JP3082834B2 - Continuous casting method for round slabs - Google Patents
Continuous casting method for round slabsInfo
- Publication number
- JP3082834B2 JP3082834B2 JP08160653A JP16065396A JP3082834B2 JP 3082834 B2 JP3082834 B2 JP 3082834B2 JP 08160653 A JP08160653 A JP 08160653A JP 16065396 A JP16065396 A JP 16065396A JP 3082834 B2 JP3082834 B2 JP 3082834B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- solidified shell
- taper
- steel
- meniscus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、円弧状鋳型を有
する連続鋳造機において、継目無鋼管用素材あるいは鍛
造用素材等の丸断面鋳片の連続鋳造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method having a circular cross section, such as a material for a seamless steel pipe or a material for forging, in a continuous casting machine having an arc-shaped mold.
【0002】[0002]
【従来の技術】連続鋳造法においては、図9に示すとお
り、鋳型91内に浸漬ノズル92から注入された溶鋼9
3は、鋳型91と接触して先ず薄い凝固シェル94を形
成し、当初は鋳型91と接触しているが、やがて凝固シ
ェル94は冷却による温度降下と共に収縮して鋳型91
からはなれる。ところが凝固シェル94の収縮量は、場
所により異なるために凝固シェル94外面と鋳型91内
面の隙間に差ができてパウダー95の供給量に過不足が
生じる。このため、凝固シェル94外面と鋳型91内面
の隙間には、エアーギャップができたり、パウダー厚さ
に差異が生じたりして不均一厚さの凝固シェルが形成さ
れる。2. Description of the Related Art In a continuous casting method, as shown in FIG.
3 contacts the mold 91 and first forms a thin solidified shell 94, which is initially in contact with the mold 91, but eventually the solidified shell 94 shrinks with the temperature drop due to cooling and the mold 91
You can get away from it. However, since the amount of shrinkage of the solidified shell 94 differs depending on the location, there is a difference in the gap between the outer surface of the solidified shell 94 and the inner surface of the mold 91, resulting in an excess or deficiency in the supply amount of the powder 95. For this reason, an air gap is formed in the gap between the outer surface of the solidified shell 94 and the inner surface of the mold 91, and a difference in the powder thickness is generated, so that a solidified shell having an uneven thickness is formed.
【0003】凝固シェルは、厚さが不均一になると薄い
部分に熱応力が集中してブレークアウトを起こし、鋳造
できなくなる。このブレークアウトを防止するには、鋳
造速度を遅くしなければならず、生産性が低下する。ま
た、凝固シェルの厚さの不均一は、鋳片の表面性状を悪
化させることになる。このような問題点は、特に丸断面
鋳片に顕著に発生する。[0003] When the thickness of the solidified shell becomes uneven, thermal stress concentrates on a thin portion, causing a breakout and making it impossible to cast. To prevent this breakout, the casting speed must be reduced, which reduces productivity. Further, unevenness of thickness of solidified shell, evil surface texture of the slab
Will be converted. Such a problem occurs remarkably especially in a round section slab.
【0004】上記丸断面鋳片鋳造時に発生する上記問題
点を解消する方法としては、タンディッシュと鋳型をノ
ズルで結合すると共に、凝固初期において鋳型を鋳片引
抜き方向と交叉する方向に揺動させ、溶鋼静圧により凝
固シェルを鋳型内壁に密着させ、均一凝固させる方法
(特開昭53−137825号公報)、鋳型内面が収縮
する凝固シェルにできるだけ近づくように、鋳型内面を
鋳造方向に2段階的に絞った鋳型(実開昭59−165
748号公報)、鋳造方向に連続する少なくとも2つの
テーパ段を有する鋳型へ鋼を鋳込む連続鋳造法におい
て、形成される鋳造物の収縮挙動を刻々の鋳造パラメー
タに適応させるために、鋳型内の溶鋼レベルを複数のテ
ーパ段の範囲内で変化させる方法(特公昭59−392
20号公報)が提案されている。[0004] As a method of solving the above-mentioned problem occurring at the time of casting the slab of round cross section, a tundish and a mold are connected by a nozzle, and the mold is swung in a direction intersecting with the direction of drawing the slab at an early stage of solidification. A method in which a solidified shell is brought into close contact with the inner wall of a mold by static pressure of molten steel to uniformly solidify (JP-A-53-137825), and the inner surface of the mold is moved in two steps in the casting direction so that the inner surface of the mold is as close as possible to the shrinking solidified shell. Squeezed mold (Japanese Utility Model Application Laid-open No. 59-165)
748), in a continuous casting method in which steel is cast into a mold having at least two tapered steps that are continuous in the casting direction, in order to adapt the shrinkage behavior of the formed product to instantaneous casting parameters, Method of changing molten steel level within a range of a plurality of taper steps (Japanese Patent Publication No. 59-392)
No. 20) has been proposed.
