JP3800657B2 - Alkali-free glass and flat display panel - Google Patents
Alkali-free glass and flat display panel Download PDFInfo
- Publication number
- JP3800657B2 JP3800657B2 JP7400896A JP7400896A JP3800657B2 JP 3800657 B2 JP3800657 B2 JP 3800657B2 JP 7400896 A JP7400896 A JP 7400896A JP 7400896 A JP7400896 A JP 7400896A JP 3800657 B2 JP3800657 B2 JP 3800657B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- alkali
- free glass
- strain point
- cao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、各種ディスプレイやフォトマスク用基板ガラスとして好適な、アルカリ金属酸化物を実質上含有せずフロート成形の可能な、無アルカリガラスに関する。
【0002】
【従来の技術】
従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成させるものでは、以下の特性が要求されている。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、実質的にアルカリ金属イオンを含まないこと。
(2)薄膜形成工程で高温にさらされるので、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えるため、高い歪点を有すること。
(3)半導体形成に用いられる各種薬品に対して充分な化学耐久性を有すること。特にSiOx やSiNx のエッチングのためのバッファードフッ酸(フッ酸+フッ化アンモニウム;BHF)、およびITOのエッチングに用いられる塩酸を含有する薬液、金属電極のエッチングに用いられる各種の酸(硝酸、硫酸等)、レジスト剥離液、洗浄液のアルカリに対して耐久性があること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)をもたないこと。
【0003】
上記の要求に加えて、近年では、以下のような状況がある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれてきた。
(6)ディスプレイの軽量化の方法として、基板ガラスの薄板化が望まれてきた。
(7)これまでのアモルファスシリコンタイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコンタイプの液晶ディスプレイが作製されるようになってきた。
【0004】
【発明が解決しようとする課題】
B2 O3 は耐BHF性を向上するが、歪点を下げるおそれがあるため、多く含有すると歪点を上げるのが困難になる。また、B2 O3 は熔解中に揮散しやすい成分であるために、製品ガラス板の不均一(脈理)となりやすく、B2 O3 の少ない組成は製造上メリットがある。
【0005】
B2 O3 の含有量の少ない無アルカリガラスとしては、以下のようなものがある。
【0006】
特開平4−325435にはB2 O3 を0〜3重量%含有しかつCaOが8重量%以上含まれる組成が開示されている。
特公平7−98672、特公平7−98673にはいずれもB2 O3 を含有しない組成が開示されているが、熔解に必要な温度が高すぎて熔解が困難である。
特開平5−232458にはB2 O3 を0〜5モル%含有する組成が開示されているが、SrOを15モル%以上含有し、熱膨張係数が大きい。
特開平5−193980にはB2 O3 を1〜7モル%含有する組成が開示されているが、BaOを4.5モル%以上含有し、耐BHF性に劣る場合がある。
【0007】
本発明の目的は、上記欠点を解決し、B2 O3 含有量が少ないながら耐BHF性を維持し、熔解・成形が容易で、フロート成形が可能な無アルカリガラスを提供することにある。
【0008】
【課題を解決するための手段】
本発明は、歪点が640℃以上であって、モル%表示で、
SiO2 65〜74、
Al2O3 7〜14、
B2O3 1.5〜5、
MgO 1.5〜8、
CaO 1.5〜8、
SrO 1.5〜8、
MgO+CaO+SrO 12〜20、
からなり、アルカリ金属酸化物、BaOおよびリンを実質的に含有しない無アルカリガラスである。
【0009】
【発明の実施の形態】
次に上記の通り各成分の組成範囲を限定した理由について述べる。
【0010】
SiO2 は65モル%(以下%と記載する)未満では歪点が充分に上げられないとともに、化学耐久性(特に耐酸性(例えば塩酸))が悪化し、熱膨張係数が増大し、密度も上昇する。74%超では熔解性が低下し、失透温度も上昇する。66〜74%がより好ましい。
【0011】
Al2 O3 はガラスの分相性を抑制し、熱膨張係数を下げ、歪点を上げるが、7%未満ではこの効果があらわれず、14%超ではガラスの熔解性が悪くなったり、失透温度を上昇させる。8〜13.5%がより好ましい。
【0012】
B2O3はガラスの熔解反応性を良くし、また、失透温度を低下させるため1.5%以上添加されるが、5%超では歪点が低くなる。1.5%以上5%未満がより好ましい
【0013】
MgOはアルカリ土類金属酸化物中では熱膨張係数を高くせず、かつ歪点を過大には低下させないという特徴を有し、熔解性も向上させるため1.5%以上添加される。8%超ではBHFによる白濁やガラスの分相、失透温度の上昇が生じるおそれがある。2〜8%がより好ましい。
【0014】
CaOはMgOに次いでアルカリ土類金属酸化物中では熱膨張係数を高くせず、かつ歪点を過大には低下させないという特徴を有し、熔解性も向上させるため1.5%以上添加される。8%超ではBHFによる白濁やガラスの分相、失透温度の上昇が生じるおそれがあり、失透温度が、成形性の目安となるlogη=4.0の温度より高くなるおそれがある。2〜8%がより好ましい。
【0015】
SrOはガラスの分相を抑制し、ガラスの熔解性も向上させ、BHFによる白濁に対し比較的有用な成分であるため、1.5%以上含有される。8%超では熱膨張係数が増大する。2〜8%がより好ましい。
【0016】
BaOは、耐BHF性を低下させ、ガラスの熱膨張係数、密度を過大に増加させるおそれがあるので実質的に無添加とする。
【0017】
MgO、CaO、SrOは、ガラスの熔解性を確保するため、合量で12%以上含有される。20%超では熱膨張係数が大きくなりすぎるおそれがある。好ましくは、MgO、CaO、SrOを合量で12〜18%とする。
【0018】
本発明によるガラスは上記成分以外にガラスの熔解性、清澄性、成形性を改善するため、ZnO、Fe2 O3 、SO3 、F、Clを総量で5%以下添加ができる。
【0019】
一方、本発明によるガラスはアルカリ金属酸化物およびリンを実質的に含有しない。ガラス基板上に形成される膜特性や半導体特性を劣化させないためである。また、鉛、ヒ素、アンチモンなどは実質的に含有しないことが好ましい。
【0020】
本発明のガラスは、典型的には、歪点が640℃以上である。特に、ディスプレイ製造時の熱処理による収縮を小さく抑えるためには、歪点が650℃以上であることが好ましい。
【0021】
さらに、本発明のガラスは、50〜350℃での平均熱膨張係数が30×10-7/℃以上50×10-7/℃未満であることが好ましい。より好ましくは、33×10-7/℃〜43×10-7/℃である。
【0022】
本発明のガラスは、例えば次のような方法で製造できる。通常使用される各成分の原料を目標成分になるように調合し、これを熔解炉に連続的に投入し、1500〜1600℃に加熱して熔融する。この熔融ガラスをフロート法により所定の板厚に成形し、徐冷後切断する。
【0023】
【実施例】
各成分の原料を目標組成になるように調合し、白金坩堝を用いて1500〜1600℃の温度で熔解した。熔解にあたっては、白金スターラーを用い撹拌しガラスの均質化を行った。次いで熔解ガラスを流し出し、板状に成形後徐冷した。
【0024】
表には、ガラス組成と併せて、熱膨張係数、歪点、密度、高温粘性(熔解性の目安となる粘度ηが100ポイズを示す温度(logη=2.0の温度)とフロート成形性の目安となる粘度ηが10000ポイズを示す温度(logη=4.0の温度))、失透温度、BHFに浸漬したときの重量減、およびBHFに浸漬したときのヘイズ値を示した。各特性は、以下のように測定した。
【0025】
熱膨張係数(×10-7/℃):示差熱膨張計を用い、石英ガラスを参照試料として毎分5℃で昇温しながら、室温〜屈伏点までの熱膨張曲線を測定し、50〜350℃の平均熱膨張係数を読み取り、記録した。
【0026】
歪点(℃):JIS R3103に記載のファイバー法による。
【0027】
密度(g/cc):アルキメデス法による。
【0028】
高温粘性(℃):回転粘度計による。
【0029】
失透温度(℃):粉砕したガラスを一度1100℃で1日間熱処理し、内部に結晶が存在しているのを光学顕微鏡にて確認し、これを再び1300〜1400℃に温度保持した電気炉中で20時間熱処理して、内部の結晶が消滅する温度を記録した。
【0030】
BHF重量減(mg/cm2 ):50%フッ酸と40%フッ化アンモニウム水溶液を1:9(体積比)で混合した液に25℃で20分浸漬したときのガラスの単位面積あたりの重量減少量である。
【0031】
ヘイズ値(%):上記のBHF処理をし、洗浄、乾燥したガラスについて、光を当てたとき、ガラスの曇りにより散乱される光の割合である。スガ試験機社製ヘイズメーターにて測定した。
【0032】
表から明らかなように、実施例のいずれのガラスも、熱膨張係数は30×10-7/℃〜50×10-7/℃の低い値を示し、また、歪点は650℃以上と高く、高温での熱処理に充分耐えられるものであることがわかる。
【0033】
また、熔解性の目安となるlogη=2.0の温度は1760℃以下であり、熔解法により製造できることがわかる。さらに、成形性の目安となるlogη=4.0の温度は失透温度より高いため、成形時に失透が生成するなどのトラブルがないと考えられる。
【0034】
また、BHF処理による重量減もヘイズの発生も少なく、ディスプレイパネルの基板用として実用的であると考えられる。
【0035】
【表1】
【0036】
【表2】
【0037】
【表3】
【0038】
【発明の効果】
本発明によるガラスは、歪点が高く、B2 O3 含有量が少ないながら耐BHF性を維持し、熔解が比較的容易で、フロート成形が可能であり、ディスプレイ用基板、フォトマスク基板、TFTタイプのディスプレイ基板等、かかる特性を要求する用途に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-alkali glass which is suitable for various displays and photomask substrate glasses and which can be float-molded substantially without containing an alkali metal oxide.
[0002]
[Prior art]
Conventionally, various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface, have been required to have the following characteristics.
(1) When an alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the alkali metal ions are not substantially contained.
(2) Since it is exposed to a high temperature in the thin film formation process, it has a high strain point in order to minimize shrinkage (thermal shrinkage) associated with glass deformation and glass structural stabilization.
(3) Sufficient chemical durability against various chemicals used for semiconductor formation. In particular, buffered hydrofluoric acid (hydrofluoric acid + ammonium fluoride; BHF) for etching SiO x and SiN x , and chemicals containing hydrochloric acid used for etching ITO, various acids used for etching metal electrodes ( Nitric acid, sulfuric acid, etc.), resist stripping solution, and cleaning solution alkali.
(4) No defects (bubbles, striae, inclusions, pits, scratches, etc.) inside and on the surface.
[0003]
In addition to the above requirements, there are the following situations in recent years.
(5) The weight reduction of a display is requested | required and the glass itself has also desired low density glass.
(6) As a method for reducing the weight of the display, it has been desired to reduce the thickness of the substrate glass.
(7) In addition to the conventional amorphous silicon type liquid crystal display, a polycrystalline silicon type liquid crystal display having a slightly higher heat treatment temperature has been produced.
[0004]
[Problems to be solved by the invention]
B 2 O 3 improves the BHF resistance, but there is a risk of lowering the strain point, so if it is contained in a large amount, it becomes difficult to raise the strain point. In addition, since B 2 O 3 is a component that easily volatilizes during melting, it tends to be non-uniform (striated) in the product glass plate, and a composition with a small amount of B 2 O 3 is advantageous in production.
[0005]
Examples of the alkali-free glass having a small content of B 2 O 3 include the following.
[0006]
Japanese Patent Laid-Open No. 4-325435 discloses a composition containing 0 to 3% by weight of B 2 O 3 and 8% by weight or more of CaO.
Although Japanese Patent Publication Nos. 7-98672 and 7-98673 disclose compositions containing no B 2 O 3 , the temperature required for melting is too high and melting is difficult.
Although in JP-A 5-232458 is a composition containing B 2 O 3 0 to 5 mol% have been disclosed, the SrO contain more than 15 mol%, a large thermal expansion coefficient.
Japanese Patent Laid-Open No. 5-193980 discloses a composition containing 1 to 7 mol% of B 2 O 3 , but it contains 4.5 mol% or more of BaO and may have poor BHF resistance.
[0007]
An object of the present invention is to provide an alkali-free glass that solves the above-mentioned drawbacks, maintains BHF resistance while having a low B 2 O 3 content, is easy to melt and form, and can be float formed.
[0008]
[Means for Solving the Problems]
The present invention has a strain point of 640 ° C. or higher, expressed in mol% ,
SiO 2 65~74,
Al 2 O 3 7-14,
B 2 O 3 1.5~ 5,
MgO 1.5-8,
CaO 1.5-8,
SrO 1.5-8 ,
MgO + CaO + SrO 12-20,
And is an alkali-free glass substantially free of alkali metal oxide , BaO and phosphorus.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason for limiting the composition range of each component as described above will be described.
[0010]
When the SiO 2 content is less than 65 mol% (hereinafter referred to as “%”), the strain point cannot be sufficiently increased, the chemical durability (particularly acid resistance (for example, hydrochloric acid)) is deteriorated, the thermal expansion coefficient is increased, and the density is also increased. To rise. If it exceeds 74%, the meltability is lowered and the devitrification temperature is also raised. 66 to 74% is more preferable.
[0011]
Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient, and raises the strain point. However, if it is less than 7%, this effect does not appear, and if it exceeds 14%, the meltability of the glass deteriorates or devitrification occurs. Increase temperature. 8 to 13.5% is more preferable.
[0012]
B 2 O 3 improves the melting reactivity of the glass and lowers the devitrification temperature, so 1.5% or more is added, but if it exceeds 5 %, the strain point becomes low. More preferably 1.5% or more and less than 5%.
MgO has the characteristics that it does not increase the thermal expansion coefficient and does not excessively lower the strain point in the alkaline earth metal oxide, and is added in an amount of 1.5% or more in order to improve the meltability. If it exceeds 8%, white turbidity due to BHF, phase separation of glass, and increase in devitrification temperature may occur. 2-8% is more preferable.
[0014]
CaO has the characteristics that it does not increase the thermal expansion coefficient and does not excessively lower the strain point in alkaline earth metal oxides after MgO, and is added in an amount of 1.5% or more in order to improve the meltability. . If it exceeds 8%, white turbidity due to BHF, phase separation of glass, and increase in devitrification temperature may occur, and the devitrification temperature may be higher than the log η = 4.0, which is a measure of formability. 2-8% is more preferable.
[0015]
SrO suppresses the phase separation of the glass, improves the melting property of the glass, and is a relatively useful component against white turbidity due to BHF, so it is contained in an amount of 1.5% or more. If it exceeds 8%, the thermal expansion coefficient increases. 2-8% is more preferable.
[0016]
BaO reduces the BHF resistance, and substantive to no addition in there is a possibility of increasing the thermal expansion coefficient of the glass, the density excessively.
[0017]
MgO, CaO, and Sr 2 O are contained in a total amount of 12% or more in order to ensure the meltability of the glass. If it exceeds 20%, the thermal expansion coefficient tends to be too large. Preferably , the total amount of MgO, CaO, and SrO is 12 to 18%.
[0018]
In addition to the above components, the glass according to the present invention can be added with ZnO, Fe 2 O 3 , SO 3 , F, and Cl in a total amount of 5% or less in order to improve the meltability, clarity and formability of the glass.
[0019]
On the other hand, the glass according to the present invention is substantially free of alkali metal oxides and phosphorus. This is because film characteristics and semiconductor characteristics formed on the glass substrate are not deteriorated. Moreover, it is preferable not to contain lead, arsenic, antimony, etc. substantially.
[0020]
The glass of the present invention typically has a strain point of 640 ° C. or higher. In particular, the strain point is preferably 650 ° C. or higher in order to suppress shrinkage due to heat treatment during display manufacturing.
[0021]
Furthermore, the glass of the present invention preferably has an average coefficient of thermal expansion at 50 to 350 ° C. of 30 × 10 −7 / ° C. or more and less than 50 × 10 −7 / ° C. More preferably, it is 33 × 10 −7 / ° C. to 43 × 10 −7 / ° C.
[0022]
The glass of the present invention can be produced, for example, by the following method. The raw materials of each component normally used are mixed so as to become target components, which are continuously charged into a melting furnace, and heated to 1500 to 1600 ° C. for melting. The molten glass is formed into a predetermined plate thickness by a float method, and is cut after slow cooling.
[0023]
【Example】
The raw material of each component was prepared so that it might become a target composition, and it melted at the temperature of 1500-1600 degreeC using the platinum crucible. In melting, the glass was homogenized by stirring using a platinum stirrer. Subsequently, the molten glass was poured out, formed into a plate shape, and then slowly cooled.
[0024]
The table shows the coefficient of thermal expansion, strain point, density, viscosity at high temperature (viscosity viscosity η is 100 poise (log η = 2.0 temperature) and float moldability, together with the glass composition. The temperature at which the viscosity η as a guide shows 10,000 poise (log η = 4.0), the devitrification temperature, the weight loss when immersed in BHF, and the haze value when immersed in BHF are shown. Each characteristic was measured as follows.
[0025]
Thermal expansion coefficient (× 10 −7 / ° C.): Using a differential thermal dilatometer, a thermal expansion curve from room temperature to the yield point was measured while raising the temperature at 5 ° C. per minute using quartz glass as a reference sample. The average coefficient of thermal expansion at 350 ° C. was read and recorded.
[0026]
Strain point (° C.): According to the fiber method described in JIS R3103.
[0027]
Density (g / cc): According to Archimedes method.
[0028]
High temperature viscosity (° C): According to rotational viscometer.
[0029]
Devitrification temperature (° C.): An electric furnace in which the crushed glass was heat treated once at 1100 ° C. for 1 day, and the presence of crystals was confirmed with an optical microscope, and this was maintained at 1300-1400 ° C. again. The temperature at which the internal crystals disappeared was recorded after heat treatment for 20 hours.
[0030]
BHF weight loss (mg / cm 2 ): Weight per unit area of glass when immersed in a mixture of 50% hydrofluoric acid and 40% ammonium fluoride aqueous solution at 1: 9 (volume ratio) at 25 ° C. for 20 minutes The amount of decrease.
[0031]
Haze value (%): The ratio of light scattered by fogging of the glass when the above-mentioned BHF-treated, washed and dried glass is exposed to light. It measured with the haze meter by Suga Test Instruments.
[0032]
As is apparent from the table, the thermal expansion coefficients of all the glasses of the examples are as low as 30 × 10 −7 / ° C. to 50 × 10 −7 / ° C., and the strain point is as high as 650 ° C. or higher. It can be seen that it can sufficiently withstand heat treatment at high temperatures.
[0033]
Moreover, the temperature of log (eta) = 2.0 used as the standard of meltability is 1760 degrees C or less, and it turns out that it can manufacture by a melting method. Furthermore, since the temperature of log η = 4.0, which is a measure of formability, is higher than the devitrification temperature, it is considered that there is no trouble such as the generation of devitrification during molding.
[0034]
Further, the weight loss due to the BHF treatment and the occurrence of haze are small, and it is considered practical for use as a substrate for a display panel.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
[Table 3]
[0038]
【The invention's effect】
The glass according to the present invention has a high strain point, a low B 2 O 3 content, maintains BHF resistance, is relatively easy to melt, can be float-molded, a display substrate, a photomask substrate, a TFT It is suitable for applications that require such characteristics, such as a type of display substrate.
Claims (6)
SiO2 65〜74、
Al2O3 7〜14、
B2O3 1.5〜5、
MgO 1.5〜8、
CaO 1.5〜8、
SrO 1.5〜8、
MgO+CaO+SrO 12〜20、
からなり、アルカリ金属酸化物、BaOおよびリンを実質的に含有しない無アルカリガラス。The strain point is 640 ° C. or higher ,
SiO 2 65~74,
Al 2 O 3 7-14,
B 2 O 3 1.5~ 5,
MgO 1.5-8,
CaO 1.5-8,
SrO 1.5-8 ,
MgO + CaO + SrO 12-20,
An alkali-free glass which is substantially free of alkali metal oxide , BaO and phosphorus.
SiO2 66〜74、
Al2O3 8〜13.5、
B2O3 1.5〜5未満、
MgO 2〜8、
CaO 2〜8、
SrO 2〜8、
MgO+CaO+SrO 12〜18、
からなり、アルカリ金属酸化物、BaOおよびリンを実質的に含有しない、請求項1、2または3記載の無アルカリガラス。 By mol%,
SiO 2 66~74,
Al 2 O 3 8-13.5,
B 2 O 3 less than 1.5 to 5,
MgO 2-8,
CaO 2-8,
SrO 2-8,
MgO + CaO + SrO 12-18,
The alkali-free glass according to claim 1, 2, or 3, comprising substantially no alkali metal oxide, BaO and phosphorus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7400896A JP3800657B2 (en) | 1996-03-28 | 1996-03-28 | Alkali-free glass and flat display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7400896A JP3800657B2 (en) | 1996-03-28 | 1996-03-28 | Alkali-free glass and flat display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09263421A JPH09263421A (en) | 1997-10-07 |
JP3800657B2 true JP3800657B2 (en) | 2006-07-26 |
Family
ID=13534633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7400896A Expired - Lifetime JP3800657B2 (en) | 1996-03-28 | 1996-03-28 | Alkali-free glass and flat display panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3800657B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI613173B (en) * | 2012-06-05 | 2018-02-01 | Asahi Glass Co Ltd | Alkali-free glass and method of producing the same |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19840113B9 (en) * | 1998-09-03 | 2016-10-13 | Eglass Asia Ltd. | Alkali-free glass composition for the production of flat glass |
DE19916296C1 (en) * | 1999-04-12 | 2001-01-18 | Schott Glas | Alkali-free aluminoborosilicate glass and its use |
DE19934072C2 (en) * | 1999-07-23 | 2001-06-13 | Schott Glas | Alkali-free aluminoborosilicate glass, its uses and processes for its manufacture |
US6537937B1 (en) * | 1999-08-03 | 2003-03-25 | Asahi Glass Company, Limited | Alkali-free glass |
DE19942259C1 (en) | 1999-09-04 | 2001-05-17 | Schott Glas | Alkaline earth aluminum borosilicate glass and its uses |
DE10000839C1 (en) * | 2000-01-12 | 2001-05-10 | Schott Glas | Alkali-free aluminoborosilicate glass used as substrate glass in displays and in thin layer photovoltaics contains oxides of silicon, boron, aluminum, magnesium, calcium, strontium, barium and zinc |
DE10000836B4 (en) * | 2000-01-12 | 2005-03-17 | Schott Ag | Alkali-free aluminoborosilicate glass and its uses |
DE10000837C1 (en) | 2000-01-12 | 2001-05-31 | Schott Glas | Alkali-free alumino-borosilicate glass used as substrate glass in thin film transistor displays and thin layer solar cells contains oxides of silicon, boron, aluminum, magnesium, strontium, and barium |
DE10000838B4 (en) | 2000-01-12 | 2005-03-17 | Schott Ag | Alkali-free aluminoborosilicate glass and its uses |
DE10064804C2 (en) * | 2000-12-22 | 2003-03-20 | Schott Glas | Alkali-free aluminoborosilicate glasses and their use |
FR2895395B1 (en) * | 2005-12-22 | 2008-02-22 | Saint Gobain | METHOD FOR REFINING GLASS |
US7833919B2 (en) | 2006-02-10 | 2010-11-16 | Corning Incorporated | Glass compositions having high thermal and chemical stability and methods of making thereof |
JP5070828B2 (en) * | 2006-12-14 | 2012-11-14 | 旭硝子株式会社 | Alkali-free glass and method for producing the same |
RU2010154445A (en) | 2008-05-30 | 2012-07-10 | Фостер Вилер Энергия Ой (Fi) | METHOD AND SYSTEM FOR ENERGY GENERATION BY BURNING IN PURE OXYGEN |
JP5056983B2 (en) * | 2010-04-27 | 2012-10-24 | 旭硝子株式会社 | Magnetic disk and method for manufacturing glass substrate for information recording medium |
EP2860160A1 (en) * | 2012-05-31 | 2015-04-15 | Asahi Glass Company, Limited | Alkali-free glass substrate and method for reducing thickness of alkali-free glass substrate |
CN104854050B (en) * | 2012-12-05 | 2018-08-31 | 旭硝子株式会社 | Alkali-free glass substrate |
KR101872577B1 (en) | 2012-12-21 | 2018-06-28 | 코닝 인코포레이티드 | Glass with Improved Total Pitch stability |
JP2016084242A (en) * | 2013-02-19 | 2016-05-19 | 旭硝子株式会社 | Non-alkali glass and manufacturing method therefor |
JP5991429B2 (en) | 2013-04-23 | 2016-09-14 | 旭硝子株式会社 | Non-alkali glass substrate and method for producing the same |
JP2017007870A (en) * | 2013-11-13 | 2017-01-12 | 旭硝子株式会社 | Manufacturing method of sheet glass |
CN105992749B (en) * | 2013-11-28 | 2020-11-03 | Agc株式会社 | Alkali-free glass substrate and method for thinning alkali-free glass substrate |
JP2017030976A (en) * | 2013-12-04 | 2017-02-09 | 旭硝子株式会社 | Finish polishing method of glass substrate and non-alkali glass substrate finish polished by such method |
JP2017030975A (en) * | 2013-12-04 | 2017-02-09 | 旭硝子株式会社 | Alkali-free glass and manufacturing method therefor |
JP2017114685A (en) * | 2014-04-28 | 2017-06-29 | 旭硝子株式会社 | Alkali-free glass |
JP6578774B2 (en) * | 2014-07-18 | 2019-09-25 | Agc株式会社 | Alkali-free glass |
CN116375337A (en) | 2014-10-23 | 2023-07-04 | Agc株式会社 | Alkali-free glass |
EP3383809A4 (en) * | 2015-12-01 | 2019-12-11 | Kornerstone Materials Technology Co., Ltd | Low-boron, barium-free, alkaline earth aluminosilicate glass and its applications |
KR102673755B1 (en) | 2018-06-19 | 2024-06-11 | 코닝 인코포레이티드 | High strain point and high Young's modulus glass |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04175242A (en) * | 1990-11-06 | 1992-06-23 | Asahi Glass Co Ltd | Non-alkali glass |
US5374595A (en) * | 1993-01-22 | 1994-12-20 | Corning Incorporated | High liquidus viscosity glasses for flat panel displays |
US5508237A (en) * | 1994-03-14 | 1996-04-16 | Corning Incorporated | Flat panel display |
JP3804101B2 (en) * | 1995-04-27 | 2006-08-02 | 旭硝子株式会社 | Glass substrate for magnetic disk |
JP3666610B2 (en) * | 1995-08-02 | 2005-06-29 | 日本電気硝子株式会社 | Alkali-free glass substrate |
DE19680966T1 (en) * | 1995-09-28 | 1998-01-08 | Nippon Electric Glass Co | Alkali-free glass substrate |
DE19680967B3 (en) * | 1995-09-28 | 2012-03-01 | Nippon Electric Glass Co., Ltd. | Alkali-free glass substrate |
JP3858293B2 (en) * | 1995-12-11 | 2006-12-13 | 日本電気硝子株式会社 | Alkali-free glass substrate |
-
1996
- 1996-03-28 JP JP7400896A patent/JP3800657B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI613173B (en) * | 2012-06-05 | 2018-02-01 | Asahi Glass Co Ltd | Alkali-free glass and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH09263421A (en) | 1997-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3800657B2 (en) | Alkali-free glass and flat display panel | |
JP3988209B2 (en) | Alkali-free glass and liquid crystal display panel | |
JP3804112B2 (en) | Alkali-free glass, alkali-free glass manufacturing method and flat display panel | |
JP3144823B2 (en) | Alkali-free glass | |
JP3083586B2 (en) | Alkali-free glass | |
US5801109A (en) | Alkali-free glass and flat panel display | |
US6169047B1 (en) | Alkali-free glass and flat panel display | |
EP0607865B1 (en) | High liquidus viscosity glasses for flat panel displays | |
JP3666610B2 (en) | Alkali-free glass substrate | |
JP4739468B2 (en) | Alkali-free glass and its clarification method | |
JP2990379B2 (en) | Alkali-free glass substrate | |
JP5233998B2 (en) | Glass plate, method for producing the same, and method for producing TFT panel | |
JP2871163B2 (en) | Alkali-free glass | |
JP3666608B2 (en) | Alkali-free glass substrate | |
JP4305817B2 (en) | Alkali-free glass substrate | |
JP3901757B2 (en) | Alkali-free glass, liquid crystal display panel and glass plate | |
JP2013014510A (en) | Alkali-free glass substrate, and liquid crystal display panel | |
KR20050109929A (en) | Alkali-free glass | |
KR20160010350A (en) | Non-alkali glass | |
JP5109225B2 (en) | Alkali-free glass and liquid crystal display panel | |
JP4250208B2 (en) | Non-alkali glass and liquid crystal display panel for display substrates | |
JPH10139467A (en) | Alkali-free glass and flat display panel | |
WO2015030013A1 (en) | Non-alkali glass | |
JP2001348247A (en) | Alkaline-free glass | |
JPH10130034A (en) | Alkali-free glass and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060424 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |