[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002338294A - Glass and method for manufacturing the same - Google Patents

Glass and method for manufacturing the same

Info

Publication number
JP2002338294A
JP2002338294A JP2001145917A JP2001145917A JP2002338294A JP 2002338294 A JP2002338294 A JP 2002338294A JP 2001145917 A JP2001145917 A JP 2001145917A JP 2001145917 A JP2001145917 A JP 2001145917A JP 2002338294 A JP2002338294 A JP 2002338294A
Authority
JP
Japan
Prior art keywords
glass
photoelastic constant
raw material
network
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001145917A
Other languages
Japanese (ja)
Inventor
Hiroyuki In
浩之 因
Hiromichi Takebe
博倫 武部
Kenji Morinaga
健次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Japan Science and Technology Agency
Original Assignee
Daiden Co Inc
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Japan Science and Technology Corp filed Critical Daiden Co Inc
Priority to JP2001145917A priority Critical patent/JP2002338294A/en
Publication of JP2002338294A publication Critical patent/JP2002338294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide glass with which a photoelastic constant can be properly set and the low photoelasticity is made compatible with a low refractive index and manufacturing is easy, and a method for manufacturing the same. SOLUTION: The photoelastic constant is given as a function of a molar ratio and when the molar ratio of a mesh modification component and a mesh formation component is determined, the photoelastic constant is easily obtained, by which raw materials are properly regulated in such a manner that the molar ratio of the mesh modification component and the mesh formation component attains a prescribed value and a desired photoelastic constant corresponding to the value of the molar ratio can be obtained. the photoelastic constant of the glass can be set at a desired value according to applications.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏光光学系や光変
流器用のファラデー素子として用いられる低光弾性ガラ
スをはじめとする所定の光弾性定数となるガラスに関
し、特に、低光弾性の場合に低屈折率も実現できるガラ
ス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass having a predetermined photoelastic constant such as a low photoelastic glass used as a Faraday element for a polarization optical system or an optical current transformer. The present invention relates to a glass capable of realizing a low refractive index and a method for producing the same.

【0002】[0002]

【従来の技術】近年、液晶プロジェクタの空間光変調素
子や偏光ビームスプリッタ等の偏光光学系として、ま
た、ファラデー効果を利用して被測定導体の電流を測定
する光変流器におけるファラデー素子として、ガラスが
注目を集めている。ただし、ガラスの場合、外部からの
力や熱によって機械的応力や熱的応力が加わると応力歪
みが発生して光弾性効果による複屈折性を示すようにな
り、複屈折で所望の偏光特性を得にくくなったり、光変
流器の測定値がばらついたりするという問題を有してい
る。
2. Description of the Related Art In recent years, as a polarization optical system such as a spatial light modulation element or a polarization beam splitter of a liquid crystal projector, or as a Faraday element in an optical current transformer for measuring a current of a conductor to be measured by utilizing the Faraday effect. Glass is attracting attention. However, in the case of glass, when mechanical stress or thermal stress is applied by external force or heat, stress distortion occurs, and the glass exhibits birefringence due to the photoelastic effect. There is a problem that it is difficult to obtain or the measured value of the optical current transformer varies.

【0003】ガラスにおける複屈折性の大きさは、光路
差として現れ、複屈折性が大きいほど光路差も大きくな
る。ここで、光路差をδ、ガラスの厚さをd、応力をF
とすると、 δ=β・d・F という関係式が成立する。上記の式における比例定数β
は光弾性定数と呼ばれ、ガラスの材質ごとに特有な値で
あり、この光弾性定数が小さければ、同じ応力に対して
も光路差、すなわち複屈折性が小さくなり、複屈折の悪
影響も抑えられる。近年は上記した偏光光学系やファラ
デー素子等の用途に光弾性定数の小さいガラスの開発が
進んでおり、こうした光弾性定数が小さいガラスとして
は、高鉛含有量のガラスが最も一般的に用いられてい
る。
[0003] The magnitude of birefringence in glass appears as an optical path difference, and the greater the birefringence, the greater the optical path difference. Here, the optical path difference is δ, the thickness of the glass is d, and the stress is F.
Then, the relational expression of δ = β · d · F holds. The proportionality constant β in the above equation
Is called a photoelastic constant, which is a specific value for each glass material.If this photoelastic constant is small, the optical path difference, that is, the birefringence, is reduced for the same stress, and the adverse effect of birefringence is also suppressed. Can be In recent years, glass having a small photoelastic constant has been developed for applications such as the above-mentioned polarizing optical system and Faraday element, and glass having a high lead content is most commonly used as such a glass having a small photoelastic constant. ing.

【0004】また、こうした光弾性定数が小さいガラス
の他の例として、特開2000−34132号公報に記
載されるものがある。この従来他例のガラスは、主に、
五酸化リンを41〜52%、酸化バリウムを47〜57
%、アルミナを0.5〜5%含んでおり、光弾性定数
が、0.5×10-12[1/Pa]以下となるものであ
る。
Another example of glass having a small photoelastic constant is described in Japanese Patent Application Laid-Open No. 2000-34132. This other conventional glass is mainly
41-52% phosphorus pentoxide, 47-57 barium oxide
%, And 0.5 to 5% of alumina, and has a photoelastic constant of 0.5 × 10 −12 [1 / Pa] or less.

【0005】[0005]

【発明が解決しようとする課題】従来のガラスは以上の
ように構成されており、鉛を重量で70%以上含有した
高鉛含有量のガラスは、実用上問題とならないレベルま
で光弾性定数が小さいものの、屈折率が非常に高くな
り、この高屈折率のために、石英系ガラス材やマッチン
グオイルなどの既存光学用材料と適合しにくいという課
題を有していた。また、屈折率が大きいと、ファラデー
素子として用いる場合電流感度の最小値(下限)が大き
くなってしまうと共に、巻数による感度調整が難しくな
るという課題を有していた。さらに、従来後者の五酸化
リン、酸化バリウム、及びアルミナを含むガラスは、低
屈折率であるものの、光弾性定数は高鉛含有量のガラス
と比べて比較的大きな値に留まるという課題を有してい
た。
The conventional glass is constituted as described above. A glass having a high lead content containing 70% or more by weight of lead has a photoelastic constant to a level that does not cause a practical problem. Although small, the refractive index becomes extremely high, and due to this high refractive index, there is a problem that it is difficult to be compatible with existing optical materials such as a quartz glass material and a matching oil. Further, when the refractive index is large, the minimum value (lower limit) of the current sensitivity becomes large when used as a Faraday element, and the sensitivity adjustment by the number of turns becomes difficult. Furthermore, although the latter glass containing phosphorus pentoxide, barium oxide, and alumina has a low refractive index, it has a problem that the photoelastic constant remains relatively large as compared with a glass having a high lead content. I was

【0006】本発明は前記課題を解消するためになされ
たもので、光弾性定数を適宜設定可能であると共に、低
屈折率と低光弾性を両立させ、製造も容易であるガラス
及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a glass and a method of manufacturing the glass, which can set a photoelastic constant appropriately, achieve both a low refractive index and a low photoelasticity, and are easy to manufacture. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明に係るガラスは、
光弾性定数が、少なくともイオン分極性の高い元素を含
む網目修飾成分と網目形成成分とのモル比率の関数とし
て得られるものである。このように本発明においては、
光弾性定数が網目修飾成分と網目形成成分とのモル比率
の関数として与えられ、網目修飾成分と網目形成成分と
のモル比率が決定すると光弾性定数が求められることに
より、網目修飾成分と網目形成成分とのモル比率が所定
値となるよう原材料を適宜調整して、モル比率の値に対
応する所望の光弾性定数を得ることができ、用途に応じ
てガラスの光弾性定数を所望の値に設定できる。
The glass according to the present invention comprises:
The photoelastic constant is obtained as a function of the molar ratio between the network modifying component containing at least an element having high ion polarization and the network forming component. Thus, in the present invention,
The photoelastic constant is given as a function of the molar ratio between the network modifying component and the network forming component, and when the molar ratio between the network modifying component and the network forming component is determined, the photoelastic constant is determined. The raw materials are appropriately adjusted so that the molar ratio with the components becomes a predetermined value, and a desired photoelastic constant corresponding to the value of the molar ratio can be obtained. Can be set.