【0005】[0005]
【発明が解決しようとする課題】上記特開昭53−13
7825号公報に開示の方法は、タンディッシュと鋳型
が連結されているために、パウダーを溶鋼中に注入する
装置が必要になる。また、鋳型を鋳片引抜き方向と交叉
する方向に揺動させるには、大幅な設計変更しなければ
ならない。また、実開昭59−165748号公報に開
示の鋳型は、凝固シェルの収縮量が鋼組成や鋳造速度等
の条件によって大きく増減するので、特定の鋼組成およ
び鋳造速度を前提にテーパを決定すると、他の鋳造条件
に対してテーパの不足あるいは過多が生じる。さらに、
特公昭59−39220号公報に開示の方法によって
も、テーパ設定値が適正でなければ、多様な組成の鋼に
対応することができない。SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 53-13 / 1979
In the method disclosed in Japanese Patent No. 7825, an apparatus for injecting powder into molten steel is required because the tundish and the mold are connected. Further, in order to swing the mold in a direction intersecting with the direction of drawing the slab, a significant design change must be made. Further, the mold disclosed in Japanese Utility Model Laid-Open Publication No. 59-165748, the amount of shrinkage of the solidified shell greatly varies depending on conditions such as the steel composition and the casting speed, and therefore, when the taper is determined based on a specific steel composition and casting speed. Insufficient or excessive taper occurs for other casting conditions. further,
Even the method disclosed in Japanese Patent Publication No. 59-39220 cannot cope with steels of various compositions unless the taper set value is appropriate.
【0006】一般に凝固シェルの収縮挙動が鋳片品質や
鋳造トラブル発生に大きな影響を及ぼすのは、鋼中C濃
度が0.08〜0.15%程度の亜包晶鋼である。亜包
晶鋼は、完全凝固直後のシェルがδ→γ変態に伴い大き
く収縮するので、鋳造時に鋳型から凝固シェルが離れて
不均一凝固を生じ易い。このような亜包晶鋼特有の問題
を解消するためには、凝固収縮の最も大きな亜包晶鋼を
前提としたテーパに設定することが求められる。In general, the subperitectic steel having a C concentration of about 0.08 to 0.15% in which the shrinkage behavior of the solidified shell greatly affects the quality of the slab and the occurrence of casting troubles. In the hypoperitectic steel, the shell immediately after complete solidification largely shrinks due to the δ → γ transformation, so that the solidified shell separates from the mold during casting and is likely to undergo uneven solidification. In order to solve such a problem peculiar to the hypoperitectic steel, it is required to set the taper based on the hypoperitectic steel having the largest solidification shrinkage.
【0007】一方、凝固収縮の少ない鋼の鋳造では、亜
包晶鋼を前提とした大きなテーパを有する鋳型を使用す
ると、鋳型から凝固シェルへの圧縮応力が作用し、鋼組
成によっては凝固シェルが座屈変形することがあった。
従来の技術には、特定組成の鋼に生じる凝固シェルの座
屈変形に着目し、座屈変形の防止を目的として鋳型テー
パを限定したものはない。On the other hand, in the casting of steel having a small solidification shrinkage, when a mold having a large taper based on hypoperitectic steel is used, a compressive stress acts from the mold to the solidified shell, and depending on the steel composition, the solidified shell may be formed. Buckling sometimes occurred.
