[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002202182A - Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same - Google Patents

Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same

Info

Publication number
JP2002202182A
JP2002202182A JP2000401205A JP2000401205A JP2002202182A JP 2002202182 A JP2002202182 A JP 2002202182A JP 2000401205 A JP2000401205 A JP 2000401205A JP 2000401205 A JP2000401205 A JP 2000401205A JP 2002202182 A JP2002202182 A JP 2002202182A
Authority
JP
Japan
Prior art keywords
vehicle
wheel
strain
wheel load
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401205A
Other languages
Japanese (ja)
Inventor
Akira Matsumoto
陽 松本
Yasuhiro Sato
佐藤安弘
Masuhisa Tanimoto
益久 谷本
Yasushi Riku
康思 陸
Eiji Miyauchi
栄二 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Traffic Safety and Environment Laboratory
Original Assignee
Sumitomo Metal Industries Ltd
National Traffic Safety and Environment Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, National Traffic Safety and Environment Laboratory filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000401205A priority Critical patent/JP2002202182A/en
Publication of JP2002202182A publication Critical patent/JP2002202182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wheel weight measuring apparatus capable of measuring the wheel weights of all of the wheel shafts of one railroad vehicle at the same time by measurement on a ground side to detect fluctuations in the wheel weights of the vehicle. SOLUTION: Plural sets of strain measuring sensors each comprising a pair of strain gauges corresponding to all of the wheels of one vehicle are arranged on left and right rails, so as to leave the interval corresponding to the shaft distance between the front and rear wheel shafts of a truck and the distance between front and rear trucks, and the wheel weights of all of the wheels of one vehicle are measured at the same time. The measured data are processed in a measured data processing part comprising a dynamic strain gauge, an A/D converter, a computer and a printer to detect the wheel weight of the vehicle and the fluctuations thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上側測定により
1両の鉄道車両の全輪軸の輪重を同時に測定し、車両の
輪重及びその変動を検知し得る輪重測定装置及びその測
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wheel load measuring apparatus and a measuring method capable of simultaneously measuring the wheel loads of all the axles of one railway vehicle by ground-side measurement, and detecting the wheel loads and the fluctuations thereof. About.

【0002】[0002]

【従来の技術】現在、鉄道車両の輪重を測定するのに最
も広く用いられているのは、剪断ひずみによる方法であ
る。この方法は、レールにひずみ測定用センサを貼りつ
けて、車輪通過時のレールの動的剪断ひずみを測定する
ことによって、輪重の大きさを知るという原理に基づい
ている(鉄道総合技術研究所編「在来鉄道運転速度向上
試験マニュアル・解説」を参照)。
2. Description of the Related Art At present, the most widely used method for measuring wheel loads of railway vehicles is a method based on shear strain. This method is based on the principle that the size of the wheel load is known by attaching a strain measurement sensor to the rail and measuring the dynamic shear strain of the rail when the wheel passes. (Refer to the manual "Explanation of Manuals for Improving the Speed of Conventional Railroads")

【0003】輪重測定は、レールウェブ表裏の中立軸上
の2ヵ所に45°傾斜して貼りつけた直交型ひずみ測定
用センサ4枚(合計8センサ分)をブリッジ結線して車
輪通過時のひずみ波形を記録すると、突起状の波形が記
録される。この突起の高さが輪重に比例するので、荷重
較正(ロードセルを取り付けたジャッキ等によってレー
ルに荷重をかける)により輪重とひずみの関係を求めて
おけば、車輪通過時の輪重値が求められる。
[0003] Wheel weight measurement is performed by bridge-connecting four orthogonal type strain measurement sensors (for a total of eight sensors) that are attached at two positions on the neutral shaft on the front and back of the rail web at an angle of 45 ° and passing through the wheels. When a distortion waveform is recorded, a protruding waveform is recorded. Since the height of this projection is proportional to the wheel load, if the relationship between wheel load and strain is determined by load calibration (loading the rail with a jack or the like with a load cell attached), the wheel load value when passing through the wheel will be Desired.

【0004】剪断ひずみによる測定の目的は、隣設車輪
の影響を受けずに輪重が測定できるように開発されたも
のである。また、いわゆる4ゲージ法であるため、ノイ
ズ電流が打ち消し合うように作用し、きれいな波形が得
られる。
The purpose of the measurement based on the shear strain has been developed so that the wheel load can be measured without being affected by the adjacent wheel. In addition, since the so-called 4-gauge method is used, noise currents act so as to cancel each other, and a clear waveform can be obtained.

【0005】しかしながら、前記従来の方法では、ひず
み測定用センサは枕木と枕木の間のレールに貼りつけら
れ、1組のセンサ間隔は200mm程度であり、車輪が
そこを通過したときの輪重のピーク値しか得られない。
すなわち、ある瞬間の値しかつかむことができず、この
瞬間値は必ずしも最小値あるいは最大値とはいえなかっ
た。また、枕木が存在する部分では、その影響が避けら
れないため、輪重は測定できないとされていた。したが
って、ある区間を走行する列車の輪重の特異値(最大
値、最小値)や輪重の変動を把握することは原理的に困
難であった。
However, in the above-mentioned conventional method, the strain measuring sensor is attached to a rail between the sleepers, and the distance between a pair of sensors is about 200 mm. Only peak values are obtained.
That is, only the value at a certain moment can be grasped, and this momentary value is not always the minimum value or the maximum value. In addition, it has been considered that the wheel load cannot be measured in the portion where the sleeper exists because the influence cannot be avoided. Therefore, it has been difficult in principle to grasp the singular values (maximum value, minimum value) and the fluctuation of the wheel load of the train running in a certain section.

【0006】また、従来の剪断ひずみによる地上側測定
方法では、車輪がそこを通過したときの輪重のピーク値
しか得ることができず、また枕木が存在する部分では、
その影響が避けられないため、輪重は測定できなかっ
た。一方、車上側測定では、特定列車の特定台車でしか
測定値が得られない欠点があった。
[0006] Further, in the conventional ground-side measurement method using shear strain, only the peak value of the wheel load when the wheel passes therethrough can be obtained.
Because the influence was unavoidable, the wheel load could not be measured. On the other hand, the on-vehicle measurement has a drawback that a measured value can be obtained only with a specific bogie of a specific train.

【0007】前記のごとく、従来の輪重測定方法には多
くの問題がある。そこで、それらの問題点を排除するた
め、特開平10−185666号公報には、枕木が存在
する部分を含めて車輪の1周分の長さにわたって輪重の
測定が可能で、車輪の1周分の長さの輪重の連続的な変
動及び特異値(最大値、最小値)の把握が可能な地上側
測定による鉄道車両の1輪軸ごとの輪重を測定する方法
及びその装置が提案されている。
As described above, the conventional wheel load measuring method has many problems. In order to eliminate these problems, Japanese Patent Laid-Open Publication No. Hei 10-185666 discloses that the wheel load can be measured over the entire length of one wheel including the part where the sleeper is present, A method and an apparatus for measuring a wheel load for each wheelset of a railway vehicle by ground-side measurement capable of grasping a continuous variation of a wheel load of a minute length and a singular value (maximum value, minimum value) have been proposed. ing.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の問題点
を改善したところの前記特開平10−185666号公
報に記載された鉄道車両の輪重の測定方法及び装置は、
車輪の1周分以上の長さにわたって輪重の測定をすると
いう技術思想に基づいており、1輪軸ごとの輪重のみし
か測定できない。従って、この測定装置により、1車両
分の全ての輪軸の輪重を測定するとすれば、測定装置を
設置した位置に各輪軸を順次動かして測定する必要があ
り、測定に多くの時間と労力を要し、能率良く測定する
ことはできない。また、各輪軸が個々に測定されるた
め、1車両の全ての車輪の輪重を測定しても、その車両
の輪重の変動を短時間に、かつ正確に知ることはできな
い。
However, the method and apparatus for measuring the wheel load of a railway vehicle described in the above-mentioned Japanese Patent Application Laid-Open No. 10-185666, which improves the conventional problems,
It is based on the technical idea of measuring the wheel load over one or more turns of the wheel, and can measure only the wheel load for each wheel axle. Therefore, if the wheel load of all the wheel sets for one vehicle is measured by this measuring device, it is necessary to sequentially move each wheel set to the position where the measuring device is installed, and the measurement requires a lot of time and labor. In short, it cannot be measured efficiently. Further, since each wheel set is individually measured, even if the wheel weights of all the wheels of one vehicle are measured, the fluctuation of the wheel weights of the vehicle cannot be accurately known in a short time.

【0009】本発明は、前記特開平10−185666
号公報に記載された鉄道車両の輪重の測定方法及び装置
にみられる問題点を排除し、1車両の全輪軸の輪重を同
時に測定することにより、1車両の輪重及びその変動を
短時間に正確に検知し得る鉄道車両の輪重測定装置及び
その測定方法を提供するものである。
The present invention relates to the above-mentioned Japanese Patent Application Laid-Open No. 10-185666.
The problem of the method and apparatus for measuring the wheel load of a railway vehicle described in Japanese Patent Application Publication No. H10-209, was eliminated, and the wheel load of one vehicle and its variation were reduced by simultaneously measuring the wheel loads of all the axles of one vehicle. It is an object of the present invention to provide a railway vehicle wheel load measuring device and a measuring method thereof that can be accurately detected at a time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本出願の鉄道車両の輪重測定装置は、ひずみ測定用
センサの1車両の全車輪に対応する複数組を、台車の前
後輪軸の軸距と前後台車間距離に相当する間隔をもって
左右のレールに配置し、1車両の全車輪の輪重を同時に
測定し得るように構成する。
In order to achieve the above object, the wheel load measuring device for a railway vehicle according to the present invention comprises a plurality of sets of strain measuring sensors corresponding to all wheels of one vehicle, which are provided on a front and rear wheel axle of a bogie. It is arranged on the left and right rails with an interval corresponding to the wheelbase and the distance between the front and rear bogies, so that the wheel loads of all the wheels of one vehicle can be measured simultaneously.

【0011】また、他の鉄道車両の輪重測定装置は、一
対のひずみゲージからなるひずみ測定用センサの1車両
の片方の台車の4輪に対応する2組を台車の前後輪軸の
軸距に相当する間隔をあけて左右のレールに配置したひ
ずみ測定用センサ群及び、他方の台車に対応するひずみ
測定用センサ群として、前後台車の心皿中心間距離を変
えて前記と同じ構成の複数組のひずみ測定用センサ群を
左右のレールに配置し、車体長さの異なる複数の車両に
対応して、1車両の全車輪の輪重を同時に測定すること
により、台車及び車両の輪重及びその変動を検知するよ
うに構成する。
[0011] Further, another wheel load measuring device for a railway vehicle is configured such that two sets of strain measuring sensors, each comprising a pair of strain gauges, corresponding to the four wheels of one bogie of one vehicle are applied to the axle of the front and rear wheel axles of the bogie. A plurality of sets of the same configuration as the above-mentioned configuration, in which the center-to-center distance between the front and rear bogies is changed, as a strain-measuring sensor group arranged on the left and right rails with a corresponding interval and a strain measuring sensor group corresponding to the other bogie. By disposing the strain measurement sensor group on the left and right rails and simultaneously measuring the wheel weights of all wheels of one vehicle corresponding to a plurality of vehicles having different body lengths, the wheel loads of the bogie and the vehicle and the It is configured to detect the fluctuation.

【0012】上記輪重測定装置による鉄道車両の輪重測
定方法は、上記輪重測定装置を設置したレール上におい
て、1車両の全車輪を、それぞれひずみ測定用センサの
測定領域内に対向して車両を停止し、1車両の全車輪の
輪重を同時に測定し、車両の輪重及びその変動を検知す
る。
[0012] The method for measuring the wheel load of a railway vehicle using the wheel load measuring device is such that all the wheels of one vehicle face each other within a measurement area of a strain measuring sensor on a rail on which the wheel load measuring device is installed. The vehicle is stopped, and the wheel weights of all the wheels of one vehicle are simultaneously measured to detect the wheel weight of the vehicle and its fluctuation.

【0013】また、上記輪重測定装置による他の鉄道車
両の輪重測定方法は、1車両の全輪軸の車輪が、それぞ
れひずみ測定用センサに対向した状態で、各ひずみ測定
用センサの測定領域内を、車両が走行する間に、1車両
の全車輪の輪重の同時測定を連続的に複数回繰り返し行
い全車両の輪重及びその変動を検知する。
[0013] In addition, another method for measuring the wheel weight of a railway vehicle by the above-mentioned wheel weight measuring device is a method in which the wheels of all the axles of one vehicle face the respective strain measuring sensors, and the measuring area of each strain measuring sensor is measured. While the vehicle is traveling, the simultaneous measurement of the wheel weights of all the wheels of one vehicle is continuously repeated a plurality of times to detect the wheel weights of all the vehicles and their fluctuations.

【0014】更に、上記輪重測定装置による第3の鉄道
車両の輪重測定方法は、走行する車両の進行方向第1軸
が上記輪重測定装置の最初の第1番目のひずみ測定用セ
ンサに差しかかったとき輪重測定を開始し、引続き車両
が走行する間に、第2番目、第3番目、第4番目のひず
み測定用センサで順次輪重測定を繰り返し行い、車両の
進行方向第2軸、第3軸、第4軸がそれぞれ上記輪重測
定装置の第1番目のひずみ測定用センサに差しかかった
とき、前記第1軸と同様に輪重測定を順次開始し、引続
き車両が走行する間に、第2番目、第3番目、第4番目
のひずみ測定用センサで順次輪重測定を繰り返し行い、
1車両の前後台車の輪軸に対応して設置した4か所のひ
ずみ測定用センサで得た測定データの平均値で各車輪の
輪重を求めることにより、車両の輪重を検知する。
Further, in the third method for measuring the wheel load of a railway vehicle by the wheel load measuring device, the first axis of the traveling vehicle in the traveling direction is the first first strain measuring sensor of the wheel load measuring device. When the vehicle is approaching, the measurement of the wheel load is started, and while the vehicle continues to run, the second, third, and fourth strain measurement sensors sequentially repeat the measurement of the wheel load to determine the second direction in the traveling direction of the vehicle. When the axes, the third axis and the fourth axis respectively reach the first strain measuring sensor of the above-mentioned wheel load measuring device, the wheel load measurement is sequentially started in the same manner as the first axis, and the vehicle continues to run. The second, third, and fourth strain measurement sensors sequentially repeat the wheel load measurement,
The wheel load of each vehicle is detected by calculating the wheel load of each wheel using the average value of the measurement data obtained by the four strain measurement sensors installed corresponding to the wheel sets of the front and rear bogies of one vehicle.

【0015】[0015]

【発明の実施の形態】一対のひずみゲージからなるひず
み測定用センサの1車両の全車輪に対応する複数組を、
台車の前後輪軸の軸距と前後台車間距離に相当する間隔
をもって左右のレールに配置した輪重測定装置にて、1
車両の全車輪の輪重を同時に測定し得るように構成する
ことにより、この測定領域内に置かれた車両は、全車輪
とも輪重に比例した一定の剪断ひずみが同時に測定で
き、ここで輪重に比例したひずみとして検出することに
より、車両の輪重及びその変動を検知することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A plurality of sets of strain measuring sensors each consisting of a pair of strain gauges corresponding to all wheels of one vehicle are described.
With a wheel load measuring device arranged on the left and right rails at an interval corresponding to the axle distance of the front and rear wheel axles of the bogie and the distance between the front and rear bogies, 1
By configuring so that the wheel loads of all the wheels of the vehicle can be measured simultaneously, the vehicle placed in this measurement area can simultaneously measure a constant shear strain proportional to the wheel load for all the wheels, where the wheel By detecting the strain in proportion to the load, the wheel load of the vehicle and its fluctuation can be detected.

