JPH02284020A - Road surface measuring method - Google Patents
Road surface measuring methodInfo
- Publication number
- JPH02284020A JPH02284020A JP10550489A JP10550489A JPH02284020A JP H02284020 A JPH02284020 A JP H02284020A JP 10550489 A JP10550489 A JP 10550489A JP 10550489 A JP10550489 A JP 10550489A JP H02284020 A JPH02284020 A JP H02284020A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- measurement
- laser displacement
- vehicle
- meter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000006073 displacement reaction Methods 0.000 claims abstract description 36
- 230000003287 optical effect Effects 0.000 claims abstract description 12
- 238000004441 surface measurement Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 29
- 230000000694 effects Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、道路の表面の凹凸プロフィルを計測する路
面計測法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a road surface measurement method for measuring the unevenness profile of a road surface.
(従来の技術)
道路の表面は、非舗装道路はもとより、舗装道路におい
ても完全に平滑ではなく、さまざまな凹凸がある。その
ため、道路を走行する自動車には、それぞれの路面凹凸
の形と走行速度に応じた複雑な力が作用する。これらの
力を0動車の上下、前後、左右方向の成分に分けると、
特に上下方向の力は振動乗り心地や積荷のいたみと密接
な関係を持つ。さらに、車体の変形や破壊を招く最大の
原因となる。したがって、路面の凹凸の程度を把握して
おくことは自動車の開発にとって、必要不可欠なことで
ある。(Prior Art) The surface of a road, not only an unpaved road but also a paved road, is not completely smooth and has various unevenness. As a result, vehicles traveling on the road are subjected to complex forces that depend on the shape of the road's unevenness and the speed at which they are traveling. If we divide these forces into components in the vertical, longitudinal, and horizontal directions of the zero-motion vehicle, we get
In particular, vertical force has a close relationship with vibration ride comfort and cargo damage. Furthermore, it is the biggest cause of deformation and destruction of the vehicle body. Therefore, understanding the degree of unevenness of the road surface is essential for the development of automobiles.
路面の凹凸プロフィルを計n1する方法として、従来、
多輪測定車を使用する方法、サーボ振動計を使用する方
法が広く知られている。前記多輪測定車を使用する方法
は、多重リンクの平均で基準ラインを設定し、計a1輪
の動きで路面の凹凸を測る方法であるが、装置が複雑で
あり、計測速度が遅く、長距離の路面を計測するには不
向きである。Conventionally, as a method to calculate the total n1 of the uneven profile of the road surface,
A method using a multi-wheel measuring vehicle and a method using a servo vibration meter are widely known. The method of using a multi-wheel measurement vehicle is to set a reference line using the average of multiple links and measure the unevenness of the road surface by the movement of a single wheel, but the device is complicated, the measurement speed is slow, and it takes a long time. It is not suitable for measuring distances on road surfaces.
また、サーボ振動計を使用する方法は、計測車に計、4
p1車輪を取り付け、計測車と路面間の相対距離を計測
車輪の動きで、計測車の上下変位を加速度の二重積分で
それぞれ求め、それらの引き算から路面の凹凸を求める
方法である。計測速度はある程度改善されたが、計CJ
車輪が路面と接触して振動するために共振などに配慮が
必要になってくる。In addition, the method of using a servo vibration meter is to install a meter on the measuring vehicle,
In this method, a p1 wheel is attached, the relative distance between the measuring vehicle and the road surface is determined by the movement of the measuring wheel, the vertical displacement of the measuring vehicle is determined by double integration of acceleration, and the unevenness of the road surface is determined by subtracting these values. Although the measurement speed has been improved to some extent, the total CJ
Since the wheels vibrate when they come into contact with the road surface, consideration must be given to resonance and other issues.
また、前述のような問題を解消するために、前記測定車
輪を持ったサーボ振動計に代わって非接触レーザ変位計
を用い、これを計測車に搭載して測定しようとする道路
を走行しながら路面に対してレーザビームを照射し、路
面からの反射ビームによって路面の凹凸プロフィルを計
測するようにした方法も知られている。In addition, in order to solve the above-mentioned problems, a non-contact laser displacement meter was used instead of the servo vibration meter with the measuring wheels, and this was mounted on a measuring vehicle and was used while driving on the road to be measured. A method is also known in which a laser beam is irradiated onto a road surface and the uneven profile of the road surface is measured by the beam reflected from the road surface.
(発明が解決しようとする課題)
ところが、前述のように、非接触レーザ変位計を計測車
に搭載し、計測車を走行しながら計測する方法であって
も1台の非接触レーザ変位計によって計測しているため
に、路面から入力によって車体がバウンシングすると計
測誤差が発生する。(Problem to be Solved by the Invention) However, as mentioned above, even if a non-contact laser displacement meter is mounted on a measurement vehicle and the measurement is carried out while the measurement vehicle is running, it is difficult to use a single non-contact laser displacement meter. Because of the measurement, if the vehicle body bounces due to input from the road surface, a measurement error will occur.
したがって、同一の波計側道路を同口も走行して計測し
、制度を上げる必要がある。また、計測車の走行速度が
制限され、通常の走行速度で計測することができないた
めに、高速道路などの路面を計Al11する場合には一
般車両と一緒に走行して計7111できる。Therefore, it is necessary to drive on the same road on the same wave meter side road and take measurements to improve accuracy. In addition, since the running speed of the measurement vehicle is limited and measurements cannot be made at normal running speeds, when measuring a road surface such as an expressway, the vehicle can travel together with general vehicles for a total of 7111km.
この発明は前記事情に着目してなされたもので、その目
的とするところは、通常の走行速度で計7則することが
でき、しかも車体がバウンシングしても正確に計測でき
る計測データの信頼性を向上できるとともに迅速に計測
できる路面計測法を提供することにある。This invention was made with attention to the above-mentioned circumstances, and its purpose is to improve the reliability of measurement data that can be calculated at normal driving speeds and that can be accurately measured even when the vehicle bounces. The object of the present invention is to provide a road surface measurement method that can improve road surface measurement and quickly measure the road surface.
〔発明の構成]
(課題を解決するための手段および作用)この発明は、
前記目的を達成するために、計測車に、その車体の前後
方向に沿って一直線上に3台以上の非接触レーザ変位計
を互いに異なる間隔を存して配置するとともに非接触光
学速度計を設け、前記計測車を走行しながら前記非接触
レーザ変位計および非接触光学速度計からの出力を演算
処理し、前記3台の非接触レーザ変位計を1組として、
波計lTl11路面の凹凸プロフィルを計測することに
ある。[Structure of the invention] (Means and effects for solving the problem) This invention has the following features:
In order to achieve the above object, three or more non-contact laser displacement meters are arranged in a straight line along the longitudinal direction of the vehicle body at different intervals, and a non-contact optical speed meter is installed on the measurement vehicle. , while running the measurement vehicle, calculate and process the outputs from the non-contact laser displacement meter and the non-contact optical speed meter, and set the three non-contact laser displacement meters as one set,
The purpose of the wave meter is to measure the uneven profile of the road surface.
ここで、第1図を参照して計測原理について説明すると
、1は計δ11車であり、この車体の前後方向に沿って
一直線上に非接触レーザ変位計としてのAセンサ、Cセ
ンサ、Bセンサをこの順序に配置し、AセンサとBセン
サとの間をLSAセンサとCセンサとの間をり、 C
センサとBセンサとの間をL2とする。Here, to explain the measurement principle with reference to FIG. 1, 1 is a total of δ11 cars, and A sensor, C sensor, and B sensor as non-contact laser displacement meters are arranged in a straight line along the longitudinal direction of this car body. are arranged in this order, between the A sensor and B sensor, and between the LSA sensor and C sensor, and C
The distance between the sensor and the B sensor is L2.
A; (Aセンサ出力)
B:(Bセンサ出力)
C:(Cセンサ出力)
f (X) : (路面関数)
g (X) : (計測システム出力)そして、g
(X)をf (X)を用いて表すと、・・・ (1
)
一方、g (X)をセンサ出力を用いて表すと、(1)
式から、g (X)とf(X、)との関係をフーリエ変
換すると、
G (ω)−F (ω) ×[1−L7 /LXE
XP (−j ωL1 ) L+/LXEX
P (j ωL2 )]−F(ω) ×H(ω)
F (ω)−G (ω)/H(ω)
F(ω)は計測した路面を周波数領域で表したものであ
る。F(ω)を逆フーリエ変換で時間領域f (X)で
表わすことで路面のプロフィルを再現できる。A; (A sensor output) B: (B sensor output) C: (C sensor output) f (X) : (road surface function) g (X) : (measurement system output) and g
When (X) is expressed using f (X),... (1
) On the other hand, if g (X) is expressed using the sensor output, (1)
From the formula, if we Fourier transform the relationship between g (X) and f (X, ), we get G (ω) - F (ω) × [1 - L7 /LXE
XP (-j ωL1) L+/LXEX
P(jωL2)]−F(ω)×H(ω) F(ω)−G(ω)/H(ω) F(ω) represents the measured road surface in the frequency domain. The road surface profile can be reproduced by expressing F(ω) in the time domain f (X) using inverse Fourier transform.
(実施例) 以下、この発明の各実施例を図面に基づいて説明する。(Example) Hereinafter, each embodiment of the present invention will be described based on the drawings.
第2図〜第4図は第1の実施例を示すもので、計測車1
には3台の非接触レーザ変位計2.3および4が設けら
れているとともに、非接触光学速度計6が設けられてい
る。前記非接触レーザ変位計2.3および4は計測車1
の前後方向に沿って一直線上に配置されている。そして
、非接触レーザ変位計2と3との間隔をL+ 3と4
との間隔をL2とすると、L、≠L2に設定されている
。Figures 2 to 4 show the first embodiment, in which the measuring vehicle 1
is provided with three non-contact laser displacement meters 2.3 and 4, as well as a non-contact optical velocity meter 6. The non-contact laser displacement gauges 2.3 and 4 are the measurement vehicle 1.
are arranged in a straight line along the front-rear direction. Then, the distance between non-contact laser displacement gauges 2 and 3 is set to L+ 3 and 4.
Let L2 be the interval between L2 and L2.
前記3台の非接触レーザ変位計2.3および4からの出
力信号は計nl+車1に搭載された変位計プロセッサ7
を介してA/D変換器8に入力される。The output signals from the three non-contact laser displacement meters 2.3 and 4 are total nl+displacement meter processor 7 mounted on the vehicle 1.
The signal is input to the A/D converter 8 via the A/D converter 8.
また、前記非接触光学変位計6からの出力信号は速度旧
プロセッサ9を介して前記A/D変換器8に入力される
。A/D変換器8からの出力信号はパーソナルコンピュ
ータ10に入力され、計測データはフロッピーに保存吉
たはプリントされる。Further, the output signal from the non-contact optical displacement meter 6 is input to the A/D converter 8 via the velocity processor 9. The output signal from the A/D converter 8 is input to a personal computer 10, and the measurement data is saved on a floppy disk or printed.
したかって、計測車1が波計al11道路を走行中に、
各非接触レーザ変位計2.3および4から被計測路面W
にレーザ光を照射し、その反射光を受光することによっ
て、i4られた路面変位データは第4図に示すフローチ
ャートに示すルーチンを得て演算処理され、被計測路面
Wの凹凸プロフィルが計11111できる。Therefore, while the measuring vehicle 1 was traveling on the wave meter al11 road,
Measured road surface W from each non-contact laser displacement meter 2.3 and 4
By irradiating a laser beam onto the road surface and receiving the reflected light, the i4-obtained road surface displacement data is processed using the routine shown in the flowchart shown in FIG. .
すなわち、各非接触レーザ変位計2.3および4から出
力された路面変位データは、ステップ1でシステム出力
g (X) EE出し、ステップ2において非接触光学
速度計5から出力された車速データに基づいて:l’
i11時間および;1゛測距離を算出する。That is, the road surface displacement data output from each non-contact laser displacement meter 2.3 and 4 is output as a system output g (X) EE in step 1, and the vehicle speed data output from the non-contact optical speed meter 5 in step 2. Based on: l'
Calculate i11 time and ;1' distance measurement.
さらに、ステップ3てフーリエ変換[g (ω)]し、
周周波数域でシステム伝達関数H(ω)を考慮し、ステ
ップ4でF(ω)−G(ω)/H(ω)を求める。さら
に、パワースペクトル密度S (n)として入力すると
ともに、ステップ5で逆フーリエ変換[F (ω)コす
ると、ステップ6で路面プロフィルf (X)を求める
ことができる。Furthermore, in step 3, Fourier transform [g (ω)] is performed,
Considering the system transfer function H(ω) in the frequency range, F(ω)−G(ω)/H(ω) is determined in step 4. Furthermore, by inputting the power spectral density S (n) and performing an inverse Fourier transform [F (ω) in step 5, the road surface profile f (X) can be obtained in step 6.
すなわち、F(ω)は計測した路面を周波数領域で表し
たものである。F(ω)を逆フーリエ変換で時間領域f
(X)で表わすことで路面のプロフィルを再現できる
。That is, F(ω) represents the measured road surface in the frequency domain. F(ω) is transformed into time domain f by inverse Fourier transform.
By representing it with (X), the road surface profile can be reproduced.
この第1の実施例において、非接触レーザ変位計2と3
との間隔をり、 3と4との間隔をL21、 L l
−とき、L、−L、に設定すると、伝達関数は、第5図
(a)に示すようになり、a点のところでは伝達関数は
ゼロとなり、システムとしての出力はない。したがって
、連続的に計測できる範囲はb点〜C点の範囲である。In this first embodiment, non-contact laser displacement meters 2 and 3
The distance between 3 and 4 is L21, L l
- When set to L and -L, the transfer function becomes as shown in FIG. 5(a), and at point a, the transfer function becomes zero and there is no output as a system. Therefore, the range that can be continuously measured is the range from point b to point C.
つまり、3台の非接触レーザ変位計2.3および4で、
L、 −L2の場合のシステムは、計測不能な路面波長
を周期的に持つことになる。In other words, with three non-contact laser displacement meters 2.3 and 4,
In the case of L, -L2, the system periodically has unmeasurable road surface wavelengths.
しかし、3台の非接触レーザ変位計2.3および4て、
L、≠L2とすると、伝達関数はゼロとなる部分がなく
なり、第5図(b)に示すように、連続的に計測するこ
とができる範囲、b点〜C点は拡大される。However, with three non-contact laser displacement meters 2.3 and 4,
When L, ≠ L2, there is no part of the transfer function where it is zero, and as shown in FIG. 5(b), the range that can be continuously measured, from point b to point C, is expanded.
第6図は第2の実施例であり、4台の非接触レザ変位計
2.3.4および5を配置するとともに、これらの間隔
り、 L2、L、をり、>L2>L3とする二と1こ
よって、3台を11′■として(2,3,4)(2,4
,5)(3,4,5)(2,3,5)の4つの組合わせ
ができる。Figure 6 shows the second embodiment, in which four non-contact laser displacement meters 2, 3, 4 and 5 are arranged, and the distance between them is L2, L, and >L2>L3. 2 and 1 Therefore, 3 units are set as 11'■ (2, 3, 4) (2, 4
, 5) (3, 4, 5) (2, 3, 5).
このように、非接触レーザ変位計を4台とすることによ
って、4通りのシステムで計測することと同じとなり、
1回の走行で同一路面を同じ条件で4回計4p1シたこ
とに相当する。したがって、計測時間の大幅な短縮を図
ることができるとともに、計11111粘度が向上し、
13頼性を向上てきる。In this way, by using four non-contact laser displacement meters, it is the same as measuring with four different systems.
This corresponds to a total of 4 p1s performed four times on the same road surface under the same conditions in one run. Therefore, it is possible to significantly shorten the measurement time, and the total viscosity is improved by 11111.
13. Improves reliability.
[発明の効果]
以上説明したように、この発明によれば、計測車に、そ
の車体の前後方向に沿って一直線上に3台以上の非接触
レーザ変位計を互いに異なる間隔を存して配置するとと
もに非接触光学速度計を設け、前記計A11J車を走行
しながら前記非接触レーザ変位計および非接触光学速度
計からの出力を演算処理し、前記3台の非接触レーザ変
位計を1組として波計、Ml路面の凹凸プロフィルを計
測するようにしたから、通常の走行速度で計測すること
ができ、しかも車体のバウンシングに関係なく、正確に
計11でき、計1則データの信頼性を向上できるととも
に迅速に計測できるという効果がある。[Effects of the Invention] As explained above, according to the present invention, three or more non-contact laser displacement meters are arranged on a measurement vehicle in a straight line along the longitudinal direction of the vehicle body at different intervals. At the same time, a non-contact optical speed meter is installed, and while the A11J car is running, the outputs from the non-contact laser displacement meter and the non-contact optical speed meter are processed, and the three non-contact laser displacement meters are combined into one set. Since the wave meter measures the uneven profile of the Ml road surface, it can be measured at normal driving speed, and it can be accurately calculated regardless of the bouncing of the vehicle body, which improves the reliability of the total data. This has the effect of being able to improve the performance and quickly measure it.
第1図はこの発明の詳細な説明するための計測車の側面
図、第2図〜第5図はこの発明の第1の実施例を示すも
ので、第2図は計測車の側面図、第3図は計測システム
のブロック図、第4図はフローチャート、第5図(a)
(b)は路面波長と振幅(システムの伝達関数)との関
係を示すグラフ、第6図はこの発明の第2の実施例を示
す計測車の側面図である。
1・・・計測車、2.3.4.5・・・非接触レーザ変
位計、6・・・非接触光学速度計。
■願人代理人FIG. 1 is a side view of a measurement vehicle for explaining the invention in detail, FIGS. 2 to 5 show a first embodiment of the invention, and FIG. 2 is a side view of the measurement vehicle; Figure 3 is a block diagram of the measurement system, Figure 4 is a flowchart, Figure 5 (a)
(b) is a graph showing the relationship between road surface wavelength and amplitude (transfer function of the system), and FIG. 6 is a side view of a measuring vehicle showing a second embodiment of the present invention. 1... Measuring vehicle, 2.3.4.5... Non-contact laser displacement meter, 6... Non-contact optical speed meter. ■Applicant's agent
Claims (1)
以上の非接触レーザ変位計を互いに異なる間隔を存して
配置するとともに非接触光学速度計を設け、前記計測車
を走行しながら前記非接触レーザ変位計および非接触光
学速度計からの出力を演算処理し、前記3台の非接触レ
ーザ変位計を1組として被計測路面の凹凸プロフィルを
計測することを特徴とする路面計測法。Three or more non-contact laser displacement gauges are arranged in a straight line along the longitudinal direction of the vehicle body at different intervals on the measuring vehicle, and a non-contact optical speed meter is installed, and while the measuring vehicle is running, A road surface measurement method characterized in that the outputs from the non-contact laser displacement meter and the non-contact optical speed meter are processed, and the three non-contact laser displacement meters are used as one set to measure the uneven profile of the road surface to be measured. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10550489A JP2712537B2 (en) | 1989-04-25 | 1989-04-25 | Road surface measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10550489A JP2712537B2 (en) | 1989-04-25 | 1989-04-25 | Road surface measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02284020A true JPH02284020A (en) | 1990-11-21 |
JP2712537B2 JP2712537B2 (en) | 1998-02-16 |
Family
ID=14409433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10550489A Expired - Fee Related JP2712537B2 (en) | 1989-04-25 | 1989-04-25 | Road surface measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712537B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07318342A (en) * | 1994-05-24 | 1995-12-08 | Mitsubishi Heavy Ind Ltd | Road-surface-property measuring apparatus |
US6618954B2 (en) * | 2000-05-30 | 2003-09-16 | Tokimec Construction Systems Inc. | Longitudinal profile measuring apparatus |
EP2853920A1 (en) * | 2013-09-30 | 2015-04-01 | Ivo Georgiev Milev | Method and system for contactless measurement of traversed distance |
EP4253901A1 (en) * | 2022-03-29 | 2023-10-04 | Volvo Construction Equipment AB | Detection system and method for monitoring unevenness of a planum |
-
1989
- 1989-04-25 JP JP10550489A patent/JP2712537B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07318342A (en) * | 1994-05-24 | 1995-12-08 | Mitsubishi Heavy Ind Ltd | Road-surface-property measuring apparatus |
US6618954B2 (en) * | 2000-05-30 | 2003-09-16 | Tokimec Construction Systems Inc. | Longitudinal profile measuring apparatus |
EP2853920A1 (en) * | 2013-09-30 | 2015-04-01 | Ivo Georgiev Milev | Method and system for contactless measurement of traversed distance |
EP4253901A1 (en) * | 2022-03-29 | 2023-10-04 | Volvo Construction Equipment AB | Detection system and method for monitoring unevenness of a planum |
WO2023186971A3 (en) * | 2022-03-29 | 2023-11-23 | Volvo Construction Equipment Ab | Detection system and method for monitoring unevenness of a planum |
Also Published As
Publication number | Publication date |
---|---|
JP2712537B2 (en) | 1998-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11503520A (en) | Method and apparatus for non-contact measurement of road or rail distortion | |
CA2574051C (en) | Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset | |
US6688167B2 (en) | Measuring the profile of a pavement by moving three contactless distance-measuring sensors | |
US20150308926A1 (en) | Vibration analysis method and vibration analysis device of vehicle | |
JP4435383B2 (en) | Vertical profile measuring device | |
Boronakhin et al. | Inertial method of railway track diagnostics incorporating the condition of rolling surfaces of the railcar’s wheels | |
JP4759744B2 (en) | Method for detecting contact position between railroad vehicle wheel and rail | |
JP2013040795A (en) | Axle weight measuring device | |
CN116296180A (en) | Bridge damping ratio identification method based on double-shaft vehicle contact response space position relation | |
CN115854915A (en) | Vehicle-mounted wheel out-of-roundness online dynamic measurement method and device | |
JPH02284020A (en) | Road surface measuring method | |
CN214224313U (en) | Weighing device for dynamic weighing of road vehicles | |
JPH03107711A (en) | Road surface measuring method | |
JPH03107712A (en) | Road surface measuring method | |
Tsai et al. | Fast inspection and identification techniques for track irregularities based on HHT analysis | |
JPH10185665A (en) | Axle load measuring device | |
CN113641951B (en) | Bridge vibration mode identification method based on vehicle sensing technology | |
CN102057267A (en) | Method of estimating the transverse grip of a pair of tyres by comparative analysis | |
JPH03221807A (en) | Method for measuring road face | |
CN107907076B (en) | Road surface power spectrum measuring method | |
JPH041514A (en) | Road surface measuring method | |
JP3838760B2 (en) | Wheel diameter measurement method | |
JPH0611331A (en) | Instrument and method for measuring undulating wear of rail | |
JP4198838B2 (en) | Rail vehicle running wheel inspection device | |
Blyankinshtein et al. | Braking force measurement errors on a stand with horizontal support discs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |