.1.
【0022】連続合成多層付け法の場合にフッ素添加状
態が変化する嵩密度が分割合成多層付け法に比較して高
い理由は次のように考えられる。例えば分割合成多層付
け法の場合、出発ロッドとバーナーの往復移動距離は略
バーナーの間隔分程度とするのが一般的であり、常に多
孔質ガラス母材はバーナー火炎に包まれている状態が作
られている。そのため、母材は保温された状態で成長し
ていくのでガラス微粒子層間で歪みが形成されにくく、
スス割れに対しては有利であるが、ガラス微粒子に結合
したフッ素が解離し、抜けていく反応も促進される。母
材外部から供給されるフッ素量と解離していくフッ素量
が均衡を保ち始める嵩密度が分割合成多層付け法では
0.6g/cm3 となる。ガラス微粒子に結合したフッ
素が解離する反応は次式と推定され、生成したHF(気
体)が母材中より抜けていき、この反応は高温ほど促進
される。
SiF+H2 O → SiO+HFThe reason why the bulk density at which the fluorine addition state changes in the case of the continuous synthetic multi-layering method is higher than that in the divided synthetic multi-layering method is considered as follows. For example, in the case of the split composite multi-layering method, the reciprocating distance between the starting rod and the burner is generally set to about the interval between the burners, and the porous glass base material is always wrapped in the burner flame. Has been. Therefore, since the base material grows while being kept warm, strain is unlikely to be formed between the glass fine particle layers,
Although it is advantageous for soot cracking, the fluorine bound to the glass particles is dissociated, and the reaction of leaving is also promoted. The bulk density at which the amount of fluorine supplied from the outside of the base material and the amount of fluorine that dissociates begins to maintain a balance is 0.6 g / cm 3 in the split-synthesis multi-layering method. The reaction of dissociating fluorine bonded to the glass particles is presumed to be the following equation, and the generated HF (gas) escapes from the base material, and this reaction is accelerated at higher temperatures. SiF + H 2 O → SiO + HF
【0023】一方、連続合成多層付け法の場合は、一方
向への移動ごとに全てのバーナーが出発ロッドの有効部
全長を通過するように往復移動を行うので火炎の外に母
材が存在する時間が長くなる。この間に母材が冷却され
るので母材自身の温度は分割合成多層付け法の場合より
も低く保たれており、解離反応が少ないと考えられる。
連続合成多層付け法と分割合成多層付け法とを比べる
と、同じ嵩密度では連続合成多層付け法の方が解離反応
が少ない分だけフッ素の供給量が解離量よりも多く、均
衡状態に落ちつくまでの時間が長くなる。すなわち、す
ぐに均衡状態に落ちつく嵩密度は分割合成多層付け法に
比較して高くなり、0.8g/cm3 となる。ただし、
冷却された母材上に新しいガラス微粒子が堆積するため
ガラス微粒子層間での歪みは蓄積しやすく、スス割れは
生じやすい。また、合成速度も全てのバーナーがガラス
微粒子堆積に使用される形態のため分割合成多層付け法
の方が速いが、各層を同一バーナーが形成する連続合成
多層付け法の方が母材長さ方向の堆積量の変化は小さ
い。On the other hand, in the case of the continuous synthetic multi-layering method, every burner reciprocates so as to pass through the entire effective portion of the starting rod every time it moves in one direction, so that the base material exists outside the flame. Time will increase. Since the base material is cooled during this period, the temperature of the base material itself is kept lower than in the case of the split-synthesis multi-layering method, and it is considered that the dissociation reaction is small.
Comparing the continuous synthetic multi-layering method and the split-synthesis multi-layering method, the continuous synthetic multi-layering method has less dissociation reaction at the same bulk density, and the fluorine supply amount is larger than the dissociation amount until the equilibrium state is reached. Will take longer. That is, the bulk density, which immediately settles in an equilibrium state, is higher than that of the split-synthesis multi-layering method, and is 0.8 g / cm 3 . However,
Since new glass fine particles are deposited on the cooled base material, strain is likely to accumulate between the glass fine particle layers, and soot cracking is likely to occur. In addition, the synthesis speed is faster with the split-synthesis multi-layering method because all burners are used for depositing glass particles, but the continuous synthesis multi-layering method in which each layer is formed by the same burner is longer in the base metal length direction. The change in the amount of deposit is small.
【0024】嵩密度を小さくするときは(例えば、0.
3g/cm3 未満)、複数本のバーナーを使用する分割
合成多層付け法が有効である。連続合成多層付け法では
バーナーが遠ざかったときにススが冷えて割れてしまう
ことがある。複数本のバーナーだとススが冷えることが
ないので割れることがなく有利である。When the bulk density is reduced (for example, 0.
(Less than 3 g / cm 3 ), a split-synthesis multi-layering method using a plurality of burners is effective. In the continuous synthetic multi-layering method, the soot may cool and crack when the burner moves away. It is advantageous to use multiple burners because the soot will not get cold and will not crack.
【0025】本発明において、ガラス微粒子堆積用バー
ナーにフッ素化合物を投入してフッ素添加を行う場合、
ガラス微粒子堆積体の嵩密度によってフッ素添加のメカ
ニズムが変化するので以下に説明する。フッ素添加は大
きく分けて以下の3通りのパターンで多孔質ガラス母材
に添加される。
1)ガラス原料が加水分解反応してガラス微粒子にな
り、堆積面に到達するまでの間にフッ素化合物のフッ素
がガラス微粒子と結合する、
2)ガラス微粒子が堆積した後に、ガラス微粒子の隙間
に存在するフッ素がガラス微粒子と結合する。隙間の大
きさは、ガラス微粒子の嵩密度によって変わるのでここ
で添加される量は、嵩密度との依存性が大きい。
3)ガラス微粒子が堆積した後、ガラス微粒子の隙間を
通ってフッ素が入っていきガラス微粒子と結合する。こ
の場合も反応の程度は、ガラス微粒子堆積体の嵩密度に
依存し、更にガラス微粒子堆積体が存在する雰囲気(母
材温度、H2 O濃度など)と解離反応との関係から0.