【0008】また、本発明に係るガラスは必要に応じ
て、前記網目修飾成分が、酸化バリウムであり、前記網
目形成成分が、五酸化リンであるものである。このよう
に本発明においては、網目修飾成分を酸化バリウムとす
る一方、網目形成成分を五酸化リンとし、光弾性定数を
小さくする性質のある酸化バリウムの割合を調整して所
定の光弾性定数とすることにより、酸化バリウムのモル
比率を多くして光弾性定数を容易に小さくすることがで
きる。
In the glass according to the present invention, if necessary, the network modifying component is barium oxide, and the network forming component is phosphorus pentoxide. Thus, in the present invention, while the network modifying component is barium oxide, the network forming component is phosphorus pentoxide, and the ratio of barium oxide having a property of reducing the photoelastic constant is adjusted to a predetermined photoelastic constant. By doing so, the photoelastic constant can be easily reduced by increasing the molar ratio of barium oxide.

【0009】また、本発明に係るガラスは必要に応じ
て、光弾性定数を定義する関数のうち一次関数における
モル比率の乗数が−1.13×10-12±0.06×1
-12であり、且つ定数項が1.59×10-12±0.0
5×10-12であるものである。このように本発明にお
いては、光弾性定数が網目修飾成分と網目形成成分との
モル比率の一次関数である場合、この一次関数における
モル比率の乗数と定数項がそれぞれ−1.13×10
-12±0.06×10-12、1.59×10-12±0.0
5×10-12と与えられ、網目修飾成分と網目形成成分
とのモル比率を決定すると光弾性定数が求められること
により、所望の光弾性定数を実現する網目修飾成分と網
目形成成分とのモル比率を容易に導け、モル比率を原材
料で調整しつつ製造して任意の光弾性定数とすることが
できる。
In the glass according to the present invention, the multiplier of the molar ratio in the linear function among the functions defining the photoelastic constant may be -1.13 × 10 -12 ± 0.06 × 1 if necessary.
0 −12 and the constant term is 1.59 × 10 −12 ± 0.0
It is 5 × 10 −12 . As described above, in the present invention, when the photoelastic constant is a linear function of the molar ratio between the network modifying component and the network forming component, the multiplier of the molar ratio and the constant term in this linear function are respectively -1.13 × 10
-12 ± 0.06 × 10 -12 , 1.59 × 10 -12 ± 0.0
Given a 5 × 10 -12, moles of by photoelastic constant is required when determining the molar ratio of the network-modifying component and network formers, and the desired network-modifying component for realizing a photoelastic constant and network formers The ratio can be easily derived, and the molar ratio can be adjusted to the raw material to produce an arbitrary photoelastic constant.

【0010】また、本発明に係るガラスは必要に応じ
て、フッ素を0〜7%含み、網目修飾成分と網目形成成
分のモル比率が1.25以上となるものである。このよ
うに本発明においては、微量のフッ素を含ませた上で網
目修飾成分の割合を増やしてモル比率を1.25以上に
高くし、製造時における原料融液の挙動をフッ素で安定
化して支障無くガラス状態へ移行させられることによ
り、結晶化等の品質劣化の無い清浄なガラス状態とな
り、網目修飾成分のモル数が多くなることに伴って光弾
性定数を確実に小さくすることができる。
The glass according to the present invention contains 0 to 7% of fluorine as necessary, and the molar ratio between the network modifying component and the network forming component is 1.25 or more. As described above, in the present invention, after adding a trace amount of fluorine, the ratio of the network modifying component is increased to increase the molar ratio to 1.25 or more, and the behavior of the raw material melt during production is stabilized by fluorine. The transition to the glass state without hindrance results in a clean glass state without quality deterioration such as crystallization, and the photoelastic constant can be reliably reduced as the number of moles of the network modifying component increases.

【0011】また、本発明に係るガラスは必要に応じ
て、屈折率が1.65以下であり、且つ光弾性定数が
0.3[×10-12(1/Pa)]以下であるものであ
る。このように本発明においては、屈折率と光弾性定数
が所定値以下に小さく設定されることにより、複屈折性
を抑えられることに加え、低屈折率に伴い既存光学用材
料との適合性を拡大することができ、さらに、センサー
材として使用する場合も電流感度の最小値が小さくな
り、巻数による感度調整が容易になる。
Further, the glass according to the present invention has a refractive index of 1.65 or less and a photoelastic constant of 0.3 [× 10 −12 (1 / Pa)] or less, if necessary. is there. As described above, in the present invention, by setting the refractive index and the photoelastic constant to be smaller than a predetermined value, in addition to suppressing the birefringence, the compatibility with the existing optical material due to the low refractive index is improved. It can be expanded, and also when used as a sensor material, the minimum value of the current sensitivity becomes small, and the sensitivity adjustment by the number of turns becomes easy.

【0012】また、本発明に係るガラスは必要に応じ
て、フッ素を含有する場合の光弾性定数が、フッ素の含
有量(モル%)に乗数として0.018×10-12±
0.005×10-12を乗じた値を前記一次関数の定数
項に加えて得られるものである。このように本発明にお
いては、光弾性定数を高める性質を有するフッ素を含有
する場合にフッ素の含有量を考慮した光弾性定数を求め
られることにより、所望の光弾性定数を実現するフッ素
の含有量を容易に導け、フッ素含有量を添加量で調整し
つつ製造して所望の光弾性定数とすることができる。
If necessary, the glass according to the present invention has a photoelastic constant of 0.018 × 10 −12 ± 10 as a multiplier with respect to the fluorine content (mol%).
It is obtained by adding a value multiplied by 0.005 × 10 −12 to the constant term of the linear function. As described above, in the present invention, when fluorine containing the property of increasing the photoelastic constant is contained, the fluorine content that achieves the desired photoelastic constant can be obtained by determining the photoelastic constant in consideration of the fluorine content. Can be easily obtained, and a desired photoelastic constant can be obtained by adjusting the fluorine content by the amount added.

【0013】また、本発明に係るガラスは必要に応じ
て、アルミナを含有する場合の光弾性定数が、アルミナ
の含有量(モル%)に乗数として0.010×10-12
±0.005×10-12を乗じた値を前記一次関数の定
数項に加えて得られるものである。このように本発明に
おいては、光弾性定数を高める性質を有するアルミナを
添加物又は不純物として含有する場合にアルミナの含有
量を考慮した光弾性定数を求められることにより、所望
の光弾性定数を実現するアルミナの含有量を容易に導
け、アルミナ含有量を添加量で調整しつつ製造して所望
の光弾性定数とすることができる。また、アルミナの添
加によって屈折率等の特性値を調整できる。
If necessary, the glass according to the present invention has a photoelastic constant of 0.010 × 10 −12 as a multiplier to the alumina content (mol%) when alumina is contained.
It is obtained by adding a value multiplied by ± 0.005 × 10 −12 to the constant term of the linear function. As described above, in the present invention, a desired photoelastic constant is realized by obtaining a photoelastic constant in consideration of the alumina content when alumina having a property of enhancing the photoelastic constant is contained as an additive or impurity. The content of alumina to be obtained can be easily derived, and a desired photoelastic constant can be obtained by manufacturing while adjusting the alumina content by the added amount. In addition, characteristic values such as a refractive index can be adjusted by adding alumina.

