JP2002205064A - Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same - Google Patents
Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the sameInfo
- Publication number
- JP2002205064A JP2002205064A JP2001039219A JP2001039219A JP2002205064A JP 2002205064 A JP2002205064 A JP 2002205064A JP 2001039219 A JP2001039219 A JP 2001039219A JP 2001039219 A JP2001039219 A JP 2001039219A JP 2002205064 A JP2002205064 A JP 2002205064A
- Authority
- JP
- Japan
- Prior art keywords
- water
- spherical porous
- titania
- fluidized bed
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 238000004140 cleaning Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 title description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000000746 purification Methods 0.000 claims abstract description 23
- 230000007613 environmental effect Effects 0.000 claims description 14
- 229920000592 inorganic polymer Polymers 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- -1 titanium alkoxide Chemical class 0.000 claims description 8
- 238000005299 abrasion Methods 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 229920006037 cross link polymer Polymers 0.000 claims description 2
- 239000011941 photocatalyst Substances 0.000 abstract description 28
- 239000000843 powder Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 10
- 239000011230 binding agent Substances 0.000 abstract description 5
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000000356 contaminant Substances 0.000 description 9
- 239000003344 environmental pollutant Substances 0.000 description 9
- 239000003463 adsorbent Substances 0.000 description 8
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachlorophenol Chemical compound OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 7
- 239000003456 ion exchange resin Substances 0.000 description 7
- 229920003303 ion-exchange polymer Polymers 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 125000005395 methacrylic acid group Chemical group 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 231100000719 pollutant Toxicity 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 5
- 229960000907 methylthioninium chloride Drugs 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100033040 Carbonic anhydrase 12 Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 101000867855 Homo sapiens Carbonic anhydrase 12 Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000003403 water pollutant Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】本発明はエネルギーミニマム型環境浄化シ
ステム用光触媒モジュールを開発する目的で、高効率に
環境汚染物質を分解する光触媒の形態と利用方法に関し
研究を行い、従来の微粉末光触媒や光触媒薄膜を基材に
固定化して用いる方法ではなく、いわゆる自立型光触媒
として球状化した光触媒を流動層化して利用するモジュ
ール化を行うことにより、従来実用化が困難であるとさ
れていた水系での光触媒の利用に関し、固定化光触媒よ
り高効率で環境汚染物質の分解を可能とした。The present invention aims to develop a photocatalyst module for an energy-minimum type environmental purification system, and has studied on the form and utilization of a photocatalyst that decomposes environmental pollutants with high efficiency. Instead of using the photocatalyst immobilized on the base material, a so-called self-supporting photocatalyst is formed into a fluidized bed using a spheroidized photocatalyst. Regarding utilization, it enabled the decomposition of environmental pollutants with higher efficiency than the immobilized photocatalyst.
【0002】[従来の技術]光触媒は太陽光を利用し環
境汚染物質を分解除去できるためエネルギーミニマム型
環境浄化材料として期待されている。これまで、大気や
水などを対象とした環境浄化材料としての光触媒は種々
検討されているが、化学的安定性や安全性の観点からチ
タニアに勝るものはないとされ、これについて環境浄化
材料への応用が活発に検討されている。しかしチタニア
の優れた性能は微粉末や薄膜についての物質本来の特性
であり、実際に利用するためには基材に固定して用いる
必要があった。これを固定化というが、固定化は一般的
に困難で、しかもバインダーを使って固定化すると本来
有していた性能が極端に低下してしまうという欠点があ
った。特に水系では微粉末を水中に均一に混合すると処
理後の水と光触媒微粒子を分離することが困難であるた
め、光触媒をガラスウールやセラミックスなどの基材表
面に高温で固定化して、触媒の性能が低下したものを使
用し、その表面をかなりの速度で流水を通過させるとい
う方法をとることが多い。しかしこの方法では光触媒と
汚染物質との接触確率も低く光触媒表面への光照射も均
等ではなく、基礎研究でのデータを大きく下回る結果し
か得られていないのが現状である。[Prior Art] A photocatalyst is expected as an energy minimum type environmental purification material because it can decompose and remove environmental pollutants using sunlight. Until now, various photocatalysts as environmental purification materials for air and water have been studied, but there is no substitute for titania from the viewpoint of chemical stability and safety. The application of is being actively studied. However, the excellent performance of titania is an inherent property of the substance for fine powders and thin films, and it was necessary to use it by fixing it to a base material for practical use. This is called immobilization, but it is generally difficult to immobilize it, and when it is immobilized using a binder, there is a disadvantage that the performance originally possessed is extremely reduced. Especially in aqueous systems, if the fine powder is mixed uniformly in water, it is difficult to separate the treated water from the photocatalyst fine particles. Often, a method is used in which the water is passed through the surface at a considerable speed using a material having a reduced water content. However, with this method, the probability of contact between the photocatalyst and the contaminant is low, the light irradiation on the photocatalyst surface is not uniform, and the results are far less than the data obtained in basic research.