【0016】また、上記輪重測定装置を設置したレール
上において、1車両の全輪軸の車輪が、それぞれひずみ
測定用センサに対向した状態で、各ひずみ測定用センサ
の測定領域内を、車両が走行する間に、1車両の全車輪
の輪重の同時測定を連続的に複数回繰り返し行い、全車
両の輪重及びその変動を検知することができる。
Further, on a rail on which the above-mentioned wheel load measuring device is installed, the vehicle is driven within the measurement area of each strain measuring sensor in a state where the wheels of all the axles of the vehicle face the strain measuring sensors. During traveling, the simultaneous measurement of the wheel weights of all the wheels of one vehicle is continuously repeated a plurality of times, so that the wheel weights of all the vehicles and the fluctuation thereof can be detected.

【0017】更に、上記輪重測定装置を設置したレール
上において、走行する車両の進行方向第1軸が上記輪重
測定装置の最初の第1番目のひずみ測定用センサ(図3
のひずみ測定用センサ群1、1′)に差しかかったとき
輪重測定を開始し、引続き車両が走行する間に、第2番
目、第3番目、第4番目のひずみ測定用センサ(図3の
ひずみ測定用センサ群2、2′と3、3′と4、4′)
で順次輪重測定を繰り返し行い、車両の進行方向第2
軸、第3軸、第4軸がそれぞれ上記輪重測定装置の第1
番目のひずみ測定用センサ(図3のひずみ測定用センサ
群1、1′)に差しかかったとき、前記第1軸と同様に
輪重測定を順次開始し、引続き車両が走行する間に、第
2番目、第3番目、第4番目のひずみ測定用センサ(図
3のひずみ測定用センサ群2、2′と3、3′と4、
4′)で順次輪重測定を繰り返し行い、1車両の前後台
車の輪軸に対応して設置した4か所のひずみ測定用セン
サで得た測定データの平均値で各車輪の輪重を求めるこ
とにより、車両の輪重を検知する。ここで得た測定デー
タの平均値で各車輪の輪重を求めることにより、車両の
輪重変動を検知する。
Further, on the rail on which the wheel load measuring device is installed, the first axis in the traveling direction of the traveling vehicle is the first first strain measuring sensor (FIG. 3) of the wheel load measuring device.
When the vehicle approaches the strain measurement sensor group 1, 1 '), the second, third, and fourth strain measurement sensors (FIG. 3) are started while the vehicle continues to run. Sensor groups 2, 2 'and 3, 3' and 4, 4 ')
Repeat the wheel load measurement sequentially in the second direction of the vehicle
Axis, the third axis, and the fourth axis are respectively the first axis of the wheel load measuring device.
When approaching the second strain measurement sensor (strain measurement sensor group 1, 1 'in FIG. 3), wheel load measurement is sequentially started in the same manner as the first axis, and while the vehicle continues traveling, the second The second, third, and fourth strain measuring sensors (the strain measuring sensor groups 2, 2 'and 3, 3' and 4, in FIG. 3)
In 4 '), the wheel load measurement is repeated in order, and the wheel load of each wheel is obtained from the average value of the measurement data obtained by the four strain measuring sensors installed corresponding to the wheel sets of the front and rear bogies of one vehicle. Thereby detecting the wheel weight of the vehicle. The wheel load of each vehicle is detected by calculating the wheel load of each wheel using the average value of the measurement data obtained here.

【0018】本発明の輪重測定装置の構成の一例を図に
より説明する。ひずみ測定用センサは一対のひずみゲー
ジを間隔をあけてレールに対設してなる。図1に示すよ
うに、レール5のレールウェブの一方の面の中立軸11
上の一定間隔をあけた点7と8に、ひずみ測定用センサ
の2組AとB、CとDを配設し、他方の面の同じ位置の
点9と10に、ひずみ測定用センサの2組EとF、Gと
Hを配設する。そして、図2に示すように、各ひずみ測
定用センサAとB、CとD、EとF、GとHをブリッジ
接合してセンサ13を構成する。
An example of the configuration of the wheel load measuring device of the present invention will be described with reference to the drawings. The strain measuring sensor has a pair of strain gauges mounted on a rail at intervals. As shown in FIG. 1, the neutral shaft 11 on one side of the rail web of the rail 5
The two sets A and B, C and D of the strain measuring sensors are arranged at points 7 and 8 at a fixed interval above, and the points 9 and 10 at the same position on the other surface are provided with the strain measuring sensors. Two sets E and F, G and H are provided. Then, as shown in FIG. 2, the sensors 13 are configured by bridge-joining the respective sensors A and B for strain measurement, C and D, E and F, and G and H.

【0019】上記ひずみ測定用センサ群1により1車輪
の剪断ひずみを測定する。従って、1輪軸の左右車輪を
同時に測定するため、図3に示すように、レール5に相
対する他方のレール6に、上記ひずみ測定用センサ群1
と同じ構成のひずみ測定用センサ群1′を対設する。そ
して、ひずみ測定用センサ群1と1′に対し、台車の軸
距に相当する間隔Sをあけて、上記と同じ構成のひずみ
測定用センサ群2と2′を設置する。更に、この1台車
の前後輪軸の4つの車輪に対応して左右のレールに配置
した上記ひずみ測定用センサ群1と1′及び2と2′に
対し、同じ構成のひずみ測定用センサ群3と3′及び4
と4′を1車両の前後台車の心皿中心間の間隔に相当す
る距離Lをもって左右のレールに設置する。
The shear strain of one wheel is measured by the strain measuring sensor group 1. Therefore, in order to measure the left and right wheels of one wheel axle simultaneously, as shown in FIG.
A strain measurement sensor group 1 'having the same configuration as that described above is provided. Then, the strain measuring sensor groups 2 and 2 'having the same configuration as described above are installed at intervals S corresponding to the axle distance of the bogie with respect to the strain measuring sensor groups 1 and 1'. Further, the strain measurement sensor groups 1 and 1 'and 2 and 2' which are arranged on the left and right rails corresponding to the four wheels of the front and rear wheel axles of the one truck, respectively, 3 'and 4
And 4 'are installed on the left and right rails with a distance L corresponding to the distance between the centers of the center plates of the front and rear bogies of one vehicle.

【0020】本願の輪重測定装置の測定システムを、図
4の輪重測定装置の1台車に対応する部分と、図5の輪
重測定装置の全体を示す図面に基づいて説明する。
The measuring system of the wheel load measuring device of the present invention will be described with reference to the portion corresponding to one truck of the wheel load measuring device of FIG. 4 and the drawing showing the whole wheel load measuring device of FIG.

【0021】図4において、各ひずみ測定用センサ群1
と1′、2と2′ごとに構成されたブリッジ回路は、そ
れぞれ接続箱14を経て、図5に示すようにひずみアン
プ15に接続する。
In FIG. 4, each strain measuring sensor group 1
, 1 ', 2 and 2' are connected to a strain amplifier 15 via a connection box 14 as shown in FIG.

【0022】図5は輪重測定装置の全体の測定システム
を示す説明図である。図4に示す1台車に対応するひず
み測定用センサ群1と1′及び2と2′と、同様に構成
したひずみ測定用センサ群3と3′及び4と4′を、車
両20の前後台車21、22に対応するように左右のレ
ールに配置する。各ひずみ測定用センサ群ごとに構成さ
れたブリッジ回路は、それぞれ接続箱14を経てひずみ
アンプ15に接続する。このひずみアンプ15から出力
されるデータはA/D変換器16でA/D変換と制御が
行われ、波形処理用デジタルデータが得られる。そし
て、このデジタルデータを用いて、波形処理をコンピュ
ーター17で行い、測定結果はプリンター18から出力
するように構成する。19は電源である。
FIG. 5 is an explanatory diagram showing the entire measuring system of the wheel load measuring device. The strain measuring sensor groups 1 and 1 'and 2 and 2' corresponding to one bogie shown in FIG. 4, and similarly configured strain measuring sensor groups 3 and 3 'and 4 and 4' are It is arranged on the left and right rails so as to correspond to 21 and 22. The bridge circuits configured for each strain measurement sensor group are connected to the strain amplifier 15 via the connection box 14, respectively. The data output from the distortion amplifier 15 is subjected to A / D conversion and control by an A / D converter 16 to obtain digital data for waveform processing. Then, using the digital data, waveform processing is performed by the computer 17, and the measurement result is output from the printer 18. 19 is a power supply.