【0014】また、本発明に係るガラス製造方法は、ガ
ラス固化状態における網目修飾成分と網目形成成分とな
る各元素を含む一又は複数の出発原料をガラス原料とし
て使用し、前記網目修飾成分の増加用添加材料として網
目修飾成分に含まれる高イオン分極性元素のフッ化物、
前記高イオン分極性元素のフッ化物及び酸化物、又は、
所定のフッ化物及び前記高イオン分極性元素の酸化物を
所定量添加するものである。このように本発明において
は、ガラス固化状態における網目修飾成分の割合を増や
す添加材料として網目修飾成分に含まれる高イオン分極
性元素やフッ素を含んだ物質を添加し、原料融液に微量
のフッ素が含まれた状態としつつ、網目修飾成分のモル
比率を高くし、製造時における原料融液の挙動をフッ素
で安定化してガラス状態へ移行させられることにより、
結晶化等を防止して品質劣化の無い清浄なガラス状態に
でき、網目修飾成分のモル比率を多くして光弾性定数を
小さくしたガラスを確実に製造することができる。
Further, in the glass production method according to the present invention, the network modifying component in a vitrified state and one or a plurality of starting materials containing each element serving as a network forming component are used as a glass raw material, and the network modifying component is increased. Fluoride of high ionic polarizable element contained in the network modifying component as additive material for
Fluoride and oxide of the high ionic polarizable element, or
A predetermined fluoride and an oxide of the highly ionic polarizable element are added in a predetermined amount. As described above, in the present invention, a substance containing a high ionic polarizable element or fluorine contained in the network modifying component is added as an additive material for increasing the ratio of the network modifying component in the vitrified state, and a small amount of fluorine is added to the raw material melt. While the state where is contained, by increasing the molar ratio of the network modifying component, the behavior of the raw material melt at the time of production can be stabilized by fluorine and transferred to a glass state,
Crystallization and the like can be prevented to obtain a clean glass state without quality deterioration, and a glass having a small photoelastic constant by increasing the molar ratio of the network modifying component can be reliably produced.

【0015】また、本発明に係るガラス製造方法は必要
に応じて、前記出発原料としてメタリン酸バリウムを使
用し、前記増加用添加材料としてフッ化バリウムを添加
するものである。このように本発明においては、メタリ
ン酸バリウムを出発原料として使用し、ガラス固化状態
における網目修飾成分である酸化バリウムの割合を増や
す添加材料としてフッ化バリウムを添加し、原料融液に
微量のフッ素が含まれた状態としつつ、酸化バリウムの
モル比率を高くし、製造時における原料融液の挙動をフ
ッ素で安定化して支障無くガラス状態へ移行させられる
ことにより、酸化バリウムのモル比率を高めても結晶化
等の品質劣化の無い清浄なガラス状態とすることがで
き、酸化バリウムのモル比率を高めて光弾性定数を小さ
くしたガラスを確実に製造することができる。また、製
造したガラスの屈折率も小さくできる。
The glass manufacturing method according to the present invention uses barium metaphosphate as the starting material and adds barium fluoride as the additive material as needed. As described above, in the present invention, barium metaphosphate is used as a starting material, barium fluoride is added as an additive material for increasing the ratio of barium oxide, which is a network modifying component in a vitrified state, and a small amount of fluorine is added to the raw material melt. While increasing the molar ratio of barium oxide, the behavior of the raw material melt during production can be stabilized with fluorine and transferred to the glass state without hindrance, thereby increasing the molar ratio of barium oxide. Can be made into a clean glass state without quality deterioration such as crystallization, and it is possible to reliably produce glass with a reduced photoelastic constant by increasing the molar ratio of barium oxide. Further, the refractive index of the manufactured glass can be reduced.

【0016】また、本発明に係るガラス製造方法は必要
に応じて、前記出発原料を加熱融解させ、原料融液中に
フッ素と反応する所定ガスを吹込み、原料融液中のフッ
素を前記所定ガスと反応させ、フッ化物ガスの状態で原
料融液中から揮発させるものである。このように本発明
においては、出発原料を融解させた後にフッ素と反応す
る所定ガスを吹込んでフッ素をフッ化物ガスとして揮発
させ、原料融液中のフッ素量を低減することにより、ガ
ラス状態でのフッ素の存在による悪影響を抑えられ、清
浄で均質性の向上したガラスを製造できると共に、フッ
素を減らすことでガラスの光弾性定数もより一層小さく
することができる。
Further, in the glass manufacturing method according to the present invention, if necessary, the starting material is heated and melted, a predetermined gas reacting with fluorine is blown into the raw material melt, and the fluorine in the raw material melt is reduced to the predetermined temperature. It reacts with a gas and volatilizes from the raw material melt in the state of a fluoride gas. As described above, in the present invention, by blowing a predetermined gas that reacts with fluorine after the starting material is melted to volatilize fluorine as a fluoride gas, and reducing the amount of fluorine in the material melt, a glassy state is obtained. The adverse effect due to the presence of fluorine can be suppressed, and a glass with clean and improved homogeneity can be manufactured. In addition, the photoelastic constant of the glass can be further reduced by reducing the amount of fluorine.

【0017】また、本発明に係るガラス製造方法は必要
に応じて、前記出発原料を加熱融解させた原料融液中に
前記所定ガスとして湿潤空気を吹込んだ後、原料融液中
に塩素又は塩化物を添加し、原料融液中の水を塩素又は
塩化物と反応させ、生じた塩化水素を原料融液中から揮
発させるものである。このように本発明においては、出
発原料を融解させて湿潤空気を吹込んだ後、さらに原料
融液中に塩素又は塩化物を添加して原料融液中に残る水
と反応させ、水を構成する水素を塩化水素に変えて原料
融液外に揮発させ、原料融液中に含まれる水の量を低減
することにより、ガラス状態での水の存在による悪影響
を抑えられ、清浄で均質性がさらに向上したガラスを製
造できる。
Further, according to the glass production method of the present invention, if necessary, after blowing wet air as the predetermined gas into the raw material melt obtained by heating and melting the starting material, chlorine or chlorine is introduced into the raw material melt. Chloride is added, water in the raw material melt is reacted with chlorine or chloride, and the generated hydrogen chloride is volatilized from the raw material melt. As described above, in the present invention, after the starting material is melted and moist air is blown, chlorine or chloride is further added to the raw material melt to react with water remaining in the raw material melt to form water. Hydrogen chloride is converted to hydrogen chloride and volatilized out of the raw material melt, and the amount of water contained in the raw material melt is reduced, thereby reducing the adverse effects of water in the glass state and improving cleanliness and homogeneity. Further improved glass can be produced.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施の形態を説
明する。本実施の形態に係るガラスは、網目修飾成分と
網目形成成分とを含み、その光弾性定数が、網目修飾成
分と網目形成成分とのモル比率の一次関数として得られ
るものである。この光弾性定数を定義する一次関数は、
モル比率の乗数を−1.13(×10 -12)とし、定数
項を1.59(×10-12)とするものである。ガラス
における網目修飾成分と網目形成成分とのモル比率を
X、ガラスの光弾性定数をYとすると、その関係は次式
で表される。 Y[×10-12(1/Pa)]=−1.13X+1.5
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.
I will tell. The glass according to the present embodiment has a network modifying component and
And a photoelastic constant of the network modifying component.
Obtained as a linear function of the molar ratio of
Things. The linear function that defines this photoelastic constant is
The multiplier of the molar ratio is -1.13 (× 10 -12) And the constant
Term is 1.59 (× 10-12). Glass
The molar ratio between the network modifying component and the network forming component in
If X and the photoelastic constant of glass are Y, the relationship is
It is represented by Y [× 10-12(1 / Pa)] =-1.13X + 1.5
9

【0019】本実施の形態に係るガラスにおける網目修
飾成分としては、酸化バリウム(BaO)、酸化鉛(P
bO)などが挙げられ、好ましくは酸化バリウムとす
る。また、網目形成成分としては、五酸化リン(P
25)、二酸化ケイ素(SiO2)等が挙げられ、好ま
しくは五酸化リンとする。また、基本組成に対し、化学
的耐久性、熱的安定性、屈折率調整、高品位ガラス形成
等のために添加する物質として、Al23、La23
Nb25、Sb23、Na2O、CaO、K2O、Sn
O、TiO2、B23などがある。さらに、網目修飾成
分の割合を高めるために、この網目修飾成分に含まれる
イオン分極性の高い元素のフッ化物等を添加する場合も
ある。この他、アルミナるつぼからの溶出でアルミナ
(Al23)が不純物として加わる場合もある。
Barium oxide (BaO) and lead oxide (P) are used as the network modifying components in the glass according to the present embodiment.
bO) and the like, preferably barium oxide. Further, as a network forming component, phosphorus pentoxide (P
2 O 5 ), silicon dioxide (SiO 2 ) and the like, preferably phosphorus pentoxide. In addition, as substances added to the basic composition for chemical durability, thermal stability, refractive index adjustment, formation of high-grade glass, etc., Al 2 O 3 , La 2 O 3 ,
Nb 2 O 5 , Sb 2 O 3 , Na 2 O, CaO, K 2 O, Sn
O, TiO 2 , B 2 O 3 and the like. Further, in order to increase the ratio of the network modifying component, a fluoride or the like of an element having high ionic polarization included in the network modifying component may be added. In addition, alumina (Al 2 O 3 ) may be added as an impurity due to elution from the alumina crucible.

【0020】ガラス中にフッ素やアルミナが含まれる場
合、フッ素の含有量(モル%)をC、アルミナの含有量
(モル%)をDとすると、ガラスの光弾性定数Yは次式
で求められる。 Y[×10-12(1/Pa)]=−1.13X+0.0
18C+0.010D+1.59 前記モル比率Xが1.25以上となると、屈折率が1.
65以下で、且つ光弾性定数が0.3[×10-12(1
/Pa)]以下のガラスとなる。
When fluorine or alumina is contained in the glass, if the fluorine content (mol%) is C and the alumina content (mol%) is D, the photoelastic constant Y of the glass can be obtained by the following equation. . Y [× 10 −12 (1 / Pa)] = − 1.13X + 0.0
18C + 0.010D + 1.59 When the molar ratio X becomes 1.25 or more, the refractive index becomes 1.
65 or less and the photoelastic constant is 0.3 [× 10 -12 (1
/ Pa)] The following glass is obtained.

【0021】次に、本実施の形態に係るガラスの製造方
法について説明する。このガラスの製造方法では、網目
修飾成分及び網目形成成分を構成する元素を含む所定の
一又は複数の出発原料を使用し、ガラスとなった時の網
目修飾成分と網目形成成分とのモル比率が所望の割合と
なるよう、適宜添加材料を添加して調整する。また、網
目修飾成分の割合を高めるために、この網目修飾成分に
含まれるイオン分極性の高い元素のフッ化物(例えば、
フッ化バリウム)を添加したり、このフッ化物と共に同
じ高イオン分極性元素の酸化物(例えば、酸化バリウ
ム)を添加したり、前記高イオン分極性元素の酸化物と
共に別の所定元素のフッ化物(例えば、フッ化カルシウ
ムやフッ化マグネシウム)を添加したりする場合もあ
る。
Next, a method for manufacturing glass according to the present embodiment will be described. In this method for producing glass, one or more predetermined starting materials containing elements constituting the network modifying component and the network forming component are used, and the molar ratio between the network modifying component and the network forming component when the glass is formed is reduced. An additive material is appropriately added and adjusted so as to have a desired ratio. Further, in order to increase the ratio of the network modifying component, a fluoride of an element having high ionic polarization included in the network modifying component (for example,
Barium fluoride), an oxide of the same highly ionic polarizable element (for example, barium oxide) together with the fluoride, or a fluoride of another predetermined element together with the oxide of the highly ionic polarizable element. (For example, calcium fluoride or magnesium fluoride) in some cases.

【0022】出発原料の融解後、原料融液中には添加し
たフッ化物から生成したフッ素が存在している。湿潤空
気を原料融液中に吹込み、この空気中の水分を原料融液
中のフッ素と反応させると、フッ素がフッ化水素とな
る。このフッ化水素の原料融液からの揮発で、原料融液
からフッ素のみが減少する。続いて、原料融液中に塩素
ガスや塩化バリウムを添加し、これらに含まれる塩素と
原料融液中の水分とを反応させると、水をなす水素が塩
化水素となる。この塩化水素が原料融液からガス状態で
揮発し、原料融液から水分が減少する。この後、原料融
液を撹拌、曝気等により均一化し、さらに型中で冷却す
るとガラスが得られる。
After the starting material is melted, fluorine generated from the added fluoride is present in the raw material melt. When moist air is blown into the raw material melt and the water in the air is reacted with the fluorine in the raw material melt, the fluorine becomes hydrogen fluoride. Due to the volatilization of the hydrogen fluoride from the raw material melt, only fluorine is reduced from the raw material melt. Subsequently, when chlorine gas or barium chloride is added to the raw material melt and chlorine contained therein is reacted with moisture in the raw material melt, hydrogen forming water becomes hydrogen chloride. The hydrogen chloride is volatilized in a gaseous state from the raw material melt, and the water content is reduced from the raw material melt. Thereafter, the raw material melt is homogenized by stirring, aeration, and the like, and further cooled in a mold to obtain glass.

【0023】このように、本実施の形態に係るガラス
は、光弾性定数がモル比率の一次関数として与えられ、
網目修飾成分と網目形成成分とのモル比率が決定すると
容易に光弾性定数が求められることから、網目修飾成分
と網目形成成分とのモル比率が所定値となるよう原材料
を適宜調整して、モル比率の値に対応する所望の光弾性
定数を得ることができ、用途に応じてガラスの光弾性定
数を所望の値に設定できる。また、微量のフッ素を含ま
せた上で網目修飾成分の割合を増やしてモル比率を1.
25以上に高くするよう原材料を調整すると、製造時に
おける原料融液の挙動をフッ素で安定化して支障無くガ
ラス状態へ移行させられることとなり、品質劣化の無い
清浄なガラス状態となり、網目修飾成分のモル数が多く
なることに伴って光弾性定数を確実に小さくすることが
できる。さらに、光弾性定数を高める性質を有するフッ
素やアルミナを含有する場合に、これらの含有量を考慮
した光弾性定数を求められることから、所望の光弾性定
数を実現するフッ素やアルミナの含有量を容易に導け、
フッ素及び/又はアルミナ含有量を添加量で調整しつつ
製造して所望の光弾性定数とすることができる。
Thus, in the glass according to the present embodiment, the photoelastic constant is given as a linear function of the molar ratio,
Since the photoelastic constant is easily determined when the molar ratio between the network modifying component and the network forming component is determined, the raw materials are appropriately adjusted so that the molar ratio between the network modifying component and the network forming component becomes a predetermined value, and the molar ratio is adjusted. A desired photoelastic constant corresponding to the value of the ratio can be obtained, and the photoelastic constant of the glass can be set to a desired value depending on the application. Further, after adding a small amount of fluorine, the molar ratio is increased by increasing the ratio of the network modifying component to 1.
When the raw materials are adjusted to be higher than 25, the behavior of the raw material melt at the time of production can be stabilized with fluorine and can be shifted to a glass state without any trouble, and a clean glass state without quality deterioration is obtained, and the As the number of moles increases, the photoelastic constant can be reliably reduced. Furthermore, when fluorine or alumina having the property of increasing the photoelastic constant is contained, the photoelastic constant in consideration of these contents can be obtained, so that the content of fluorine or alumina that achieves the desired photoelastic constant is reduced. Easy to guide,
A desired photoelastic constant can be obtained by adjusting the content of fluorine and / or alumina by adjusting the content.