No prior art focuses on buckling deformation of a solidified shell generated in steel having a specific composition, and does not limit a mold taper for the purpose of preventing buckling deformation.
【0008】この発明の目的は、上記従来技術の欠点を
解消し、特定成分の丸断面鋳片を連続鋳造する際に生じ
る凝固シェルの座屈変形を防止できる丸断面鋳片の連続
鋳造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a continuous casting method of a round section slab which can solve the above-mentioned drawbacks of the prior art and can prevent buckling deformation of a solidified shell which occurs when continuously casting a round section slab of a specific component. To provide.
【0009】[0009]
【課題を解決するための手段】本発明者らは、丸断面鋳
片を連続鋳造するに際し、特定組成の鋼に凝固シェル座
屈変形が生じることを見い出し、その発生傾向と原因を
調査した結果、以下の結論に至った。Means for Solving the Problems The present inventors have found that in continuous casting of a slab of round cross section, solidification shell buckling deformation occurs in steel of a specific composition, and as a result of investigating the occurrence tendency and cause thereof. Reached the following conclusions.
【0010】凝固シェルの座屈変形は、C:0.04〜
0.60、Mn:0.6〜1.7%の溶鋼の連続鋳造に
おいて、直径225mm、292mmの丸鋳片の鋼中M
n濃度と凝固シェルの座屈変形発生率との関係を示す図
4のとおり、鋼中Mn濃度:[Mn]≧1.0%の高M
n鋼において高発生率を示している。The buckling deformation of the solidified shell is C: 0.04 to
0.60, Mn: In continuous casting of molten steel of 0.6 to 1.7%, M in steel of round cast slab having a diameter of 225 mm and 292 mm
As shown in FIG. 4 showing the relationship between the n concentration and the buckling deformation occurrence rate of the solidified shell, the Mn concentration in steel: [Mn] ≧ 1.0% and a high M
n steel shows a high incidence rate.
【0011】高Mn鋼において凝固シェルの座屈変形発生
率が高い原因は、[C]:0.08〜0.40%、[Mn]:0.6〜1.6%の
溶鋼の連続鋳造における溶鋼温度と変形応力との関係を
示す図5のとおり、鋼中Mn濃度が高いと1200℃以下の領
域において温度降下に伴う変形応力(強度)の増大が急勾
配である。そのため、座屈変形の発生を模式的に示す図
6(a)に示すとおり、偶発的に生じた凝固遅れ部位1(高温
部位)と、健全凝固部位2(低温部位)との相対的凝固シェ
ル強度差が大きくなる。このとき凝固シェルは、図6(b)
に示すとおり、鋳型から圧力(圧縮応力)3を受け、ある
いは凝固シェル自身が収縮5すると、凝固遅れ部1に歪が
集中して座屈変形4が発生する。The cause of the high buckling deformation occurrence rate of the solidified shell in the high Mn steel is as follows: [C]: 0.08 to 0.40%, [Mn]: 0.6 to 1.6% As shown in FIG. 5 showing the relationship, when the Mn concentration in the steel is high, the increase in the deformation stress (strength) due to the temperature drop is steep in a region of 1200 ° C. or less. Therefore, a diagram schematically showing the occurrence of buckling deformation
6 (a) to cage shown strike, and accidentally resulting solidified delayed site 1 (high temperature region), the relative solidified shell strength difference between healthy coagulation site 2 (low temperature portion) increases. At this time, the solidified shell is as shown in FIG.
To indicate cage strike, subjected to pressure (compressive stress) 3 from the mold, or solidified shell itself shrinks 5 Then, strain coagulation delay unit 1 is buckling 4 is generated intensively.