【0023】上記ひずみ測定用センサの一対のひずみゲ
ージ間のゲージ間隔は、300〜1000mmの範囲内
から選ぶ。その理由は、300mm未満では測定したひ
ずみ波形が鋭角に近い波形や鋭角波形となり真値が読み
にくいから避けることが望ましい。また、1000mm
を超えて間隔を拡げても測定値の正確さには変わりな
く、1000mmを超えて間隔を拡げると同一台車の隣
接輪軸による影響を及ぼす恐れが発生する。又、枕木の
間隔から考えても現実性がない。
The gauge interval between the pair of strain gauges of the strain measuring sensor is selected from the range of 300 to 1000 mm. The reason is that if the distance is less than 300 mm, the measured distortion waveform becomes a waveform close to an acute angle or an acute angle waveform, so that the true value is difficult to read, so that it is desirable to avoid it. Also, 1000mm
Even if the interval is increased beyond the range, the accuracy of the measured value does not change, and if the interval is increased beyond 1000 mm, there is a possibility that an adjacent wheel set of the same bogie may have an influence. Also, there is no realism in terms of sleeper spacing.

【0024】上記鉄道車両の輪重測定装置における、各
ひずみ測定用センサの設置は、JRの新幹線車両や在来
線車両あるいは各私鉄の車両において、それぞれ台車の
軸距(おおよそ1000〜3000mmの範囲にある)
及び車両の前後台車間距離(心皿中心間の距離5000
〜20000mmの範囲にある)が異なるので、使用者
側の車両寸法に合わせて設置する。なお、ひずみ測定用
センサの設置位置と被測定車両の台車の軸距や車両の前
後台車間距離が多少食い違っていても、その食い違いが
距離的に僅かな量である場合には、車両を少し移動させ
ることにより測定することができる。この場合の移動量
は、ひずみ測定用センサの測定領域内にあることが必要
で、例えばセンサ幅が300mmでは幅中心から左右へ
50mmの範囲、センサ幅が500mmでは幅中心から
左右へ200mmの範囲の移動が可能である。
In the above-mentioned wheel load measuring device for railway vehicles, the installation of the sensors for measuring the strain is carried out in accordance with the axle distance of the bogie (in the range of approximately 1000 to 3000 mm) in each of JR Shinkansen vehicles, conventional line vehicles and private railway vehicles. It is in)
And the distance between the front and rear bogies of the vehicle (the distance between the center of the center plate 5000
(In the range of up to 20,000 mm), so that it is installed in accordance with the vehicle size on the user side. Even if the installation position of the strain measurement sensor and the axle distance of the bogie of the vehicle to be measured and the distance between the front and rear bogies of the vehicle are slightly different from each other, if the difference is small in terms of distance, the vehicle may be slightly moved. It can be measured by moving. The movement amount in this case needs to be within the measurement area of the strain measurement sensor. For example, when the sensor width is 300 mm, the range is 50 mm from the center to the left and right, and when the sensor width is 500 mm, the range is 200 mm from the center to the left and right. Can be moved.

【0025】なお、車体長さが異なる車両の輪重測定を
可能にした輪重測定装置をレールに設置する場合、例え
ば車体長さが異なる2系統の車両に対処し得る輪重測定
装置を設置する場合には、図6、図7に分解して分かり
やすく示すように、片方の台車に対応したひずみ測定用
センサ群Pを基準として、前後台車の心皿中心間距離の
異なる他方の台車に対応した2組のひずみ測定用センサ
群を設置する。すなわち、図6は長い心皿中心間距離L
1をもってひずみ測定用センサ群Q1を設置した場合、
図7はL1よりは短い心皿中心間距離L2をもってひず
み測定用センサ群Q2を設置した場合である。
When a wheel load measuring device capable of measuring wheel loads of vehicles having different vehicle body lengths is installed on a rail, for example, a wheel load measuring device capable of coping with two systems of vehicles having different vehicle body lengths is installed. In such a case, as shown in FIGS. 6 and 7 in a disassembled manner, the other carts having different center-to-center distances between the center plates of the front and rear carts with reference to the strain measurement sensor group P corresponding to the one cart. Two corresponding sets of strain measurement sensors are installed. That is, FIG.
When the strain measurement sensor group Q1 is installed with
FIG. 7 shows a case in which the strain measurement sensor group Q2 is installed with a center distance L2 between the centers of the heart dishes shorter than L1.

【0026】ひずみ測定用センサによる剪断ひずみ測定
の波形は、車輪がひずみ測定用センサの測定領域内に停
止している場合(請求項3に記載した方法)には、図8
に示すように、最大値となった波形は測定点で停止した
状態となる。また、車輪がひずみ測定用センサの幅方向
に5〜10km/hの微速で移動しつつ測定した場合
(請求項4、5に記載した方法)には、図9に示す波形
が得られる。すなわち、点Aと点Bとの長さXをセンサ
幅とした場合、点A側の約100mmの範囲はひずみ量
が増えつつあり、逆に点B側の約100mmの範囲はひ
ずみ量が減りつつある区間であるから、ひずみ測定は中
央部分の約(X−200)mmの範囲を測定領域とし
て、Δtのサンプリングタイムで繰り返し測定が行われ
る。
The waveform of the shear strain measurement by the strain measurement sensor is shown in FIG. 8 when the wheel is stopped within the measurement area of the strain measurement sensor (the method described in claim 3).
As shown in (2), the waveform having the maximum value is stopped at the measurement point. When the measurement is performed while the wheel is moving at a very low speed of 5 to 10 km / h in the width direction of the strain measuring sensor (the method described in claims 4 and 5), the waveform shown in FIG. 9 is obtained. That is, when the length X between the points A and B is the sensor width, the strain amount is increasing in the range of about 100 mm on the point A side, and the strain amount is decreasing in the range of about 100 mm on the point B side. Since this is a section where the strain is being measured, the strain measurement is repeatedly performed at a sampling time of Δt with a range of about (X-200) mm in the central portion as a measurement area.

【0027】[0027]

【実施例】実施例1 本発明の実施による輪重測定装置を、非営業線路(軌間
1067mm、枕木ピッチ610mm)に設置して行っ
た実施例について説明する。
EXAMPLE 1 An example in which a wheel load measuring device according to the present invention is installed on a non-business line (gauge 1067 mm, sleeper pitch 610 mm) will be described.

【0028】図1に示す、一方のレール5において、ひ
ずみ測定用センサを張り付けるレールウェブ中立軸1
1、12上の点7と8、9と10の間の間隔を500m
mとして隣設する枕木間に設け、かつ対向する他方のレ
ール6に上記と同じ構成のひずみ測定用センサを対設し
て図3及び図4に示す、ひずみ測定用センサ群1、1′
を形成した。そして、軸距に相当する間隔S:2500
mmをあけて、上記と同じ構成のひずみ測定用センサ群
2、2′を設け、このひずみ測定用センサ群1、1′と
2、2′により1車両の一方の台車の全車輪の輪重測定
ができる配置とした。
A rail web neutral shaft 1 to which a strain measuring sensor is attached on one rail 5 shown in FIG.
500m spacing between points 7 and 8, 9 and 10 on 1, 12
m and a pair of strain measuring sensors 1 and 1 'shown in FIGS.
Was formed. Then, an interval S corresponding to the axle distance: 2500
The strain measurement sensor groups 2, 2 'having the same configuration as above are provided at intervals of mm, and the wheel loads of all the wheels of one bogie of one vehicle are provided by the strain measurement sensor groups 1, 1' and 2, 2 '. The arrangement allows measurement.

【0029】上記と同じ構成で他方の台車に対応するひ
ずみ測定用センサ群3、3′と4、4′を、車両の前後
台車の心皿中心間の間隔に相当する距離L:20mをも
って図5に示すように対設した。
The strain measurement sensor groups 3, 3 'and 4, 4' having the same configuration and corresponding to the other bogie are shown with a distance L: 20 m corresponding to the distance between the centers of the center plates of the front and rear bogies of the vehicle. As shown in FIG.

【0030】そして、試験電車を使って、各車両ごと静
止状態での輪重の測定と、微速で移動させながら連続的
に輪重を繰り返し測定した。この測定により得たデータ
は動ひずみアンプ15に入力し、ひずみアンプ15から
出力されるデータはA/D変換器16においてA/D変
換を行い、波形処理用のデータとする。引続き、このデ
ジタルデータを用いて波形処理をコンピューター17で
行なった。測定結果はプリンター18から測定データと
してプリントした。
Then, using a test train, the wheel load of each vehicle was measured in a stationary state, and the wheel load was repeatedly measured continuously while moving at a very low speed. The data obtained by this measurement is input to the dynamic strain amplifier 15, and the data output from the strain amplifier 15 is subjected to A / D conversion in the A / D converter 16 to be used as data for waveform processing. Subsequently, waveform processing was performed by the computer 17 using the digital data. The measurement results were printed from the printer 18 as measurement data.

【0031】実施例2 上記輪重測定装置による第3の鉄道車両の輪重測定方法
により電車の輪重測定を行った。その結果を、進行方向
前側より第1軸の車輪を第1位と第2位、第2軸の車輪
を第3位と第4位、第3軸の車輪を第5位と第6位、第
4軸の車輪を第7位と第8位として、輪重測定方法を図
3及び図10に基づいて説明する。
Example 2 The wheel load of a train was measured by the third method for measuring the wheel load of a railway vehicle using the above-mentioned wheel load measuring device. From the results, the wheels of the first axis are placed at the first and second positions, the wheels of the second axis are placed at the third and fourth positions, the wheels of the third axis are placed at the fifth and sixth positions, The wheel weight measurement method will be described with reference to FIG. 3 and FIG.

【0032】すなわち、上記実施例1に示す輪重測定装
置を設置した図3に示すレール上において、図の左側か
ら輪重測定装置を設置した右方向へ向けて、車両を5〜
10km/hの走行させたものとして説明する(図10
のチャートの移動方向)。車両の進行方向第1軸の第1
位と第2位の車輪が上記輪重測定装置のひずみ測定用セ
ンサ群1、1′に差しかかったとき輪重測定を開始す
る。引続きひずみ測定用センサ群2、2′と3、3′と
4、4′で順次輪重測定を繰り返し行い、車両の進行方
向第2軸、第3軸、第4軸がそれぞれ上記輪重測定装置
のひずみ測定用センサ群1、1′に差しかかったとき、
前記第1軸と同様にそれぞれ輪重測定を開始し、引続き
ひずみ測定用センサ群2、2′と3、3′と4、4′で
順次輪重測定を繰り返し行い、それぞれの輪軸の車輪に
対し4か所のひずみ測定用センサ群1、1′と2、2′
と3、3′と4、4′で得た測定データの平均値で各車
輪の輪重を求めた。
That is, on the rail shown in FIG. 3 in which the wheel load measuring device shown in the first embodiment is installed, the vehicle is moved from the left side of the figure to the right direction where the wheel load measuring device is installed, and
The description will be made assuming that the vehicle is driven at 10 km / h (FIG. 10).
Chart moving direction). The first of the first axis in the traveling direction of the vehicle
When the second and third wheels approach the strain measuring sensors 1, 1 'of the wheel load measuring device, the wheel load measurement is started. Subsequently, the wheel load measurement is sequentially repeated by the strain measurement sensor groups 2, 2 'and 3, 3' and 4, 4 ', and the second, third, and fourth axes in the traveling direction of the vehicle are respectively subjected to the wheel load measurement. When approaching the strain measurement sensor group 1, 1 'of the device,
The wheel load measurement is started in the same manner as in the first axis, and the wheel load measurement is successively repeated by the strain measurement sensor groups 2, 2 'and 3, 3' and 4, 4 '. On the other hand, four strain measurement sensor groups 1, 1 'and 2, 2'
, 3, 3 'and 4, 4', the wheel weight of each wheel was determined from the average value of the measured data.

【0033】上記測定結果を図10のグラフに示した。
図は1車両の前後台車の4つの輪軸に対する各ひずみ測
定用センサ群におけるひずみ測定結果を、各ひずみ測定
用センサ群ごと時間の経過(チャートの移動)に従って
示したものである。図中の第1断面はひずみ測定用セン
サ群1、1′、第2断面はひずみ測定用センサ群2、
2′、第3断面はひずみ測定用センサ群3、3′、第4
断面はひずみ測定用センサ群4、4′であり、A波形は
各軸の第1位、第3位、第5位、第7位の車輪に対する
測定波形を、またB波形は各軸の第2位、第4位、第6
位、第8位の車輪に対する測定波形を、それぞれ示して
いる。
The results of the above measurement are shown in the graph of FIG.
The figure shows the strain measurement results of each strain measurement sensor group with respect to the four wheel sets of the front and rear bogies of one vehicle according to the passage of time (chart movement) for each strain measurement sensor group. The first cross section in the figure is the strain measurement sensor group 1, 1 ', the second cross section is the strain measurement sensor group 2,
2 ′, third section is strain sensor group 3, 3 ′, fourth
The cross section is a group of sensors 4 and 4 'for strain measurement. The A waveform is the measurement waveform for the first, third, fifth, and seventh wheels of each axis, and the B waveform is the first waveform of each axis. 2nd, 4th, 6th
The measured waveforms for the second and eighth wheels are shown.

【0034】すなわち、車両の進行方向第1軸の第1位
と第2位の車輪がひずみ測定用センサ群1、1′に対向
したとき、図中の第1断面に示すように第1位と第2位
の車輪の剪断ひずみが測定される。引続き車両が走行し
て第2軸の第3位と第4位の車輪がひずみ測定用センサ
群1、1′に対向したとき、第1断面に示すように第3
位と第4位の車輪の剪断ひずみが測定される。このと
き、第1軸の第1位と第2位の車輪はひずみ測定用セン
サ群2、2′に対向しており、ここで図中の第2断面に
示すように第1位と第2位の車輪の剪断ひずみが測定さ
れる。更に車両が走行して第2軸の第3位と第4位の車
輪がひずみ測定用センサ群2、2′に対向したとき、第
2断面に示すように第3位と第4位の車輪の剪断ひずみ
が測定される。
That is, when the first and second wheels of the first axis in the traveling direction of the vehicle are opposed to the strain measurement sensor groups 1 and 1 ', the first and second wheels are in the first position as shown in the first section in FIG. And the shear strain of the second wheel is measured. When the vehicle continues to travel and the third and fourth wheels of the second shaft face the strain measurement sensor groups 1 and 1 ', the third
The shear strain of the fourth and fourth wheels is measured. At this time, the first and second wheels of the first shaft are opposed to the strain measurement sensor groups 2 and 2 ', where the first and second wheels are located as shown in the second section in the figure. The shear strain of the second wheel is measured. Further, when the vehicle travels and the third and fourth wheels of the second shaft face the strain measurement sensor groups 2 and 2 ', the third and fourth wheels as shown in the second section. Is measured.

【0035】引続き車両が走行して第3軸の第5位と第
6位の車輪がひずみ測定用センサ群1、1′に対向した
とき、第1断面に示すように第5位と6位の車輪の剪断
ひずみが測定される。このとき、第1軸の第1位と第2
位の車輪はひずみ測定用センサ群3、3′に対向してお
り、ここで図中の第3断面に示すように第1位と第2位
の車輪の剪断ひずみが測定される。更に車両が走行して
第4軸の第7位と第8位の車輪がひずみ測定用センサ群
1、1′に対向したとき、第1断面に示すように第7位
と第8位の車輪の剪断ひずみが測定される。このとき、
第3軸の第5位と第6位の車輪はひずみ測定用センサ群
2、2′に対向しており、ここで図中の第2断面に示す
ように第5位と第6位の車輪の剪断ひずみが測定され
る。同時に、第2軸の第3位と第4位の車輪はひずみ測
定用センサ群3、3′に対向しており、図中の第3断面
に示すように第3位と第4位の車輪の剪断ひずみが測定
される。また、第1軸の第1位と第2位の車輪はひずみ
測定用センサ群4、4′に対向しており、ここで図中の
第4断面に示すように第1位と第2位の車輪の剪断ひず
みが測定される。更に車両が走行して第2軸の第3位と
第4位の車輪がひずみ測定用センサ群4、4′に対向し
たとき、図中の第4断面に示すように第3位と第4位の
車輪の剪断ひずみが測定される。
When the vehicle continues to travel and the fifth and sixth wheels of the third shaft face the strain measurement sensor groups 1 and 1 ', the fifth and sixth wheels as shown in the first section. The shear strain of the wheel is measured. At this time, the first position of the first axis and the second position
The second wheel is opposed to the strain measurement sensors 3, 3 ', where the shear strain of the first and second wheels is measured as shown in the third section in the figure. When the vehicle further travels and the seventh and eighth wheels of the fourth shaft face the strain measurement sensor groups 1 and 1 ', the seventh and eighth wheels as shown in the first section. Is measured. At this time,
The fifth and sixth wheels of the third shaft are opposed to the strain measurement sensor groups 2 and 2 ', and the fifth and sixth wheels are shown in the second section in the drawing. Is measured. At the same time, the third and fourth wheels of the second shaft are opposed to the strain measurement sensors 3 and 3 ', and the third and fourth wheels are shown in the third section in the figure. Is measured. The first and second wheels of the first shaft are opposed to the strain measurement sensor groups 4 and 4 '. Here, as shown in the fourth section in the drawing, the first and second wheels are located. The shear strain of the wheel is measured. Further, when the vehicle travels and the third and fourth wheels of the second shaft face the strain measurement sensor groups 4 and 4 ', as shown in the fourth section in FIG. The shear strain of the second wheel is measured.

【0036】引続き車両が走行して第3軸の第5位と第
6位の車輪がひずみ測定用センサ群3、3′に対向した
とき、第3断面に示すように第5位と第6位の車輪の剪
断ひずみが測定される。更に車両が走行して第4軸の第
7位と第8位の車輪がひずみ測定用センサ群3、3′に
対向したとき、第3断面に示すように第7位と第8位の
車輪の剪断ひずみが測定される。このとき、第3軸の第
5位と第6位の車輪はひずみ測定用センサ群4、4′に
対向しており、ここで図中の第4断面に示すように第5
位と第6位の車輪の剪断ひずみが測定される。更に車両
が走行して第4軸の第7位と第8位の車輪がひずみ測定
用センサ群4、4′に対向したとき、第4断面に示すよ
うに第7位と第8位の車輪の剪断ひずみが測定される。
When the vehicle continues to travel and the fifth and sixth wheels of the third shaft face the strain measuring sensor groups 3 and 3 ', the fifth and sixth wheels as shown in the third section. The shear strain of the second wheel is measured. Further, when the vehicle travels and the seventh and eighth wheels of the fourth shaft face the strain measurement sensor groups 3 and 3 ', the seventh and eighth wheels as shown in the third section. Is measured. At this time, the fifth and sixth wheels of the third shaft are opposed to the strain measurement sensor groups 4 and 4 ', and here, as shown in the fourth section in the figure, the fifth wheel
The shear strains of the second and sixth wheels are measured. When the vehicle further travels and the seventh and eighth wheels of the fourth shaft face the strain measurement sensor groups 4 and 4 ', the seventh and eighth wheels as shown in the fourth section. Is measured.

【0037】上記のごとく、車両を走行させながらひず
み測定を行えば、各車輪ともそれぞれ4か所のひずみ測
定用センサ群で測定が繰り返されることになる。これら
の測定データは図5に示すデータ処理部において処理
し、各断面の平均測定値を算出した。
As described above, if the strain is measured while the vehicle is running, the measurement is repeated by the four strain measuring sensors for each wheel. These measurement data were processed in the data processing section shown in FIG. 5, and the average measurement value of each section was calculated.

【0038】この測定結果を表1に示す。なお、車両は
台車重量が第1軸と第2軸を有する台車重量が180.
4kN、第3軸と第4軸を有する台車重量が169.1
kNで、車体重量が349.5kNである。なお、車両
がひずみ測定領域内を走行する間に、各車輪に複数回の
ひずみ測定を繰り返すことにより、車輪踏面に発生した
フラットを検知できる副機能もある。
Table 1 shows the measurement results. Note that the vehicle has a bogie weight of 180.000 having a first axis and a second axis.
4 kN, bogie weight having a third axis and a fourth axis is 169.1
In kN, the vehicle weight is 349.5 kN. Note that there is also a sub-function that can detect a flat generated on the wheel tread by repeating the strain measurement for each wheel a plurality of times while the vehicle travels in the strain measurement area.

【0039】[0039]

【表1】 [Table 1]

【0040】なお、図10の第1断面〜第4断面の各断
面で全ての車輪第1位〜第8位のひずみ測定が行われて
いる箇所は、請求項4に記載した測定方法を実施した場
合に相当する。
In each of the sections from the first section to the fourth section in FIG. 10 where the measurement of the strains of the first to eighth wheels is performed, the measuring method described in claim 4 is applied. It corresponds to the case of doing.

【0041】[0041]

【発明の効果】本発明の鉄道車両の輪重測定装置によれ
ば、停止状態で1車両の全輪軸の輪重を同時に測定する
ことにより、1車両の輪重変動を短時間に正確に検知す
ることができる。また、輪重測定装置の設置箇所を走行
する間に、各車輪に対し複数回測定して平均測定値を求
めることにより、より正確な輪重及びその変動を検知す
ることができる。その上に、車輪踏面のフラットを見い
だすこともできる。
According to the wheel load measuring device for a railway vehicle of the present invention, the wheel load of all the wheel axles of one vehicle is simultaneously measured in a stopped state, thereby accurately detecting the wheel load fluctuation of one vehicle in a short time. can do. In addition, while traveling the installation location of the wheel load measuring device, a more accurate wheel load and its fluctuation can be detected by measuring an average value by measuring a plurality of times for each wheel. On top of that, flat wheel treads can also be found.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レールの表裏ウエーブに設置したひずみ測定用
センサ群の構成位置関係を示す説明図である。
FIG. 1 is an explanatory diagram showing a structural positional relationship of a strain measurement sensor group installed on front and back waves of a rail.

【図2】1対のひずみ測定用センサの構成を示す説明図
である。
FIG. 2 is an explanatory diagram showing a configuration of a pair of strain measurement sensors.

【図3】本発明の実施による4箇所のひずみ測定用セン
サ群から構成した鉄道車両の輪重測定装置の構成概要を
示す説明図である。
FIG. 3 is an explanatory diagram showing an outline of a configuration of a wheel load measuring device for a railway vehicle constituted by a group of four strain measuring sensors according to an embodiment of the present invention.

【図4】本発明の鉄道車両の輪重測定装置における1台
車の2軸に対応した2組のひずみ測定用センサ群の構成
を示す説明図である。
FIG. 4 is an explanatory diagram showing a configuration of two sets of strain measurement sensors corresponding to two axes of one bogie in the railway vehicle wheel load measuring device of the present invention.

【図5】本発明の鉄道車両の輪重測定装置の全体の構成
と測定データ処理部例を示す説明図である。
FIG. 5 is an explanatory diagram showing an overall configuration of a wheel load measuring device for a railway vehicle of the present invention and an example of a measurement data processing unit.

【図6】心皿中心間距離L1の車両用として構成した鉄
道車両の輪重測定装置のひずみ測定用センサ群の配置を
示す説明図である。
FIG. 6 is an explanatory diagram showing an arrangement of a strain measurement sensor group of a wheel load measuring device of a railway vehicle configured for a vehicle having a center plate center distance L1.

【図7】心皿中心間距離L2が図6の心皿中心間距離L
1に比べて短い車両用として構成した鉄道車両の輪重測
定装置のひずみ測定用センサ群の配置を示す説明図であ
り、実施上は図6と図7の左側の1台車に対応する2つ
のひずみ測定用センサ群Pを共有し、他方の台車に対応
するひずみ測定用センサ群Q1、Q2をそれぞれ別個に
配置したものを、図6と図7の2つの図面に分解して示
した。
FIG. 7 is a diagram illustrating a relationship between the center distance L2 of the center of the heart dish shown in FIG. 6;
FIG. 8 is an explanatory view showing an arrangement of a strain measurement sensor group of a wheel load measuring device of a railway vehicle configured for a vehicle shorter than that of the vehicle 1; The strain measurement sensor groups P1 and Q2 corresponding to the other bogie sharing the strain measurement sensor group P and being separately disposed are shown separately in two drawings of FIG. 6 and FIG.

【図8】車輪がひずみ測定用センサの測定領域内に停止
している場合のひずみ測定用センサによる剪断ひずみ測
定の波形を示す線図である。
FIG. 8 is a diagram showing a waveform of shear strain measurement by the strain measurement sensor when the wheel is stopped within the measurement area of the strain measurement sensor.

【図9】車輪がひずみ測定用センサの幅方向に微速で移
動しつつ測定した場合のひずみ測定用センサによる剪断
ひずみ測定の波形を示す線図である。
FIG. 9 is a diagram showing a waveform of a shear strain measurement by the strain measurement sensor when the measurement is performed while the wheel moves at a very low speed in the width direction of the strain measurement sensor.

【図10】請求項5記載の鉄道車両の輪重測定方法の実
施により輪重測定領域内を車両が走行する間にひずみ測
定を行った場合の各ひずみ測定用センサ群(第1断面、
第2断面、第3断面、第4断面)におけるひずみ測定結
果の波形を各軸の車輪ごと横軸を時間経過軸として示し
たグラフである。
FIG. 10 is a diagram illustrating a method of measuring a wheel load of a railway vehicle according to claim 5, wherein each strain measurement sensor group (first section,
It is the graph which showed the waveform of the strain measurement result in the 2nd cross section, the 3rd cross section, and the 4th cross section for each wheel of each axis | shaft, and set the horizontal axis to a time passage axis.

【符号の説明】[Explanation of symbols]

1、1′と2、2′ 片方の台車の2軸に対応したひず
み測定用センサ群 3、3′と4、4′ 他方の台車の2軸に対応したひず
み測定用センサ群 5、6 レール 7、8、9、10 レールウェブ上の点 11、12 レールウェブ上の中立軸 13 センサ 14 接続箱 15 ひずみアンプ 16 A/D変換器 17 コンピューター 18 プリンター 19 電源 20 車体 21、22 台車 S 軸距 L、L1、L2 心皿中心間距離 P、Q1、Q2 ひずみ測定用センサ群 X センサ幅 (X−200)mm 測定領域
1, 1 'and 2, 2' Strain measuring sensor group corresponding to two axes of one bogie 3, 3 'and 4, 4' Strain measuring sensor group corresponding to two axes of the other bogie 5, 6 rail 7, 8, 9, 10 Points on rail web 11, 12 Neutral axis on rail web 13 Sensor 14 Connection box 15 Strain amplifier 16 A / D converter 17 Computer 18 Printer 19 Power supply 20 Body 21, 22 Dolly S Wheelbase L, L1, L2 Center-to-center distance P, Q1, Q2 Strain measurement sensor group X Sensor width (X-200) mm Measurement area

フロントページの続き (72)発明者 佐藤安弘 東京都調布市深大寺東町7丁目42番地27 独立行政法人 交通安全環境研究所内 (72)発明者 谷本 益久 大阪府大阪市此花区島屋5丁目1番109号 住友金属テクノロジー株式会社内 (72)発明者 陸 康思 東京都千代田区大手町1丁目1番3号 住 友金属テクノロジー株式会社内 (72)発明者 宮内 栄二 大阪府大阪市此花区島屋5丁目1番109号 住友金属テクノロジー株式会社内Continuation of the front page (72) Inventor Yasuhiro Sato 7-42-27 Jindaiji Higashicho, Chofu City, Tokyo Inside the National Institute for Road Safety and Environment (72) Inventor Masuhisa Tanimoto 5-1-1109 Shimaya, Konohana-ku, Osaka-shi, Osaka No. Sumitomo Metal Technology Co., Ltd. (72) Inventor Yasushi Riku 1-3-1, Otemachi, Chiyoda-ku, Tokyo Sumitomo Metal Technology Co., Ltd. (72) Inventor Eiji Miyauchi 5-chome, Shimaya, Konohana-ku, Osaka-shi, Osaka No. 1 109 Sumitomo Metal Technology Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対のひずみゲージからなるひずみ測定
用センサの1車両の全車輪に対応する複数組を、台車の
前後輪軸の軸距と前後台車間距離に相当する間隔をあけ
て左右レールに配置し、1車両の全車輪の輪重を同時に
測定することにより、車両の輪重及びその変動を検知す
るように構成した鉄道車両の輪重測定装置。
1. A plurality of sets of strain measuring sensors each consisting of a pair of strain gauges, corresponding to all wheels of one vehicle, are provided on left and right rails at intervals corresponding to the distance between the front and rear wheel axles of the bogie and the distance between the front and rear bogies. A wheel load measuring device for a railway vehicle, which is arranged and configured to detect the wheel load of a vehicle and its fluctuation by simultaneously measuring the wheel loads of all wheels of one vehicle.
【請求項2】 一対のひずみゲージからなるひずみ測定
用センサの1車両の片方の台車の4輪に対応する2組を
台車の前後輪軸の軸距に相当する間隔をあけて左右レー
ルに配置したひずみ測定用センサ群及び、他方の台車に
対応するひずみ測定用センサ群として、前後台車の心皿
中心間距離を変えて前記と同じ構成の複数組のずみ測定
用センサ群を左右レールに配置し、車体長さの異なる複
数の車両に対応して、1車両の全車輪の輪重を同時に測
定することにより、台車及び車両の輪重及びその変動を
検知するように構成した鉄道車両の輪重測定装置。
2. Two sets of strain measuring sensors each comprising a pair of strain gauges, corresponding to four wheels of one bogie of one vehicle, are arranged on the left and right rails at an interval corresponding to the wheelbase of the front and rear wheel axes of the bogie. As the strain measurement sensor group and the strain measurement sensor group corresponding to the other bogie, a plurality of sets of pre-measured sensor groups having the same configuration as above are arranged on the left and right rails by changing the center-to-center distance between the front and rear bogies. A railcar of a railway vehicle configured to detect the wheelload of a bogie and a vehicle and its fluctuation by simultaneously measuring the wheelload of all wheels of one vehicle corresponding to a plurality of vehicles having different vehicle lengths. measuring device.
【請求項3】 請求項1または2記載の輪重測定装置を
設置したレール上において、1車両の全輪軸の車輪を、
それぞれひずみ測定用センサの測定領域内に対向して車
両を停止し、1車両の全車輪の輪重を同時に測定し、車
両の輪重及びその変動を検知する鉄道車両の輪重測定方
法。
3. On a rail on which the wheel load measuring device according to claim 1 or 2 is installed, wheels of all axles of one vehicle are:
A method for measuring the wheel load of a railway vehicle, in which the vehicle is stopped facing each other within the measurement area of the strain measurement sensor, the wheel loads of all wheels of one vehicle are simultaneously measured, and the wheel load of the vehicle and its fluctuation are detected.
【請求項4】 請求項1または2記載の輪重測定装置を
設置したレール上において、1車両の全輪軸の車輪が、
それぞれひずみ測定用センサに対向した状態で、各ひず
み測定用センサの測定領域内を、車両が走行する間に、
1車両の全車輪の輪重の同時測定を連続的に複数回繰り
返し行い、全車両の輪重を検知する鉄道車両の輪重測定
方法。
4. On a rail on which the wheel load measuring device according to claim 1 or 2 is installed, wheels of all axles of one vehicle are:
While the vehicle travels in the measurement area of each strain measurement sensor while facing the strain measurement sensor,
A method for measuring the wheel load of a railway vehicle, in which the simultaneous measurement of the wheel loads of all wheels of one vehicle is continuously repeated a plurality of times to detect the wheel loads of all the vehicles.
【請求項5】 請求項1または2記載の輪重測定装置を
設置したレール上において、走行する車両の進行方向第
1軸が上記輪重測定装置の最初の第1番目のひずみ測定
用センサに差しかかったとき輪重測定を開始し、引続き
車両が走行する間に、第2番目、第3番目、第4番目の
ひずみ測定用センサで順次輪重測定を繰り返し行い、車
両の進行方向第2軸、第3軸、第4軸がそれぞれ上記輪
重測定装置の第1番目のひずみ測定用センサに差しかか
ったとき、前記第1軸と同様に輪重測定を順次開始し、
引続き車両が走行する間に、第2番目、第3番目、第4
番目のひずみ測定用センサで順次輪重測定を繰り返し行
い、1車両の前後台車の輪軸に対応して設置した4か所
のひずみ測定用センサで得た測定データの平均値で各車
輪の輪重を求めることにより、車両の輪重を検知する鉄
道車両の輪重測定方法。
5. On a rail on which the wheel load measuring device according to claim 1 or 2 is installed, the first axis in the traveling direction of the running vehicle is used as the first first strain measuring sensor of the wheel load measuring device. When the vehicle is approaching, the measurement of the wheel load is started, and while the vehicle continues to run, the second, third, and fourth strain measurement sensors sequentially repeat the measurement of the wheel load to determine the second direction in the traveling direction of the vehicle. When the axis, the third axis, and the fourth axis respectively reach the first strain measurement sensor of the wheel load measuring device, sequentially start the wheel load measurement in the same manner as the first axis,
While the vehicle continues to run, the second, third, fourth
The wheel load measurement is repeated by the second strain measurement sensor, and the wheel load of each wheel is determined by the average value of the measurement data obtained by the four strain measurement sensors installed corresponding to the wheel sets of the front and rear bogies of one vehicle. A method for measuring the wheel load of a railway vehicle by detecting the wheel load.
JP2000401205A 2000-12-28 2000-12-28 Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same Pending JP2002202182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401205A JP2002202182A (en) 2000-12-28 2000-12-28 Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401205A JP2002202182A (en) 2000-12-28 2000-12-28 Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same

Publications (1)

Publication Number Publication Date
JP2002202182A true JP2002202182A (en) 2002-07-19

Family

ID=18865680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401205A Pending JP2002202182A (en) 2000-12-28 2000-12-28 Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same

Country Status (1)

Country Link
JP (1) JP2002202182A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723059B2 (en) 2011-11-08 2014-05-13 Mettler-Toledo, LLC System and method for weighing coupled-in-motion railcars loaded with displaceable material
CN104105954A (en) * 2011-12-06 2014-10-15 新日铁住金株式会社 Vehicle abnormality detection method and device
US20150060154A1 (en) * 2012-04-05 2015-03-05 Aleksandr Viktorovich Pashhenko Method for weighing a car without uncoupling a trainset
CN105651338A (en) * 2016-03-01 2016-06-08 湖南大学 Axle recognition method and system for axle beam
CN106706097A (en) * 2016-11-15 2017-05-24 北京万集科技股份有限公司 Dynamic weighing method and dynamic weighing system
JP2018001955A (en) * 2016-06-30 2018-01-11 株式会社日立製作所 Monitoring system for railway vehicle condition
RU206048U1 (en) * 2021-02-05 2021-08-17 Акционерное общество Научная организация "Тверской институт вагоностроения" (АО НО "ТИВ") Weighing device for railway rolling stock
CN114264356A (en) * 2021-12-23 2022-04-01 东方世纪科技股份有限公司 Dynamic vehicle weighing system and method based on edge calculation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279962A (en) * 1975-12-26 1977-07-05 Japanese National Railways<Jnr> Wheel load measuring devie for running vehicles
JPS57175221A (en) * 1981-03-26 1982-10-28 Deshiyuteigaa Sunetsudo Edouin Vehicle weighing apparatus and method
JPH04151524A (en) * 1990-10-15 1992-05-25 East Japan Railway Co Method for measuring moving amount of passengers
JPH076500Y2 (en) * 1989-05-16 1995-02-15 東日本旅客鉄道株式会社 Vehicle weight measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279962A (en) * 1975-12-26 1977-07-05 Japanese National Railways<Jnr> Wheel load measuring devie for running vehicles
JPS57175221A (en) * 1981-03-26 1982-10-28 Deshiyuteigaa Sunetsudo Edouin Vehicle weighing apparatus and method
JPH076500Y2 (en) * 1989-05-16 1995-02-15 東日本旅客鉄道株式会社 Vehicle weight measuring device
JPH04151524A (en) * 1990-10-15 1992-05-25 East Japan Railway Co Method for measuring moving amount of passengers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8723059B2 (en) 2011-11-08 2014-05-13 Mettler-Toledo, LLC System and method for weighing coupled-in-motion railcars loaded with displaceable material
CN104105954A (en) * 2011-12-06 2014-10-15 新日铁住金株式会社 Vehicle abnormality detection method and device
AU2012349349B2 (en) * 2011-12-06 2016-03-24 Nippon Steel Corporation Vehicle abnormality detection method and device
US9511783B2 (en) 2011-12-06 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Method and apparatus for detecting abnormality of vehicle
US20150060154A1 (en) * 2012-04-05 2015-03-05 Aleksandr Viktorovich Pashhenko Method for weighing a car without uncoupling a trainset
CN105651338A (en) * 2016-03-01 2016-06-08 湖南大学 Axle recognition method and system for axle beam
JP2018001955A (en) * 2016-06-30 2018-01-11 株式会社日立製作所 Monitoring system for railway vehicle condition
CN106706097A (en) * 2016-11-15 2017-05-24 北京万集科技股份有限公司 Dynamic weighing method and dynamic weighing system
RU206048U1 (en) * 2021-02-05 2021-08-17 Акционерное общество Научная организация "Тверской институт вагоностроения" (АО НО "ТИВ") Weighing device for railway rolling stock
CN114264356A (en) * 2021-12-23 2022-04-01 东方世纪科技股份有限公司 Dynamic vehicle weighing system and method based on edge calculation
CN114264356B (en) * 2021-12-23 2024-04-26 东方世纪科技股份有限公司 Dynamic vehicle weighing system and method based on edge calculation

Similar Documents

Publication Publication Date Title
Rahimov et al. Measuring scheme for determination of loads acting on the side frame of the bogie from a wheelset
US3718040A (en) Method and apparatus for evaluating railroad track structure and car performance
EP2180303A2 (en) System of measuring the power effects between vehicle wheel and rail in driving railway vehicle and method of measuring the power effects
Matsumoto et al. Creep force characteristics between rail and wheel on scaled model
JP2002202182A (en) Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same
CN101377433A (en) Method for measuring vehicle weight based on steel rail deformation / stress parameters
DE10305470A1 (en) Measuring section for railed vehicles for measuring physical values relating to a train or vehicle comprises a number of sensor systems arranged in a common rail section with their outputs linked to a common evaluation unit
JP2003166870A (en) Axle load measuring method of vehicle running on bridge
JPH06107172A (en) Curve information calculating method and car body inclination control method
RU65501U1 (en) DEVICE FOR MONITORING RAILWAY PARAMETERS
CN1027360C (en) Method for detecting damage of wheel tread of railway rolling stock
CN210664723U (en) Strip type sensor dynamic weighing system
JP3077724U (en) Wheel load balance measuring device
RU2724986C1 (en) Method of measuring vertical, longitudinal and lateral forces acting on side frame of bogie from axle box unit during car movement, and device for implementation thereof
CN2296524Y (en) Direct sensitive full electronic rail weighing system
JP3086425B2 (en) Railcar wheelset and bogie attitude detection method
JPH03107712A (en) Road surface measuring method
RU2116400C1 (en) Method of and device for determining coefficient of relative rigidity of railway base and rail
RU2239798C2 (en) Method of weighing vehicle
SU783624A1 (en) Apparatus for determining resilient-dissipative characteristics of wheeled pair to carriage frame lateral linkage
JPH0438251Y2 (en)
CN201885789U (en) Dynamic light rail weighing instrument capable of avoiding repeated metering
JPH02284020A (en) Road surface measuring method
RU2104198C1 (en) Device for checking position of wheelset in track gauge and width of gauge
RU2143359C1 (en) Device for checking deformation of rails in vertical plane

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207