【0024】[0024]

【実施例】本発明に係るガラス製造方法により製造した
ガラスの光弾性定数についての評価結果、及び、従来と
同様の組成及び製法で製造した鉛ガラスと光弾性定数並
びに屈折率、電流感度について比較した評価結果を説明
する。
EXAMPLE The evaluation results of the photoelastic constant of the glass manufactured by the glass manufacturing method according to the present invention, and the comparison of the photoelastic constant, the refractive index, and the current sensitivity with the lead glass manufactured by the same composition and manufacturing method as before were compared. The evaluation results obtained will be described.

【0025】本実施例では、ガラスの網目修飾成分とし
て酸化バリウム(BaO)、網目形成成分として五酸化
リン(P25)が生成されるように、基本組成の出発原
料としてメタリン酸バリウム(Ba(PO32)を用い
てガラス製造を行う。出発原料をそのままガラスとした
時のBaOとP25のモル比率は1.0となる。この
他、添加物としてフッ化バリウム(BaF2)を混合
し、網目修飾成分として生成される酸化バリウム(Ba
O)の割合を調整する。
In the present embodiment, barium metaphosphate (BaO) is used as a starting material of the basic composition so that barium oxide (BaO) is produced as a network modifying component and phosphorus pentoxide (P 2 O 5 ) is produced as a network forming component. Glass production is performed using Ba (PO 3 ) 2 ). The molar ratio between BaO and P 2 O 5 when glass is used as the starting material is 1.0. In addition, barium fluoride (BaF 2 ) is mixed as an additive, and barium oxide (Ba
Adjust the proportion of O).

【0026】本発明に係るガラスを、酸化バリウム(B
aO)と五酸化リン(P25)のモル比率を変えて複数
製造し、光弾性定数の比較を行う。第1の実施例とし
て、出発原料のメタリン酸バリウムに添加物としてフッ
化バリウムを混合し、生成される酸化バリウムと五酸化
リンのモル比率を調整する。組成は、ガラス全体に対す
るモル%で酸化バリウムが51.6%、五酸化リンが3
9.1%、フッ素が2.6%、酸化ナトリウムが2.5
%、及び、不純物としてアルミナが0.5%、二酸化ケ
イ素が2.3%である。さらに酸化マグネシウムや酸化
カリウムもごく微量含まれる。
The glass according to the present invention is made of barium oxide (B
aO) and phosphorus pentoxide (P 2 O 5 ) are produced at different molar ratios, and the photoelastic constants are compared. As a first embodiment, barium fluoride is added as an additive to barium metaphosphate as a starting material, and the molar ratio of barium oxide to phosphorus pentoxide to be produced is adjusted. The composition was 51.6% of barium oxide and 3% of phosphorus pentoxide in mol% based on the whole glass.
9.1%, 2.6% fluorine, 2.5% sodium oxide
%, And 0.5% of alumina and 2.3% of silicon dioxide as impurities. In addition, very small amounts of magnesium oxide and potassium oxide are also contained.

【0027】次に、第2の実施例として、メタリン酸バ
リウムに対するフッ化バリウムの添加割合を変え、第1
の実施例と同様にしてガラスを得た。組成は、ガラス全
体に対するモル%で酸化バリウムが53.9%、五酸化
リンが39.2%、フッ素が1.9%、酸化ナトリウム
が1.4%、また、不純物としてアルミナが0.5%、
二酸化ケイ素が2.8%である。さらに酸化マグネシウ
ムや酸化カリウムもごく微量含まれる。以上の各実施例
におけるガラスの組成内容を表1上側にまとめて示す。
Next, as a second embodiment, the addition ratio of barium fluoride to barium metaphosphate was changed,
A glass was obtained in the same manner as in Example. The composition was 53.9% of barium oxide, 39.2% of phosphorus pentoxide, 1.9% of fluorine, 1.4% of sodium oxide, and 0.5% of alumina as an impurity in mol% based on the whole glass. %,
Silicon dioxide is 2.8%. In addition, very small amounts of magnesium oxide and potassium oxide are also contained. The composition of the glass in each of the above examples is summarized in the upper part of Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】各実施例の組成に基づいて本発明のガラス
製造方法によりガラスを製造した。出発原料であるメタ
リン酸バリウムと添加物であるフッ化バリウムの融解
後、原料融液中には添加したフッ化バリウムから生成し
たフッ素が存在している。湿潤空気を原料融液中に吹込
み、この空気中の水分を原料融液中のフッ素と反応させ
ると、フッ素がフッ化水素となる。このフッ化水素の原
料融液からの揮発で、原料融液からフッ素のみが減少す
る。
Glass was manufactured by the glass manufacturing method of the present invention based on the composition of each example. After melting of barium metaphosphate as a starting material and barium fluoride as an additive, fluorine generated from the added barium fluoride is present in the raw material melt. When moist air is blown into the raw material melt and the water in the air is reacted with the fluorine in the raw material melt, the fluorine becomes hydrogen fluoride. Due to the volatilization of the hydrogen fluoride from the raw material melt, only fluorine is reduced from the raw material melt.

【0030】続いて、原料融液中に塩素ガスを吹込み、
塩素と原料融液中の水分とを反応させると、水をなす水
素が塩化水素となる。この塩化水素が原料融液からガス
状態で揮発し、原料融液から水分が減少する。この後、
原料融液を撹拌して均一化し、さらに型中で徐冷すると
ガラスが得られる。
Subsequently, chlorine gas is blown into the raw material melt,
When chlorine reacts with the water in the raw material melt, hydrogen that forms water becomes hydrogen chloride. The hydrogen chloride is volatilized in a gaseous state from the raw material melt, and the water content is reduced from the raw material melt. After this,
The raw material melt is stirred and homogenized, and then gradually cooled in a mold to obtain a glass.

【0031】上記のようにして製造されたガラスについ
て、屈折率と光弾性定数について評価試験を行った。試
験では、屈折率と光弾性定数の実際の値をそれぞれ計測
している。この試験における計測値を表1下側に示す。
合わせて、モル比率と各添加物の添加割合から計算式で
求めた光弾性定数も示す。なお、光弾性定数は、He−
Neレーザ光を用い、直径10mm、長さ10mmのガ
ラスに所定方向に圧縮荷重を加えた場合におけるガラス
の中心に生じる光路差を測定することにより求めてい
る。また、屈折率は、波長632.8nmの可視光に対
するものである。
An evaluation test was performed on the glass produced as described above for the refractive index and the photoelastic constant. In the test, the actual values of the refractive index and the photoelastic constant were measured, respectively. The measured values in this test are shown in the lower part of Table 1.
In addition, the photoelastic constant obtained by the calculation formula from the molar ratio and the addition ratio of each additive is also shown. The photoelastic constant is He-
It is obtained by measuring the optical path difference generated at the center of the glass when a compressive load is applied in a predetermined direction to glass having a diameter of 10 mm and a length of 10 mm using Ne laser light. The refractive index is for visible light having a wavelength of 632.8 nm.

【0032】表1に示すように、光弾性定数について
は、実施例1で0.15[×10-12(1/Pa)]、
実施例2で0.08[×10-12(1/Pa)]とな
り、実用上問題とならない0.2[×10-12(1/P
a)]を十分に下回る値が得られている。一方、屈折率
については、実施例1と実施例2とで同じ1.60とな
っており、同程度の光弾性定数となる鉛ガラスと比べて
十分低い値が得られている。
As shown in Table 1, the photoelastic constant of Example 1 was 0.15 [× 10 −12 (1 / Pa)],
Example 2 0.08 [× 10 -12 (1 / Pa)] , and the no practical problems 0.2 [× 10 -12 (1 / P
a)] are obtained. On the other hand, the refractive index of Example 1 and Example 2 is 1.60, which is a sufficiently low value as compared with lead glass having the same photoelastic constant.

【0033】これらにより、基本材料のメタリン酸バリ
ウムに添加物としてフッ化バリウムを添加し、酸化バリ
ウムと五酸化リンのモル比率が1.3以上となるよう調
整した原材料を融解し、原料融液からフッ素を揮発させ
てほとんど除去する本発明の製造方法を用いることで、
酸化バリウムのモル比率が高く、光弾性定数と屈折率の
低いガラスを得られることが確認できた。また、実施例
1、2の実測による光弾性定数と計算で求めた光弾性係
数はほぼ一致しており、これら光弾性定数とモル比率と
の関係から、光弾性定数がモル比率の一次関数で表され
ることが確認できた。さらに、本実施例のガラスを、従
来と同様の組成及び製法で製造した鉛ガラスと光弾性定
数並びに屈折率、電流感度について比較した評価結果を
説明する。この評価結果を表2に示す。
Thus, barium fluoride is added as an additive to barium metaphosphate as a basic material, and the raw material adjusted so that the molar ratio of barium oxide to phosphorus pentoxide becomes 1.3 or more is melted. By using the production method of the present invention to volatilize and remove most of fluorine from,
It was confirmed that a glass having a high molar ratio of barium oxide and a low photoelastic constant and refractive index could be obtained. Further, the measured photoelastic constants of Examples 1 and 2 and the calculated photoelastic coefficient were almost the same, and from the relationship between the photoelastic constant and the molar ratio, the photoelastic constant was a linear function of the molar ratio. It was confirmed that it was expressed. Further, evaluation results of comparing the glass of the present example with a lead glass manufactured by the same composition and manufacturing method as those of the related art in terms of photoelastic constant, refractive index, and current sensitivity will be described. Table 2 shows the evaluation results.

【0034】[0034]

【表2】 [Table 2]

【0035】鉛ガラスとほぼ同じ光弾性定数を有する本
発明によるガラスにおいて、屈折率は鉛ガラスに比べ十
分低い値となっており、その分、光変流器のファラデー
素子として用いた場合の電流感度も優れたものとなる。
すなわち、屈折率はファラデー素子(センサ用光ファイ
バ)として使用する場合に電流感度にも関わる値であ
り、屈折率が小さいと電流感度の分解能(最小値)が小
さくなり、センサ構成上巻数による感度調整が容易とな
り、大電流計測にも適する。また、光弾性定数が小さく
複屈折性が小さくなっていることに加え、屈折率も小さ
いため、材料に曲げ応力が発生する用途、例えば光ファ
イバにおいては、石英系ファイバーとの接合やマッチン
グオイルなどの既存光学用材料との適合範囲が大きく拡
大し、接続性を大きく向上させられる。
In the glass according to the present invention having almost the same photoelastic constant as lead glass, the refractive index is sufficiently lower than that of lead glass, and accordingly, the current when used as a Faraday element of an optical current transformer is correspondingly increased. The sensitivity is also excellent.
That is, the refractive index is a value related to the current sensitivity when used as a Faraday element (optical fiber for a sensor). When the refractive index is small, the resolution (minimum value) of the current sensitivity is small, and the sensitivity due to the number of turns in the sensor configuration is small. Adjustment is easy and suitable for large current measurement. In addition to the low photoelastic constant and low birefringence, as well as the low refractive index, applications where bending stress is generated in materials, such as bonding to quartz fibers and matching oil in optical fibers, etc. The range of compatibility with existing optical materials is greatly expanded, and the connectivity is greatly improved.

【0036】[0036]

【発明の効果】以上のように本発明によれば、光弾性定
数が網目修飾成分と網目形成成分とのモル比率の関数と
して与えられ、網目修飾成分と網目形成成分とのモル比
率が決定すると光弾性定数が求められることにより、網
目修飾成分と網目形成成分とのモル比率が所定値となる
よう原材料を適宜調整して、モル比率の値に対応する所
望の光弾性定数を得ることができ、用途に応じてガラス
の光弾性定数を所望の値に設定できるという効果を奏す
る。また、本発明によれば、網目修飾成分を酸化バリウ
ムとする一方、網目形成成分を五酸化リンとし、光弾性
定数を小さくする性質のある酸化バリウムの割合を調整
して所定の光弾性定数とすることにより、酸化バリウム
のモル比率を多くして光弾性定数を容易に小さくするこ
とができるという効果を有する。
As described above, according to the present invention, the photoelastic constant is given as a function of the molar ratio between the network modifying component and the network forming component, and the molar ratio between the network modifying component and the network forming component is determined. When the photoelastic constant is determined, the raw material can be appropriately adjusted so that the molar ratio between the network modifying component and the network forming component becomes a predetermined value, and a desired photoelastic constant corresponding to the value of the molar ratio can be obtained. This has the effect that the photoelastic constant of the glass can be set to a desired value depending on the application. Further, according to the present invention, while the network modifying component is barium oxide, the network forming component is phosphorus pentoxide, and the ratio of barium oxide having a property of reducing the photoelastic constant is adjusted to a predetermined photoelastic constant. By doing so, there is an effect that the photoelastic constant can be easily reduced by increasing the molar ratio of barium oxide.

【0037】また、本発明によれば、光弾性定数が網目
修飾成分と網目形成成分とのモル比率の一次関数である
場合、この一次関数におけるモル比率の乗数と定数項が
それぞれ−1.13×10-12±0.06×10-12
1.59×10-12±0.05×10-12と与えられ、網
目修飾成分と網目形成成分とのモル比率を決定すると光
弾性定数が求められることにより、所望の光弾性定数を
実現する網目修飾成分と網目形成成分とのモル比率を容
易に導け、モル比率を原材料で調整しつつ製造して任意
の光弾性定数とすることができるという効果を有する。
また、本発明によれば、微量のフッ素を含ませた上で網
目修飾成分の割合を増やしてモル比率を1.25以上に
高くし、製造時における原料融液の挙動をフッ素で安定
化して支障無くガラス状態へ移行させられることによ
り、結晶化等の品質劣化の無い清浄なガラス状態とな
り、網目修飾成分のモル数が多くなることに伴って光弾
性定数を確実に小さくすることができるという効果を有
する。
According to the present invention, when the photoelastic constant is a linear function of the molar ratio between the network modifying component and the network forming component, the multiplier of the molar ratio and the constant term in this linear function are respectively -1.13. × 10 -12 ± 0.06 × 10 -12 ,
Given a value of 1.59 × 10 −12 ± 0.05 × 10 −12 , a desired photoelastic constant is realized by obtaining a photoelastic constant when the molar ratio between the network modifying component and the network forming component is determined. There is an effect that the molar ratio between the network modifying component and the network forming component can be easily derived, and it is possible to obtain an arbitrary photoelastic constant by manufacturing while adjusting the molar ratio with the raw material.
Further, according to the present invention, by adding a trace amount of fluorine, increasing the ratio of the network modifying component to increase the molar ratio to 1.25 or more, and stabilizing the behavior of the raw material melt during production with fluorine. The transition to the glass state without hindrance results in a clean glass state without quality deterioration such as crystallization, and the photoelastic constant can be reliably reduced as the number of moles of the network modifying component increases. Has an effect.

【0038】また、本発明によれば、屈折率と光弾性定
数が所定値以下に小さく設定されることにより、複屈折
性を抑えられることに加え、低屈折率に伴い既存光学用
材料との適合性を拡大することができ、さらに、センサ
ー材として使用する場合も電流感度の最小値が小さくな
り、巻数による感度調整が容易になるという効果を有す
る。また、本発明によれば、光弾性定数を高める性質を
有するフッ素を含有する場合にフッ素の含有量を考慮し
た光弾性定数を求められることにより、所望の光弾性定
数を実現するフッ素の含有量を容易に導け、フッ素含有
量を添加量で調整しつつ製造して所望の光弾性定数とす
ることができるという効果を有する。
Further, according to the present invention, by setting the refractive index and the photoelastic constant to be smaller than a predetermined value, the birefringence can be suppressed, and in addition to the low refractive index, the existing optical material can be used. The suitability can be expanded, and also when used as a sensor material, the minimum value of the current sensitivity is reduced, and the sensitivity can be easily adjusted by the number of turns. Further, according to the present invention, when fluorine having a property of increasing the photoelastic constant is contained, the photoelastic constant in consideration of the fluorine content can be obtained, so that the fluorine content that achieves a desired photoelastic constant can be obtained. Can be easily obtained, and it is possible to produce a desired photoelastic constant by adjusting the fluorine content by adjusting the content.

【0039】また、本発明によれば、光弾性定数を高め
る性質を有するアルミナを添加物又は不純物として含有
する場合にアルミナの含有量を考慮した光弾性定数を求
められることにより、所望の光弾性定数を実現するアル
ミナの含有量を容易に導け、アルミナ含有量を添加量で
調整しつつ製造して所望の光弾性定数とすることができ
るという効果を有する。また、アルミナの添加によって
屈折率等の特性値を調整できるという効果を有する。ま
た、本発明によれば、ガラス固化状態における網目修飾
成分の割合を増やす添加材料として網目修飾成分に含ま
れる高イオン分極性元素やフッ素を含んだ物質を添加
し、原料融液に微量のフッ素が含まれた状態としつつ、
網目修飾成分のモル比率を高くし、製造時における原料
融液の挙動をフッ素で安定化してガラス状態へ移行させ
られることにより、結晶化等を防止して品質劣化の無い
清浄なガラス状態にでき、網目修飾成分のモル比率を多
くして光弾性定数を小さくしたガラスを確実に製造する
ことができるという効果を有する。
Further, according to the present invention, when alumina having a property of enhancing the photoelastic constant is contained as an additive or an impurity, the photoelastic constant taking into account the alumina content can be obtained, whereby a desired photoelastic constant can be obtained. There is an effect that the content of alumina for realizing the constant can be easily derived, and a desired photoelastic constant can be obtained by manufacturing while adjusting the alumina content by the added amount. Further, there is an effect that characteristic values such as a refractive index can be adjusted by adding alumina. According to the present invention, a substance containing a highly ion-polarizable element or fluorine contained in the network modifying component is added as an additive material for increasing the ratio of the network modifying component in the vitrified state, and a small amount of fluorine is added to the raw material melt. While being included,
By increasing the molar ratio of the network modifying component and stabilizing the behavior of the raw material melt during production with fluorine and transferring it to the glass state, it is possible to prevent crystallization etc. and make it a clean glass state without deterioration in quality In addition, it is possible to reliably produce a glass having a small photoelastic constant by increasing the molar ratio of the network modifying component.

【0040】また、本発明によれば、メタリン酸バリウ
ムを出発原料として使用し、ガラス固化状態における網
目修飾成分である酸化バリウムの割合を増やす添加材料
としてフッ化バリウムを添加し、原料融液に微量のフッ
素が含まれた状態としつつ、酸化バリウムのモル比率を
高くし、製造時における原料融液の挙動をフッ素で安定
化して支障無くガラス状態へ移行させられることによ
り、酸化バリウムのモル比率を高めても結晶化等の品質
劣化の無い清浄なガラス状態とすることができ、酸化バ
リウムのモル比率を高めて光弾性定数を小さくしたガラ
スを確実に製造することができるという効果を有する。
また、製造したガラスの屈折率も小さくできるという効
果を有する。
Further, according to the present invention, barium metaphosphate is used as a starting material, barium fluoride is added as an additive material for increasing the ratio of barium oxide, which is a network modifying component in a vitrified state, and the raw material melt is added. By increasing the molar ratio of barium oxide while keeping a small amount of fluorine contained, the behavior of the raw material melt during production can be stabilized by fluorine and transferred to the glass state without hindrance. However, even if the value is increased, a clean glass state without quality deterioration such as crystallization can be obtained, and the glass having a reduced photoelastic constant by increasing the molar ratio of barium oxide can be produced reliably.
Further, there is an effect that the refractive index of the manufactured glass can be reduced.

【0041】また、本発明によれば、出発原料を融解さ
せた後にフッ素と反応する所定ガスを吹込んでフッ素を
フッ化物ガスとして揮発させ、原料融液中のフッ素量を
低減することにより、ガラス状態でのフッ素の存在によ
る悪影響を抑えられ、清浄で均質性の向上したガラスを
製造できると共に、フッ素を減らすことでガラスの光弾
性定数もより一層小さくすることができるという効果を
有する。また、本発明によれば、出発原料を融解させて
湿潤空気を吹込んだ後、さらに原料融液中に塩素又は塩
化物を添加して原料融液中に残る水と反応させ、水を構
成する水素を塩化水素に変えて原料融液外に揮発させ、
原料融液中に含まれる水の量を低減することにより、ガ
ラス状態での水の存在による悪影響を抑えられ、清浄で
均質性がさらに向上したガラスを製造できるという効果
を有する。
In addition, according to the present invention, a predetermined gas that reacts with fluorine after the starting material is melted is blown to volatilize fluorine as a fluoride gas, thereby reducing the amount of fluorine in the material melt, thereby reducing the amount of fluorine in the raw material melt. The effect of suppressing the adverse effect of the presence of fluorine in the state can produce a glass with clean and improved homogeneity, and the effect of reducing the fluorine can further reduce the photoelastic constant of the glass. Further, according to the present invention, after the starting material is melted and humid air is blown, chlorine or chloride is further added to the raw material melt to react with water remaining in the raw material melt to form water. Hydrogen to hydrogen chloride and volatilize outside the raw material melt,
By reducing the amount of water contained in the raw material melt, an adverse effect due to the presence of water in a glass state can be suppressed, and an effect that a glass with clean and further improved homogeneity can be produced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森永 健次 福岡県春日市春日公園6丁目1番 九州大 学内 Fターム(参考) 4G062 AA04 BB01 BB09 CC04 CC10 DA03 DB02 DC01 DD05 DE01 DF01 EA01 EB03 EC01 EC02 ED01 ED02 EE01 EF01 EG06 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD01 GE03 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM02 NN01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Morinaga 6-1, Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University F-term (reference) 4G062 AA04 BB01 BB09 CC04 CC10 DA03 DB02 DC01 DD05 DE01 DF01 EA01 EB03 EC01 EC02 ED01 ED02 EE01 EF01 EG06 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GB01 GC01 GD01 GE03 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 KK05 KK05 KK07 KK10

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光弾性定数が、少なくともイオン分極性
の高い元素を含む網目修飾成分と網目形成成分とのモル
比率の関数として得られることを特徴とするガラス。
1. A glass characterized in that the photoelastic constant is obtained as a function of the molar ratio between a network modifying component containing at least an element having high ionic polarization and a network forming component.
【請求項2】 前記請求項1に記載のガラスにおいて、 前記網目修飾成分が、酸化バリウムであり、 前記網目形成成分が、五酸化リンであることを特徴とす
るガラス。
2. The glass according to claim 1, wherein the network modifying component is barium oxide, and the network forming component is phosphorus pentoxide.
【請求項3】 前記請求項1又は2に記載のガラスにお
いて、 光弾性定数を定義する関数のうち一次関数におけるモル
比率の乗数が−1.13×10-12±0.06×10-12
であり、且つ定数項が1.59×10-12±0.05×
10-12であることを特徴とするガラス。
3. The glass according to claim 1, wherein a multiplier of a molar ratio in a linear function among functions defining a photoelastic constant is −1.13 × 10 −12 ± 0.06 × 10 −12.
And the constant term is 1.59 × 10 -12 ± 0.05 ×
A glass characterized by being 10-12 .
【請求項4】 前記請求項1ないし3のいずれかに記載
のガラスにおいて、 フッ素を0〜7%含み、網目修飾成分と網目形成成分の
モル比率が1.25以上となることを特徴とするガラ
ス。
4. The glass according to claim 1, wherein the glass contains 0 to 7% of fluorine, and the molar ratio between the network modifying component and the network forming component is 1.25 or more. Glass.
【請求項5】 前記請求項4に記載のガラスにおいて、 屈折率が1.65以下であり、且つ光弾性定数が0.3
[×10-12(1/Pa)]以下であることを特徴とす
るガラス。
5. The glass according to claim 4, which has a refractive index of 1.65 or less and a photoelastic constant of 0.3.
A glass characterized by being not more than [× 10 −12 (1 / Pa)].
【請求項6】 前記請求項4又は5に記載のガラスにお
いて、 フッ素を含有する場合の光弾性定数が、フッ素の含有量
(モル%)に乗数として0.018×10-12±0.0
05×10-12を乗じた値を前記一次関数の定数項に加
えて得られることを特徴とするガラス。
6. The glass according to claim 4, wherein the photoelastic constant in the case of containing fluorine is 0.018 × 10 −12 ± 0.0 as a multiplier of the fluorine content (mol%).
A glass obtained by adding a value multiplied by 05 × 10 −12 to a constant term of the linear function.
【請求項7】 前記請求項1ないし6のいずれかに記載
のガラスにおいて、 アルミナを含有する場合の光弾性定数が、アルミナの含
有量(モル%)に乗数として0.010×10-12±
0.005×10-12を乗じた値を前記一次関数の定数
項に加えて得られることを特徴とするガラス。
7. The glass according to any one of claims 1 to 6, wherein a photoelastic constant when alumina is contained is 0.010 × 10 -12 ± as a multiplier of the alumina content (mol%).
Glass obtained by adding a value multiplied by 0.005 × 10 −12 to the constant term of the linear function.
【請求項8】 ガラス固化状態における網目修飾成分と
網目形成成分となる各元素を含む一又は複数の出発原料
をガラス原料として使用し、 前記網目修飾成分の増加用添加材料として網目修飾成分
に含まれる高イオン分極性元素のフッ化物、前記高イオ
ン分極性元素のフッ化物及び酸化物、又は、所定のフッ
化物及び前記高イオン分極性元素の酸化物を所定量添加
することを特徴とするガラス製造方法。
8. A glass-modified state in which one or a plurality of starting materials containing each element serving as a network-modifying component and a network-forming component in a vitrified state are used as glass raw materials, and are included in the network-modifying component as additive materials for increasing the network-modifying component. A glass characterized by adding a predetermined amount of a fluoride of the high ionic polarization element, a fluoride and an oxide of the high ionic polarization element, or a predetermined fluoride and an oxide of the high ionic polarization element Production method.
【請求項9】 前記請求項8に記載のガラス製造方法に
おいて、 前記出発原料としてメタリン酸バリウムを使用し、 前記増加用添加材料としてフッ化バリウムを添加するこ
とを特徴とするガラス製造方法。
9. The glass manufacturing method according to claim 8, wherein barium metaphosphate is used as the starting material, and barium fluoride is added as the increasing additive material.
【請求項10】 前記請求項8又は9に記載のガラス製
造方法において、 前記出発原料を加熱融解させ、原料融液中にフッ素と反
応する所定ガスを吹込み、原料融液中のフッ素を前記所
定ガスと反応させ、フッ化物ガスの状態で原料融液中か
ら揮発させることを特徴とするガラス製造方法。
10. The glass manufacturing method according to claim 8 or 9, wherein the starting material is heated and melted, and a predetermined gas that reacts with fluorine is blown into the raw material melt to reduce the fluorine in the raw material melt. A glass production method characterized by reacting with a predetermined gas and volatilizing from a raw material melt in a state of a fluoride gas.
【請求項11】 前記請求項10に記載のガラス製造方
法において、 前記出発原料を加熱融解させた原料融液中に前記所定ガ
スとして湿潤空気を吹込んだ後、原料融液中に塩素又は
塩化物を添加し、原料融液中の水を塩素又は塩化物と反
応させ、生じた塩化水素を原料融液中から揮発させるこ
とを特徴とするガラス製造方法。
11. The glass manufacturing method according to claim 10, wherein after blowing the humid air as the predetermined gas into the raw material melt obtained by heating and melting the starting raw material, chlorine or chloride is added to the raw material melt. A glass production method, comprising adding a substance, reacting water in the raw material melt with chlorine or chloride, and volatilizing generated hydrogen chloride from the raw material melt.
JP2001145917A 2001-05-16 2001-05-16 Glass and method for manufacturing the same Pending JP2002338294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001145917A JP2002338294A (en) 2001-05-16 2001-05-16 Glass and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001145917A JP2002338294A (en) 2001-05-16 2001-05-16 Glass and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002338294A true JP2002338294A (en) 2002-11-27

Family

ID=18991649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001145917A Pending JP2002338294A (en) 2001-05-16 2001-05-16 Glass and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002338294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223850A (en) * 2006-02-24 2007-09-06 Hoya Corp Method for manufacturing glass optical element
JP2008537602A (en) * 2005-03-23 2008-09-18 スリーエム イノベイティブ プロパティズ カンパニー Compensation of stress birefringence in a polarizing beam splitter and system using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537602A (en) * 2005-03-23 2008-09-18 スリーエム イノベイティブ プロパティズ カンパニー Compensation of stress birefringence in a polarizing beam splitter and system using it
JP2007223850A (en) * 2006-02-24 2007-09-06 Hoya Corp Method for manufacturing glass optical element

Similar Documents

Publication Publication Date Title
JP3800657B2 (en) Alkali-free glass and flat display panel
JP5537144B2 (en) Glass composition and glass substrate for flat panel display using the same
JPH1045422A (en) Alkali-free glass and flat display panel
JP4824895B2 (en) Lead-free optical heavy flint glass
JP4671647B2 (en) Optical glass with small photoelastic constant
KR20000062413A (en) Transparent oxyfluoride glass-ceramic composition and process for making
JP2008297198A (en) Optical glass of dense barium flint position
JPH1072237A (en) Alkali-free glass and liquid crystal display panel
KR20010013071A (en) Fluorinated rare earth doped glass and glass-ceramic articles
US4433062A (en) Moldable fluorophosphate glasses containing Nb2 O5
JP2022510686A (en) High refractive index phosphate glass
KR101133480B1 (en) Method for producing alkali?free glass
JPH07121814B2 (en) Topped quartz glass
US4197136A (en) Optical transmission line glass and its method of manufacture
KR101043181B1 (en) Aluminum silicophosphate glasses
CZ285653B6 (en) Glass for substrates intended for producing electronic products and use thereof
JP2002338294A (en) Glass and method for manufacturing the same
JP6953944B2 (en) Borosilicate glass and its manufacturing method
JP2707625B2 (en) Alkali-free glass for display substrates
KR20240063183A (en) High refractive index titanium-niobium phosphate glass
JPH11139845A (en) Optical glass for precision press molding
JPH09110460A (en) Alkali-free glass
JP5882840B2 (en) Glass composition and glass substrate for display using the same
JP2017036187A (en) Optical glass, optical element prepared with optical glass, and optical device
JP2003505318A (en) Glass fiber composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002