【0003】[発明が解決しようとしている課題]この
ように、環境浄化材料として最も優れた性能を有するチ
タニアでも何らかの方法により固定化して用いなければ
ならず、実用的な環境浄化システムの構築、特に水浄化
システムの構築は困難であり遅れている。従って実用的
なエネルギーミニマム型水系浄化システムを構築するた
めには、第一にバインダーや基材を用いることなく使用
できるいわゆる自立型光触媒であること、第二に自立型
光触媒を高効率に水中汚染物質を浄化できるようにモジ
ュール化することが要求される。そこで本発明は、前記
微粉末あるいは固定化光触媒における課題と、前記エネ
ルギーミニマム型水系浄化システムに求められる条件に
鑑み、バインダーや基材を用いなくてもよい、しかも高
効率に水中汚染物質を浄化できる自立型光触媒を用いる
水系浄化モジュールとその製造方法を提案するものであ
る。[Problems to be Solved by the Invention] As described above, even the titania having the best performance as an environmental purification material must be immobilized and used by some method. Building a water purification system is difficult and delayed. Therefore, in order to construct a practical energy minimum type water purification system, first, it is a so-called self-supporting photocatalyst that can be used without using a binder or a base material. Modularization is required to purify substances. In view of the above-mentioned problems in the fine powder or the immobilized photocatalyst and the conditions required for the energy-minimum type water-based purification system, the present invention does not require the use of a binder or a base material, and more efficiently purifies underwater pollutants. The present invention proposes a water-based purification module using a self-supporting photocatalyst and a method for manufacturing the same.
【0004】[課題を解決する手段]前記の目的を達成
するため、本発明では鋭意研究を行った結果、光触媒を
耐摩耗性に優れた球状多孔質体とし、流水中で流動層を
形成させながら光照射することができる環境浄化モジュ
ールの開発に成功した。すなわち、チタニア球状多孔質
体に流動層を形成させながら水中汚染物質を高効率で分
解することを特徴とする水系環境浄化モジュールであ
る。流動層化させるチタニア球状多孔質体の直径は30
〜1000μmであり、空隙率が5〜85%、比表面積
は5〜100m2/gであることが好ましい。球状多孔
質体の直径が30μm以下では流水中で流動層中にとど
まることができずモジュールの上方に偏在してしまい、
また空隙率にもよるが1000μm以上では流動層を形
成することができない。このような流動層化させる球状
多孔質体の空隙率は5〜85%が好ましい。汚染物質を
分解する光触媒機能は、まず溶存酸素や汚染物質の触媒
への接近吸着が必要であり、緻密な球状体は好ましくな
い。しかし空隙率が大きくなると球状多孔質体の強度が
小さくなり流動層中で粉化してしまうため、球状多孔質
体の空隙率は10〜60%が最適である。前記光触媒の
汚染物質の分解の機構から比表面積は大きければ大きい
ほど好ましいが、チタニア球状多孔質体では5〜100
m2/gであることが好適である。100m2/gより
大きくするとチタニアの焼結が充分ではなく、耐摩耗性
が低下し、流動層中で摩耗してしまい好ましくない。[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive studies. As a result, a photocatalyst was formed into a spherical porous body having excellent wear resistance, and a fluidized bed was formed in flowing water. We succeeded in developing an environmental purification module that can irradiate light. That is, the present invention is a water-based environmental purification module characterized in that underwater contaminants are decomposed with high efficiency while forming a fluidized bed on the titania spherical porous body. The diameter of the titania spherical porous material to be fluidized is 30
It is preferable that the porosity is 5 to 85% and the specific surface area is 5 to 100 m 2 / g. If the diameter of the spherical porous body is 30 μm or less, it cannot stay in the fluidized bed in flowing water and is unevenly distributed above the module.
Further, depending on the porosity, a fluidized bed cannot be formed at a thickness of 1000 μm or more. The porosity of such a spherical porous body to be fluidized is preferably from 5 to 85%. The photocatalytic function of decomposing pollutants first requires close adsorption of dissolved oxygen and pollutants to the catalyst, and a dense spherical body is not preferable. However, as the porosity increases, the strength of the spherical porous body decreases and the powder is powdered in the fluidized bed. Therefore, the porosity of the spherical porous body is optimally 10 to 60%. From the mechanism of decomposition of the contaminants of the photocatalyst, the larger the specific surface area is, the more preferable it is.
It is preferably m 2 / g. If it is larger than 100 m 2 / g, sintering of titania is not sufficient, abrasion resistance is reduced, and abrasion occurs in the fluidized bed, which is not preferable.
【0005】このような水系環境浄化モジュールを製造
するにあたり、モジュールに充填するチタニア球状多孔
質体は、チタンアルコキシドあるいはチタンアルコキシ
ドとβ−ジケトンを原料として得られた無機高分子を有
機高分子球状多孔質体に含浸した後、酸化分解して合成
することができる。チタンアルコキシドとしてはチタン
テトライソプロポキシド、チタンテトラ−n−ブトキシ
ドが好適である。これらアルコキシドをエタノール、イ
ソプロピルアルコール等に溶解し、さらに必要によりエ
チルアセトアセテートなどβ−ジケトンを加え、その後
塩酸とエタノールの混合溶液を加え濃縮して含浸、加水
分解することにより無機高分子とした後、溶媒を必要に
より加え所定濃度の溶液とすることができる。含浸溶液
のTiO2換算濃度としては10〜30mol%が好適
であり、10mol%以下ではTiO2含浸量が十分で
はなく含浸操作を多数回繰り返す必要があり、50mo
l%以上では溶液の粘度が高くなり基材の内部に浸透さ
せるのが困難となり好ましくない。基材に含浸した後乾
燥して大気中で焼成するが、必要であれば上記含浸操作
を数回繰り返してもよい。また、上記無機高分子を含浸
する代わりにチタンアルコキシドをヘキサン、トルエ
ン、キシレン、テトラヒドロフランなどの有機溶媒に溶
解しTiO2換算で10〜50mol%の濃度に調整し
た後、基材に含浸し乾燥しながら基材中の微量水分ある
いは大気中の水蒸気により加水分解し、必要によりこれ
を繰り返すことにより無機高分子を含浸した結果と同様
の結果を得られる場合がある。[0005] In producing such an aqueous environmental purification module, the titania spherical porous material to be filled in the module is made of titanium alkoxide or an inorganic polymer obtained by using titanium alkoxide and β-diketone as raw materials. After impregnating the porous body, it can be synthesized by oxidative decomposition. As the titanium alkoxide, titanium tetraisopropoxide and titanium tetra-n-butoxide are preferable. These alkoxides are dissolved in ethanol, isopropyl alcohol, etc., and if necessary, β-diketone such as ethyl acetoacetate is added. Then, a mixed solution of hydrochloric acid and ethanol is added, concentrated, impregnated, and hydrolyzed to form an inorganic polymer. A solvent having a predetermined concentration can be added by adding a solvent as needed. The concentration of the impregnating solution in terms of TiO 2 is preferably 10 to 30 mol%. If the concentration is 10 mol% or less, the TiO 2 impregnation amount is not sufficient, and the impregnation operation needs to be repeated many times.
If it is 1% or more, the viscosity of the solution becomes high and it is difficult to make the solution penetrate into the inside of the substrate, which is not preferable. After the substrate is impregnated, it is dried and baked in the air. If necessary, the above-mentioned impregnation operation may be repeated several times. Further, after adjusting the titanium alkoxide instead of impregnating the inorganic polymeric hexane, toluene, xylene, a concentration of 10-50 mol% in dissolved terms of TiO 2 in an organic solvent such as tetrahydrofuran, and impregnating the substrate drying In some cases, the same result as that obtained by impregnating with an inorganic polymer may be obtained by hydrolyzing with a trace amount of water in the base material or water vapor in the atmosphere, and repeating this as necessary.
【0006】こうしてTiO2前駆体を含浸した基材を
大気中あるいは酸素雰囲気中で400〜600℃で焼成
してチタニア球状多孔質体を得る。400℃以下ではア
ナターゼの結晶化が充分進行せず、600℃以上ではア
ナターゼからルチルへの結晶転移が起き、光触媒機能が
著しく低下するので好ましくない。前記無機高分子を含
浸する基材には有機高分子球状多孔質体が用いられる。
この有機高分子球状多孔質体は、有機溶媒に溶けない架
橋ポリマーからなり、架橋した網目による0.05〜1
0μm程度のミクロゲル間に0.01〜10μm程度の
マクロポアが形成されているものが好適であり、例えば
スチレンを架橋剤であるジビニルベンゼンと共重合させ
て合成したビーズ状のポリスチレンや、フェノール樹脂
系の重縮合タイプのゲルがあり、これらはすでに工業的
に確立された方法により大量に製造されている。[0006] The substrate impregnated with the TiO 2 precursor is fired at 400 to 600 ° C in the air or in an oxygen atmosphere to obtain a titania spherical porous body. At 400 ° C. or lower, crystallization of anatase does not sufficiently proceed, and at 600 ° C. or higher, crystal transition from anatase to rutile occurs, which is not preferable because the photocatalytic function is significantly reduced. An organic polymer spherical porous body is used as the substrate impregnated with the inorganic polymer.
This organic polymer spherical porous body is composed of a crosslinked polymer that is insoluble in an organic solvent, and has a thickness of 0.05 to 1 due to a crosslinked network.
It is preferable that macropores of about 0.01 to 10 μm are formed between microgels of about 0 μm. For example, bead-like polystyrene synthesized by copolymerizing styrene with divinylbenzene as a cross-linking agent, or a phenol resin-based And polycondensation type gels, which are already produced in large quantities by industrially established methods.
【0007】[作用]上記本発明による水系環境浄化モ
ジュールは、チタニア球状多孔質体を流動層化して用い
るため水中汚染物質を高効率で分解除去することができ
るものである。従来の水中汚染物質の除去は、光触媒微
粉末を水中に懸濁させ、バッチ式で光照射して水中の汚
染物質を分解した後、限外濾過膜などを用いて水と光触
媒微粉末を分離しなくてはならず、処理量の低さと高コ
ストのため実用化されていない。一方、ガラスビーズに
チタニアをコーティングして水中汚染物質の光分解を行
わせようとする材料も検討されているが、コーティング
という工程を付加しなければならず、また流動層化でき
る粒径のガラスビーズの製造が困難であり、なによりも
コーティング層の摩耗により光触媒効果が長時間持続し
ないという欠点があり、光触媒を流動層化して用いる環
境浄化モジュールは実現していなかった。これに対し
て、本発明のチタニア球状多孔質体はそれ自体が100
%チタニアである自立型光触媒で、モジュール中では下
方から通水されることにより、一定の高さの流動層を形
成するため、水中汚染物質は流動層中で分解され、浄化
された水のみが上方へと分離されるため流水系で連続的
に水の浄化が行えるという最大の特徴を有する。しかも
光触媒が多孔質体であるため汚染物質は多孔質体に吸着
され、再び多孔質体外部へ放出されるときに触媒表面を
通過する。一方モジュール内に充填されたチタニア球状
多孔質体は流動層を形成することにより常に流動してお
り必然的に光照射面へ絶えず移動してくるはずであり、
このことが流動層中で水中汚染物質が高効率で分解され
る原因であると推定される。[Operation] The water-based environmental purification module according to the present invention can decompose and remove underwater pollutants with high efficiency because the titania spherical porous material is used in a fluidized bed. Conventional removal of contaminants in water involves suspending the photocatalyst fine powder in water, irradiating the batch with light to decompose the contaminants in the water, and separating the water and photocatalyst fine powder using an ultrafiltration membrane. And it has not been put to practical use due to low throughput and high cost. On the other hand, a material that coats glass beads with titania to cause photodegradation of contaminants in water is also being studied.However, a coating process must be added, and glass having a particle size that can be fluidized is also required. The production of beads is difficult, and above all, there is a disadvantage that the photocatalytic effect is not maintained for a long time due to the abrasion of the coating layer, and an environmental purification module using a photocatalyst in a fluidized bed has not been realized. On the other hand, the titania spherical porous body of the present invention itself is 100%.
It is a self-supporting photocatalyst that is a% titania, and when water is passed from below in the module to form a fluidized bed of a certain height, water contaminants are decomposed in the fluidized bed and only purified water is removed. Since it is separated upward, it has the greatest feature that water can be continuously purified in a flowing water system. Moreover, since the photocatalyst is a porous body, the contaminants are adsorbed by the porous body and pass through the catalyst surface when being discharged again to the outside of the porous body. On the other hand, the titania spherical porous body filled in the module is always flowing by forming a fluidized bed, and should inevitably move to the light irradiation surface,
This is presumed to be the cause of the high-efficiency decomposition of water pollutants in the fluidized bed.
【0008】一方、このような流動層化が可能なチタニ
ア球状多孔質体は、マクロポアを有する有機高分子球状
多孔質体にTiO2前駆体である無機高分子を含浸させ
ることによりマクロポア内にTiO2前駆体無機高分子
のネットワークを形成させ、これを焼結することにより
合成できたと推定される。流動層による水中汚染物質を
連続的に分解除去する水系環境浄化モジュールでは耐摩
耗性に優れた球状多孔質体が必要不可欠であり、上記球
状多孔質体はその性能を充分有しているものである。On the other hand, such a titania spherical porous material capable of forming a fluidized bed is prepared by impregnating an inorganic polymer, which is a TiO 2 precursor, into an organic polymer spherical porous material having macropores. It is presumed that synthesis was possible by forming a network of the two precursor inorganic polymers and sintering them. In a water-based environmental purification module that continuously decomposes and removes underwater contaminants by a fluidized bed, a spherical porous body with excellent wear resistance is indispensable, and the spherical porous body has sufficient performance. is there.
【0008】[実施例]次に、本発明を実施例により具
体的に説明する。 (実施例1)チタンテトライソプロポキシドをヘキサン
に溶解し、20mol%に調整した。この溶液を市販の
ジビニルベンゼン系合成吸着材、スチレン系ゲル型イオ
ン交換樹脂、メタクリル系ポーラス型イオン交換樹脂、
およびメタクリル系ハイポーラス型合成吸着材に含浸し
た。ジビニルベンゼン系合成吸着材以外は100〜11
0℃で乾燥して使用した。含浸後乾燥し、大気中500
℃で1時間焼成してアナターゼ型のチタニア球状多孔質
体を得た。ただしスチレン系ゲル型イオン交換樹脂は球
状にはならず粉末になった。この理由は基材にマクロポ
アが存在しないためである。これらのチタニア球状多孔
質体の直径、空隙率、比表面積はジビニルベンゼン系合
成吸着材で直径80〜130μm、空隙率8%、比表面
積6m2/g、メタクリル系ポーラス型イオン交換樹脂
で直径120〜500μm、空隙率45%、比表面積5
5m2/g、メタクリル系ハイポーラス型合成吸着材で
直径110〜350μm、空隙率63%、比表面積87
m2/gとなった。これら球状多孔質体をそれぞれ1g
ずつ、内径6mm、長さ20cmのガラスフィルター付
き石英ガラス管に充填し水系浄化モジュールとし、下方
から10ppmのメチレンブルー水溶液100mlを流
速35ml/minで通水し、高さ15cmの流動層を
形成させながら1.3mW/cm2でブラックライト
(波長域310〜400nm)で照射したところ、およ
そ100分後に色が消えた。この過程を紫外−可視吸収
スペクトルで追跡した結果の例を図1に示す。この結果
は光触媒微粉末を用いてバッチ式で行ったメチレンブル
ーの脱色の速度と同じレベルである。またこの通水試験
を2ヶ月間持続してもチタニア球状多孔質体の外観に変
化はなく優れた耐摩耗性を有していた。Next, the present invention will be described in detail with reference to examples. (Example 1) Titanium tetraisopropoxide was dissolved in hexane and adjusted to 20 mol%. This solution is commercially available divinylbenzene synthetic adsorbent, styrene gel ion exchange resin, methacrylic porous ion exchange resin,
And a methacrylic high-porous synthetic adsorbent. 100 to 11 except for divinylbenzene synthetic adsorbent
It was used after drying at 0 ° C. After impregnation and drying, 500 in air
Calcination was performed at 1 ° C. for 1 hour to obtain an anatase type titania spherical porous body. However, the styrene gel type ion exchange resin did not become spherical but became powder. The reason for this is that there is no macropore in the substrate. The diameter, porosity, and specific surface area of these titania spherical porous bodies are 80 to 130 μm in diameter with a divinylbenzene synthetic adsorbent, 8% in porosity, 6 m 2 / g in specific surface area, and 120 in diameter with a methacrylic porous ion exchange resin. ~ 500 µm, porosity 45%, specific surface area 5
5 m 2 / g, methacrylic high-porous synthetic adsorbent with a diameter of 110 to 350 μm, porosity of 63%, specific surface area of 87
m 2 / g. 1 g of each of these spherical porous bodies
Each was filled in a quartz glass tube with a glass filter having an inner diameter of 6 mm and a length of 20 cm to form a water-based purification module, and 100 ml of a 10 ppm aqueous methylene blue solution was passed through at a flow rate of 35 ml / min from below to form a fluidized bed having a height of 15 cm. Irradiation with black light (wavelength range 310 to 400 nm) at 1.3 mW / cm 2 , the color disappeared after about 100 minutes. FIG. 1 shows an example of the result of tracking this process with an ultraviolet-visible absorption spectrum. This result is at the same level as the rate of decolorization of methylene blue performed batchwise using the photocatalyst fine powder. Further, even when the water-passing test was continued for two months, the appearance of the titania spherical porous body did not change, and the abrasion resistance was excellent.
【0009】(実施例2)チタンテトラ−n−ブトキシ
ドをイソプロピルアルコールに溶解し、30mol%に
調整した。この溶液を、膨潤用溶媒である水をイソプロ
ピルアルコールに置換した後のキトサン樹脂球に含浸
し、大気中500℃で1時間焼成してチタニア球状多孔
質体を得た。このものは直径500〜1000μm、空
隙率75%、比表面積12m2/gであった。実施例1
と同様に水系浄化モジュールとし、流速10ml/mi
nでメチレンブルーの脱色を行ったところほぼ2時間で
色が消えた。試験中わずかに多孔質体の破壊が観測され
た。Example 2 Titanium tetra-n-butoxide was dissolved in isopropyl alcohol and adjusted to 30 mol%. This solution was impregnated into chitosan resin spheres after replacing water as a swelling solvent with isopropyl alcohol, and calcined at 500 ° C. for 1 hour in the atmosphere to obtain a titania spherical porous body. This had a diameter of 500 to 1000 μm, a porosity of 75%, and a specific surface area of 12 m 2 / g. Example 1
Water-based purification module in the same manner as described above, flow rate 10 ml / mi
When methylene blue was decolorized with n, the color disappeared in about 2 hours. During the test, slight destruction of the porous body was observed.
【0010】(実施例3)チタンテトライソプロポキシ
ドに等モルのβジケトンであるエチルアセトアセテート
を加えエタノールで希釈した後、塩酸とエタノールの混
合溶液を滴下しながら1時間攪拌した。その後ロータリ
ーエバポレーターで減圧下で濃縮を行い、チタニアの前
駆体である無機高分子を得た。この前駆体をTiO2換
算で25mol%のエタノール溶液として、実施例1で
用いた基材と同様の基材に含浸した。その後乾燥して大
気中550℃で1時間焼成してチタニア球状多孔質体を
得た。ただしジビニルベンゼン系合成吸着材とスチレン
系ゲル型イオン交換樹脂では球状多孔質体が得られなか
った。この理由は前駆体の分子量が実施例1の場合より
大きく、マクロポアの孔径が小さいジビニルベンゼン系
合成吸着材やマクロポアのないスチレン系ゲル型イオン
交換樹脂では前駆体が内部に浸透しにくいためである。
得られたチタニア球状多孔質体はメタクリル系ポーラス
型イオン交換樹脂で直径150〜600μm、空隙率4
0%、比表面積51m2/g、メタクリル系ハイポーラ
ス型合成吸着材で、直径150〜380μm、空隙率5
8%、比表面積68m2/gであった。これらチタニア
球状多孔質体を実施例1と同様にモジュール化しメチレ
ンブルーの脱色試験を行った結果、ほぼ2時間で色が消
えた。次にこのモジュールにより19ppmのペンタク
ロロフェノールのNa塩の分解除去試験を流速35ml
/minで行った。ほぼ3時間で紫外−可視吸収スペク
トルではピークが消失した。結果を図2に示す。図3に
はこの分解過程を溶液中の全有機炭素(TOC)の減少
で追跡した結果を示す。紫外−可視吸収スペクトルでは
わからなかったペンタクロロフェノールの二酸化炭素や
無機塩素への分解が明らかとなった。Example 3 Ethyl acetoacetate, an equimolar β-diketone, was added to titanium tetraisopropoxide and diluted with ethanol. The mixture was stirred for 1 hour while a mixed solution of hydrochloric acid and ethanol was added dropwise. Thereafter, the mixture was concentrated under reduced pressure using a rotary evaporator to obtain an inorganic polymer which is a precursor of titania. This precursor was impregnated into a substrate similar to the substrate used in Example 1 as a 25 mol% ethanol solution in terms of TiO 2 . Thereafter, it was dried and calcined at 550 ° C. for 1 hour in the atmosphere to obtain a titania spherical porous body. However, a spherical porous body could not be obtained with the divinylbenzene-based synthetic adsorbent and the styrene-based gel-type ion exchange resin. The reason for this is that the precursor has a larger molecular weight than that of Example 1, and the divinylbenzene-based synthetic adsorbent having a small pore size of the macropore or a styrene-based gel-type ion exchange resin having no macropore makes it difficult for the precursor to penetrate inside. .
The obtained titania spherical porous body is a methacrylic porous ion exchange resin having a diameter of 150 to 600 μm and a porosity of 4
0%, specific surface area 51 m 2 / g, methacrylic high-porous synthetic adsorbent, diameter 150 to 380 μm, porosity 5
8%, and the specific surface area was 68 m 2 / g. These titania spherical porous bodies were modularized in the same manner as in Example 1 and subjected to a decolorization test of methylene blue. As a result, the color disappeared in about 2 hours. Next, this module was used to carry out a decomposition removal test of 19 ppm of Na salt of pentachlorophenol at a flow rate of 35 ml.
/ Min. Almost 3 hours, the peak disappeared in the ultraviolet-visible absorption spectrum. The results are shown in FIG. FIG. 3 shows the results of following this decomposition process by reducing the total organic carbon (TOC) in the solution. Decomposition of pentachlorophenol into carbon dioxide and inorganic chlorine, which was not revealed in the ultraviolet-visible absorption spectrum, became apparent.
【0011】[発明の効果]以上説明した通り、本発明
によればチタニアを球状多孔質体化し、これを充填した
モジュールに水を下方から通水し流動層を形成させるこ
とにより、水中に含まれる汚染物質を微粉末光触媒と同
等の性能で分解除去できる。しかもこのモジュールは耐
摩耗性に優れたチタニア球状多孔質体を用いているため
長期安定して水中汚染物質を流水系で連続的に分解で
き、微粉末光触媒では実用化できなかった水系環境浄化
システムを実現するものである。[Effects of the Invention] As described above, according to the present invention, titania is converted into a spherical porous body, and water is passed through a module filled with the titania from below to form a fluidized bed, thereby containing the titania in water. Pollutants can be decomposed and removed with the same performance as the fine powder photocatalyst. Moreover, this module uses a titania spherical porous material with excellent wear resistance, so it can continuously decompose underwater pollutants continuously in a flowing water system for a long period of time, and an aqueous environmental purification system that could not be used with a fine powder photocatalyst Is realized.
【図1】 チタニア球状多孔質体流動層によるメチレン
ブルーの脱色を紫外−可視吸収スペクトルで追跡した結
果である。FIG. 1 shows the results of purifying the decolorization of methylene blue by a titania spherical porous fluidized bed with an ultraviolet-visible absorption spectrum.
【図2】 チタニア球状多孔質体流動層によるペンタク
ロロフェノールNa塩の分解を紫外−可視吸収スペクト
ルで追跡した結果である。FIG. 2 shows the results of tracking the degradation of pentachlorophenol Na salt by a titania spherical porous fluidized bed with an ultraviolet-visible absorption spectrum.
【図3】 チタニア球状多孔質体流動層によるペンタク
ロロフェノールNa塩の分解をTOCの減少で追跡した
結果である。FIG. 3 shows the results of tracking the degradation of pentachlorophenol Na salt by the fluidized bed of titania spherical porous material by reducing the TOC.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D037 AA11 AB05 AB11 AB12 AB13 AB14 AB16 BA18 BB04 CA12 4D050 AA12 AB15 AB17 AB18 AB19 BB01 BC06 BC09 BD02 4G069 AA02 AA08 BA04A BA04B BA22C BA48A BC50C BE06C BE10C CA05 DA05 EA04X EA04Y EB12X EB12Y EB18X EB18Y EC02X EC02Y EC22Y ED10 FA01 FB13 FB30 FB39 FC02 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4D037 AA11 AB05 AB11 AB12 AB13 AB14 AB16 BA18 BB04 CA12 4D050 AA12 AB15 AB17 AB18 AB19 BB01 BC06 BC09 BD02 4G069 AA02 AA08 BA04A BA04B BA22C BA48A BC50C BE06C BE10C04EBX EB EA04 EB05 EB18Y EC02X EC02Y EC22Y ED10 FA01 FB13 FB30 FB39 FC02
Claims (4)
填した後、浄化しようとする水を下方から通水し流動層
化することを特徴とする水系環境浄化モジュール。1. A water-based environmental purification module characterized in that titania is made into a spherical porous body, and after filling the same, water to be purified is passed from below to form a fluidized bed.
耐摩耗性に優れ直径30〜1000μmで空隙率が5〜
80%、比表面積が5〜100m2/gであることを特
徴とする請求項1に記載の水系環境浄化モジュール。2. The titania spherical porous body to be fluidized is excellent in abrasion resistance and has a diameter of 30 to 1000 μm and a porosity of 5 to 5.
80%, aqueous environment purification module of claim 1, specific surface area, characterized in that a 5 to 100 m 2 / g.
コキシドとβ−ジケトンを原料として得られた無機高分
子を有機高分子多孔質体に含浸した後、酸化分解して合
成することを特徴とする水系環境浄化ジュールの製造
方。3. An aqueous environmental purification joule characterized in that an organic polymer porous body is impregnated with a titanium alkoxide or an inorganic polymer obtained from a titanium alkoxide and β-diketone as raw materials and then oxidatively decomposed and synthesized. How to manufacture.
コキシドとβ−ジケトンを原料として得られた無機高分
子を含浸する有機高分子多孔質体が、有機溶媒に溶けな
い架橋ポリマーからなり、架橋した網目による0.05
〜10μm程度のミクロゲル間に0.01〜10μm程
度のマクロポアが形成されていることを特徴とする請求
項3に記載の水系環境浄化モジュールの製造方法。4. An organic polymer porous body impregnated with an inorganic polymer obtained by using titanium alkoxide or a titanium alkoxide and β-diketone as raw materials is made of a crosslinked polymer insoluble in an organic solvent, and is formed of a crosslinked network. 05
The method for producing an aqueous environmental purification module according to claim 3, wherein macropores of about 0.01 to 10 m are formed between microgels of about 10 to 10 m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001039219A JP2002205064A (en) | 2001-01-10 | 2001-01-10 | Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001039219A JP2002205064A (en) | 2001-01-10 | 2001-01-10 | Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002205064A true JP2002205064A (en) | 2002-07-23 |
Family
ID=18902059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001039219A Pending JP2002205064A (en) | 2001-01-10 | 2001-01-10 | Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002205064A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005218956A (en) * | 2004-02-05 | 2005-08-18 | Japan Organo Co Ltd | Photocatalyst-containing porous granular body and manufacturing method therefor |
JP2011016049A (en) * | 2009-07-07 | 2011-01-27 | Art Kagaku:Kk | Photocatalyst fluidized layer type water purification module, highly efficient water purification system, and water purification method using the system |
KR101121567B1 (en) | 2009-05-12 | 2012-03-06 | 서울대학교산학협력단 | Novel Organic/Inorganic Hybrid Composites Having Adsorptivity, Photocatalytic Activity, and Self-Regenerability and Process for Preparing Thereof |
JP6082895B1 (en) * | 2016-01-15 | 2017-02-22 | 株式会社光触媒研究所 | Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same |
-
2001
- 2001-01-10 JP JP2001039219A patent/JP2002205064A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005218956A (en) * | 2004-02-05 | 2005-08-18 | Japan Organo Co Ltd | Photocatalyst-containing porous granular body and manufacturing method therefor |
KR101121567B1 (en) | 2009-05-12 | 2012-03-06 | 서울대학교산학협력단 | Novel Organic/Inorganic Hybrid Composites Having Adsorptivity, Photocatalytic Activity, and Self-Regenerability and Process for Preparing Thereof |
JP2011016049A (en) * | 2009-07-07 | 2011-01-27 | Art Kagaku:Kk | Photocatalyst fluidized layer type water purification module, highly efficient water purification system, and water purification method using the system |
JP6082895B1 (en) * | 2016-01-15 | 2017-02-22 | 株式会社光触媒研究所 | Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same |
WO2017122823A1 (en) * | 2016-01-15 | 2017-07-20 | 株式会社光触媒研究所 | Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device |
CN108698020A (en) * | 2016-01-15 | 2018-10-23 | 株式会社光触媒研究所 | Solid photocatalysts material, its manufacturing method and the processing unit formed by the solids being only made of the titanium dioxide with photo-catalysis function |
CN108698020B (en) * | 2016-01-15 | 2020-04-03 | 株式会社光触媒研究所 | Solid photocatalytic material comprising solid matter composed only of titanium dioxide having photocatalytic function, method for producing same, and processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6878191B2 (en) | Photocatalytic composition | |
CN1300262C (en) | Application of super hydrophilicity and/or super lipophilicity nano pore material | |
US20130153483A1 (en) | Photocatalytic composite material | |
WO1999033566A1 (en) | Photocatalyst powder for environmental purification, polymer composition containing the powder and molded article thereof, and processes for producing these | |
JP2600103B2 (en) | Photocatalytic filter and method for producing the same | |
JP2001179109A (en) | Photocatalytic granule and method of producing the same | |
KR20140085870A (en) | Graphene composite for water treatment | |
Zendehzaban et al. | Preparation of floatable TiO2/poly (vinyl alcohol)‐alginate composite for the photodegradation of ammonia wastewater | |
JPH11290692A (en) | Photocatalyst, its manufacture, and photocatalyst-containing molding and its manufacture | |
CN1210101C (en) | Nano titanium dioxide porous microsphere and its production method | |
Mudassir et al. | Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO 2 macrobeads for efficient photodegradation of organic dyes and microbes | |
JP2945926B2 (en) | Photocatalyst particles and method for producing the same | |
JP3484470B2 (en) | Film material with photocatalytic function | |
JPH08266897A (en) | Fixed photocatalyst and its production | |
JP2002205064A (en) | Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same | |
Gadore et al. | Emerging applications of waste fly ash for remediation of environmental contaminants: a high-value and sustainable approach towards utilization of waste materials | |
JPH08208211A (en) | Activated carbon | |
JPH105598A (en) | Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them | |
KR102140116B1 (en) | Fluidized membrane reactor for water purification possessing ability of decomposing organics | |
JP5604614B2 (en) | Photocatalyst fluidized bed type water purification module and highly efficient water purification system | |
JPH10180118A (en) | Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance | |
JP4848500B2 (en) | Porous photocatalyst | |
JP2001321677A (en) | Titanium oxide/carbon composite particle and its manufacturing method | |
WO2001017680A1 (en) | Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof | |
JP2001096154A (en) | Vanadium oxide/titania hybrid photocatalyst and its manufacturing method |