6g/cm3 (連続合成多層付け法では、0.8g/c
m3 )より嵩密度が高い領域では、すぐに添加反応と解
離反応の均衡状態に落ち着いてしまうため、本反応によ
るフッ素添加量の変化が見られない。前記嵩密度以下の
範囲でもいずれ解離反応と添加反応の均衡状態に落ち着
くことになるが、ガラス微粒子の隙間を通って供給され
るフッ素の供給量が解離するフッ素量より多い状態が比
較的長い時間にわたって存在する。ここで上記1)〜
3)を踏まえて上記各発明(1)〜(21)について説
明する。In the present invention, when a fluorine compound is added to a burner for depositing glass particles to add fluorine,
Since the mechanism of fluorine addition changes depending on the bulk density of the glass particulate deposit, it will be described below. The addition of fluorine is roughly divided into the following three patterns and added to the porous glass base material. 1) The glass raw material undergoes a hydrolysis reaction to form glass particles, and the fluorine of the fluorine compound is bonded to the glass particles until it reaches the deposition surface. 2) After the glass particles are deposited, they exist in the gaps between the glass particles. Fluorine is bonded to the glass particles. Since the size of the gap varies depending on the bulk density of the glass fine particles, the amount added here has a large dependency on the bulk density. 3) After the glass particles are deposited, fluorine enters through the gaps between the glass particles and bonds with the glass particles. In this case as well, the degree of reaction depends on the bulk density of the glass particle deposit, and further, from the relationship between the atmosphere in which the glass particle deposit exists (base material temperature, H 2 O concentration, etc.) and the dissociation reaction,
6 g / cm 3 (0.8 g / c in the continuous synthetic multi-layering method)
In a region where the bulk density is higher than that of m 3 ), the equilibrium state of the addition reaction and the dissociation reaction is immediately settled, so that the change in the amount of fluorine added due to this reaction is not observed. Although it will settle into an equilibrium state of the dissociation reaction and the addition reaction even in the range of the bulk density or less, the state in which the amount of fluorine supplied through the gaps of the glass particles is larger than the amount of dissociated fluorine is relatively long Exists across. Here 1) ~
The respective inventions (1) to (21) will be described based on 3).
【0026】(1)、(12)
本発明の目的であるバーナーにフッ素化合物ガスを供給
し、多孔質ガラス微粒子体を製造するとともに多孔質ガ
ラス部にフッ素添加を行う技術思想を規定している。本
発明の基本的特徴であり、(1)は全般的な多層付け方
法、(11)及び(12)はそれぞれ分割合成多層付け
法及び連続合成多層付け法に特定した発明である。OV
D法はVAD法と比較して径方向の嵩密度制御が行いや
すく、フッ素添加量の制御性が高い方法である。分割合
成多層付け法と連続合成多層付け法を比較すると、前者
は後者に比べて合成速度が速い(低コスト化が可能)、
スス割れが起こり難いなどのメリットがあり、また、後
者の場合は前者に比較して長さ方向のガラス微粒子堆積
量の安定度がよいなどの利点がある。(1), (12) The technical idea of supplying a fluorine compound gas to the burner, which is the object of the present invention, to produce porous glass fine particles and to add fluorine to the porous glass part is defined. . The invention is a basic feature of the present invention, in which (1) is a general multi-layering method, and (11) and (12) are inventions specified in a division composite multi-layering method and a continuous composite multi-layering method, respectively. OV
The method D is a method in which the bulk density control in the radial direction is easier to perform and the controllability of the amount of fluorine added is higher than that in the VAD method. Comparing the divided composite multi-layering method and the continuous composite multi-layering method, the former has a higher composition speed than the latter (cost can be reduced),
Soot cracking is less likely to occur, and in the latter case, the stability of the glass particulate deposition amount in the longitudinal direction is better than in the former case.
【0027】(2)、(13)
まず、嵩密度0.60g/cm3 (連続合成多層付けで
は0.8g/cm3 )を越えて1.0g/cm3 以下の
範囲である場合、前記3)の反応は無視してよい。径方
向に嵩密度を一定に保つようにした場合、前記2)の反
応は径方向に一定であり、結果、径方向に均一にフッ素
添加が行える。0.60g/cm3 (連続合成多層付け
では0.8g/cm3 )を越えて1.0g/cm3 以下
の範囲で嵩密度により、前記2)の反応量が変化するの
で適宜の嵩密度とすることで所望のフッ素添加量に調整
することが可能である。
(3)、(14)
ガラス原料ガスとフッ素化合物ガスの混合比を一定とす
る場合にはガラス微粒子周りのフッ素濃度が一定となる
ので前記1)の反応は径方向に等しくなっている。(2), (13) First, when the bulk density exceeds 0.60 g / cm 3 (0.8 g / cm 3 for continuous synthetic multilayering) and 1.0 g / cm 3 or less, The reaction of 3) can be ignored. When the bulk density is kept constant in the radial direction, the reaction of the above 2) is constant in the radial direction, and as a result, fluorine can be uniformly added in the radial direction. Since the reaction amount of the above 2) varies depending on the bulk density in the range of more than 0.60 g / cm 3 (0.8 g / cm 3 in the case of continuous synthetic multilayering) and 1.0 g / cm 3 or less, an appropriate bulk density is obtained. With this, it is possible to adjust to a desired amount of fluorine added. (3), (14) When the mixing ratio of the glass raw material gas and the fluorine compound gas is constant, the fluorine concentration around the glass fine particles is constant, so that the reaction of 1) is equal in the radial direction.
【0028】(4)、(15)
所望の多孔質ガラス径になるまでガラス微粒子堆積を行
い、所望の多孔質ガラス径に到達したらガラス原料ガス
を増減する、または、フッ素化合物ガスを増減すること
により、フッ素濃度を変えてやる。こうすることで1)
の反応によるフッ素添加量の変化と、2)の反応による
フッ素添加量の変化(嵩密度が同じなので隙間の大きさ
は無変化だが、その隙間に閉じ込められるフッ素量は変
化する)により、フッ素添加量が変化し、屈折率の段差
を生むことが可能となる〔図1(C)参照〕。また、流
量を変化させた層から急に反応が変化するために屈折率
の段差は急峻な変化となる。ガラス原料ガスとフッ素化
合物ガスの混合比を少しずつ連続的に変化させれば屈折
率を連続的に変化させることもできる。(4), (15) Glass fine particles are deposited until the desired porous glass diameter is reached, and when the desired porous glass diameter is reached, the glass raw material gas is increased or decreased, or the fluorine compound gas is increased or decreased. Change the fluorine concentration. By doing this 1)
Fluorine addition due to the change in the amount of fluorine added by the reaction of 2 and the change in the amount of fluorine added by the reaction of 2 (the size of the gap does not change because the bulk density is the same, but the amount of fluorine trapped in the gap changes) The amount changes, and it becomes possible to create a step in the refractive index [see FIG. 1 (C)]. In addition, since the reaction suddenly changes from the layer where the flow rate is changed, the step of the refractive index changes sharply. The refractive index can be continuously changed by gradually changing the mixing ratio of the glass raw material gas and the fluorine compound gas little by little.
【0029】(5)、(16)
今までと同様の嵩密度範囲であることからやはり、前記
3)の反応は無視してよい。更にガラス原料ガスとフッ
素化合物の混合比率も変化させないことから1)の反応
は、一定であると考えてよい。そこで所望の多孔質ガラ
ス径まで同条件でガラス微粒子の堆積を行い、屈折率の
段差を作りたい径から温度を制御し、嵩密度を変えるこ
とで前記2)の反応が変化するため屈折率の段差が生ま
れる。前記1)の反応が一定のため屈折率の段差量の変
化が小さく、微妙な調整に適している。嵩密度を少しず
つ連続的に変化させれば屈折率を連続的に変化させるこ
ともできる。(5), (16) Since the bulk density range is the same as before, the reaction of 3) above can be ignored. Furthermore, since the mixing ratio of the glass raw material gas and the fluorine compound is not changed, the reaction of 1) may be considered to be constant. Therefore, glass particles are deposited under the same conditions up to the desired porous glass diameter, the temperature is controlled from the diameter at which a step in the refractive index is desired to be created, and the reaction of 2) above is changed by changing the bulk density. A step is created. Since the reaction of 1) above is constant, the change in the step difference in the refractive index is small, which is suitable for delicate adjustment. The refractive index can be continuously changed by gradually changing the bulk density little by little.
【0030】(6)、(17)
ガラス微粒子堆積体の嵩密度を0.10g/cm3 以上
0.60g/cm3 (連続合成多層付けでは0.8g/
cm3 )以下としてフッ素の添加量を多くする方法を提
供する。
(7)、(18)
この発明はフッ素の添加量を多くし、且つ、添加量を径
方向に均一にするものである。この発明による多孔質ガ
ラス母材では嵩密度が低いので、前記3)の反応も起き
る。この方法では、ガラス微粒子の隙間からフッ素が入
ってきてガラスに添加されるために先についたガラス微
粒子ほどフッ素が多く添加されることとなってしまう。
そこでガラス微粒子堆積後半ほどフッ素化合物ガスを増
やす、または、ガラス原料ガスを減らすことを行い、フ
ッ素濃度を高くしてやり、前記1)及び前記2)の反応
を変化させることにより、径方向に添加されるフッ素濃
度の均一化を行っている。1)〜3)の反応が行える状
況ではもっとも3)がフッ素添加量に影響が大きいと考
えることと更にガラス微粒子が堆積されていくにつれて
嵩密度を低く〔前記2)の作用を利用〕することで更に
添加量の均一化が計れるためである。(6), (17) The bulk density of the glass fine particle deposit is 0.10 g / cm 3 or more and 0.60 g / cm 3 (0.8 g / cm 3 in continuous synthetic multilayering).
A method for increasing the amount of fluorine added is provided as cm 3 ) or less. (7), (18) In the present invention, the amount of fluorine added is increased and the amount added is made uniform in the radial direction. Since the porous glass base material according to the present invention has a low bulk density, the reaction of 3) above also occurs. In this method, since fluorine enters through the gaps between the glass particles and is added to the glass, the more the glass particles attached earlier, the more fluorine is added.
Therefore, the fluorine compound gas is increased or the glass raw material gas is decreased toward the latter half of the deposition of the glass particles to increase the fluorine concentration, and the reaction of 1) and 2) is changed to add in the radial direction. The fluorine concentration is made uniform. In the situation where the reactions 1) to 3) can be performed, it is considered that 3) has the greatest effect on the amount of fluorine added, and the bulk density is lowered as the glass particles are further deposited [the effect of 2) is used]. This is because the addition amount can be made uniform.
【0031】(8)、(19)
本発明は所望の径になるまで上記(7)、(18)の方
法でフッ素添加量を多くかつ均一に添加する。屈折率の
段差を作りたい径から嵩密度を0.60g/cm3 (連
続合成多層付けでは0.8g/cm3 )を越えて1.0
g/cm3 以下の範囲に引き上げることで前記3)の反
応を抑え、且つ、径方向に微量で添加量変化のないフッ
素添加を実現する。上記の発明(5)、(16)では実
現できないぐらい大きな屈折率の段差を実現できる。
(9)、(20)
この発明により、フッ素の添加量差による屈折率の段差
を一箇所ではなく径方向に複数設けることができる。(8), (19) In the present invention, a large and uniform amount of fluorine is added by the above methods (7) and (18) until a desired diameter is obtained. The bulk density is 0.60 g / cm 3 (0.8 g / cm 3 for continuous synthetic multi-layering) and 1.0
By increasing the amount to g / cm 3 or less, the reaction of the above 3) is suppressed, and a small amount of fluorine is added in the radial direction without change in the addition amount. It is possible to realize a step having a large refractive index that cannot be realized by the above inventions (5) and (16). (9), (20) According to the present invention, it is possible to provide a plurality of steps in the refractive index due to the difference in the amount of fluorine added, not in one location but in the radial direction.
【0032】(10)この発明により、ガラス微粒子の
堆積速度の向上が可能であり、低嵩密度の多孔質ガラス
母材の製造が可能であり、かつフッ素添加の効率が高く
なる。連続合成多層付け法では、低嵩密度のガラス微粒
子堆積体を作ることが困難であることが知られている。
これは、ガラス微粒子堆積用バーナーによってガラス微
粒子堆積が行われていない部分の温度が低下するために
多孔質ガラス母材が割れを起こすためである。割れの原
因は、低温となり収縮したガラス微粒子体の上に収縮前
のガラス微粒子が堆積し、ここに歪が生まれ、これが何
層もガラス微粒子堆積を行っているうちにガラス微粒子
の結合が歪に耐えられなくなるためと考えられる。これ
を防止するには嵩密度が高くガラス微粒子同士の結合が
しっかりしたガラス微粒子堆積体を製造する必要があ
る。(10) According to the present invention, the deposition rate of glass particles can be improved, a porous glass base material having a low bulk density can be produced, and the efficiency of fluorine addition can be increased. It is known that it is difficult to produce a glass particulate deposit of low bulk density by the continuous synthetic multi-layering method.
This is because the burner for depositing glass fine particles lowers the temperature of the portion where the glass fine particles are not deposited, causing the porous glass base material to crack. The cause of the cracks is that the glass particles before shrinkage are deposited on the glass particles that have shrunk at low temperature, and distortion is created here, which causes the bonding of the glass particles to strain as many layers of glass particles are deposited. It is thought that it will be unbearable. In order to prevent this, it is necessary to produce a glass particle deposit having a high bulk density and a firm bond between glass particles.
【0033】なお、嵩密度0.1g/cm3 は実現が難
しい。ガラス微粒子堆積体の割れ頻度は母材の大きさに
もよるが、せいぜい0.3g/cm3 程度が1本バーナ
ーで作れる限界と考えてよい。一方、複数本バーナーで
の多層付法では、常に多孔質ガラス母材が火炎に包まれ
た状況でガラス微粒子堆積が行われるため、ガラス微粒
子堆積体の温度変化が少ないので歪みが蓄積されにく
く、割れにくいため低嵩密度の多孔質ガラス母材が製造
可能である。A bulk density of 0.1 g / cm 3 is difficult to achieve. The cracking frequency of the glass particulate deposit depends on the size of the base material, but at most about 0.3 g / cm 3 may be considered as the limit that can be produced by one burner. On the other hand, in the multi-layer coating method using a plurality of burners, since the fine glass particles are always deposited in a state where the porous glass base material is wrapped in a flame, the temperature change of the fine glass particle deposits is small, and thus strain is less likely to be accumulated, Since it is hard to break, a low bulk density porous glass base material can be manufactured.
【0034】更なる効果としてはフッ素添加の効率が高
くなることが挙げられる。複数本バーナーからフッ素が
発生するために多孔質ガラス母材は、常にフッ素雰囲気
中にさらされるため前記3)の反応が起こる状態では、
フッ素添加効率がよくなる。また、1本のバーナーの場
合と比べて、フッ素化合物ガスがガラス微粒子堆積体に
到着するまでに拡散してしまうことが少なくなり、ガラ
ス微粒子の隙間に含まれるフッ素の量が多くなるので前
記2)の反応効率もよくなる。A further effect is that the efficiency of fluorine addition is increased. Since fluorine is generated from a plurality of burners, the porous glass base material is always exposed to a fluorine atmosphere, and thus in the state where the reaction of 3) above occurs,
Fluorine addition efficiency improves. Further, as compared with the case of a single burner, the fluorine compound gas is less likely to diffuse before reaching the glass fine particle deposit body, and the amount of fluorine contained in the gap between the glass fine particles is increased. ) Reaction efficiency is also improved.
【0035】(21)多重管バーナーでは、自然の流れ
でガラス原料ガス、フッ素化合物ガス、可燃性ガス、助
燃性ガスが混合されるが、特に、焦点型バーナーは、強
制的に混合していく形態をとっており、混合効率が良
い。従って前記1)の反応量が多くなりガラス微粒子と
フッ素との反応効率が向上する。焦点型バーナーの例は
特開平10−101343号公報に記載されている。(21) In the multi-tube burner, the glass raw material gas, the fluorine compound gas, the combustible gas, and the supporting gas are mixed in a natural flow. Especially, in the focus type burner, they are forcibly mixed. It has a good shape and good mixing efficiency. Therefore, the reaction amount in 1) above increases, and the reaction efficiency between the glass particles and fluorine improves. An example of the focus type burner is described in JP-A-10-101343.
【0036】[0036]
【実施例】以下、本発明を実施例により更に詳細に説明
するが限定を意図するものではない。
(実施例1)ガラス微粒子堆積用バーナーを4本使用
し、バーナー間隔を200mmに設置し分割合成多層付
け法によりガラス微粒子の堆積を行った。バーナーと出
発ロッド(外径:36mm、有効部長さ:440mm)
との相対移動は出発ロッドを上下方向に移動させること
によって行い、1回の1方向への移動距離は略バーナー
間隔とし、折り返し位置を20mmずつ移動させて折り
返し位置が200mmずれたところで折り返し位置を反
対方向に移動させ始め、折り返し位置が最初の位置に戻
るまでの操作を40回繰り返し、多孔質ガラス母材を作
製した。各バーナーにSiCl4 を6.0SLMとCF
4 を1.0SLM投入し、嵩密度が0.8g/cm3 、
0.7g/cm3 及び0.6g/cm3 の多孔質ガラス
母材(外径はそれぞれ230mm、240mm及び25
0mm、有効部長さはいずれも440mm)を作製し、
焼結透明化後、得られたガラス母材について屈折率を測
定した。EXAMPLES The present invention will be described in more detail with reference to examples below, but the invention is not intended to be limited thereto. (Example 1) Four burners for depositing glass particles were used, the intervals between the burners were set to 200 mm, and the glass particles were deposited by the split synthesis multilayer method. Burner and starting rod (outer diameter: 36 mm, effective length: 440 mm)
The relative movement with and is performed by moving the starting rod up and down, and the moving distance in one direction at a time is approximately the burner interval, and the folding position is moved by 20 mm and the folding position is shifted by 200 mm. The operation of starting to move in the opposite direction and returning the folded position to the initial position was repeated 40 times to produce a porous glass preform. Add SiCl 4 to each burner at 6.0 SLM and CF
4 was added at 1.0 SLM, and the bulk density was 0.8 g / cm 3 ,
0.7 g / cm 3 and 0.6 g / cm 3 of porous glass base material (outer diameter of 230 mm, 240 mm and 25, respectively)
0mm, effective length is 440mm for all),
After the sinter was made transparent, the refractive index of the obtained glass base material was measured.
【0037】その結果、0.8g/cm3 、0.7g/
cm3 及び0.6g/cm3 の母材の屈折率は、純シリ
カのレベルからそれぞれ0.013%、0.042%及
び0.07%下がっていた。各母材の屈折率プロファイ
ルは図1(A)に示されるパターンを示し、径方向での
屈折率差の変動は、ほとんどなかった。なお、嵩密度の
調整はバーナーへの水素供給量を変えてガラス微粒子堆
積面の温度を変化させることによって行った(以下の例
においても同じ)。具体的には嵩密度が0.7g/cm
3 のものに比較してガラス微粒子堆積面の温度が、嵩密
度が0.8g/cm3 の場合は約15℃高くなるように
し、嵩密度が0.6g/cm3 の場合は約15℃低くな
るようにした。As a result, 0.8 g / cm 3 , 0.7 g /
The indices of refraction of the base materials of cm 3 and 0.6 g / cm 3 were 0.013%, 0.042% and 0.07%, respectively, below the level of pure silica. The refractive index profile of each base material showed the pattern shown in FIG. 1 (A), and there was almost no variation in the refractive index difference in the radial direction. The bulk density was adjusted by changing the amount of hydrogen supplied to the burner to change the temperature of the glass particle deposition surface (the same applies to the following examples). Specifically, the bulk density is 0.7 g / cm
Temperature of the glass particle deposition plane compared to that of 3, if the bulk density is 0.8 g / cm 3 set higher about 15 ℃, if the bulk density is 0.6 g / cm 3 to about 15 ℃ I tried to lower it.
【0038】(実施例2)実施例1の嵩密度0.7g/
cm3 の多孔質ガラス母材作成条件のCF4 流量を0.
5SLMとした他は実施例1と同様にして多孔質ガラス
母材を作製、焼結透明化後に屈折率を測定した。その結
果、純シリカレベルから0.005%屈折率が下がって
いた。やはり径方向での屈折率の変動はほどんどなかっ
た。Example 2 Bulk density of Example 1 0.7 g /
The CF 4 flow rate under the conditions for producing the porous glass base material of cm 3 is set to 0.
A porous glass preform was produced in the same manner as in Example 1 except that 5 SLM was used, and the refractive index was measured after the sinter was made transparent. As a result, the refractive index was decreased by 0.005% from the pure silica level. After all, there was almost no change in the refractive index in the radial direction.
【0039】(実施例3)実施例1と同じ条件で嵩密度
0.4g/cm3 の多孔質ガラス母材を作製し、焼結透
明化後、屈折率を測定したところ出発ロッド界面で純シ
リカレベルから0.14%屈折率が下がっており、母材
の表面に向かって屈折率は上昇していき表面では純シリ
カレベルから0.06%屈折率が下がっている状態にな
っていた〔図1(B)に相当〕。Example 3 A porous glass base material having a bulk density of 0.4 g / cm 3 was prepared under the same conditions as in Example 1, and after sintering and making transparent, the refractive index was measured. The refractive index was decreased from the silica level by 0.14%, the refractive index was increased toward the surface of the base material, and the surface was in a state where the refractive index was decreased from the pure silica level by 0.06%. It corresponds to FIG. 1 (B)].
【0040】(実施例4)実施例3と同じ条件でCF4
の流量のみ1→2.5SLMまで徐々に増やしていくよ
うにして多孔質ガラス母材を作製し、焼結透明化後、屈
折率を測定したところ出発ロッド界面は純シリカレベル
から0.15%屈折率が下がっており、母材表面に向か
って徐々に屈折率が上昇していき、表面では、純シリカ
レベルから0.12%屈折率が下がっている状態であ
り、径方向の屈折率の変動は大きく低減されていて径方
向の屈折率はほぼ均一になった。Example 4 CF 4 under the same conditions as in Example 3
The porous glass base material was prepared by gradually increasing only the flow rate of 1 → 2.5 SLM, and the refractive index was measured after sinter transparency, and the starting rod interface was 0.15% from the pure silica level. The refractive index is decreasing, and the refractive index is gradually increasing toward the surface of the base material, and the surface is in a state where the refractive index is decreasing from the pure silica level by 0.12%. The fluctuation was greatly reduced and the refractive index in the radial direction became almost uniform.
【0041】(実施例5)実施例4と同じ条件でガラス
微粒子堆積を行い、CF4 の流量が2.5SLMとなっ
た後、実施例1の嵩密度0.7g/cm3 の条件に変更
し多孔質ガラス母材の作製を行い、焼結透明化後に屈折
率を測定した。出発ロッド界面の屈折率は純シリカレベ
ルから0.14%屈折率が下がっており、ガラス微粒子
堆積条件を変更する手前でも0.13%下がっており、
変更後の位置では屈折率は0.041%純シリカレベル
より、下がっており、ほとんど変動がなく母材表面まで
この屈折率であった〔図1(C)に相当〕。(Embodiment 5) Glass fine particles were deposited under the same conditions as in Embodiment 4, and after the flow rate of CF 4 reached 2.5 SLM, the bulk density of Embodiment 1 was changed to 0.7 g / cm 3. Then, a porous glass preform was prepared, and the refractive index was measured after the sinter was made transparent. The refractive index of the starting rod interface is 0.14% lower than the pure silica level, and is 0.13% even before changing the glass particle deposition conditions.
At the position after the change, the refractive index was lower than the 0.041% pure silica level, and there was almost no change, and the refractive index was up to the surface of the base material [corresponding to FIG. 1 (C)].
【0042】(実施例6)実施例4と同じ条件で嵩密度
0.2g/cm3 の多孔質ガラス母材の作製を行い、屈
折率を測定した。その結果、出発ロッド界面は0.2%
まで屈折率が下がり、母材表面でも0.17%純シリカ
レベルより屈折率が低くなっていて、径方向の屈折率は
ほぼ均一となった。上記実施例1〜6で使用したバーナ
ーは、全て焦点型バーナーである。Example 6 A porous glass base material having a bulk density of 0.2 g / cm 3 was prepared under the same conditions as in Example 4, and the refractive index was measured. As a result, the starting rod interface is 0.2%
The refractive index was lowered to the level of 0.17% pure silica on the surface of the base material, and the refractive index in the radial direction was almost uniform. The burners used in Examples 1 to 6 are all focus burners.
【0043】(実施例7)使用するバーナーを多重管バ
ーナーに変更し、ガラス微粒子堆積用バーナーを4本用
いて分割合成多層付け法により嵩密度0.3g/cm3
の多孔質ガラス母材の作製を行った。使用した出発ロッ
ドの寸法、往復移動の条件は実施例1と同様にし、Si
C4 はやはり6.0SLMとし、CF4 の流量を1、
2、3SLMでガラス微粒子堆積を行った。その結果、
CF4 が1SLMのときの出発ロッド界面の屈折率は、
純シリカレベルより0.04%屈折率が下がっており、
CF4が2SLMのときは0.07%であり、3SLM
のときは0.082%であった。実施例3、6と比べる
とフッ素の添加量が少ない。これは焦点型バーナーの方
が多くのフッ素を添加できることを示している。(Example 7) The burner used was changed to a multi-tube burner, and a bulk density of 0.3 g / cm 3 was obtained by a divided synthetic multilayering method using four glass particle deposition burners.
The porous glass base material was manufactured. The dimensions of the starting rod used and the conditions of reciprocal movement were the same as in Example 1, and
C 4 is still 6.0 SLM, the flow rate of CF 4 is 1,
Glass particulate deposition was performed with a few SLMs. as a result,
The refractive index of the starting rod interface when CF 4 is 1 SLM is
The refractive index is 0.04% lower than the pure silica level,
When CF 4 is 2SLM, it is 0.07%, and 3SLM
Was 0.082%. Compared with Examples 3 and 6, the amount of fluorine added was small. This indicates that the focus burner can add more fluorine.
【0044】(実施例8)使用するバーナーを多重管バ
ーナーとし、ガラス微粒子堆積用バーナー1本で連続合
成多層付け法により多層付けを行った。使用した出発ロ
ッドは実施例1と同寸法のもので、バーナーと出発ロッ
ドとの相対移動は出発ロッドを上下方向に移動させるこ
とによって行い、往復移動は800回とし、外径250
mm、有効部長さ440mmの多孔質ガラス母材を作製
した。嵩密度は0.3g/cm3 であり、SiCl4 を
6.0SLMとしCF4 を3SLM使用した。その結
果、出発ロッド界面の屈折率は純シリカレベルから0.
075%下がっていた。(Example 8) The burner used was a multi-tube burner, and one burner for depositing glass particles was used to carry out multi-layering by the continuous synthesis multi-layering method. The starting rod used had the same dimensions as in Example 1, and the relative movement between the burner and the starting rod was carried out by moving the starting rod in the vertical direction, the reciprocating movement was 800 times, and the outer diameter was 250.
mm, and an effective portion length of 440 mm to prepare a porous glass base material. The bulk density was 0.3 g / cm 3 , SiCl 4 was 6.0 SLM, and CF 4 was 3 SLM. As a result, the index of refraction at the starting rod interface is 0.
It was down 075%.
【0045】(実施例9)ガラス微粒子堆積用バーナー
(焦点型バーナー)を150mm間隔で3本設置し、連
続合成多層付け法によりガラス微粒子の堆積を行った。
使用した出発ロッドは実施例1と同寸法のもので、バー
ナーと出発ロッドとの相対移動は出発ロッドを上下方向
に移動させることによって行った。往復移動は267回
とし、各バーナーにSiCl4 を6.0SLMとCF4
を1.0SLM投入し、嵩密度が0.8g/cm3 と
0.7g/cm3 の多孔質ガラス母材(外径はそれぞれ
230mm及び440mm、有効部長さはそれぞれ24
0mm及び440mm)を作製し、焼結透明化した。得
られたガラス母材について屈折率を測定した結果、嵩密
度0.8g/cm3 の母材は図1(A)のプロファイル
で屈折率は純シリカのレベルから0.02%低下してい
た。また、嵩密度0.7g/cm3 の母材は図1(B)
のプロファイルとなり、屈折率は出発ロッド界面で純シ
リカレベルから0.055%下がっており、母材の表面
に向かって屈折率は上昇していき表面では純シリカレベ
ルから0.035%屈折率が低下していた。(Example 9) Three glass burner for depositing glass particles (focus type burner) were installed at an interval of 150 mm, and glass particles were deposited by a continuous synthetic multilayering method.
The starting rod used had the same size as in Example 1, and the relative movement between the burner and the starting rod was performed by moving the starting rod in the vertical direction. The number of reciprocating movements was 267, and 6.0 SLM and CF 4 of SiCl 4 were added to each burner.
1.0 SLM, and a porous glass base material having a bulk density of 0.8 g / cm 3 and 0.7 g / cm 3 (outer diameters of 230 mm and 440 mm, effective portion lengths of 24 respectively).
0 mm and 440 mm) were prepared and sintered and made transparent. As a result of measuring the refractive index of the obtained glass base material, it was found that the base material having a bulk density of 0.8 g / cm 3 had a profile of FIG. 1 (A) and the refractive index was decreased by 0.02% from the level of pure silica. . The base material having a bulk density of 0.7 g / cm 3 is shown in FIG.
The refractive index is 0.055% lower than the pure silica level at the starting rod interface, and the refractive index increases toward the surface of the base material, and the refractive index is 0.035% from the pure silica level on the surface. It was falling.
【0046】すなわち、多孔質ガラス母材の嵩密度が
0.8g/cm3 の場合には径方向でフッ素の添加量差
は見られなかったが、嵩密度が0.7g/cm3 の例で
は添加量に差が認められた。この添加量の差はさらに嵩
密度が小さくなれば増大する。That is, when the bulk density of the porous glass base material was 0.8 g / cm 3 , no difference in the amount of fluorine added in the radial direction was observed, but the bulk density was 0.7 g / cm 3 . There was a difference in the amount added. This difference in the amount added increases as the bulk density further decreases.
【0047】以下に実施例と請求項との関係を理解し易
いように嵩密度、屈折率のデータと共に整理して表1に
まとめて示す。Table 1 below summarizes the relationship between the examples and the claims together with the data of bulk density and refractive index for easy understanding.
【0048】[0048]
【表1】 [Table 1]
【0049】[0049]
【表2】 [Table 2]
【0050】[0050]
【発明の効果】本発明の多孔質ガラス母材の製造法によ
ると、(1)低濃度のフッ素添加を径方向に行い、フッ
素添加量を正確に制御できる、(2)フッ素の添加量を
径方向に均一にすることができる、(3)屈折率の段差
を少なくとも1つ簡単に形成することができる、(4)
複数本のバーナーを使用することにより、多層付けにお
いて、従来にない低嵩密度のガラス微粒子堆積体を製造
することが可能になり、フッ素添加量の制御性を向上さ
せる、という優れた効果が奏せられる。According to the method for producing a porous glass preform of the present invention, (1) the low concentration of fluorine can be added in the radial direction, and the amount of fluorine added can be accurately controlled. Can be made uniform in the radial direction, (3) At least one step in refractive index can be easily formed, (4)
By using multiple burners, it is possible to produce glass particle deposits with a low bulk density, which has never existed in the past, in multi-layering, and the excellent effect of improving the controllability of the amount of fluorine added is achieved. Sent.
【図1】(A)はフッ素添加量が径方向に一定である1
例を示す屈折率の概略図、(B)はフッ素添加量が径方
向に不均一である1例を示す屈折率の概念図、(C)は
a,bの各部分でフッ素添加量が均一であることを示す
屈折率の概念図である。FIG. 1A shows that the amount of fluorine added is constant in the radial direction.
Schematic diagram of the refractive index showing an example, (B) is a conceptual diagram of the refractive index showing one example in which the amount of fluorine added is not uniform in the radial direction, (C) is a uniform amount of fluorine added in each part of a and b It is a conceptual diagram of the refractive index indicating that.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 6/00 356 G02B 6/00 356A (72)発明者 中村 元宣 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 4G014 AH12 AH15 4G021 EA03 EB05 EB14 EB26 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G02B 6/00 356 G02B 6/00 356A (72) Inventor Motonobu Nakamura 1 No. 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Factory F-term (reference) 4G014 AH12 AH15 4G021 EA03 EB05 EB14 EB26
Claims (21)
にガラス微粒子堆積体を成長させていくガラス微粒子堆
積方法において、バーナーに可燃性ガス、助燃性ガス、
ガラス原料ガスとともにフッ素化合物ガスを投入するこ
とを特徴とする多孔質ガラス母材の製造方法。1. A method for depositing glass fine particles in which a glass fine particle deposit is grown in a radial direction so that a layer is stacked on a starting rod, wherein a burnable gas, a combustion supporting gas,
A method for producing a porous glass preform, which comprises introducing a fluorine compound gas together with a glass raw material gas.
堆積層の嵩密度を0.60g/cm3 を越えて1.0g
/cm3 以下の範囲で径方向にほぼ一定とすることを特
徴とする請求項1に記載の多孔質ガラス母材の製造方
法。2. The bulk density of the glass fine particle deposition layer formed on the starting rod exceeds 0.60 g / cm 3 and 1.0 g.
The method for producing a porous glass preform according to claim 1, wherein the ratio is substantially constant in the radial direction in the range of / cm 3 or less.
合比を一定とすることを特徴とする請求項2に記載の多
孔質ガラス母材の製造方法。3. The method for producing a porous glass preform according to claim 2, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is kept constant.
合比を変化させることを特徴とする請求項2に記載の多
孔質ガラス母材の製造方法。4. The method for producing a porous glass preform according to claim 2, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
合比を一定とし、且つ、出発ロッド上に形成されるガラ
ス微粒子堆積層の嵩密度を0.60g/cm 3 を越えて
1.0g/cm3 以下の範囲で径方向に変化させること
を特徴とする請求項1に記載の多孔質ガラス母材の製造
方法。5. A mixture of glass source gas and fluorine compound gas
Glass with a constant mixing ratio and formed on the starting rod
The bulk density of the fine particle deposition layer is 0.60 g / cm 3Beyond
1.0 g / cm3Radially change within the following range
The manufacture of the porous glass preform according to claim 1,
Method.
堆積層の嵩密度を0.1g/cm3 以上0.60g/c
m3 以下の範囲とすることを特徴とする請求項1に記載
の多孔質ガラス母材の製造方法。6. The bulk density of the glass fine particle deposition layer formed on the starting rod is 0.1 g / cm 3 or more and 0.60 g / c or more.
The method for producing a porous glass preform according to claim 1, wherein the range is m 3 or less.
ガスとフッ素化合物ガスの混合比又は径方向の嵩密度分
布を変えることを特徴とする請求項6に記載の多孔質ガ
ラス母材の製造方法。7. The method for producing a porous glass preform according to claim 6, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas or the bulk density distribution in the radial direction is changed with the growth of the glass fine particles.
は、ガラス微粒子の成長とともにガラス原料ガスとフッ
素化合物ガスの混合比を変え、且つ、出発ロッド上に形
成されるガラス微粒子堆積層の嵩密度を0.1g/cm
3 以上0.60g/cm3 以下の範囲とし、所望の径に
達した後は、嵩密度を0.60g/cm3 を越えて1.
0g/cm3 以下の範囲から選ばれる一定の嵩密度と
し、且つ、ガラス原料ガスとフッ素化合物ガスの混合比
も一定とすることを特徴とする請求項1に記載の多孔質
ガラス母材の製造方法。8. The volume of the glass particle deposition layer formed on the starting rod is changed by changing the mixing ratio of the glass raw material gas and the fluorine compound gas along with the growth of the glass particles until the desired glass particle deposition body diameter is obtained. Density 0.1g / cm
The volume density is set to 3 or more and 0.60 g / cm 3 or less, and after reaching the desired diameter, the bulk density exceeds 0.60 g / cm 3 and 1.
2. The production of a porous glass preform according to claim 1, wherein a constant bulk density selected from the range of 0 g / cm 3 or less is used, and a mixing ratio of the glass raw material gas and the fluorine compound gas is also fixed. Method.
は、ガラス微粒子の成長とともにガラス原料ガスとフッ
素化合物ガスの混合比を変え、且つ、出発ロッド上に形
成されるガラス微粒子堆積層の嵩密度を0.1g/cm
3 以上0.60g/cm3 以下の範囲とし、所望の径に
達した後は、嵩密度を0.60g/cm3 を越えて1.
0g/cm3 以下の範囲から選ばれる一定の嵩密度と
し、且つ、ガラス原料ガスとフッ素化合物ガスの混合比
を変えることを特徴とする請求項1に記載の多孔質ガラ
ス母材の製造方法。9. Until the desired particle size of the glass particle deposit is reached, the mixing ratio of the glass raw material gas and the fluorine compound gas is changed with the growth of the glass particles, and the volume of the glass particle deposit layer formed on the starting rod is increased. Density 0.1g / cm
The volume density is set to 3 or more and 0.60 g / cm 3 or less, and after reaching the desired diameter, the bulk density exceeds 0.60 g / cm 3 and 1.
The method for producing a porous glass preform according to claim 1, wherein a constant bulk density selected from the range of 0 g / cm 3 or less is used and the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
を使用することを特徴とする請求項1〜9のいずれか1
項に記載の多孔質ガラス母材の製造方法。10. A burner for depositing a plurality of glass fine particles is used, and the burner for depositing a plurality of glass fine particles is used.
The method for producing a porous glass preform according to item.
出発ロッドに対向させて複数本のガラス微粒子堆積用バ
ーナーを配置し、前記出発ロッドとバーナーとを平行に
相対的に往復移動させ、それぞれのバーナーの1方向へ
の相対移動距離がガラス微粒子堆積体の全長よりも短く
なるように設定してガラス微粒子を堆積させる分割合成
多層付け法であることを特徴とする請求項1〜9のいず
れか1項に記載の多孔質ガラス母材の製造方法。11. A plurality of burners for depositing glass particles are arranged facing a rotating starting rod in the glass particulate depositing method, and the starting rod and the burner are relatively reciprocally moved in parallel, and each burner is moved. 10. The divided synthetic multi-layering method of depositing glass fine particles by setting the relative movement distance of the glass fine particles in one direction to be shorter than the entire length of the glass fine particle deposit body. The method for producing a porous glass preform according to item.
出発ロッドに対向させて1本又は複数本のガラス微粒子
堆積用バーナーを配置し、前記出発ロッドとバーナーと
を平行に相対的に往復移動させ、それぞれのバーナーの
1方向への相対移動距離がガラス微粒子堆積体の全長よ
りも長くなるように設定してガラス微粒子を堆積させる
連続合成多層付け法であることを特徴とする請求項1に
記載の多孔質ガラス母材の製造方法。12. One or a plurality of burners for depositing glass particles are arranged facing a rotating starting rod in the method for depositing glass particles, and the starting rod and the burner are relatively reciprocally moved in parallel. 2. The continuous synthetic multi-layering method of depositing glass fine particles by setting the relative movement distance of each burner in one direction to be longer than the entire length of the glass fine particle deposit body. A method for manufacturing a porous glass base material.
子堆積層の嵩密度を0.80g/cm3 を越えて1.0
g/cm3 以下の範囲で径方向にほぼ一定とすることを
特徴とする請求項12に記載の多孔質ガラス母材の製造
方法。13. The bulk density of the glass fine particle deposition layer formed on the starting rod is more than 0.80 g / cm 3 and 1.0 or more.
The method for producing a porous glass preform according to claim 12, wherein the radial direction is substantially constant within a range of g / cm 3 or less.
混合比を一定とすることを特徴とする請求項13に記載
の多孔質ガラス母材の製造方法。14. The method for producing a porous glass preform according to claim 13, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is kept constant.
混合比を変化させることを特徴とする請求項13の記載
の多孔質ガラス母材の製造方法。15. The method for producing a porous glass preform according to claim 13, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
混合比を一定とし、且つ、出発ロッド上に形成されるガ
ラス微粒子堆積層の嵩密度を0.80g/cm3 を越え
て1.0g/cm3 以下の範囲で径方向に変化させるこ
とを特徴とする請求項12に記載の多孔質ガラス母材の
製造方法。16. The glass raw material gas and the fluorine compound gas are mixed at a constant mixing ratio, and the bulk density of the glass fine particle deposition layer formed on the starting rod exceeds 0.80 g / cm 3 and 1.0 g / cm 3. The method for producing a porous glass preform according to claim 12, wherein the diameter is changed in the range of 3 or less in the radial direction.
子堆積層の嵩密度を0.1g/cm3 以上0.80g/
cm3 以下の範囲とすることを特徴とする請求項12に
記載の多孔質ガラス母材の製造方法。17. The bulk density of the glass fine particle deposition layer formed on the starting rod is 0.1 g / cm 3 or more and 0.80 g / cm 3.
The method for producing a porous glass preform according to claim 12, wherein the range is not more than cm 3 .
料ガスとフッ素化合物ガスの混合比又は径方向の嵩密度
分布を変えることを特徴とする請求項17に記載の多孔
質ガラス母材の製造方法。18. The method for producing a porous glass preform according to claim 17, wherein the mixing ratio of the glass raw material gas and the fluorine compound gas or the bulk density distribution in the radial direction is changed with the growth of the glass fine particles.
では、ガラス微粒子の成長とともにガラス原料ガスとフ
ッ素化合物ガスの混合比を変え、且つ、出発ロッド上に
形成されるガラス微粒子堆積層の嵩密度を0.1g/c
m3 以上0.80g/cm3 以下の範囲とし、所望の径
に達した後は、嵩密度を0.80g/cm3 を越えて
1.0g/cm3 以下の範囲から選ばれる一定の嵩密度
とし、且つ、ガラス原料ガスとフッ素化合物ガスの混合
比も一定とすることを特徴とする請求項12に記載の多
孔質ガラス母材の製造方法。19. The volume of the glass particle deposit layer formed on the starting rod is changed by changing the mixing ratio of the glass raw material gas and the fluorine compound gas as the glass particles grow until the desired glass particle deposit diameter is reached. Density 0.1g / c
m 3 or more and 0.80 g / cm 3 or less, and after reaching a desired diameter, the bulk density exceeds 0.80 g / cm 3 and a certain volume selected from the range of 1.0 g / cm 3 or less. The method for producing a porous glass preform according to claim 12, wherein the density is set and the mixing ratio of the glass raw material gas and the fluorine compound gas is also set to be constant.
では、ガラス微粒子の成長とともにガラス原料ガスとフ
ッ素化合物ガスの混合比を変え、且つ、出発ロッド上に
堆積されるガラス微粒子の嵩密度を0.1g/cm3 以
上0.80g/cm3 以下の範囲とし、所望の径に達し
た後は、嵩密度を0.80g/cm3を越えて1.0g
/cm3 以下の範囲から選ばれる一定の嵩密度とし、且
つ、ガラス原料ガスとフッ素化合物ガスの混合比を変え
ることを特徴とする請求項12に記載の多孔質ガラス母
材の製造方法。20. The mixing ratio of the glass raw material gas and the fluorine compound gas is changed with the growth of the glass fine particles until the desired glass fine particle deposition body diameter is obtained, and the bulk density of the glass fine particles deposited on the starting rod is changed. The volume density is set to 0.1 g / cm 3 or more and 0.80 g / cm 3 or less, and after reaching the desired diameter, the bulk density exceeds 0.80 g / cm 3 and 1.0 g
The method for producing a porous glass preform according to claim 12, wherein a constant bulk density selected from the range of / cm 3 or less is used, and the mixing ratio of the glass raw material gas and the fluorine compound gas is changed.
バーナー火炎が多孔質ガラス堆積面に到達するまでの間
に可燃性ガス、助燃性ガス、原料ガス、フッ素化合物ガ
スが一点に集まる構造を有する焦点型バーナーを用いる
ことを特徴とする請求項1〜20のいずれか1項に記載
の多孔質ガラス母材の製造方法。21. A burner for depositing fine glass particles,
A focus type burner having a structure in which a combustible gas, a combustible gas, a raw material gas, and a fluorine compound gas are gathered at one point until the burner flame reaches the porous glass deposition surface. 21. The method for producing a porous glass preform according to any one of 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170980A JP2003063830A (en) | 2001-06-13 | 2002-06-12 | Method for manufacturing porous glass preform |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-178843 | 2001-06-13 | ||
JP2001178843 | 2001-06-13 | ||
JP2002170980A JP2003063830A (en) | 2001-06-13 | 2002-06-12 | Method for manufacturing porous glass preform |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003063830A true JP2003063830A (en) | 2003-03-05 |
Family
ID=26616843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170980A Pending JP2003063830A (en) | 2001-06-13 | 2002-06-12 | Method for manufacturing porous glass preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003063830A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080294A1 (en) * | 2005-01-26 | 2006-08-03 | Shin-Etsu Chemical Co., Ltd. | Quartz glass preform for optical fiber and process for producing the same |
JP2012078804A (en) * | 2010-09-06 | 2012-04-19 | Shin Etsu Chem Co Ltd | Optical fiber, optical fiber preform, and manufacturing method thereof |
JP2012214367A (en) * | 2011-03-25 | 2012-11-08 | Sumitomo Electric Ind Ltd | Glass tube and method for manufacturing the same |
-
2002
- 2002-06-12 JP JP2002170980A patent/JP2003063830A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006080294A1 (en) * | 2005-01-26 | 2006-08-03 | Shin-Etsu Chemical Co., Ltd. | Quartz glass preform for optical fiber and process for producing the same |
JP2012078804A (en) * | 2010-09-06 | 2012-04-19 | Shin Etsu Chem Co Ltd | Optical fiber, optical fiber preform, and manufacturing method thereof |
JP2012214367A (en) * | 2011-03-25 | 2012-11-08 | Sumitomo Electric Ind Ltd | Glass tube and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1997783B1 (en) | A method of manufacturing an optical fiber preform using a high frequency induction thermal plasma | |
GB2307908A (en) | Making an optical fibre preform | |
US4765815A (en) | Method for producing glass preform for optical fiber | |
JP2003063830A (en) | Method for manufacturing porous glass preform | |
EP1440949B1 (en) | Method for producing optical fiber base material | |
US4781740A (en) | Method for producing glass preform for optical fiber | |
JP4530687B2 (en) | Method for producing porous glass preform for optical fiber | |
US20070137256A1 (en) | Methods for optical fiber manufacture | |
WO2022065482A1 (en) | Method and facility for producing optical fiber base material | |
JP4472308B2 (en) | Method for producing porous quartz base material | |
JP2003201139A (en) | Method of manufacturing optical fiber preform | |
JP2000169175A (en) | Production of glass preform | |
JP2004269285A (en) | Production method for fine glass particle deposit | |
JP2004262719A (en) | Method of manufacturing fluorine added glass article | |
JP3788073B2 (en) | Manufacturing method of optical fiber preform | |
JP3587032B2 (en) | Manufacturing method of optical fiber preform | |
JP3654232B2 (en) | Optical fiber preform manufacturing method | |
JP4140839B2 (en) | Optical fiber preform manufacturing method | |
JP4398114B2 (en) | Manufacturing method of glass base material for optical fiber with less unevenness | |
JPS60260433A (en) | Manufacture of base material for optical fiber | |
JP2004224649A (en) | Porous glass body | |
JP2005154159A (en) | Method of manufacturing quartz porous preform and quartz porous preform | |
JP2004175614A (en) | Manufacturing method of glass preform | |
JPH03257037A (en) | Production of porous glass preform for optical fiber | |
JP2000109335A (en) | Production of optical fiber preform |