JP2002336954A - Cylinder liner enveloped casting method - Google Patents
Cylinder liner enveloped casting methodInfo
- Publication number
- JP2002336954A JP2002336954A JP2001143886A JP2001143886A JP2002336954A JP 2002336954 A JP2002336954 A JP 2002336954A JP 2001143886 A JP2001143886 A JP 2001143886A JP 2001143886 A JP2001143886 A JP 2001143886A JP 2002336954 A JP2002336954 A JP 2002336954A
- Authority
- JP
- Japan
- Prior art keywords
- rib
- cylinder
- aluminum
- cylinder liner
- root
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Extrusion Of Metal (AREA)
- Forging (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はシリンダライナの鋳
包み成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cast-molding a cylinder liner.
【0002】[0002]
【従来の技術】エンジンにおいてシリンダライナを鋳包
んだものとしては、例えば、次図のようなシリンダブロ
ックがある。次図でシリンダライナの鋳包み成形方法に
ついて説明する。図20は従来のシリンダライナの鋳包
み成形方法の説明図である。まず、シリンダライナ10
1を形成し、その次にシリンダライナ101・・・(・・・は
複数を示す。以下同様。)を各々シリンダピッチPだけ
離して図に示していない鋳型内にセットし、そして鋳型
にダイカスト機で溶融金属を充填することで、シリンダ
ライナ101・・・をシリンダ部102に鋳包んだシリン
ダブロック103を得ることができる。このようにシリ
ンダライナ101を鋳包むことで、シリンダの耐摩耗性
の向上を図ることができる。2. Description of the Related Art A cylinder block as shown in the following figure is an example of a cylinder liner cast in an engine. Next, the method of cast-molding the cylinder liner will be described with reference to the following drawings. FIG. 20 is an explanatory diagram of a conventional method of cast-in forming a cylinder liner. First, the cylinder liner 10
1 are formed, and then the cylinder liners 101 are set in a mold (not shown) separated by a cylinder pitch P, and then die-cast into the mold. The cylinder block 103 in which the cylinder liners 101 are cast in the cylinder portion 102 can be obtained by filling the molten metal with the machine. By casting the cylinder liner 101 in this way, the wear resistance of the cylinder can be improved.
【0003】[0003]
【発明が解決しようとする課題】しかし、シリンダブロ
ック103のシリンダピッチをPに設定してシリンダラ
イナ101を鋳包むと、シリンダライナ101と隣のシ
リンダライナ101との間の鋳物肉厚はT2となり、薄
く、シリンダライナ101間の強度を確保し難かった。
この場合、シリンダライナの外面の凸部を踏襲しなが
ら、アンカ効果を向上させるとともに、鋳物肉厚を確保
し、且つシリンダブロックを小型化できるものが求めら
れていた。However, when the cylinder pitch of the cylinder block 103 is set to P and the cylinder liner 101 is cast-in, the casting thickness between the cylinder liner 101 and the adjacent cylinder liner 101 becomes T2. And it was difficult to secure the strength between the cylinder liners 101.
In this case, there has been a demand for a cylinder liner capable of improving an anchoring effect, securing a casting wall thickness, and reducing the size of a cylinder block while following a convex portion on the outer surface of the cylinder liner.
【0004】そこで、本発明の目的は、シリンダライナ
の外周部のアンカ効果を向上させることができ、シリン
ダブロックの小型化を図ることができるシリンダライナ
の鋳包み成形方法を提供することにある。It is an object of the present invention to provide a cylinder liner cast-in molding method capable of improving the anchor effect of the outer peripheral portion of the cylinder liner and reducing the size of the cylinder block.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に請求項1は、酸化物系セラミックスからなる多孔質成
形体とともに、アルミニウム合金及び、マグネシウム又
はマグネシウム発生源を炉内に納め、窒化マグネシウム
の作用で酸化物系セラミックスを還元し、酸化物系セラ
ミックスの多孔質にアルミニウム合金の溶湯を浸透させ
てアルミニウム基複合材ビレットを製造する工程と、ア
ルミニウム基複合材ビレットを押出しプレスで筒に成形
すると同時に、この筒の外面にリブを成形する押出し工
程と、押出し後の押出し材を引抜き装置で仕上げるとと
もに、リブを先端側から圧縮してリブの根元にアンダカ
ット形状を成形する引抜き工程と、引抜き後の引抜き材
を所定長さに切断加工してアルミニウム基複合材のシリ
ンダライナを形成する切断工程と、シリンダライナをシ
リンダブロックの鋳型内にセットして注湯する鋳造工程
と、からなることを特徴とする。Means for Solving the Problems To achieve the above object, a first aspect of the present invention is to place an aluminum alloy and magnesium or a magnesium source in a furnace together with a porous formed body made of an oxide-based ceramic. The process of reducing oxide-based ceramics by the action of aluminum and infiltrating the molten aluminum alloy into the porosity of the oxide-based ceramics to produce an aluminum-based composite billet, and extruding the aluminum-based composite billet into a cylinder by pressing and pressing At the same time, an extrusion step of forming a rib on the outer surface of the cylinder, and a drawing step of finishing the extruded material after extrusion with a drawing device, compressing the rib from the tip side and forming an undercut shape at the root of the rib, Cut the drawn material to a specified length after drawing to form an aluminum matrix composite cylinder liner That to the cutting step, a casting step of pouring by setting the cylinder liner into the mold of the cylinder block, characterized in that it consists of.
【0006】押出し工程でビレットを筒に成形すると同
時に、筒の外面にリブを成形することで、リブを第1段
階の形状に成形する。引抜き工程では、押出し材のリブ
を先端側から圧縮してリブの根元にアンダカット形状を
成形すので、根元の略90°の隅に応力が集中せず、根
元から亀裂が入る虞れがない。また、押出し材のリブを
先端側から圧縮してリブの根元にアンダカット形状を成
形すので、シリンダライナのアンカ効果は向上する。さ
らに、リブは低くなり、その分だけシリンダライナ同士
を接近させることができ、シリンダブロックは小型にな
る。At the same time as the billet is formed into a cylinder in the extrusion process, the rib is formed on the outer surface of the cylinder, thereby forming the rib into the first stage shape. In the drawing step, the rib of the extruded material is compressed from the tip side to form an undercut shape at the root of the rib, so that stress is not concentrated at a corner of approximately 90 ° of the root, and there is no risk of cracking from the root. . Further, since the rib of the extruded material is compressed from the tip side to form an undercut shape at the root of the rib, the anchor effect of the cylinder liner is improved. Further, the ribs are lowered, and the cylinder liners can be brought closer to each other, and the cylinder block becomes smaller.
【0007】請求項2は、押出し工程後のリブの断面積
をS1、引抜き工程後のリブの断面積をS2としたとき
に、(S1−S2)/S1を百分率表示で5〜12%に
設定することを特徴とする。5%未満では、引抜き後の
内径が大きくなり過ぎる場合もあれば、逆に小さくなり
過ぎる傾向もあり、引抜き後の内径のばらつきは大き
い。12%を超えると、引抜き工程後のリブの根元に割
れが発生しやすくなる。その結果、引抜き後の内径精度
の観点から下限を5%とし、引抜き工程後のリブの根元
の割れ対策の観点から上限を12%とする。According to a second aspect of the present invention, when the cross-sectional area of the rib after the extrusion step is S1 and the cross-sectional area of the rib after the drawing step is S2, (S1−S2) / S1 is 5 to 12% in percentage. It is characterized by setting. If it is less than 5%, the inner diameter after drawing may be too large or conversely too small, and the variation in inner diameter after drawing is large. If it exceeds 12%, cracks tend to occur at the root of the rib after the drawing step. As a result, the lower limit is set to 5% from the viewpoint of the inner diameter accuracy after drawing, and the upper limit is set to 12% from the viewpoint of measures against cracks at the root of the rib after the drawing process.
【0008】請求項3は、引抜き工程後のリブの高さを
Lh、リブの先端部の幅をLwとしたときに、Lh<L
wに設定することを特徴とする。リブの高さLhを、L
h<Lwに設定するので、リブの高さは小さく、その分
だけシリンダライナ同士をより接近させることができ、
シリンダブロックはより小型化になる。According to a third aspect, when the height of the rib after the drawing step is Lh and the width of the tip of the rib is Lw, Lh <L.
w. The height Lh of the rib is L
Since h <Lw is set, the height of the ribs is small, and the cylinder liners can be closer to each other by that much,
The cylinder block becomes smaller.
【0009】[0009]
【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係るシリンダライナの鋳包
み成形方法のフローチャートであり、STはステップを
示す。 ST01:酸化物系セラミックス成形体にアルミニウム
合金を浸透させてアルミニウム基複合材ビレットを製造
する。 ST02:ビレットを押出し、筒の外面にリブを成形し
た押出し材を造る。 ST03:押出し材を引抜きつつ、リブを圧縮してアン
ダカット形状を成形した引抜き材を造る。 ST04:引抜き材を切断してシリンダライナを形成す
る。 ST05:シリンダライナをシリンダブロックの鋳型内
にセットして注湯する。 次に、ST01〜ST05を具体的に説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. FIG. 1 is a flowchart of a method for cast-injection molding of a cylinder liner according to the present invention, where ST indicates steps. ST01: An aluminum-based composite billet is manufactured by infiltrating an aluminum alloy into an oxide-based ceramic molded body. ST02: Extrude a billet to produce an extruded material in which a rib is formed on the outer surface of a cylinder. ST03: While extracting the extruded material, the rib is compressed to produce a drawn material having an undercut shape. ST04: Cut the drawn material to form a cylinder liner. ST05: The cylinder liner is set in the mold of the cylinder block and poured. Next, ST01 to ST05 will be specifically described.
【0010】図2は本発明に係るアルミニウム基複合材
の製造装置の概要構造図であり、アルミニウム基複合材
製造装置10は、雰囲気炉11と、この雰囲気炉11に
付属した加熱装置12と、雰囲気炉11に不活性ガスを
供給するガス供給装置13と、雰囲気炉11内を減圧す
る真空ポンプ14とからなる。15及び16は坩堝(る
つぼ)である。詳しくは、加熱装置12は、例えば、制
御装置21と、温度センサ22と、加熱コイル23とか
らなり、ガス供給装置13は、アルゴンガス(Ar)2
4のボンベ25と、窒素ガス(N2)26のボンベ27
と、これらのボンベ25,27のガスを雰囲気炉11へ
供給する管28と、この管28に設けた圧力ゲージ29
とからなる。FIG. 2 is a schematic structural view of an aluminum-based composite material manufacturing apparatus according to the present invention. The aluminum-based composite material manufacturing apparatus 10 includes an atmosphere furnace 11, a heating device 12 attached to the atmosphere furnace 11, A gas supply device 13 for supplying an inert gas to the atmosphere furnace 11 and a vacuum pump 14 for reducing the pressure in the atmosphere furnace 11 are provided. 15 and 16 are crucibles (crucibles). Specifically, the heating device 12 includes, for example, a control device 21, a temperature sensor 22, and a heating coil 23, and the gas supply device 13 includes an argon gas (Ar) 2
4 and a cylinder 27 of nitrogen gas (N 2 ) 26.
And a pipe 28 for supplying the gas of the cylinders 25 and 27 to the atmosphere furnace 11, and a pressure gauge 29 provided on the pipe 28.
Consists of
【0011】坩堝15は酸化物系セラミックスであると
ころの多孔質アルミナ(Al2O3)31及びアルミニウ
ム合金41を入れる容器であり、坩堝16はマグネシウ
ム(Mg)42を入れる容器である。アルミニウム合金
41は、例えばA6061である。マグネシウム(M
g)42はマグネシウム合金でもよい。The crucible 15 is a container for storing porous alumina (Al 2 O 3 ) 31 and an aluminum alloy 41 which are oxide ceramics, and the crucible 16 is a container for storing magnesium (Mg) 42. The aluminum alloy 41 is, for example, A6061. Magnesium (M
g) 42 may be a magnesium alloy.
【0012】図3(a)〜(d)は本発明に係るアルミ
ニウム基複合材ビレットの製造要領図であり、(a)〜
(c)は浸透までの過程を模式的に示す。 (a):まず、酸化物系セラミックスであるアルミナ
(Al2O3)31とともに、アルミニウム合金41及び
マグネシウム(Mg)42を炉内に納める。具体的に
は、坩堝15にアルミナ31を入れ、アルミナ31にア
ルミニウム合金41を載せ、坩堝16にマグネシウム4
2を入れる。FIGS. 3 (a) to 3 (d) are diagrams showing the procedure for producing the aluminum-based composite billet according to the present invention.
(C) schematically shows the process up to penetration. (A): First, an aluminum alloy 41 and magnesium (Mg) 42 are placed in a furnace together with alumina (Al 2 O 3 ) 31 which is an oxide ceramic. Specifically, alumina 31 is placed in crucible 15, aluminum alloy 41 is placed on alumina 31, and magnesium 4 is placed in crucible 16.
Insert 2.
【0013】次に、雰囲気炉11内の酸素を除去するた
めに雰囲気炉11内を真空引きし、一定の真空度に達し
たら、真空ポンプ14を止め、雰囲気炉11にアルゴン
ガス(Ar)24を矢印の如く供給し、加熱コイル2
3で矢印の如く多孔質アルミナ31、アルミニウム合
金41及びマグネシウム42の加熱を開始する。Next, the inside of the atmosphere furnace 11 is evacuated to remove oxygen in the atmosphere furnace 11, and when a certain degree of vacuum is reached, the vacuum pump 14 is stopped and argon gas (Ar) 24 is supplied to the atmosphere furnace 11. Is supplied as shown by the arrow, and the heating coil 2
At 3, the heating of the porous alumina 31, the aluminum alloy 41 and the magnesium 42 is started as indicated by the arrow.
【0014】雰囲気炉11内の温度を温度センサ22で
検出しつつ昇温(自動)する。所定温度(例えば、約7
50℃〜約900℃)に達する過程で、アルミニウム合
金41は溶解する。同時に、マグネシウム(Mg)42
は矢印の如く蒸発する。その際、雰囲気炉11内はア
ルゴンガス(Ar)24の雰囲気下にあるので、アルミ
ニウム合金41及びマグネシウム(Mg)42が酸化す
ることはない。The temperature in the atmosphere furnace 11 is raised (automatically) while being detected by the temperature sensor 22. A predetermined temperature (for example, about 7
In the process of reaching 50 ° C. to about 900 ° C.), the aluminum alloy 41 melts. At the same time, magnesium (Mg) 42
Evaporates as indicated by the arrow. At that time, since the inside of the atmosphere furnace 11 is under the atmosphere of the argon gas (Ar) 24, the aluminum alloy 41 and the magnesium (Mg) 42 are not oxidized.
【0015】(b):次に、雰囲気炉11内を加圧し、
窒化マグネシウム44の作用でアルミナ(Al2O3)3
1を還元し、アルミナ31の多孔質にアルミニウム合金
41の溶湯を浸透させてアルミニウム基複合材ビレット
45を製造する。具体的には、雰囲気炉11に窒素ガス
(N2)26を矢印の如く供給しつつ加圧(例えば、
大気圧+約0.5kg/cm2)し、雰囲気炉11内の
雰囲気を窒素ガス(N2)26に置換する。(B): Next, the inside of the atmosphere furnace 11 is pressurized,
Alumina (Al 2 O 3 ) 3 by the action of magnesium nitride 44
1 is reduced, and a molten metal of the aluminum alloy 41 is infiltrated into the porosity of the alumina 31 to produce an aluminum-based composite billet 45. Specifically, pressurization (for example, while supplying nitrogen gas (N 2 ) 26 to the atmosphere furnace 11 as shown by arrows)
Atmospheric pressure + about 0.5 kg / cm 2 ), and the atmosphere in the atmosphere furnace 11 is replaced with nitrogen gas (N 2 ) 26.
【0016】雰囲気炉11内が窒素ガス(N2)26の
雰囲気になると、窒素ガス26は、マグネシウム(M
g)42と反応して窒化マグネシウム(Mg3N2)44
を生成する。この窒化マグネシウム44はアルミナ(A
l2O3)31を還元するので、アルミナ31は濡れ性が
よくなる。その結果、アルミナ31の多孔質にアルミニ
ウム合金41の溶湯が浸透する。アルミニウム合金41
が凝固してアルミニウム基複合材ビレット45が完成す
る。浸透過程において、雰囲気炉11内を加圧雰囲気下
にすると、浸透が速くなり、短時間でアルミニウム基複
合材ビレット45を製造することができる。なお、雰囲
気炉11内を真空ポンプ14で減圧し、減圧窒素雰囲気
下でも短時間で浸透させることができる。When the atmosphere in the atmosphere furnace 11 is changed to an atmosphere of nitrogen gas (N 2 ) 26, the nitrogen gas 26 contains magnesium (M 2 ).
g) reacting with 42 and magnesium nitride (Mg 3 N 2 ) 44
Generate This magnesium nitride 44 is made of alumina (A
Since l 2 O 3 ) 31 is reduced, the alumina 31 has good wettability. As a result, the molten metal of the aluminum alloy 41 permeates into the porosity of the alumina 31. Aluminum alloy 41
Solidifies to complete the aluminum-based composite billet 45. In the infiltration process, if the inside of the atmosphere furnace 11 is placed under a pressurized atmosphere, the infiltration becomes faster, and the aluminum-based composite billet 45 can be manufactured in a short time. The pressure in the atmosphere furnace 11 is reduced by the vacuum pump 14, and the permeation can be performed in a short time even under a reduced-pressure nitrogen atmosphere.
【0017】(c):アルミニウム基複合材ビレット4
5(以下「ビレット45」と略記する。)は、酸化物系
セラミックスであるアルミナ31にアルミニウム合金4
1が浸透したもので、成形性に優れ、塑性変形がしやす
い複合材料である。 (d):最後に、ビレット45をNC(数値制御)旋盤
46で所定寸法に切削加工する。寸法は下流工程の押出
しプレスに合せる。(C): Aluminum-based composite billet 4
5 (hereinafter abbreviated as “billet 45”) is made of alumina 31 which is an oxide ceramic and aluminum alloy 4
1 is a composite material having excellent moldability and easy plastic deformation. (D): Finally, the billet 45 is cut to a predetermined size by an NC (numerical control) lathe 46. The dimensions are tailored to the downstream extrusion press.
【0018】図4は本発明に係るビレットの均質化処理
の説明図である。その次に、ビレット45を均質化処理
する。この均質化処理は、ビレット45を第1加熱炉5
1に入れ、第1熱源52によって高温で長時間の加熱を
行なうもので、例えば、加熱温度は510℃〜530
℃、保持時間は7〜9時間に設定する。この工程によ
り、アルミニウム基複合材中に生じた粗大な金属間化合
物など成分的に不均一な部分を均質化して、加工性や機
械的性質を改良することができる。FIG. 4 is an explanatory diagram of a billet homogenizing process according to the present invention. Next, the billet 45 is homogenized. In this homogenization process, the billet 45 is placed in the first heating furnace 5.
1 and heats for a long time at a high temperature by the first heat source 52. For example, the heating temperature is 510 ° C. to 530 ° C.
C and the holding time are set to 7 to 9 hours. By this step, components that are non-uniform, such as coarse intermetallic compounds generated in the aluminum-based composite material, can be homogenized to improve workability and mechanical properties.
【0019】図5は本発明に係る押出し工程の第1説明
図である。続いて、ビレット45を焼鈍処理する。この
焼鈍は、ビレット45を第2加熱炉53に入れ、第2熱
源54で所望の温度、時間だけ加熱を行なう。その際の
目安は、加熱温度を300℃以上、保持時間を1時間以
上に設定する。この工程により、予めビレット45の加
熱を効率的に行なうことができるとともに、押出しの加
工性の向上を図ることができる。FIG. 5 is a first explanatory view of the extrusion step according to the present invention. Subsequently, the billet 45 is annealed. In this annealing, the billet 45 is put into the second heating furnace 53, and the billet 45 is heated by the second heat source 54 for a desired temperature and time. As a standard at that time, the heating temperature is set to 300 ° C. or more, and the holding time is set to 1 hour or more. By this step, the billet 45 can be efficiently heated in advance, and the workability of extrusion can be improved.
【0020】図6は本発明に係る押出し工程の第2説明
図である。次いで、加熱したビレット45を押出す。ビ
レット45を予め加熱した押出しプレス55のコンテナ
56に挿入し、ラム57で押出すことにより、ダイス5
8とマンドレル59の間を通して、押出し材61に成形
する。FIG. 6 is a second explanatory view of the extrusion step according to the present invention. Next, the heated billet 45 is extruded. The billet 45 is inserted into a container 56 of a pre-heated extruder press 55 and extruded by a ram 57 to thereby form a die 5.
It is formed into an extruded material 61 by passing between 8 and the mandrel 59.
【0021】図7は本発明に係る押出し材の斜視図であ
る。押出しプレス55で押出した押出し材61は、筒6
2と、この筒62の外面に成形した複数のリブ63・・・
とからなり、長尺なものである。FIG. 7 is a perspective view of an extruded material according to the present invention. The extruded material 61 extruded by the extrusion press 55 is
2 and a plurality of ribs 63 formed on the outer surface of the cylinder 62.
It is long.
【0022】図8は図7の8−8線矢視図である。リブ
63は、筒62の外面からピッチ角度θで放射状に一体
成形したもので、リブ63の高さをH、厚さをtに設定
し、リブ63の断面積をS1とした。64はリブ63の
根元部、65はリブ63の先端部である。D1は押出し
後の筒62の内径を示す。FIG. 8 is a view taken along the line 8-8 in FIG. The rib 63 is integrally formed radially from the outer surface of the cylinder 62 at a pitch angle θ. The height of the rib 63 is set to H, the thickness is set to t, and the cross-sectional area of the rib 63 is set to S1. Reference numeral 64 denotes a root portion of the rib 63, and reference numeral 65 denotes a tip portion of the rib 63. D1 indicates the inner diameter of the cylinder 62 after the extrusion.
【0023】図9は本発明に係る押出し材の溶体化処理
の説明図であり、一例を示す。引き続いて、押出し材6
1を溶体化処理する。この溶体化処理は、押出してから
連続的に押出し材61を横型加熱炉66に入れ、所望の
温度、時間だけ加熱し、その後急冷する処理であり、例
えば、加熱温度は510℃〜530℃で、保持時間は2
時間程度で溶体化処理し、その直後に、水槽67の水に
入れて急冷する。なお、横型加熱炉66や水槽67など
の設備は一例であり、設備は縦型でもよく、また、水を
一定温度に設定しもよく、水以外の冷媒でもよい。FIG. 9 is an explanatory view of the solution treatment of the extruded material according to the present invention, and shows an example. Subsequently, the extruded material 6
1 is subjected to solution treatment. This solution treatment is a treatment in which the extruded material 61 is continuously put into a horizontal heating furnace 66 after being extruded, heated for a desired temperature and time, and then rapidly cooled. For example, the heating temperature is 510 ° C. to 530 ° C. , Retention time is 2
The solution treatment is performed in about an hour, and immediately thereafter, the solution is put into water in a water tank 67 and rapidly cooled. The equipment such as the horizontal heating furnace 66 and the water tank 67 is merely an example, and the equipment may be a vertical type, water may be set at a constant temperature, or a refrigerant other than water may be used.
【0024】図10(a),(b)は本発明に係る引抜
き工程の第1説明図である。(a):まず、つかみ部を
造る。具体的には、押出し材61にアルミニウム管71
を矢印の如く挿入する。アルミニウム管71は、押出し
材61の内径D1より僅かに小さい外径d1の管であ
る。Duは外径を示す。(b)は押出し材61の端面ま
でアルミニウム管71を挿入したことを示す。FIGS. 10A and 10B are first explanatory views of the drawing step according to the present invention. (A): First, a grip portion is formed. Specifically, the extruded material 61 is provided with an aluminum tube 71.
As shown by the arrow. The aluminum tube 71 is a tube having an outer diameter d1 slightly smaller than the inner diameter D1 of the extruded material 61. Du indicates the outer diameter. (B) shows that the aluminum tube 71 was inserted up to the end face of the extruded material 61.
【0025】図11(a)〜(d)は本発明に係る引抜
き工程の第2説明図であり、(b)は(a)のb矢視図
であり、(d)は(c)のd−d線断面図である。 (a):プレスマシン72に押出し材61をセットし、
所定の範囲L1(例えば、端面から200〜300m
m)を縮径する。FIGS. 11 (a) to 11 (d) are second explanatory views of the drawing step according to the present invention. FIG. 11 (b) is a view taken in the direction of arrow b in FIG. 11 (a), and FIG. FIG. 4 is a sectional view taken along line dd. (A): The extruded material 61 is set on the press machine 72,
A predetermined range L1 (for example, 200 to 300 m from the end face)
m) is reduced in diameter.
【0026】(b):ダイス73を矢印の如く作動(回
転鍛造:ロータリースエージング)させ、アルミニウム
管71とともに、押出し材61の所定の範囲をダイス7
3で押付け、細いつかみ部を造る。(B): The die 73 is operated as indicated by the arrow (rotary forging: rotary swaging), and the die 7 is moved along with the aluminum pipe 71 in a predetermined range of the extruded material 61.
Press with 3 to make a small bite.
【0027】(c):つかみ部74は、縮径(先付け)
することで、引抜きダイスの孔に通せるようにした部位
である。押出し材61並びにアルミニウム管71には、
ダイスの押付け力により大きな応力がかかり、塑性変形
する。アルミニウム管71は成形性がよいので、押出し
材61の変形に追従しながら、なおかつ、弾性によりダ
イスの押付け力に抗しつつ、押出し材61の内周面を矢
印の如く押付ける。(C): The grip 74 is reduced in diameter (pre-attached)
By doing so, it is a part that can be passed through the hole of the drawing die. In the extruded material 61 and the aluminum tube 71,
A large stress is applied by the pressing force of the die, and the plastic deformation occurs. Since the aluminum tube 71 has good moldability, the aluminum pipe 71 presses the inner peripheral surface of the extruded material 61 as shown by the arrow while following the deformation of the extruded material 61 and resisting the pressing force of the die by elasticity.
【0028】(d):つかみ部74では、押出し材61
の内周面にアルミニウム管71が密着して押出し材61
を矢印の如く押付けるから、押出し材61の内面の表層
部には圧縮応力が発生し、塑性変形する際の押出し材6
1の割れを防止することができる。(D): In the grip portion 74, the extruded material 61
The aluminum tube 71 is closely attached to the inner peripheral surface of the extruded material 61.
Is pressed as shown by an arrow, a compressive stress is generated in the surface layer on the inner surface of the extruded material 61, and the extruded material 6 is plastically deformed.
1 can be prevented from cracking.
【0029】図12(a),(b)は本発明に係る引抜
き工程の第3説明図である。 (a):つかみ部74を引抜き装置75のダイス76に
通した後(白抜き矢印の方向)、つかみ部74につかみ
具77を取付ける。続けて、押出し材61内にプラグ7
8を矢印の如く入れる。つかみ部74はアルミニウム管
71によって厚くなるので、引張り応力が小さくなり、
引きにおいてもより割れが発生し難くなる。FIGS. 12A and 12B are third explanatory views of the drawing step according to the present invention. (A): After the grip 74 is passed through the die 76 of the drawing device 75 (in the direction of the white arrow), the grip 77 is attached to the grip 74. Subsequently, the plug 7 is inserted into the extruded material 61.
Insert 8 as indicated by the arrow. Since the grip portion 74 is thickened by the aluminum tube 71, the tensile stress is reduced,
Cracking is less likely to occur during pulling.
【0030】(b):つかみ具77を引き、押出し材6
1を引抜き材81に成形する。具体的には、つかみ具7
7を白抜き矢印の如く引くことで、ダイス76とプラグ
78の間を通して、押出し材61の内外径に精度を付与
し、仕上げるとともに、リブ63をアンダカット形状に
成形する。次図で成形を詳細に説明する。(B): The gripper 77 is pulled, and the extruded material 6
1 is formed into a drawn material 81. Specifically, the grip 7
By pulling 7 as indicated by a white arrow, the inner and outer diameters of the extruded material 61 are given accuracy by passing between the die 76 and the plug 78, and the rib 63 is formed into an undercut shape. The molding will be described in detail with reference to the following drawings.
【0031】図13(a),(b)は図12(b)の1
3−13線断面図である。(a)は引抜き材81の断面
を示し、内径をD2に仕上げるとともに、16個のリブ
63を先端側から矢印の如く圧縮し、引抜き工程後の
リブである逆台形リブ82・・・を成形したことを示す。FIGS. 13 (a) and 13 (b) show one of FIG. 12 (b).
FIG. 13 is a sectional view taken along line 3-13. (A) shows the cross section of the drawn material 81, the inner diameter of which is finished to D2, and the sixteen ribs 63 are compressed from the tip side as shown by arrows to form inverted trapezoidal ribs 82, which are ribs after the drawing process. Indicates that you have done.
【0032】(b)は(a)のb部詳細図であり、逆台
形リブ82を示す。逆台形リブ82は、二点鎖線のリブ
63を先端側から矢印の如く圧縮してリブ63の根元
部64,64にアンダカット形状を成形したものであ
り、逆台形リブ82の高さをLh、逆台形リブ82の先
端部83の幅をLwとしたときに、Lh<Lwに設定し
た。その際には、根元部64,64に根元部64の幅を
減少させるような拘束力をかけずに、矢印の如く筒6
2の中心方向に圧縮させる力で塑性変形させる。FIG. 4B is a detailed view of a portion b of FIG. 4A, showing an inverted trapezoidal rib 82. The inverted trapezoidal rib 82 is formed by compressing the two-dot chain line rib 63 from the tip side as shown by the arrow to form an undercut shape at the roots 64, 64 of the rib 63, and the height of the inverted trapezoidal rib 82 is Lh. When the width of the tip 83 of the inverted trapezoidal rib 82 is Lw, Lh <Lw is set. At that time, without applying a restraining force to the root portions 64, 64 so as to reduce the width of the root portion 64, the cylinder 6 as shown by an arrow
2 plastically deforms by the force of compressing in the center direction.
【0033】また、逆台形リブ82の断面減少率は5〜
12%の範囲に設定した。ここで、断面減少率をRa、
リブ63の断面積をS1、引抜き工程後のリブの断面
積、つまり、逆台形リブ82の断面積をS2としたとき
に、断面減少率Raは次式で定めることができる。 Ra(%)=〔(S1−S2)/S1〕×100The cross-sectional reduction rate of the inverted trapezoidal rib 82 is 5 to 5.
It was set in the range of 12%. Here, the section reduction rate is Ra,
Assuming that the cross-sectional area of the rib 63 is S1 and the cross-sectional area of the rib after the drawing step, that is, the cross-sectional area of the inverted trapezoidal rib 82 is S2, the cross-sectional reduction rate Ra can be determined by the following equation. Ra (%) = [(S1−S2) / S1] × 100
【0034】図14は本発明に係る断面減少率と内径の
関係を示したグラフであり、横軸を断面減少率Raと
し、縦軸を△D=Db−D3としたものである。ただ
し、Dbを内径の規格値、D3を内径の実測値、△Dを
内径の規格値と実測値との差とした。+αは許容上限
値、−αは許容下限値である。FIG. 14 is a graph showing the relationship between the cross-sectional reduction rate and the inner diameter according to the present invention, wherein the horizontal axis is the cross-sectional reduction rate Ra, and the vertical axis is ΔD = Db-D3. Here, Db is the standard value of the internal diameter, D3 is the actual measured value of the internal diameter, and ΔD is the difference between the standard value of the internal diameter and the actual measured value. + Α is an allowable upper limit, and −α is an allowable lower limit.
【0035】断面減少率Raが5%未満では、内径は許
容上限値+αを超えるほど大きくなる場合や許容下限値
−α近くまで小さくなる場合がり、内径のばらつきは大
きく、精度は安定しない。断面減少率Raが12%を超
えると、逆台形リブ82の根元部64に割れが発生しや
すくなる。その結果、引抜き材81の内径精度の観点か
ら下限を5%とし、逆台形リブ82の根元部64の割れ
対策の観点から上限を12%とする。When the cross-sectional reduction rate Ra is less than 5%, the inner diameter may increase as the value exceeds the allowable upper limit + α or decrease to near the allowable lower limit −α, and the variation in the inner diameter is large and the accuracy is not stable. If the cross-sectional reduction rate Ra exceeds 12%, cracks are likely to occur at the root 64 of the inverted trapezoidal rib 82. As a result, the lower limit is set to 5% from the viewpoint of the inner diameter accuracy of the drawn material 81, and the upper limit is set to 12% from the viewpoint of preventing the base 64 of the inverted trapezoidal rib 82 from cracking.
【0036】このように引抜き工程では、押出しで成形
したリブ63を矢印の如く圧縮しながら、根元部64
の隅を拘束せずに塑性変形させるので、略90°の隅に
応力集中は起きず、根元部64の割れを防止することが
できる。また、押出しで成形したリブ63を矢印の如
く圧縮しながら、根元部64の隅を拘束せずに塑性変形
させるので、略90°の隅に応力集中は起きず、内径の
精度を向上させることができる。In the pulling-out step, the rib 63 formed by extrusion is compressed as shown by the arrow, while the root portion 64 is compressed.
Is plastically deformed without restraining the corners, stress concentration does not occur at the corners of approximately 90 °, and cracking of the root portion 64 can be prevented. In addition, since the ribs 63 formed by extrusion are plastically deformed without restraining the corners of the root portion 64 while compressing as shown by the arrows, stress concentration does not occur at approximately 90 ° corners, and the accuracy of the inner diameter is improved. Can be.
【0037】図15は本発明に係る引抜き材の人工時効
硬化処理の説明図であり、一例を示す。この人工時効硬
化処理は、引抜き材81を第3加熱炉84に入れ、所望
の温度、時間だけ加熱し、空冷する。例えば、加熱温度
は170℃〜180℃で、保持時間は約8時間に設定す
る。FIG. 15 is an explanatory view of an artificial age hardening treatment of a drawn material according to the present invention, and shows an example. In this artificial age hardening treatment, the drawn material 81 is placed in a third heating furnace 84, heated at a desired temperature for a desired time, and air-cooled. For example, the heating temperature is set to 170 ° C. to 180 ° C., and the holding time is set to about 8 hours.
【0038】図16は本発明に係る切断工程の説明図で
ある。引抜き後の引抜き材81をカッタ85で所定長さ
Lsに切断加工してアルミニウム基複合材のシリンダラ
イナ86を形成する。その際、シリンダライナ86の端
面87,87を切断すると同時に仕上げる。FIG. 16 is an explanatory view of the cutting step according to the present invention. The drawn material 81 after the drawing is cut into a predetermined length Ls by a cutter 85 to form a cylinder liner 86 of an aluminum-based composite material. At this time, the end faces 87, 87 of the cylinder liner 86 are cut and finished at the same time.
【0039】図17は本発明に係る鋳造工程の説明図で
ある。最後に、シリンダライナ86・・・をシリンダブロ
ックの鋳型88内にセットして注湯する。具体的には、
まず、シリンダライナ86・・・をライナ支持部材91・・・
に取付けるとともに、ライナ支持部材91・・・を鋳型8
8内の鋳包み材取付け部92・・・に嵌め込むことで、シ
リンダライナ86・・・のセットは完了する。FIG. 17 is an explanatory view of a casting process according to the present invention. Finally, the cylinder liners 86 are set in the mold 88 of the cylinder block and poured. In particular,
First, the cylinder liners 86 are connected to the liner support members 91.
And the liner support members 91.
By setting the cylinder liners 86... In the cast-in material attaching portions 92.
【0040】続いて、鋳型88に注湯する。この場合、
鋳型88を取付けたダイカスト機93のスリーブ94内
の溶融アルミニウム合金を所定の圧力で鋳型88のキャ
ビティ95に充填する。アルミニウム合金は、例えば、
Al−Si−Cu系合金の一種であるJIS−ADC1
2を用いる。溶融アルミニウム合金が凝固した後、シリ
ンダブロックを取り出す。Subsequently, the molten metal is poured into the mold 88. in this case,
The molten aluminum alloy in the sleeve 94 of the die casting machine 93 to which the mold 88 is attached is filled into the cavity 95 of the mold 88 at a predetermined pressure. Aluminum alloy, for example,
JIS-ADC1 which is a kind of Al-Si-Cu alloy
2 is used. After the molten aluminum alloy has solidified, the cylinder block is taken out.
【0041】図18は本発明に係るシリンダブロックの
斜視図である。シリンダブロック96は、水冷直列4気
筒のエンジンの一部で、シリンダライナ86・・・をシリ
ンダ部96aに鋳包み、シリンダ部96aの外方にウォ
ータジャケット部96bを有するものである。96c〜
96fは第1〜第4シリンダを示す。FIG. 18 is a perspective view of a cylinder block according to the present invention. The cylinder block 96 is a part of a water-cooled in-line four-cylinder engine, in which cylinder liners 86 are cast in a cylinder part 96a, and has a water jacket part 96b outside the cylinder part 96a. 96c ~
Reference numeral 96f indicates first to fourth cylinders.
【0042】図19は図18の19−19線矢視図であ
る。シリンダブロック96では、シリンダピッチは、従
来と同じくPに設定し、且つ一定とした。このように、
本発明のシリンダライナの鋳包み成形方法で、逆台形リ
ブ82の高さをLh、先端部83の幅をLwとし、Lh
<Lwに設定したので、シリンダピッチがPであって
も、シリンダライナ86・・・間の鋳物肉厚はTとなり、
従来のシリンダライナ間の鋳物肉厚T2よりも鋳物肉厚
を増加させることができ、強度を確保することができ
る。従って、シリンダブロック96の小型化を図ること
ができる。FIG. 19 is a view taken along line 19-19 of FIG. In the cylinder block 96, the cylinder pitch was set to P as in the related art and was constant. in this way,
According to the method of the present invention, the height of the inverted trapezoidal rib 82 is Lh, the width of the tip 83 is Lw, and Lh is Lh.
<Lw, even if the cylinder pitch is P, the casting wall thickness between the cylinder liners 86.
The casting thickness can be increased more than the conventional casting thickness T2 between the cylinder liners, and the strength can be ensured. Therefore, the size of the cylinder block 96 can be reduced.
【0043】また、本発明のシリンダライナの鋳包み成
形方法で、シリンダライナ86・・・に逆台形リブ82を
成形し、シリンダライナ86・・・を鋳包んだので、アン
ダカット形状の根元部64・・・で溶融アルミニウム合金
が凝固してアンカ効果を向上させることができる。In addition, since the cylinder liners 86 are formed with the inverted trapezoidal ribs 82 and the cylinder liners 86 are formed by the cast-in method of the present invention, the undercut base portion is formed. At 64 ..., the molten aluminum alloy solidifies and the anchor effect can be improved.
【0044】尚、本発明の実施の形態に示した図8のリ
ブ63の数量は16個としたが、数量は16個に限定す
るものではない。引抜き工程後のリブの高さをLh、リ
ブの先端部の幅をLwとしたときに、Lh<Lwに設定
したが、Lh<Lwに限定するものでない。シリンダラ
イナを水冷直列4気筒に用いたが、エンジンは直列4気
筒に限定するものではない。Although the number of the ribs 63 in FIG. 8 shown in the embodiment of the present invention is set to 16, the number is not limited to 16. When the height of the rib after the drawing step is Lh and the width of the tip of the rib is Lw, Lh <Lw is set, but the invention is not limited to Lh <Lw. Although the cylinder liner is used for a water-cooled in-line four-cylinder, the engine is not limited to the in-line four-cylinder.
【0045】[0045]
【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1では、酸化物系セラミックスからなる多
孔質成形体とともに、アルミニウム合金及び、マグネシ
ウム又はマグネシウム発生源を炉内に納め、窒化マグネ
シウムの作用で酸化物系セラミックスを還元し、酸化物
系セラミックスの多孔質にアルミニウム合金の溶湯を浸
透させてアルミニウム基複合材ビレットを製造する工程
と、アルミニウム基複合材ビレットを押出しプレスで筒
に成形すると同時に、この筒の外面にリブを成形する押
出し工程と、押出し後の押出し材を引抜き装置で仕上げ
るとともに、リブを先端側から圧縮してリブの根元にア
ンダカット形状を成形する引抜き工程と、引抜き後の引
抜き材を所定長さに切断加工してアルミニウム基複合材
のシリンダライナを形成する切断工程と、シリンダライ
ナをシリンダブロックの鋳型内にセットして注湯する鋳
造工程と、からなり、押出し工程でビレットを筒に成形
すると同時に、筒の外面にリブを成形することで、リブ
を第1段階の形状に成形する。According to the present invention, the following effects are exhibited by the above configuration. In claim 1, an aluminum alloy and a magnesium or magnesium generating source are placed in a furnace together with a porous formed body made of an oxide ceramic, and the oxide ceramic is reduced by the action of magnesium nitride. A step of manufacturing an aluminum-based composite billet by infiltrating a molten metal of aluminum alloy into a porous body, and an extrusion step of forming the aluminum-based composite billet into a cylinder by an extrusion press and simultaneously forming a rib on the outer surface of the cylinder, The extruded material after extrusion is finished with a drawing device, the rib is compressed from the tip side to form an undercut shape at the root of the rib, and the drawn material after drawing is cut into a predetermined length to form an aluminum base. A cutting process to form a composite cylinder liner, and a cylinder liner A casting step of pouring is set in a mold, made, at the same time shaping the billet into a tubular in an extrusion process, by molding the ribs on the outer surface of the tube, forming a rib in the shape of the first stage.
【0046】引抜き工程では、押出し材のリブを先端側
から圧縮してリブの根元にアンダカット形状を成形すの
で、根元の略90°の隅に応力が集中せず、根元から亀
裂が入る虞れがない。また、押出し材のリブを先端側か
ら圧縮してリブの根元にアンダカット形状を成形すの
で、シリンダライナのアンカ効果を向上させることがで
きる。さらに、リブは低くなり、その分だけシリンダラ
イナ同士を接近させることができ、シリンダブロックの
小型化を図ることができる。In the drawing step, the rib of the extruded material is compressed from the tip side to form an undercut shape at the root of the rib, so that stress is not concentrated at approximately 90 ° corners of the root and a crack may be formed from the root. There is no. Further, since the rib of the extruded material is compressed from the tip side to form an undercut shape at the root of the rib, the anchor effect of the cylinder liner can be improved. Further, the ribs are lowered, and the cylinder liners can be brought closer to each other, and the cylinder block can be reduced in size.
【0047】請求項2では、押出し工程後のリブの断面
積をS1、引抜き工程後のリブの断面積をS2としたと
きに、(S1−S2)/S1を百分率表示で5〜12%
に設定する。5%未満では、引抜き後の内径が大きくな
り過ぎる場合もあれば、逆に小さくなり過ぎる傾向もあ
り、引抜き後の内径のばらつきは大きい。12%を超え
ると、引抜き工程後のリブの根元に割れが発生しやすく
なる。その結果、引抜き後の内径精度の観点から下限を
5%とし、引抜き工程後のリブの根元の割れ対策の観点
から上限を12%とする。従って、リブの根元にアンダ
カット形状を成形することができるとともに、内径精度
を確保することができる。In the second aspect, when the cross-sectional area of the rib after the extrusion step is S1 and the cross-sectional area of the rib after the drawing step is S2, (S1-S2) / S1 is 5 to 12% in percentage.
Set to. If it is less than 5%, the inner diameter after drawing may be too large or conversely too small, and the variation in inner diameter after drawing is large. If it exceeds 12%, cracks tend to occur at the root of the rib after the drawing step. As a result, the lower limit is set to 5% from the viewpoint of the inner diameter accuracy after drawing, and the upper limit is set to 12% from the viewpoint of measures against cracks at the root of the rib after the drawing process. Therefore, the undercut shape can be formed at the root of the rib, and the accuracy of the inner diameter can be ensured.
【0048】請求項3では、引抜き工程後のリブの高さ
をLh、リブの先端部の幅をLwとしたときに、Lh<
Lwに設定するので、リブの高さは小さく、その分だけ
シリンダライナ同士をより接近させることができ、より
シリンダブロックの小型化を図ることができる。According to the third aspect, when the height of the rib after the drawing step is Lh and the width of the tip of the rib is Lw, Lh <Lh
Since it is set to Lw, the height of the rib is small, so that the cylinder liners can be closer to each other, and the size of the cylinder block can be further reduced.
【図1】本発明に係るシリンダライナの鋳包み成形方法
のフローチャートFIG. 1 is a flowchart of a cast-in molding method for a cylinder liner according to the present invention.
【図2】本発明に係るアルミニウム基複合材の製造装置
の概要構造図FIG. 2 is a schematic structural diagram of an apparatus for manufacturing an aluminum-based composite material according to the present invention.
【図3】本発明に係るアルミニウム基複合材ビレットの
製造要領図FIG. 3 is a manufacturing procedure diagram of the aluminum-based composite billet according to the present invention.
【図4】本発明に係るビレットの均質化処理の説明図FIG. 4 is an explanatory diagram of a billet homogenization process according to the present invention.
【図5】本発明に係る押出し工程の第1説明図FIG. 5 is a first explanatory view of an extrusion process according to the present invention.
【図6】本発明に係る押出し工程の第2説明図FIG. 6 is a second explanatory diagram of the extrusion process according to the present invention.
【図7】本発明に係る押出し材の斜視図FIG. 7 is a perspective view of an extruded material according to the present invention.
【図8】図7の8−8線矢視図8 is a view taken along the line 8-8 in FIG. 7;
【図9】本発明に係る押出し材の溶体化処理の説明図FIG. 9 is an explanatory view of a solution treatment of an extruded material according to the present invention.
【図10】本発明に係る引抜き工程の第1説明図FIG. 10 is a first explanatory view of a drawing step according to the present invention.
【図11】本発明に係る引抜き工程の第2説明図FIG. 11 is a second explanatory view of the drawing step according to the present invention.
【図12】本発明に係る引抜き工程の第3説明図FIG. 12 is a third explanatory view of the drawing step according to the present invention.
【図13】図12(b)の13−13線断面図FIG. 13 is a sectional view taken along line 13-13 of FIG.
【図14】本発明に係る断面減少率と内径の関係を示し
たグラフFIG. 14 is a graph showing the relationship between the cross-sectional reduction rate and the inner diameter according to the present invention.
【図15】本発明に係る引抜き材の人工時効硬化処理の
説明図FIG. 15 is an explanatory view of an artificial age hardening treatment of a drawn material according to the present invention.
【図16】本発明に係る切断工程の説明図FIG. 16 is an explanatory view of a cutting step according to the present invention.
【図17】本発明に係る鋳造工程の説明図FIG. 17 is an explanatory view of a casting process according to the present invention.
【図18】本発明に係るシリンダブロックの斜視図FIG. 18 is a perspective view of a cylinder block according to the present invention.
【図19】図18の19−19線矢視図FIG. 19 is a view taken in the direction of arrows 19-19 in FIG. 18;
【図20】従来のシリンダライナの鋳包み成形方法の説
明図FIG. 20 is an illustration of a conventional cylinder liner cast-in molding method.
11…炉(雰囲気炉)、31…酸化物系セラミックス
(多孔質アルミナ)、41…アルミニウム合金、42…
マグネシウム、44…窒化マグネシウム、45…アルミ
ニウム基複合材ビレット、55…押出しプレス、61…
押出し材、62…筒、63…リブ、64…根元部、65
…先端部、75…引抜き装置、81…引抜き材、82…
引抜き工程後のリブ(逆台形リブ)、86…シリンダラ
イナ、88…シリンダブロックの鋳型、96…シリンダ
ブロック、Ls…所定長さ。11: furnace (atmosphere furnace), 31: oxide ceramics (porous alumina), 41: aluminum alloy, 42 ...
Magnesium, 44: magnesium nitride, 45: aluminum-based composite billet, 55: extrusion press, 61:
Extruded material, 62 ... cylinder, 63 ... rib, 64 ... root, 65
... A tip, 75 ... Pull-out device, 81 ... Pull-out material, 82 ...
Rib (inverted trapezoidal rib) after drawing process, 86: cylinder liner, 88: cylinder block mold, 96: cylinder block, Ls: predetermined length.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B21C 23/10 B21C 23/10 4K020 B21J 5/00 B21J 5/00 D 5/06 5/06 B B21K 3/02 B21K 3/02 B22D 19/00 B22D 19/00 E G C22B 5/04 C22B 5/04 21/02 21/02 C22C 1/00 C22C 1/00 J S 1/02 501 1/02 501Z 503 503J 49/06 49/06 F02F 1/00 F02F 1/00 C E K (72)発明者 菅谷 有利 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 加藤 崇 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 越後 隆治 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 (72)発明者 松浦 聡司 埼玉県狭山市新狭山1丁目10番地1 ホン ダエンジニアリング株式会社内 Fターム(参考) 3G024 AA25 AA26 AA28 BA04 BA05 FA03 FA06 FA14 GA03 GA13 HA07 HA10 4E029 AA06 DA04 JA02 4E087 BA04 CA22 DB01 DB24 HA64 4E096 EA05 EA17 4K001 AA02 BA05 DA05 DA10 HA03 HA07 4K020 AA21 AC01 AC02 BB21 BB26 BC01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B21C 23/10 B21C 23/10 4K020 B21J 5/00 B21J 5/00 D 5/06 5/06 B B21K 3 / 02 B21K 3/02 B22D 19/00 B22D 19/00 EG C22B 5/04 C22B 5/04 21/02 21/02 C22C 1/00 C22C 1/00 J S 1/202 501 1/02 501Z 503 503J 49/06 49/06 F02F 1/00 F02F 1/00 CEK (72) Inventor advantageous Sugaya 1-10-1 Shinsayama, Sayama City, Saitama Prefecture Honda Engineering Co., Ltd. (72) Inventor Takashi Kato Saitama 1-10-1 Shin-Sayama, Sayama-shi Honda Engineering Co., Ltd. (72) Inventor Ryuji Echigo 1-10-1 Shin-Sayama, Sayama-shi, Saitama Within Aling Co., Ltd. (72) Inventor Satoshi Matsuura 1-10-1, Shinsayama, Sayama City, Saitama F-term (reference) in Honda Engineering Co., Ltd. 3G024 AA25 AA26 AA28 BA04 BA05 FA03 FA06 FA14 GA03 GA13 HA07 HA10 4E029 AA06 DA04 JA02 4E087 BA04 CA22 DB01 DB24 HA64 4E096 EA05 EA17 4K001 AA02 BA05 DA05 DA10 HA03 HA07 4K020 AA21 AC01 AC02 BB21 BB26 BC01
Claims (3)
形体とともに、アルミニウム合金及び、マグネシウム又
はマグネシウム発生源を炉内に納め、窒化マグネシウム
の作用で酸化物系セラミックスを還元し、酸化物系セラ
ミックスの多孔質にアルミニウム合金の溶湯を浸透させ
てアルミニウム基複合材ビレットを製造する工程と、 前記アルミニウム基複合材ビレットを押出しプレスで筒
に成形すると同時に、この筒の外面にリブを成形する押
出し工程と、 前記押出し後の押出し材を引抜き装置で仕上げるととも
に、リブを先端側から圧縮してリブの根元にアンダカッ
ト形状を成形する引抜き工程と、 前記引抜き後の引抜き材を所定長さに切断加工してアル
ミニウム基複合材のシリンダライナを形成する切断工程
と、 前記シリンダライナをシリンダブロックの鋳型内にセッ
トして注湯する鋳造工程と、からなることを特徴とする
シリンダライナの鋳包み成形方法。1. An aluminum alloy and a magnesium or magnesium source are placed in a furnace together with a porous formed body made of an oxide ceramic, and the oxide ceramic is reduced by the action of magnesium nitride. A step of manufacturing an aluminum-based composite billet by infiltrating a molten aluminum alloy into a porous body; and an extrusion step of simultaneously forming the aluminum-based composite billet into a cylinder by an extrusion press and forming a rib on the outer surface of the cylinder. A finishing step of extruding the extruded material with a drawing device, compressing the rib from the tip side to form an undercut shape at the root of the rib, and cutting the drawn material after the drawing to a predetermined length. A cutting step of forming a cylinder liner of the aluminum-based composite material by using Cast molding method of the cylinder liner, wherein a casting step of pouring is set in a mold of cylinder block, in that it consists of.
1、前記引抜き工程後のリブの断面積をS2としたとき
に、(S1−S2)/S1を百分率表示で5〜12%に
設定することを特徴とする請求項1記載のシリンダライ
ナの鋳包み成形方法。2. The cross-sectional area of the rib after the extrusion step is S
1. The cylinder liner casting according to claim 1, wherein (S1−S2) / S1 is set to 5 to 12% in percentage, where S2 is the cross-sectional area of the rib after the drawing step. Wrap molding method.
リブの先端部の幅をLwとしたときに、Lh<Lwに設
定することを特徴とする請求項1記載のシリンダライナ
の鋳包み成形方法。3. The height of the rib after the drawing step is Lh,
2. The method according to claim 1, wherein Lh <Lw, where Lw is the width of the tip of the rib.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001143886A JP4580121B2 (en) | 2001-05-14 | 2001-05-14 | Cylinder liner cast-in molding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001143886A JP4580121B2 (en) | 2001-05-14 | 2001-05-14 | Cylinder liner cast-in molding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002336954A true JP2002336954A (en) | 2002-11-26 |
JP4580121B2 JP4580121B2 (en) | 2010-11-10 |
Family
ID=18989953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001143886A Expired - Fee Related JP4580121B2 (en) | 2001-05-14 | 2001-05-14 | Cylinder liner cast-in molding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4580121B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100836309B1 (en) | 2007-05-22 | 2008-06-09 | 현대자동차주식회사 | Manufacturing method for cylinder-liner of vehicle |
CN104525609A (en) * | 2014-12-12 | 2015-04-22 | 西南铝业(集团)有限责任公司 | Processing equipment of 5083 aluminium-alloy thin-wall pipes |
CN106424187A (en) * | 2016-08-31 | 2017-02-22 | 重庆鼎发铝加工有限责任公司 | Machining die for thin-wall aluminum alloy pipe |
CN113153567A (en) * | 2021-01-13 | 2021-07-23 | 东风商用车有限公司 | Lightweight and high-rigidity cylinder body skirt section design method and engine cylinder body |
CN113787131A (en) * | 2021-09-08 | 2021-12-14 | 虹华科技股份有限公司 | A extrusion device for high-purity copper contour machining |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6092030A (en) * | 1983-10-26 | 1985-05-23 | Susumu Nishinakagawa | Manufacture of aluminum odd-shaped sleeve |
JPH08290255A (en) * | 1995-02-21 | 1996-11-05 | Toyota Motor Corp | Cylinder linear to be cast in |
JPH1136975A (en) * | 1997-07-23 | 1999-02-09 | Honda Motor Co Ltd | Manufacture of cylinder block |
JP2000233253A (en) * | 1999-02-12 | 2000-08-29 | Honda Motor Co Ltd | Production of cylinder liner |
JP2000233271A (en) * | 1999-02-12 | 2000-08-29 | Honda Motor Co Ltd | Manufacture of cylinder block |
-
2001
- 2001-05-14 JP JP2001143886A patent/JP4580121B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6092030A (en) * | 1983-10-26 | 1985-05-23 | Susumu Nishinakagawa | Manufacture of aluminum odd-shaped sleeve |
JPH08290255A (en) * | 1995-02-21 | 1996-11-05 | Toyota Motor Corp | Cylinder linear to be cast in |
JPH1136975A (en) * | 1997-07-23 | 1999-02-09 | Honda Motor Co Ltd | Manufacture of cylinder block |
JP2000233253A (en) * | 1999-02-12 | 2000-08-29 | Honda Motor Co Ltd | Production of cylinder liner |
JP2000233271A (en) * | 1999-02-12 | 2000-08-29 | Honda Motor Co Ltd | Manufacture of cylinder block |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100836309B1 (en) | 2007-05-22 | 2008-06-09 | 현대자동차주식회사 | Manufacturing method for cylinder-liner of vehicle |
CN104525609A (en) * | 2014-12-12 | 2015-04-22 | 西南铝业(集团)有限责任公司 | Processing equipment of 5083 aluminium-alloy thin-wall pipes |
CN106424187A (en) * | 2016-08-31 | 2017-02-22 | 重庆鼎发铝加工有限责任公司 | Machining die for thin-wall aluminum alloy pipe |
CN113153567A (en) * | 2021-01-13 | 2021-07-23 | 东风商用车有限公司 | Lightweight and high-rigidity cylinder body skirt section design method and engine cylinder body |
CN113787131A (en) * | 2021-09-08 | 2021-12-14 | 虹华科技股份有限公司 | A extrusion device for high-purity copper contour machining |
Also Published As
Publication number | Publication date |
---|---|
JP4580121B2 (en) | 2010-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3212245B2 (en) | Casting method, casting apparatus and casting | |
JP2008073763A (en) | Method of manufacturing vehicle wheel | |
JP3662765B2 (en) | Method for manufacturing tube of aluminum-based composite material | |
WO2018196263A1 (en) | Upsetting process and apparatus for billet with ultrahigh height to diameter ratio | |
JP2002336954A (en) | Cylinder liner enveloped casting method | |
JP4290850B2 (en) | Press forming method of disk-shaped parts made of aluminum matrix composite | |
JP3788667B2 (en) | Cylinder block manufacturing method | |
JP2001316740A (en) | Manufacturing method and structure of pulley | |
JP2000233271A (en) | Manufacture of cylinder block | |
CS209835B2 (en) | Method of making the permanent moulds | |
JP2003033859A (en) | Manufacturing method for cylinder block | |
JP2000233253A (en) | Production of cylinder liner | |
JP3126704B2 (en) | Casting method for castings with composite materials cast | |
CN111331083B (en) | A mould for preventing foundry goods fracture | |
JPS5857249B2 (en) | Aluminum Fukugobiretsutono Seisakuhouhou | |
JP4633961B2 (en) | Cast-in molding method for cylinder liner of multi-cylinder engine | |
JP3792604B2 (en) | Manufacturing method of Nb3Sn superconducting wire | |
JP3082834B2 (en) | Continuous casting method for round slabs | |
JP2811452B2 (en) | Method for producing fiber-reinforced composite material | |
JPH1137192A (en) | Manufacture of brake disc | |
SU899238A1 (en) | Hollow ingot production method | |
JPH1147875A (en) | Method for plastically working cupped parts | |
JPH02169171A (en) | Production of fiber reinforced metal body | |
JP2003154445A (en) | Method for casting magnesium alloy | |
JP5775353B2 (en) | Molded cup for pressure vessel and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100827 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140903 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |