【0001】
【発明の属する技術分野】
この発明は、VAD法、OVD法などの気相法によって多孔質ガラス体を製造する方法および多孔質ガラス体に関し、屈折率変動の少ない合成石英ガラス材が得られるようにしたものである。
【0002】
【従来の技術】
気相法によって製造される合成石英ガラス材は、高純度であると言う特徴を有しており、広い波長範囲で光の透過率が高い。したがって、光ファイバ用母材以外にも、例えば半導体製造用投影装置のレンズ材料などに使用されている。
また、紫外線に対する耐久性や透過性を高めるために、フッ素を添加(ドープ)したフッ素添加合成石英ガラス材も同様の用途等に使用される場合がある。この場合には、フッ素は石英ガラスの屈折率を低下させる性質を有するため、フッ素添加量は均一であることが必要とされる。
【0003】
このフッ素添加合成石英ガラス材の製造は、VAD法によって得られた多孔質ガラス体を加熱炉に収め、四フッ化ケイ素(SiF4)などのフッ素化合物の存在下で1000〜1200℃に加熱してフッ素化合物を吸着、拡散させ、ついでこれを1400〜1600℃で加熱してガラス中にフッ素をドープし、透明ガラス化する方法によって行われている。
【0004】
このようなフッ素添加合成石英ガラス材においては、ガラス材中に均一にフッ素がドープされていなければ、屈折率の変動等が生じる不具合がある。特に、レンズ材料に使用されるフッ素添加合成石英ガラス材では、極めて高い屈折率の均一性が要求される。そのためには、上述の製造時の際に多孔質ガラス体中に均一にフッ素化合物を吸着、拡散させねばならない。
【0005】
多孔質ガラス体中に均一にフッ素化合物を吸着、拡散させるためには、多孔質ガラス体の嵩密度が均一でなければならない。
また、フッ素を添加しないで、合成石英ガラス材を作製する場合においても、多孔質ガラス体を上述のように加熱して透明ガラス化する際に、多孔質ガラス体の嵩密度が不均一であると、多孔質ガラスが加熱され、内部の微細な気泡が消滅して収縮する時に不均一に収縮することになり、得られる合成石英ガラス材中に歪みが生成することがある。
【0006】
しかし、VAD法によって得られた多孔質ガラス体の全体の嵩密度を高度に均一にすることは実際上困難であり、特にレンズ材などの用途に用いられる多孔質ガラス体では、その寸法が大型化し、このような大型の多孔質ガラス体の嵩密度を均一にすることは、さらに困難が伴う。
このようなフッ素添加合成石英ガラス材に関する先行技術文献として、以下のようなものがある。
【0007】
【特許文献1】
特開2002−114522号公報
【特許文献2】
特開2002−60228号公報
【0008】
【発明が解決しようとする課題】
よって、本発明における課題は、実質的に均一なフッ素の添加ができ、かつ歪みがほとんど残ることがないようにするための多孔質ガラス体の嵩密度の変動の許容範囲を見いだすこと、およびそのような嵩密度の変動許容範囲を持つ多孔質ガラス体を製造する製法を得ることにある。
【0009】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、気相法によって得られた円柱状の多孔質ガラス体であって、多孔質ガラス体の半径をRとしたときに、その中心から0.8Rまでの領域の嵩密度が0.3〜0.7g/cm3であり、その嵩密度の変動割合が半径1mmにつき±0.005g/cm3以下であることを特徴とする多孔質ガラス体である。
【0010】
請求項2にかかる発明は、多孔質ガラス体の中心から0.8Rまでの領域の嵩密度が0.35〜0.55g/cm3であることを特徴とする請求項1記載の多孔質ガラス体である。
請求項3にかかる発明は、多重管バーナに、ガラス原料ガス、水素、酸素を供給し、酸水素炎中でガラス微粒子を合成し、これを出発部材の先端部に堆積して円柱状の多孔質ガラス体を形成する際、多孔質ガラス体の半径をRとした時に、多孔質ガラス体の下端のガラス微粒子が堆積されていく成長点の中心部の温度を最高温度とし、中心部から0.8Rまでの領域の温度が中心部の温度と比べて100℃以内の差であることを特徴とする多孔質ガラス体の製法である。
【0011】
請求項4にかかる発明は、請求項1または2記載の多孔質ガラス体をヘリウムガス雰囲気下あるいはヘリウムガスとフッ素化合物の雰囲気下で透明ガラス化したことを特徴とする合成石英ガラス材である。
請求項5にかかる発明は、請求項3記載の製法で得られた多孔質ガラス体をヘリウムガス雰囲気下あるいはヘリウムガスとフッ素化合物の雰囲気下で加熱し、さらに透明ガラス化することを特徴とする合成石英ガラス材の製法である。
【0012】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1は、本発明の多孔質ガラス体の製法の一例を示すものである。
【0013】
図1中符号1は、石英棒などからなる出発部材を示す。この出発部材1は、図示しない駆動装置に回転自在に保持されて、その軸回りに回転しつつ、徐々に上方に移動するようになっている。
【0014】
また、符号2はガラス合成用の多重管バーナを示す。この多重管バーナ2は、多重管構造となっており、その一番中心側の管から四塩化ケイ素などのガラス原料ガスが流れ、順次外側に向かって水素、アルゴン、酸素がそれぞれ別々に流れるようになっている。この多重管バーナ2は、図示するように、出発部材1の下方の外方にやや傾斜して設けられている。
【0015】
多重管バーナ2のノズルから噴射される酸水素炎内において、ガラス原料が加水分解反応あるいは酸化反応により、石英(SiO2)などのガラス微粒子が生成され、このガラス微粒子が火炎に乗って出発部材1の下端に付着、堆積して成長してゆき、ガラス微粒子間に無数の微細な気泡を有し、多孔質となった円柱状の多孔質ガラス体3が形成される。
【0016】
この時、多孔質ガラス体3の下端のガラス微粒子が付着して堆積する部分を成長点Aと呼ぶ。この成長点Aは、光学式位置検出器4によって常時その位置が検出されるようになっており、その位置信号が上記駆動装置に送られる。駆動装置は、この位置信号に基づいて作動を開始し、出発部材1を上方に移動させ、常にガラス微粒子が付着する成長点Aが、多重管バーナ2に対して一定の位置となるようになっている。
【0017】
このようにして円柱状の多孔質ガラス体3を製造する際、多孔質ガラス体3の成長点Aの中心部の温度が成長点Aの他の部分よりも温度が最も高くなるようにし、かつ成長点Aの中心部から0.8Rまでの領域の温度が中心部の温度と比べて100℃以内の差であるようにすることで得られる多孔質ガラス体3の嵩密度を実質的に均一となるように制御できる。ここで、Rは、多孔質ガラス体3の半径である。
【0018】
そして、多孔質ガラス体3の成長点Aの中心部の温度が成長点Aの他の部分よりも温度が最も高くなるようにし、かつ成長点Aの中心部から0.8Rまでの領域の温度が中心部の温度に比べて100℃以内の差とするためには、多重管バーナ2に供給するガラス原料ガス等の各種ガスの流量や多重管バーナ2の位置、すなわちバーナ2のノズルと成長点Aまでの距離、バーナ2の傾斜角度などを調製することで可能になる。
【0019】
例えば、多重管バーナ2に供給するガスの流量を、水素180リットル/分、酸素100リットル/分、アルゴン30リットル/分、四塩化ケイ素8リットル/分とし、多重管バーナ2のノズルの位置を適切に配置することで、成長点Aの中央部の温度を約900℃と最も高温とし、0.8Rまでの領域までの温度差を100℃以内とすることができる。
【0020】
このようにして得られた多孔質ガラス体3の嵩密度の分布は、円柱状の多孔質ガラス体の半径をRとしたとき、その中心から0.8Rまでの領域において、嵩密度が0.3〜0.7g/cm3、好ましくは0.35〜0.55g/cm3の範囲とされ、その変動割合が半径1mmにつき±0.005g/cm3以内とされる。嵩密度が0.3g/cm3未満では強度が不十分で取扱時に破損する恐れがあり、0.7g/cm3を超えるとフッ素化合物が中央部まで浸透することが困難になる。また、変動割合が±0.005g/cm3を超えると、多孔質ガラス体を透明ガラス化する際に、不均一に収縮し、歪みや屈折率変動の原因となる。
【0021】
図2は、多孔質ガラス体の半径方向の嵩密度の分布を示すグラフである。このグラフの実線で描いた曲線は、上述の具体的な流量条件等によって得られた多孔質ガラス体3の半径方向の嵩密度の分布例を示すものである。この嵩密度の分布は、中心部が高く、これから周辺部に向かってなだらかに低下しており、その分布は比較的均一と言うことができる。
【0022】
また、図2のグラフの破線で描いた曲線は、従来のVAD法により合成された多孔質ガラス体における同様の嵩密度の分布を示すものである。このものでは、中心部からやや離れた位置に嵩密度が部分的に低下した「谷部」が対称的に生じており、しかも中央部での嵩密度が局部的に急激に高くなっており、多孔質ガラス体内での嵩密度の分布は極めて不均一となっている。
【0023】
本発明における多孔質ガラス体の嵩密度の分布の測定は、多孔質ガラス体を中心部から半径方向に向かって、ブロック状に切り出し、そのブロックの寸法と重量を測定し、算出する方法に拠った。
【0024】
このような嵩密度の分布がなだらかな本発明の多孔質ガラス体では、これにフッ素を添加(ドープ)する際、四フッ化ケイ素(SiF4)などのフッ素化合物の吸着、拡散が多孔質ガラス体全体で均一に行われる。また、透明ガラス化時における多孔質ガラス体の収縮が均一になされ、歪みが残ることが少ない。
【0025】
このようにして得られた多孔質ガラス体にフッ素を添加してフッ素添加合成石英ガラス材とするには、多孔質ガラス体を加熱炉内に収め、加熱炉内を減圧またはヘリウム雰囲気として、四フッ化ケイ素(SiF4)、六フッ化硫黄(SF6)、四フッ化炭素(CF4)などのフッ素化合物を加熱炉内に導入し、1000〜1200℃の温度で加熱し、フッ素化合物を十分に多孔質ガラス体内に吸着、拡散させる。
【0026】
ついで、加熱炉内温度を1400〜1600℃に昇温し、フッ素化合物が吸着、吸着された多孔質ガラス体を透明ガラス化することで、均一にフッ素が添加され、歪みのほとんどないフッ素添加合成石英ガラス材が得られることになる。
【0027】
このようにして得られた合成石英ガラス材の屈折率の変動を、フィゾー干渉計により測定したところ、中心部から0.8r(rは、合成石英ガラス材の半径である。)までの領域において、屈折率の最大値と最小値との差が1.2×10−6であった。これに対して、従来の製法で得られた合成石英ガラス材では、その差が30×10−6であり、本発明のものでは屈折率の均一性が格段に向上していることがわかる。
【0028】
このように、本発明の多孔質ガラス体にあっては、その嵩密度の変動の許容範囲として、円柱状の多孔質ガラス体の半径をRとしたとき、その中心部から0.8Rまでの領域において、嵩密度を0.3〜0.7g/cm3、好ましくは0.35〜0.55g/cm3の範囲とし、その変動割合を半径1mmにつき±0.005g/cm3以内と定めることで、フッ素を実質上問題のない程度に均一に添加することができる程度の嵩密度の均一性を有する多孔質ガラス体を得ることができる。
【0029】
また、本発明の多孔質ガラス体の製法にあっては、VAD法により多孔質ガラス体の下端のガラス微粒子が堆積されていく成長点Aの中心部の温度を最高温度とし、中心部から0.8Rまでの領域の温度が中心部の温度と比べて100℃以内の差であるようにすることで、上述のような嵩密度の変動許容範囲を有する多孔質ガラス体を具体的に製造することのできる方法を明らかにしたものである。
【0030】
【発明の効果】
以上説明したように、本発明によれば、嵩密度が実質的に均一であるとすることのできる嵩密度の変動許容範囲を有する多孔質ガラス体が得られる。また、そのような嵩密度の変動許容範囲を有する多孔質ガラス体を製造することができる。
【0031】
このため、フッ素の添加が均一になされ、屈折率の変動が非常に少なく、しかも歪みも少ない合成石英ガラス材を得ることができる。さらに、この合成石英ガラス材は歪みが少ないので、後工程でのアニール処理が必要なガラス製品が大幅に減少し、このようなガラス製品の生産コストを低減することもできる。
【図面の簡単な説明】
【図1】本発明の多孔質ガラス体の製法の例を示す概略構成図である。
【図2】本発明と従来の多孔質ガラス体の嵩密度の分布の例を示す図表である。
【符号の説明】
1・・・出発部材、2・・・多重管バーナ、3・・・多孔質ガラス体、A・・・成長点。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous glass body by a gas phase method such as a VAD method and an OVD method, and a porous glass body, which is capable of obtaining a synthetic quartz glass material having a small variation in refractive index.
[0002]
[Prior art]
A synthetic quartz glass material produced by a gas phase method has a feature of high purity, and has high light transmittance in a wide wavelength range. Therefore, it is used as, for example, a lens material of a projection device for manufacturing a semiconductor in addition to a base material for an optical fiber.
In addition, a fluorine-added synthetic quartz glass material to which fluorine is added (doped) in order to enhance the durability and transmittance with respect to ultraviolet rays may be used for similar applications. In this case, since fluorine has the property of lowering the refractive index of quartz glass, it is necessary that the amount of fluorine added be uniform.
[0003]
To manufacture this fluorine-added synthetic quartz glass material, the porous glass body obtained by the VAD method is placed in a heating furnace and heated to 1000 to 1200 ° C. in the presence of a fluorine compound such as silicon tetrafluoride (SiF 4 ). Is performed by adsorbing and diffusing a fluorine compound, and then heating the compound at 1400 to 1600 ° C. to dope fluorine into glass and to make the glass transparent.
[0004]
Such a fluorine-added synthetic quartz glass material has a problem in that the refractive index fluctuates if the glass material is not uniformly doped with fluorine. In particular, a fluorine-added synthetic quartz glass material used for a lens material requires an extremely high refractive index uniformity. For this purpose, the fluorine compound must be uniformly adsorbed and diffused in the porous glass body during the above-mentioned production.
[0005]
In order to uniformly adsorb and diffuse a fluorine compound in the porous glass body, the bulk density of the porous glass body must be uniform.
In addition, even when a synthetic quartz glass material is produced without adding fluorine, when the porous glass body is heated to be transparent vitrified as described above, the bulk density of the porous glass body is not uniform. Then, when the porous glass is heated, and the fine bubbles inside disappear and shrink, the shrinkage is uneven, and distortion may be generated in the synthetic quartz glass material obtained.
[0006]
However, it is practically difficult to make the overall bulk density of the porous glass body obtained by the VAD method highly uniform, and in particular, the size of the porous glass body used for applications such as lens materials is large. It is further difficult to make the bulk density of such a large-sized porous glass body uniform.
Prior art documents relating to such a fluorine-added synthetic quartz glass material include the following.
[0007]
[Patent Document 1]
JP 2002-114522 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-60228
[Problems to be solved by the invention]
Therefore, an object of the present invention is to find a permissible range of variation in bulk density of a porous glass body so that substantially uniform fluorine can be added, and almost no distortion remains. It is an object of the present invention to provide a method for producing a porous glass body having such an allowable range of bulk density.
[0009]
[Means for Solving the Problems]
To solve this problem,
The invention according to claim 1 is a cylindrical porous glass body obtained by a gas phase method, wherein, when the radius of the porous glass body is R, the volume of the region from the center to 0.8R from the center is R. A porous glass body having a density of 0.3 to 0.7 g / cm 3 and a fluctuation rate of a bulk density of ± 0.005 g / cm 3 or less per 1 mm radius.
[0010]
Invention, porous glass according to claim 1, wherein the bulk density of the region from the center of the porous glass body to 0.8R is characterized in that it is a 0.35~0.55g / cm 3 according to claim 2 Body.
The invention according to claim 3 is to supply a glass material gas, hydrogen, and oxygen to a multi-tube burner, synthesize glass fine particles in an oxyhydrogen flame, deposit the fine particles on the leading end of a starting member, and form a cylindrical porous material. When forming the porous glass body, when the radius of the porous glass body is R, the temperature at the center of the growth point where the glass particles at the lower end of the porous glass body are deposited is the highest temperature, and the temperature from the center is 0%. A method for producing a porous glass body, characterized in that the temperature of the region up to 0.8R is within 100 ° C. of the temperature of the central part.
[0011]
A fourth aspect of the present invention is a synthetic quartz glass material characterized in that the porous glass body according to the first or second aspect is transparently vitrified in a helium gas atmosphere or an atmosphere of a helium gas and a fluorine compound.
The invention according to claim 5 is characterized in that the porous glass body obtained by the production method according to claim 3 is heated under a helium gas atmosphere or an atmosphere of a helium gas and a fluorine compound, and is further vitrified. This is a method for producing synthetic quartz glass.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 shows an example of a method for producing a porous glass body of the present invention.
[0013]
Reference numeral 1 in FIG. 1 indicates a starting member made of a quartz rod or the like. The starting member 1 is rotatably held by a driving device (not shown), and gradually moves upward while rotating around its axis.
[0014]
Reference numeral 2 denotes a multi-tube burner for glass synthesis. The multi-tube burner 2 has a multi-tube structure, in which a glass material gas such as silicon tetrachloride flows from the tube at the center of the multi-tube burner, and hydrogen, argon, and oxygen flow sequentially outward. It has become. As shown in the figure, the multiple pipe burner 2 is provided slightly outwardly below the starting member 1.
[0015]
In the oxyhydrogen flame injected from the nozzle of the multi-tube burner 2, the glass raw material generates glass fine particles such as quartz (SiO 2 ) by a hydrolysis reaction or an oxidation reaction. The columnar porous glass body 3 is formed which adheres, accumulates and grows at the lower end of the column 1 and has a myriad of fine bubbles between the glass particles and is porous.
[0016]
At this time, the portion where the glass particles adhere and deposit at the lower end of the porous glass body 3 is referred to as a growth point A. The position of the growth point A is always detected by the optical position detector 4, and the position signal is sent to the driving device. The driving device starts operating based on this position signal and moves the starting member 1 upward, so that the growth point A where the glass particles adhere is always at a fixed position with respect to the multi-tube burner 2. ing.
[0017]
When manufacturing the porous glass body 3 having a columnar shape in this manner, the temperature at the center of the growth point A of the porous glass body 3 is set to be higher than the temperature at other parts of the growth point A, and The bulk density of the porous glass body 3 obtained by making the temperature in the region from the center of the growth point A to 0.8R within 100 ° C. compared with the temperature in the center is substantially uniform. Can be controlled so that Here, R is the radius of the porous glass body 3.
[0018]
Then, the temperature at the center of the growth point A of the porous glass body 3 is set to be higher than the temperature at the other part of the growth point A, and the temperature of the region from the center of the growth point A to 0.8R is set. In order to obtain a difference of 100 ° C. or less from the temperature of the central part, the flow rate of various gases such as glass source gas supplied to the multi-tube burner 2 and the position of the multi-tube burner 2, that is, the growth of the nozzle of the burner 2 It becomes possible by adjusting the distance to the point A, the inclination angle of the burner 2, and the like.
[0019]
For example, the flow rate of the gas supplied to the multi-tube burner 2 is set to 180 l / min of hydrogen, 100 l / min of oxygen, 30 l / min of argon, and 8 l / min of silicon tetrachloride. By arranging them appropriately, the temperature at the center of the growth point A can be set to the highest temperature of about 900 ° C., and the temperature difference up to a region of 0.8R can be kept within 100 ° C.
[0020]
The bulk density distribution of the porous glass body 3 obtained in this manner is such that when the radius of the columnar porous glass body is R, the bulk density is 0.1 in the region from the center to 0.8R. 3~0.7g / cm 3, and preferably it is in the range of 0.35~0.55g / cm 3, within ± 0.005 g / cm 3 the variation ratio per radius 1 mm. If the bulk density is less than 0.3 g / cm 3 , the strength is insufficient and there is a risk of breakage during handling. If the bulk density exceeds 0.7 g / cm 3 , it becomes difficult for the fluorine compound to penetrate to the center. On the other hand, when the variation ratio exceeds ± 0.005 g / cm 3 , when the porous glass body is made into a transparent glass, the porous glass body contracts unevenly, causing distortion and refractive index fluctuation.
[0021]
FIG. 2 is a graph showing the distribution of the bulk density in the radial direction of the porous glass body. The curve drawn by the solid line in this graph shows an example of the distribution of the bulk density in the radial direction of the porous glass body 3 obtained under the above specific flow conditions and the like. The distribution of the bulk density is high at the central portion and gradually decreases toward the peripheral portion, and it can be said that the distribution is relatively uniform.
[0022]
A curve drawn by a broken line in the graph of FIG. 2 shows a similar bulk density distribution in a porous glass body synthesized by a conventional VAD method. In this one, a "valley" in which the bulk density is partially reduced at a position slightly distant from the center is symmetrically generated, and the bulk density in the center is sharply increased locally, The distribution of the bulk density in the porous glass body is extremely uneven.
[0023]
The measurement of the bulk density distribution of the porous glass body in the present invention is based on a method in which the porous glass body is cut out in a block shape from the center in the radial direction, and the dimensions and weight of the block are measured and calculated. Was.
[0024]
In the porous glass body of the present invention having such a smooth bulk density distribution, when fluorine is added (doped) to the porous glass body, adsorption and diffusion of a fluorine compound such as silicon tetrafluoride (SiF 4 ) are performed by the porous glass. Performed uniformly throughout the body. In addition, the shrinkage of the porous glass body during the vitrification is made uniform, and the distortion hardly remains.
[0025]
In order to add fluorine to the thus obtained porous glass body to obtain a fluorine-added synthetic quartz glass material, the porous glass body is placed in a heating furnace, and the inside of the heating furnace is reduced in pressure or in a helium atmosphere. A fluorine compound such as silicon fluoride (SiF 4 ), sulfur hexafluoride (SF 6 ), or carbon tetrafluoride (CF 4 ) is introduced into a heating furnace, and heated at a temperature of 1000 to 1200 ° C. Sufficiently adsorb and diffuse into the porous glass body.
[0026]
Then, the temperature in the heating furnace is increased to 1400 to 1600 ° C., and the fluorine compound is adsorbed, and the porous glass body to which the adsorbed fluorine compound is adsorbed is turned into a transparent glass, whereby fluorine is uniformly added, and fluorine-added synthesis with almost no distortion. A quartz glass material is obtained.
[0027]
When the variation in the refractive index of the synthetic quartz glass material thus obtained was measured by a Fizeau interferometer, it was found to be within 0.8 r (r is the radius of the synthetic quartz glass material) from the center. The difference between the maximum value and the minimum value of the refractive index was 1.2 × 10 −6 . On the other hand, the difference is 30 × 10 −6 in the synthetic quartz glass material obtained by the conventional production method, and it can be seen that the uniformity of the refractive index is remarkably improved in the present invention.
[0028]
As described above, in the porous glass body of the present invention, assuming that the radius of the cylindrical porous glass body is R as an allowable range of the change in the bulk density, the distance from the center to 0.8R from the center is 0.8R. in the region, the bulk density of 0.3 to 0.7 g / cm 3, preferably in the range of 0.35~0.55g / cm 3, defined as ± 0.005 g / cm 3 within per the percentage change in radius 1mm Thus, it is possible to obtain a porous glass body having uniformity of bulk density such that fluorine can be uniformly added to substantially no problem.
[0029]
In the method for producing a porous glass body according to the present invention, the temperature at the center of the growth point A where the glass particles at the lower end of the porous glass body are deposited by the VAD method is defined as the maximum temperature, and the temperature is defined as 0% from the center. By making the temperature of the region up to .8R a difference of 100 ° C. or less from the temperature of the central portion, a porous glass body having the above-described allowable range of bulk density is specifically manufactured. It clarifies the methods that can be used.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a porous glass body having a permissible variation in bulk density, which can be regarded as having a substantially uniform bulk density. In addition, a porous glass body having such a permissible variation in bulk density can be manufactured.
[0031]
Therefore, it is possible to obtain a synthetic quartz glass material in which the addition of fluorine is made uniform, the fluctuation of the refractive index is very small, and the distortion is small. Further, since the synthetic quartz glass material has little distortion, the number of glass products requiring an annealing process in a subsequent step is significantly reduced, and the production cost of such glass products can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a method for producing a porous glass body of the present invention.
FIG. 2 is a chart showing an example of distribution of bulk density of a porous glass body of the present invention and a conventional porous glass body.
[Explanation of symbols]
Reference numeral 1 denotes a starting member, 2 denotes a multi-tube burner, 3 denotes a porous glass body, and A denotes a growth point.