【0012】凝固シェルの座屈変形発生位置は、表1に
示す化学組成の高炭素・高Mn鋼および0.2%炭素鋼
の連続鋳造における鋳型内の凝固シェルに作用する圧縮
応力を計算した結果、図7に示すとおり、メニスカス下
400mm以降の鋳型下部において圧縮応力が増大する
ことが判明した。この計算により凝固シェルの座屈変形
は、メニスカス下400mm以降の鋳型下部において発
生することが確認された。The buckling deformation position of the solidified shell was calculated by calculating the compressive stress acting on the solidified shell in the mold in continuous casting of a high carbon / high Mn steel and a 0.2% carbon steel having the chemical compositions shown in Table 1. As a result, as shown in FIG. 7, it was found that the compressive stress increased in the lower part of the mold 400 mm below the meniscus. This calculation confirmed that the buckling deformation of the solidified shell occurred in the lower part of the mold 400 mm below the meniscus.
【0013】[0013]
【表1】 [Table 1]
【0014】高Mn鋼において発生する凝固シェルの座
屈変形を防止するには、メニスカス下400mm以降の
鋳型下部のテーパ上限値を制限することが有効であるこ
と、また、鋳型と凝固シェルとの密着を維持し、均一な
凝固を実現させることを考慮すると、鋳型下部およびメ
ニスカスにおける鋳型テーパに適正範囲が存在すること
が明らかである。In order to prevent the buckling deformation of the solidified shell generated in the high Mn steel, it is effective to limit the upper limit of the taper of the lower part of the mold at 400 mm or less below the meniscus. In view of maintaining close contact and achieving uniform solidification, it is clear that there is an appropriate range for the mold taper at the bottom of the mold and at the meniscus.
【0015】すなわち、この発明は、C:0.04〜0.60%、M
n:1.0〜1.7%を含有する溶鋼から丸断面鋳片を連続鋳造
する方法において、メニスカス部におけるテーパが4.0
〜19.0%/mで、かつ、メニスカス下400mm以降から鋳型下
端におけるテーパの平均値が0.4〜0.7%/mである鋳片サ
イズ毎に1種類の鋳型を用い、連続鋳造することとして
いる。このように、C:0.04〜0.60%、Mn:1.0〜1.7%を含
有する溶鋼を、メニスカスにおけるテーパが4.0〜19.0%
/mで、かつ、メニスカス下400mmから鋳型下端における
テーパの平均値が0.4〜0.7%/mである鋳片サイズ毎に1種
類の鋳型を用い、連続鋳造することによって、凝固シェ
ルの座屈変形の発生を抑制することができると共に、不
均一凝固に起因する縦割れの発生を抑制でき、欠陥の少
ない優れた表面品質の丸断面鋳片を得ることができる。That is, the present invention provides a method for producing C: 0.04 to 0.60%, M
n: In a method of continuously casting a round section slab from molten steel containing 1.0 to 1.7%, the taper at the meniscus portion is 4.0
In ~19.0% / m, and the average value of the taper of the mold bottom from subsequent meniscus under 400mm is 0.4 to 0.7% / m Ihensa
Continuous casting is performed using one type of mold per size . Thus, the molten steel containing C: 0.04 to 0.60%, Mn: 1.0 to 1.7%, the taper in the meniscus is 4.0 to 19.0%
In / m, and one from the meniscus under 400mm mean value of the taper of the mold lower end for each slab size is 0.4 to 0.7% / m
Continuous casting using molds of the same type can suppress the occurrence of buckling deformation of the solidified shell, can suppress the occurrence of vertical cracks due to uneven solidification, and provide excellent surface quality with few defects A round section slab can be obtained.
【0016】[0016]
【発明の実施の形態】この発明において溶鋼中のMn濃
度を1.0〜1.7%としたのは、1.0%未満では鋳
型テーパに関係なく凝固シェルの座屈変形の発生は低
く、また、1.7%を超えると鋳型テーパを規定して
も、凝固シェルの座屈変形が発生するからである。BEST MODE FOR CARRYING OUT THE INVENTION The reason why the Mn concentration in molten steel is set to 1.0 to 1.7% in the present invention is that when it is less than 1.0%, buckling deformation of the solidified shell is low regardless of the mold taper. Also, if it exceeds 1.7%, buckling deformation of the solidified shell occurs even if the mold taper is defined.
【0017】この発明における鋳型のテーパK(%/
m)は、次の式によって表される。 K(%/m)=(ΔB/Bu)・(100/L) ただ
し、ΔB:テーパ部における上下径の差(mm)、B
u:テーパ部における中空の下幅(mm)、L:同じテ
ーパ部の長さ(m)である。In the present invention, the taper K (% /
m) is represented by the following equation. K (% / m) = (ΔB / Bu) · (100 / L) where ΔB: difference between upper and lower diameters at the tapered portion (mm), B
u: lower width (mm) of the hollow in the tapered portion, L: length (m) of the same tapered portion.
【0018】この発明においてメニスカス部のテーパを
4〜19%/mとしたのは、図8に示すとおり、4%/
m未満では凝固シェルの収縮量に対し、鋳型テーパが不
足となるため、鋳型と凝固シェル間に間隙が生じ、鋳型
への抜熱が間隙部で大きく減少する。その部位の凝固シ
ェルは、凝固が遅れるため割れ疵等の欠陥発生の原因と
なる。また、19%/mを超えると、上記とは逆に鋳型
テーパが過多となるため、凝固シェルが鋳型に焼付く現
象(拘束)の発生率が高くなり、操業が困難となる。In the present invention, the taper of the meniscus portion is set to 4 to 19% / m, as shown in FIG.
If it is less than m, the mold taper becomes insufficient with respect to the shrinkage amount of the solidified shell, so that a gap is formed between the mold and the solidified shell, and heat removal from the mold is greatly reduced in the gap. Solidification of the solidified shell at that portion causes a defect such as a crack due to a delay in solidification. On the other hand, if it exceeds 19% / m, on the contrary, the mold taper becomes excessive, so that the occurrence rate of the phenomenon (restriction) of seizure of the solidified shell on the mold increases, and the operation becomes difficult.
【0019】この発明においてメニスカス下400mm
以降から鋳型下端までの平均テーパを0.4〜0.7%
/mとしたのは、0.4%/m未満では縦割れ発生率が
高くなり、また、0.7%/mを超えると、鋳型下部テ
ーパが過多となるため、凝固シェルの座屈変形の発生率
が高くなるためである。In the present invention, 400 mm below the meniscus
0.4 to 0.7% average taper from the end to the bottom of the mold
The reason for this is that if it is less than 0.4% / m, the rate of occurrence of vertical cracks will be high, and if it exceeds 0.7% / m, the taper at the bottom of the mold will be excessive, so that the buckling deformation of the solidified shell will occur. This is because the rate of occurrence of is increased.
【0020】[0020]
【実施例】表2に示すA〜Qの組成の溶鋼を、表2に示
すメニスカス部のテーパおよびメニスカス下400mm
以降下端までの平均テーパの鋳型を用い、直径187〜
335mmの鋳片を定常部鋳造速度1.1〜3.0m/
minで連続鋳造し、凝固シェルの座屈変形発生率と不
均一凝固による縦割れ発生率を調査した。その結果を表
3および図1〜図3に示す。なお、表2中の鋳型テーパ
欄の「鋳型下部」は、メニスカス下400mm以降下端
までの平均テーパである。EXAMPLE A molten steel having a composition of A to Q shown in Table 2 was prepared by tapering the meniscus portion shown in Table 2 and 400 mm below the meniscus.
Thereafter, using a mold having an average taper up to the lower end, a diameter of 187 to
A 335 mm slab is cast at a steady part casting speed of 1.1 to 3.0 m /
min, and the buckling deformation rate of the solidified shell and the longitudinal cracking rate due to uneven solidification were investigated. The results are shown in Table 3 and FIGS. The “lower part of the mold” in the mold taper column in Table 2 is an average taper from 400 mm below the meniscus to the lower end.
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】表2および図1〜3に示すとおり、A〜J
の実施例では、凝固シェルの座屈発生率ならびに不均一
凝固による縦割れ発生率共に0.2%以下と軽微であっ
た。これに対し、比較例のK、M、O、Qでは、メニス
カス部における鋳型テーパが小さいため、不均一凝固を
生じて縦割れ発生率が8.7〜12.5%と高率となっ
ている。また、比較例のL、N、P、Qは、鋳型下部に
おけるテーパが過大であるため、凝固シェルの座屈変形
発生率が0.7〜1.5%と高率となっている。As shown in Table 2 and FIGS.
In Example 1, the buckling occurrence rate of the solidified shell and the vertical cracking occurrence rate due to the uneven solidification were as small as 0.2% or less. On the other hand, in K, M, O, and Q of the comparative examples, since the mold taper in the meniscus portion is small, uneven solidification occurs, and the vertical crack generation rate becomes a high rate of 8.7 to 12.5%. I have. Further, in L, N, P, and Q of the comparative example, the buckling deformation occurrence rate of the solidified shell is as high as 0.7 to 1.5% because the taper in the lower part of the mold is excessive.
【0024】[0024]
【発明の効果】この発明の連続鋳造方法によれば、Mn
≧1.0%の高Mn鋼の凝固シェルの座屈変形発生率を
低位に抑制することができると共に、不均一凝固に起因
する縦割れ発生率も低く、欠陥の少ない優れた表面品質
の丸断面鋳片を得ることができる。According to the continuous casting method of the present invention, Mn
The buckling deformation rate of the solidified shell of high Mn steel of ≧ 1.0% can be suppressed to a low level, the rate of vertical cracking caused by non-uniform solidification is low, and the round surface has excellent surface quality with few defects. A cross section slab can be obtained.
【図1】実施例におけるメニスカス部における鋳型テー
パと縦割れ発生率との関係を示すグラフである。FIG. 1 is a graph showing a relationship between a mold taper in a meniscus portion and a vertical crack occurrence rate in an example.
【図2】実施例における鋳型下部平均テーパと縦割れ発
生率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the average taper at the bottom of the mold and the rate of occurrence of vertical cracks in Examples.
【図3】実施例における鋳型下部平均テーパと凝固シェ
ルの座屈変形発生率との関係を示すグラフである。FIG. 3 is a graph showing a relationship between an average taper at a lower part of a mold and a buckling deformation occurrence rate of a solidified shell in an example.
【図4】C:0.30〜0.60%、0.18〜0.2
9%、0.04〜0.17%の鋼中Mn濃度と凝固シェ
ルの座屈変形発生率との関係を示すグラフである。FIG. 4: C: 0.30 to 0.60%, 0.18 to 0.2
9 is a graph showing the relationship between the Mn concentration in steel of 9% and 0.04 to 0.17% and the buckling deformation occurrence rate of the solidified shell.
【図5】温度と変形応力と鋼中C濃度、Mn濃度との関
係を示すグラフである。FIG. 5 is a graph showing the relationship between temperature, deformation stress, and C concentration and Mn concentration in steel.
【図6】凝固シェルの座屈変形発生の原理を示すもの
で、(a)図は起点生成の模式図、(b)図は座屈変形
発生の模式図ある。6A and 6B show the principle of buckling deformation of a solidified shell. FIG. 6A is a schematic diagram of generation of a starting point, and FIG. 6B is a schematic diagram of buckling deformation.
【図7】高炭素・高マンガン鋼および0.2%炭素鋼の
凝固シェル内圧縮応力とメニスカスからの距離との関係
を示すグラフである。FIG. 7 is a graph showing a relationship between a compressive stress in a solidified shell of a high carbon / high manganese steel and a 0.2% carbon steel and a distance from a meniscus.
【図8】メニスカスにおける鋳型テーパと拘束発生率と
の関係を示すグラフである。FIG. 8 is a graph showing a relationship between a mold taper and a constraint occurrence rate in a meniscus.
【図9】鋳型内の状況を示す概略縦断面図である。FIG. 9 is a schematic longitudinal sectional view showing the situation inside the mold.
1 凝固遅れ部位 2 健全凝固部位 3 圧力 4 座屈変形 5 収縮 91 鋳型 92 浸漬ノズル 93 溶鋼 94 凝固シェル 95 パウダー Reference Signs List 1 solidification delay part 2 sound solidification part 3 pressure 4 buckling deformation 5 shrinkage 91 mold 92 immersion nozzle 93 molten steel 94 solidification shell 95 powder
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−132184(JP,A) 実開 昭59−165749(JP,U) (58)調査した分野(Int.Cl.7,DB名) B22D 11/04 B22D 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-132184 (JP, A) JP-A-59-165749 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/04 B22D 11/00
Claims (1)
る溶鋼から丸断面鋳片を連続鋳造する方法において、メ
ニスカス部におけるテーパが4.0〜19.0%/mで、かつ、メ
ニスカス下400mm以降から鋳型下端における平均テーパ
が0.4〜0.7%/mである鋳片サイズ毎に1種類の鋳型を用
い、連続鋳造することを特徴とする丸断面鋳片の連続鋳
造方法。1. A method for continuously casting a round-section slab from molten steel containing C: 0.04 to 0.60% and Mn: 1.0 to 1.7%, wherein the meniscus has a taper of 4.0 to 19.0% / m and a meniscus. A continuous casting method for a round-section slab, wherein one slab is used for each slab size having an average taper of 0.4 to 0.7% / m at the lower end of the mold from the lower 400 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08160653A JP3082834B2 (en) | 1996-05-30 | 1996-05-30 | Continuous casting method for round slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08160653A JP3082834B2 (en) | 1996-05-30 | 1996-05-30 | Continuous casting method for round slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09314287A JPH09314287A (en) | 1997-12-09 |
JP3082834B2 true JP3082834B2 (en) | 2000-08-28 |
Family
ID=15719594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08160653A Expired - Fee Related JP3082834B2 (en) | 1996-05-30 | 1996-05-30 | Continuous casting method for round slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3082834B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013178195A (en) * | 2012-02-29 | 2013-09-09 | Chemical Grouting Co Ltd | Hole core measuring apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4164163B2 (en) | 1998-07-31 | 2008-10-08 | 株式会社神戸製鋼所 | Metal casting mold |
JP7406075B2 (en) * | 2019-11-15 | 2023-12-27 | 日本製鉄株式会社 | Titanium ingot manufacturing method and titanium ingot manufacturing mold |
-
1996
- 1996-05-30 JP JP08160653A patent/JP3082834B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013178195A (en) * | 2012-02-29 | 2013-09-09 | Chemical Grouting Co Ltd | Hole core measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH09314287A (en) | 1997-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3491823A (en) | Process for the manufacture of continuous castings | |
JP3427794B2 (en) | Continuous casting method | |
JP3082834B2 (en) | Continuous casting method for round slabs | |
JP3104635B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JP3257224B2 (en) | Continuous casting method | |
JP3405490B2 (en) | Method for improving slab quality in continuous casting | |
JP3319379B2 (en) | Continuous casting method of steel billet | |
JP3228212B2 (en) | Method and apparatus for producing round billet slabs by continuous casting | |
JP3111954B2 (en) | Continuous casting method | |
JP3362703B2 (en) | Continuous casting method | |
JP2982622B2 (en) | Cooling method of slab in continuous casting | |
JP3149818B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JP3100541B2 (en) | Continuous casting method of round billet and mold used in the method | |
JP3092543B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JPH01162551A (en) | Method for continuously casting round shape billet | |
JP5691949B2 (en) | Continuous casting method for large-section slabs | |
JP3395674B2 (en) | Continuous casting method | |
JP3402250B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JP3275828B2 (en) | Continuous casting method | |
JPH11156512A (en) | Unsolidified press down manufacturing method of blank beam | |
JP3348667B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JPH0573506B2 (en) | ||
JPH0390263A (en) | Continuous casting method | |
JPH06344101A (en) | Continuous casting method | |
JP2770691B2 (en) | Steel continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090630 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |