[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002280637A - Magnetoresistive effect element and its manufacturing method, magnetic random access memory, portable terminal apparatus, magnetic head, and magnetic reproduction apparatus - Google Patents

Magnetoresistive effect element and its manufacturing method, magnetic random access memory, portable terminal apparatus, magnetic head, and magnetic reproduction apparatus

Info

Publication number
JP2002280637A
JP2002280637A JP2001076614A JP2001076614A JP2002280637A JP 2002280637 A JP2002280637 A JP 2002280637A JP 2001076614 A JP2001076614 A JP 2001076614A JP 2001076614 A JP2001076614 A JP 2001076614A JP 2002280637 A JP2002280637 A JP 2002280637A
Authority
JP
Japan
Prior art keywords
layer
magnetic
ferromagnetic
ferromagnetic layer
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001076614A
Other languages
Japanese (ja)
Other versions
JP4458703B2 (en
Inventor
Tatsuya Kishi
達也 岸
Shigeki Takahashi
茂樹 高橋
Kentaro Nakajima
健太郎 中島
Minoru Amano
実 天野
Masayuki Sunai
正之 砂井
Yoshiaki Saito
好昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001076614A priority Critical patent/JP4458703B2/en
Priority to US10/097,571 priority patent/US6605836B2/en
Publication of JP2002280637A publication Critical patent/JP2002280637A/en
Priority to US10/626,707 priority patent/US7140096B2/en
Application granted granted Critical
Publication of JP4458703B2 publication Critical patent/JP4458703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/398Specially shaped layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/4905Employing workholding means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/49052Machining magnetic material [e.g., grinding, etching, polishing] by etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/32Composite [nonstructural laminate] of inorganic material having metal-compound-containing layer and having defined magnetic layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistive effect element that is magnetically stabilized, and has a reduced switching magnetic field, and to provide a method for manufacturing a magnetoresistive effect element. SOLUTION: The width of an element end section is widened as compared with a center section, and is set to a shape that is asymmetrical to the axis of easy magnetization and at the same time is nearly rotary-symmetrical when a film surface vertical direction is used as an axis. The S-shaped structure of a magnetic domain is stabilized, and the switching magnetic field is reduced. Also, the overlap of linear pattern etching is used with EB drawing for obtaining the structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,磁気抵抗効果素
子、その製造方法、磁気ランダムアクセスメモリ、携帯
端末装置、磁気ヘッド及び磁気再生装置に関する。
The present invention relates to a magnetoresistive element, a method of manufacturing the same, a magnetic random access memory, a portable terminal device, a magnetic head, and a magnetic reproducing device.

【0002】[0002]

【従来の技術】固体磁気メモリは従来より様々のタイブ
のものが提案されているが、近年巨大磁気抵抗効果を示
す磁気素子を用いた磁気ランダムアクセスメモリ(MR
AM)の提案が行われており、特に磁気メモリとして強
磁性トンネル接合を用いた磁気抵抗効果素子(TMR素
子)に注目が集まっている。
2. Description of the Related Art Various types of solid-state magnetic memories have been conventionally proposed. In recent years, a magnetic random access memory (MR) using a magnetic element exhibiting a giant magnetoresistance effect has been proposed.
AM) has been proposed, and in particular, attention has been focused on a magnetoresistive element (TMR element) using a ferromagnetic tunnel junction as a magnetic memory.

【0003】強磁性トンネル接合は,主に強磁性層1/
絶縁層/強磁性層2の3層膜で構成され、絶縁層をトン
ネルして電流が流れる。この場合、接合抵抗値は強磁性
層1、2の磁化の相対角の余弦に比例して変化する。し
たがって、抵抗値は強磁性層1、2の磁化が平行のとき
に極小値、反平行のときに極大値をとる。これはトンネ
ル磁気抵抗(TMR)効果と呼ばれている。例えば最近
の文献(Appl. Phys.Lett. 77, 283(2000))では、TM
R効果による抵抗値変化は室温において49.7%にも
なることが報告されている。
[0003] The ferromagnetic tunnel junction mainly has a ferromagnetic layer 1 /
It is composed of a three-layer film of an insulating layer / ferromagnetic layer 2, and a current flows through the insulating layer by tunneling. In this case, the junction resistance changes in proportion to the cosine of the relative angle of the magnetization of the ferromagnetic layers 1 and 2. Therefore, the resistance value has a minimum value when the magnetizations of the ferromagnetic layers 1 and 2 are parallel, and has a maximum value when the magnetizations are antiparallel. This is called the tunnel magnetoresistance (TMR) effect. For example, in a recent document (Appl. Phys. Lett. 77, 283 (2000)), TM
It is reported that the change in resistance due to the R effect is as high as 49.7% at room temperature.

【0004】強磁性トンネル接合をメモリセルとして含
む磁気メモリ装置においては、強磁性層のひとつの磁化
を固定して基準層とし、他の強磁性層を記憶層とする。
このセルにおいて、基準層と記憶層の磁化の配置が平行
または反平行に対し2進情報“0”、“1”を対応づけ
ることで情報が記憶される。記録情報の書き込みは、こ
のセルに対し別に設けた書き込み配線に電流を流して発
生する磁場により記憶層の磁化を反転させる。また、読
み出しは、強磁性トンネル接合に電流を流し、TMR効
果による抵抗変化を検出することで行われる。このよう
なメモリセルを多数配置することで磁気メモリ装置が構
成される。
In a magnetic memory device including a ferromagnetic tunnel junction as a memory cell, one magnetization of the ferromagnetic layer is fixed as a reference layer, and the other ferromagnetic layer is a storage layer.
In this cell, information is stored by associating binary information "0" and "1" with the arrangement of magnetization of the reference layer and the storage layer being parallel or antiparallel. In writing of recorded information, the magnetization of the storage layer is reversed by a magnetic field generated by passing a current through a write wiring provided separately for the cell. Reading is performed by flowing a current through the ferromagnetic tunnel junction and detecting a resistance change due to the TMR effect. A magnetic memory device is configured by arranging a large number of such memory cells.

【0005】実際の構成については、任意のメモリセル
を選択できるように、例えばDRAM同様に各セルに対
しスイッチングトランジスタを配置し、周辺回路を組み
込んで構成される。また、ワード線とビット線が交差す
る位置にダイオードとあわせて強磁性トンネル接合を組
み込む方式も提案されている(米国特許第5,640,
343号、第5、650、958号参照)。
The actual configuration is such that, for example, like a DRAM, a switching transistor is arranged for each cell and peripheral circuits are incorporated so that an arbitrary memory cell can be selected. Further, a method of incorporating a ferromagnetic tunnel junction together with a diode at a position where a word line and a bit line cross each other has been proposed (US Pat. No. 5,640,104).
No. 343, 5, 650, 958).

【0006】さて,強磁性トンネル接合をメモリセルと
して用いる磁気メモリ装置の高集積化を考えると、メモ
リセルの大きさは小さくなり、セルを構成する強磁性体
の大きさも必然的に小さくなる。一般に、強磁性体が小
さくなるとその保磁力は大きくなる。
Now, considering the high integration of a magnetic memory device using a ferromagnetic tunnel junction as a memory cell, the size of the memory cell is reduced, and the size of the ferromagnetic material constituting the cell is necessarily reduced. In general, the smaller the ferromagnetic material, the greater its coercive force.

【0007】保磁力の大きさは、磁化を反転するために
必要なスイッチング磁場の大きさの目安となるので、こ
れはスイッチング磁場の増大を意味する。よって、情報
を書き込む際にはより大きな電流を書き込み配線に流さ
なければならなくなり、消費電力の増加という好ましく
ない結果をもたらす。従って、磁気メモリのメモリセル
に用いられる強磁性体の保磁力を低減することは、高集
積化磁気メモリの実用化において重要な課題である。
[0007] The magnitude of the coercive force is a measure of the magnitude of the switching magnetic field required for reversing the magnetization, and this means an increase in the switching magnetic field. Therefore, when writing information, a larger current must be applied to the write wiring, which results in an undesirable result of an increase in power consumption. Therefore, reducing the coercive force of the ferromagnetic material used for the memory cell of the magnetic memory is an important issue in putting a highly integrated magnetic memory into practical use.

【0008】また、磁気メモリのメモリセルとして用い
る場合、その平面形状が長方形をした強磁性体を用いる
ことが一般に考えられている。しかし、長方形の微小強
磁性体の場合には、端部にエッジドメインと呼ばれる特
殊な磁区が生じることが知られている(例えば,J. Ap
p. Phys. 81,5471 (1997) 参照)。これは、長方形の短
辺では反磁場エネルギーを低減するために、磁化が辺に
沿うようにして渦状に回転するパターンを形成するため
である。このような磁気構造の一例は、図45に示され
ており,磁化領域の中央部分においては磁気異方性に従
った方向に磁化が生じるが,両端部においては,中央部
分と異なる方向に磁化が生じる。
When used as a memory cell of a magnetic memory, it is generally considered that a ferromagnetic material having a rectangular planar shape is used. However, in the case of a rectangular micro-ferromagnetic material, it is known that a special magnetic domain called an edge domain occurs at an end (for example, J. Ap.
p. Phys. 81, 5471 (1997)). This is because, in order to reduce the demagnetizing field energy on the short side of the rectangle, a pattern in which the magnetization rotates in a spiral along the side is formed. An example of such a magnetic structure is shown in FIG. 45. In the central part of the magnetized region, magnetization occurs in a direction according to the magnetic anisotropy, but at both ends, the magnetization is in a different direction from the central part. Occurs.

【0009】この長方形の強磁性体に対して、磁化反転
を考えると、エッジドメインが成長してその領域を大き
くしていくように進行することが知られている。ここ
で、長方形の両端部のエッジドメインを考えると、互い
に平行方向に向いている場合(図45(a)、S型構
造)と反平行方向に向いている場合(図45(b)C型
構造)とがある。反平行方向を向いている場合、360
度磁壁が形成されるため、保磁力が大きくなる.この課
題を解決するために,記憶層として楕円形の強磁性体を
用いることが提案されている(米国特許第5,757,
695参照)。これは,エッジドメインが強磁性体の形
状に対し大変敏感であるという性質を利用して,長方形
等の場合の端部に生じるエッジドメインの発生をおさ
え,単磁区を実現することで,強磁性体全体にわたって
一様に反転させることができるようにしたもので、反転
磁場を小さくすることができる。
[0009] Considering the magnetization reversal of this rectangular ferromagnetic material, it is known that an edge domain grows and proceeds so as to enlarge the region. Here, considering the edge domains at both ends of the rectangle, a case where they are oriented in parallel to each other (FIG. 45 (a), S type structure) and a case where they are oriented in antiparallel direction (FIG. 45 (b) C type) Structure). 360 if anti-parallel
Since a magnetic domain wall is formed, the coercive force increases. To solve this problem, it has been proposed to use an elliptical ferromagnetic material as the storage layer (US Pat. No. 5,757,
695). This uses the property that the edge domain is very sensitive to the shape of the ferromagnetic material, and suppresses the generation of the edge domain that occurs at the end of a rectangle or the like, and realizes a single magnetic domain. Since the reversal can be performed uniformly over the entire body, the reversal magnetic field can be reduced.

【0010】また,記憶層として、平行四辺形のよう
に、その隅に直角でない角度を持つ形状の強磁性体を用
いることが提案されている(特開平11−273337
参照)。この場合、エッジドメインは存在するが、長方
形の場合ほど大きな領域を占めず、さらに磁化反転の過
程で複雑な微小ドメインを生成することなく、磁化をほ
ぼ一様に反転させることができる。その結果として反転
磁場の低減が図られる。
In addition, it has been proposed to use a ferromagnetic material having a shape having a non-perpendicular angle at its corner, such as a parallelogram, as the storage layer (Japanese Patent Laid-Open No. 11-273337).
reference). In this case, the edge domain exists, but does not occupy a large area as in the case of the rectangular shape, and the magnetization can be almost uniformly reversed without generating complicated minute domains in the process of magnetization reversal. As a result, the switching magnetic field can be reduced.

【0011】また一方では、形状は長方形のままである
が、少なくとも二つの強磁性層を含み、それらの間に介
在する非磁性層からなる多層膜において、上記の強磁性
層の間に反強磁性結合を含むものをに用いることが提案
されている(特開平9−25162、特願平11−26
3741、米国特許第5,953,248参照)。
On the other hand, in a multilayer film including at least two ferromagnetic layers and having a non-magnetic layer interposed therebetween, although the shape remains rectangular, the antiferromagnetic layer is formed between the ferromagnetic layers. It has been proposed to use those containing magnetic coupling (JP-A-9-25162, Japanese Patent Application No. 11-26).
3741, U.S. Pat. No. 5,953,248).

【0012】この場合、二つの強磁性層は,その磁気モ
ーメントまたは厚さが異なっており、反強磁性的結合に
より磁化が逆方向を向いている。このため、実効的に互
いに磁化が相殺し、記憶層全体としては、磁化容易軸方
向に磁気モーメントの差または膜厚差に対応した小さな
磁化を持った強磁性体と同等と考えることができる。こ
の記億層の持つ磁化容易軸方向の小さな磁化の向きと逆
向きに磁場を印加すると、各強磁性層の磁化は、反強磁
性結合を保ったまま反転する。この構造では磁力線が閉
じていることから反磁場の影響が小さく、記録層のスイ
ツチング磁場は、各強磁性層の保磁力差により決まるた
め、小さなスイッチング磁揚で磁化の反転が可能にな
る。
In this case, the two ferromagnetic layers have different magnetic moments or thicknesses, and the magnetizations are in opposite directions due to antiferromagnetic coupling. Therefore, the magnetizations effectively cancel each other, and the entire storage layer can be considered to be equivalent to a ferromagnetic material having a small magnetization corresponding to the difference in magnetic moment or the difference in film thickness in the easy axis direction. When a magnetic field is applied in a direction opposite to the direction of the small magnetization in the easy axis direction of the storage layer, the magnetization of each ferromagnetic layer is inverted while maintaining the antiferromagnetic coupling. In this structure, the influence of the demagnetizing field is small because the magnetic field lines are closed, and the switching magnetic field of the recording layer is determined by the coercive force difference of each ferromagnetic layer.

【0013】ところで、MRAM応用のTMR素子にお
いては、高集積化への要求からサブミクロンの素子サイ
ズが求められている。そこで、サブミクロンサイズのT
MR素子を電子ビーム(EB)描画を用いて作製する例
(W. J. Ga11agher et al.,J. Appl. Phys. 81, 3741(1
997)参照)について、その作製プロセスを図46の断面
図(左側)と上面図(右側)を用いて簡単に説明する。
まず図46(a)に示すように、Si基板461上に主
に磁性金属からなる下部電極462、Al酸化物バリア
463、主に磁性金属からなる上部電極464の3層構
造を含む多層構造をマグネトロンスパッタ装置により堆
積し、その多層構造をフオトレジストとイオンミリング
を用いてエツチングすることにより下部電極を形成する
(ここでは下部電極の一部の接合部付近のみを示す)。
次に図46(b)に示すように、EB描画によって接合
部分にネガ型のEBレジスト456のパターンを形成
し、それを用いて2回目のイオンミリングを行いサブミ
クロンサイズの接合部のパターンを形成する。このイオ
ンミリングでは、酸化物バリア463を突き抜けて下部
電極462の上部でエッチングが止まるように制御す
る。
By the way, in the TMR element applied to the MRAM, a submicron element size is required due to a demand for high integration. Therefore, the submicron size T
Example of manufacturing an MR element using electron beam (EB) lithography (WJ Ga11agher et al., J. Appl. Phys. 81, 3741 (1
997)) will be briefly described with reference to a cross-sectional view (left side) and a top view (right side) of FIG.
First, as shown in FIG. 46A, a multilayer structure including a three-layer structure of a lower electrode 462 mainly made of a magnetic metal, an Al oxide barrier 463, and an upper electrode 464 mainly made of a magnetic metal is formed on a Si substrate 461. The lower electrode is formed by depositing with a magnetron sputtering apparatus and etching the multilayer structure using photoresist and ion milling (here, only a part near the junction of the lower electrode is shown).
Next, as shown in FIG. 46 (b), a pattern of a negative EB resist 456 is formed at the bonding portion by EB drawing, and a second ion milling is performed using the pattern to form a submicron-size bonding pattern. Form. In this ion milling, control is performed such that etching is stopped at an upper portion of the lower electrode 462 through the oxide barrier 463.

【0014】次に図46(c)に示すように、接合部に
EBレジスト465を残したまま、SiO2 絶縁膜46
6をマグネトロンスパッタ装置によって堆積する。最後
に図46(d)に示すように、SiO2 絶縁膜の下にあ
るEBレジストを用いたリフトオフプロセスにより、接
合部上に自己整合的にコンタクトホールを露出させ、そ
の後にAg/Auの上部配線467をフォトレジストの
リフトオフを用いたパターニングにより作製し、上部電
極にコンタクトを形成する。
Next, as shown in FIG. 46C, the SiO 2 insulating film 46 is left while the EB resist 465 is left at the junction.
6 is deposited by a magnetron sputtering apparatus. Finally, as shown in FIG. 46D, a contact hole is exposed in a self-aligned manner on the junction by a lift-off process using an EB resist under the SiO 2 insulating film. The wiring 467 is formed by patterning using lift-off of a photoresist, and a contact is formed on the upper electrode.

【0015】このEB描画を用いた自己整合的なTMR
素子の製造方法により、サブミクロンの接合サイズを持
つTMR素子が得られているが、強磁性体金属/酸化物
絶緑体/強磁性体金属という基本構造を持つ多層構造上
に直接EB描画を行うために幾つかの問題点があつた。
A self-aligned TMR using this EB drawing
A TMR element having a submicron junction size has been obtained by the element manufacturing method. However, EB lithography can be directly performed on a multilayer structure having a basic structure of ferromagnetic metal / oxide green body / ferromagnetic metal. There were some problems to do.

【0016】それは、図46(b)においてEB描画に
よる接合部へのサブミクロンサイズのレジストパタ−ニ
ングが行われるが、磁性金属を含む多層構造へのEB描
画プロセスにおいては、金属による電子線の後方散乱が
半導休材料よりも強く、その結果として得られる描画パ
ターンが大きく広がってしまういわゆる近接効果が顕著
になり、描画パターン形状の微細性・制御性が失われて
しまう。その結果として図46(b)に示すように接合
部の形状として矩形を描画した場合にも、実際に得られ
る形状は角部の先鋭性が著しく失われた形状となってし
まう。
In FIG. 46B, a resist pattern of a submicron size is formed on a joint by EB lithography in the EB lithography process. The scattering effect is stronger than that of the semiconductive material, so that the so-called proximity effect in which the resulting drawing pattern is greatly spread becomes remarkable, and the fineness and controllability of the drawing pattern shape are lost. As a result, even when a rectangle is drawn as the shape of the joint as shown in FIG. 46 (b), the actually obtained shape is a shape in which the sharpness of the corners is significantly lost.

【0017】ここで、TMR素子の接合部の平面形状と
その磁気的特性である保持力(Hc)の間には密接な関連が
あり、角が丸まった矩形では角の先鋭性が強い矩形より
も保持力が2倍程度にも大きくなってしまうことが判明
している。その結果、MRAMの動作にとって重要な低
保持力特性を持つTMR素子が得られなくなるという問
題があった。。
Here, there is a close relationship between the planar shape of the junction of the TMR element and the coercive force (Hc), which is its magnetic property, and a rectangle with rounded corners has a greater sharpness than a rectangle with sharp corners. It has been found that the holding force is also increased by about twice. As a result, there is a problem that a TMR element having a low coercive force characteristic important for the operation of the MRAM cannot be obtained. .

【0018】[0018]

【発明が解決しようとする課題】上記のように,記録層
の磁化を反転する磁場(スイッチング磁場)の低減は、
磁気メモリにおいて必要不可欠な要素であり、いくつか
の形状や、反強磁性結合を含む多層膜を用いることが提
案されている。
As described above, the reduction of the magnetic field (switching magnetic field) for reversing the magnetization of the recording layer is as follows.
It is an indispensable element in a magnetic memory, and it has been proposed to use several shapes and a multilayer film including antiferromagnetic coupling.

【0019】しかしながら、高集積化磁気メモリに用い
られるような小さな磁気メモリセル内に置かれる微小な
強磁性体においては、例えばその短軸の幅が数ミクロン
からサブミクロン程度以下になると、磁化領域の端部に
おいては反磁場の影響により、磁性体の中央部分の磁気
的構造とは異なる磁気的構造(エッジドメイン)が生じ
ることが知られている。
However, in a small ferromagnetic material placed in a small magnetic memory cell used for a highly integrated magnetic memory, for example, when the width of the short axis becomes several microns to sub-micron or less, the magnetization region becomes small. It is known that a magnetic structure (edge domain) different from the magnetic structure of the central portion of the magnetic body occurs at the end of the magnetic material due to the influence of the demagnetizing field.

【0020】高集積化磁気メモリのセルに用いられるよ
うな微小な磁性体においては、上記のようにその端部に
生じるエッジドメインの影響が大きく、磁化反転におけ
る磁気的構造パターンの変化が複雑になる。その結果保
磁力が大きくなり、またスイッチング磁場が増大する。
In the case of a fine magnetic material such as used in a cell of a highly integrated magnetic memory, the edge domain generated at its end is greatly affected as described above, and the change of the magnetic structure pattern upon magnetization reversal becomes complicated. Become. As a result, the coercive force increases and the switching magnetic field increases.

【0021】このような複雑な磁気的構造の変化が生じ
ることをできるだけ防ぐ方法として、エッジドメインを
固定することが考えられている(米国特許第5,74
8,524、特開2000−100153参照)。
As a method of preventing such a complicated change in magnetic structure as much as possible, fixing an edge domain has been considered (US Pat. No. 5,741).
8,524, JP-A-2000-100153).

【0022】これにより磁化反転の際の挙動が制御でき
るが、実質的にスイッチング磁場の低減は図れない。ま
た、エッジドメインを固定するために別の構造を付加す
る必要があり、高密度化には適さない。
Thus, the behavior at the time of magnetization reversal can be controlled, but the switching magnetic field cannot be substantially reduced. Further, another structure needs to be added to fix the edge domain, which is not suitable for high density.

【0023】上記のように、サブミクロンの強磁性体/
絶縁体/強磁性体の接合を有するTMR素子を作製する
ためにEB描画プロセスを用いていたが、金属多層構造
上へのEB猫画では近接効果が著しく形状制御した微細
パターン形成か困難であるため、低保持力特性のTMR
素子を得ることが困難になるという問題があった。これ
は、本質的にリソグラフィプロセスでは解像度の限界近
傍では、矩形形状を形成した場合にその角部の先鋭性が
著しく失われるという、フォトリソグラフィにも共通す
る問題に起因している。
As mentioned above, a submicron ferromagnetic material /
An EB drawing process has been used to fabricate a TMR element having an insulator / ferromagnetic junction. However, it is difficult to form a fine pattern whose shape is controlled significantly due to the proximity effect of an EB cat image on a metal multilayer structure. Therefore, TMR with low holding power characteristics
There was a problem that it was difficult to obtain an element. This is essentially due to a problem common to photolithography that, in the vicinity of the resolution limit in the lithography process, when a rectangular shape is formed, the sharpness of the corner is significantly lost.

【0024】本発明の第1の目的は、新たに構造を付加
することなく、上記のような高密度集積化可能な程度に
微小な磁気メモリセルにおいて、安定な磁気的構造をも
つセルを提供することにあリ、同時にセルに情報を書き
込む際に必要なスイッチング磁場を低減することにあ
る。さらに、磁気的に安定で、かつスイッチング磁場が
十分低減された磁気メモリセルを構成し、そのような磁
気メモリセルを用いたランダムアクセス可能な非破壊磁
気メモリを提供することにある。
A first object of the present invention is to provide a magnetic memory cell which is small enough to be integrated at a high density as described above and has a stable magnetic structure without adding a new structure. Another object of the present invention is to reduce a switching magnetic field required for writing information into a cell at the same time. It is still another object of the present invention to provide a magnetic memory cell which is magnetically stable and has a sufficiently reduced switching magnetic field, and provides a random-accessible non-destructive magnetic memory using such a magnetic memory cell.

【0025】本発明の第2の目的は、本発明の磁気抵抗
効果素子に好適な容易かつ生産性の良い製造方法を提供
することにある。
A second object of the present invention is to provide a manufacturing method suitable for the magnetoresistance effect element of the present invention, which is easy and has high productivity.

【0026】[0026]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、本発明の第1の磁気抵抗効果素子は、
第1の強磁性層と、この第1の強磁性層上に形成された
絶縁体層と、この絶縁体層上に形成された第2の強磁性
層を有し、前記絶縁体層をトンネルして前記第1の強磁
性層と第2の強磁性層の間にトンネル電流が流れ,その
トンネル電流または前記第1および第2の強磁性層間に
生じる電圧を検出する磁気抵抗効果素子であって,その
平面形状が,中央部分の幅より端部の幅が大きいことを
特徴とする。
According to the present invention, in order to solve the above-mentioned problems, a first magnetoresistive element of the present invention comprises:
A first ferromagnetic layer, an insulator layer formed on the first ferromagnetic layer, and a second ferromagnetic layer formed on the insulator layer; A tunnel current flows between the first ferromagnetic layer and the second ferromagnetic layer, and detects the tunnel current or a voltage generated between the first and second ferromagnetic layers. Therefore, the planar shape is characterized in that the width at the end is larger than the width at the center.

【0027】また、本発明の第2の磁気抵抗効果素子
は、第1の強磁性層と、この第1の強磁性層上に形成さ
れた第1の絶縁体層と、この第1の絶縁体層上に形成さ
れた第2の強磁性層と、この第2の強磁性層上に形成さ
れた第2の絶縁体層と、この第2の絶縁体層上に形成さ
れた第3の強磁性層とを有する磁気抵抗効果素子であっ
て、その平面形状が,中央部分の幅より端部の幅が大き
いことを特徴とする。
Further, the second magnetoresistive element of the present invention comprises a first ferromagnetic layer, a first insulator layer formed on the first ferromagnetic layer, and a first insulating layer formed on the first ferromagnetic layer. A second ferromagnetic layer formed on the body layer, a second insulator layer formed on the second ferromagnetic layer, and a third ferromagnetic layer formed on the second insulator layer. A magnetoresistive effect element having a ferromagnetic layer, wherein a planar shape of the magnetoresistive element is larger at an end portion than at a central portion.

【0028】即ち、本発明では、磁気メモリセルとして
用いる強磁性層を含む磁気抵抗効果素子において、微小
な強磁性体に特有の磁気的構造を利用し、別の構造を付
与することなくその磁気的構造を制御することにより、
スイッチング磁場の低減を図る。
That is, according to the present invention, in a magnetoresistive element including a ferromagnetic layer used as a magnetic memory cell, a magnetic structure peculiar to a fine ferromagnetic material is used, and the magnetic structure is provided without providing another structure. By controlling the dynamic structure,
Reduce the switching magnetic field.

【0029】このために、特有の磁気的構造、特にエッ
ジドメインを制御し、スイッチング磁場を低減するため
に好適な素子形状を用いる。この素子形状は、従来技術
とは異なり、例えば平行四辺形のようにエッジドメイン
の領域を縮小することではなく、むしろある大きさの領
域を与える。また、端部にバイアス磁場をかけてエッジ
ドメインを固定することなく、磁化反転の核として作用
させる。
For this purpose, an element shape suitable for controlling a specific magnetic structure, particularly an edge domain, and reducing a switching magnetic field is used. This element shape differs from the prior art in that it does not reduce the area of the edge domain, for example, as in a parallelogram, but rather provides an area of a certain size. In addition, a bias magnetic field is applied to the edge to fix the edge domain and to act as a nucleus for magnetization reversal.

【0030】これを行なうために、素子端部の幅を中央
部分に比較して広くとり、磁気ドメインのS型構造を安
定化させ、その結果としてスイッチング磁場を低減す
る。さらに磁化容易軸について非対称かつ膜面垂直方向
を軸としてほぼ回転対称な形状とすることで、スイッチ
ング磁場の低減をより確実に行うことができる。この形
状は、図1に示すようなものとなる。図中の直線は磁化
容易軸,x印は回転対称軸の位置を示している。
In order to do this, the width of the end portion of the element is made wider than that of the central portion, and the S-type structure of the magnetic domain is stabilized, and as a result, the switching magnetic field is reduced. Further, the switching magnetic field can be reduced more reliably by making the shape asymmetric about the axis of easy magnetization and substantially rotationally symmetric about the axis perpendicular to the film surface. This shape is as shown in FIG. The straight line in the figure indicates the position of the axis of easy magnetization, and the symbol x indicates the position of the axis of rotational symmetry.

【0031】また、本発明の磁気抵抗効果素子の製造方
法は、少なくとも強磁性体/絶縁体/強磁性体の積層体
からなる接合領域を形成し、この接合領域を横切る線状
パターンのマスクを用いて前記接合領域をエッチング
し、このマスクエッチングを位置を変えて複数回実施
し、前記接合領域を所定の形状に加工することを特徴と
する。
In the method of manufacturing a magnetoresistive element according to the present invention, at least a junction region composed of a ferromagnetic / insulator / ferromagnetic laminate is formed, and a mask having a linear pattern crossing the junction region is formed. The bonding region is etched using the mask region, the mask etching is performed a plurality of times at different positions, and the bonding region is processed into a predetermined shape.

【0032】本発明では、TMR素子の接合部に関わる
微細構造を、複数の交差した線状パターン形成の方法に
より作製する。これにより、主にリソグラフィの限界性
能による前述の問題点を解決する。つまり、この交差し
た線状パターンによる接合部作製プロセスは、リソグラ
フィ的に微細描画性や制御性の高い線状パターンによる
パターン形成を行っているために、微細な矩形形状でも
角部の先鋭性が失われることが少なく、形状制御性の良
いパターニングを行うことが出来る。その結果として、
高集積化が可能なサブミクロンの微細構造を有する高性
能なTMR素子を容易にかつ高い歩留まりで作製でき
る。
In the present invention, the fine structure relating to the junction of the TMR element is manufactured by a method of forming a plurality of intersecting linear patterns. This solves the above-mentioned problem mainly due to the limit performance of lithography. In other words, in the process of fabricating the joint portion using the intersecting linear pattern, the sharpness of the corner is sharp even in a fine rectangular shape because the pattern is formed by the linear pattern having high lithographic fineness and controllability. Patterning with less loss and good shape controllability can be performed. As a result,
A high-performance TMR element having a submicron microstructure capable of high integration can be easily manufactured at a high yield.

【0033】[0033]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0034】(第1の実施形態)第1の実施形態では、
本発明の基本的な構成について、計算機シミュレーショ
ンの結果の一例を用いて説明する。図2は、本発明の第
1の実施形態に係る磁性体膜の平面図である。第1の実
施形態の磁性体膜はS字状の鉤型をしており、素子の中
央部分と端部で幅が異なる。即ち、強磁性体膜は中央部
分においては幅0.1μm、端部においては0.15μ
m、長さは0.4μm、厚さは1.5nmである。
(First Embodiment) In the first embodiment,
The basic configuration of the present invention will be described using an example of a result of a computer simulation. FIG. 2 is a plan view of the magnetic film according to the first embodiment of the present invention. The magnetic film of the first embodiment has an S-shaped hook shape, and the width of the element is different from the width of the central part of the element. That is, the ferromagnetic film has a width of 0.1 μm at the center and 0.15 μm at the end.
m, the length is 0.4 μm, and the thickness is 1.5 nm.

【0035】図2の形状は,各頂点が90度の角度をも
つ多角形であるが、これに限定するものではなく、特
に、各頂点は90度に限定するものではない。また、各
辺も直線である必要はなく、一般に曲線で構成されてい
てもよい。
The shape shown in FIG. 2 is a polygon in which each vertex has an angle of 90 degrees, but is not limited to this, and in particular, each vertex is not limited to 90 degrees. Further, each side does not need to be a straight line, and may be generally formed by a curve.

【0036】また、素子サイズも上記に限定するもので
はないが、最大幅が1μm程度よリ小さいものが好まし
く、長さも最大幅の1倍から10倍が好ましい。強磁性
体の厚さは10nm以下がよく、5nm以下がより好ま
しい。特に、高集積化のためには、素子サイズは小さい
ことが好ましい。
The element size is not limited to the above, but the maximum width is preferably as small as about 1 μm, and the length is preferably 1 to 10 times the maximum width. The thickness of the ferromagnetic material is preferably 10 nm or less, more preferably 5 nm or less. In particular, for high integration, the element size is preferably small.

【0037】強磁性層に用いる材料として、このシミュ
レーションではCo9 Feを用いているが、磁性材料は
Fe,Co,Niやそれらの積層膜、合金等、通常用い
られる磁性材料でよい。また、Cu,Au、Ru,Al
等、金属非磁性材料からなる層を含む積層膜であっても
よい。
In this simulation, Co 9 Fe is used as the material used for the ferromagnetic layer. However, the magnetic material may be a commonly used magnetic material such as Fe, Co, Ni, a laminated film thereof, or an alloy. In addition, Cu, Au, Ru, Al
For example, a laminated film including a layer made of a metal non-magnetic material may be used.

【0038】この系のヒステリシスについて、シミュレ
ーションの結果得られたものを図3に示す。図3から、
保磁力Hcは242エルステッド(Oe)と求められ
る。また、図3は、本発明の磁気抵抗効果素子において
はスイッチング磁場Hswと保磁力Hcの差がそれほど
大きくないことを示している。即ち、磁化反転過程にお
いて、微小な磁気ドメインが複雑な形で発生していない
ことを意味している。
FIG. 3 shows the hysteresis of this system obtained as a result of simulation. From FIG.
The coercive force Hc is determined to be 242 Oe (Oe). FIG. 3 shows that the difference between the switching magnetic field Hsw and the coercive force Hc is not so large in the magnetoresistance effect element of the present invention. That is, it means that minute magnetic domains are not generated in a complicated manner in the magnetization reversal process.

【0039】第1の実施形態における磁気ドメインのパ
ターンの変化を図4に示す。図4では,左方向をプラス
の向きとして,外部磁場Hを+1000エルステッドか
ら−1000エルステッドまで変化させたときの磁気ド
メイン構造の変化の様子を示した。
FIG. 4 shows a change in the pattern of the magnetic domain in the first embodiment. FIG. 4 shows how the magnetic domain structure changes when the external magnetic field H is changed from +1000 Oersted to -1000 Oersted with the left direction being a plus direction.

【0040】外部磁場がH=+300エルステッドのと
きに(b)、端部の磁化方向が磁化容易軸から向きを変
化させ始め、H=0エルステッドのとき(c)、S型の
磁気ドメイン構造をとって安定化する。さらに、外部磁
場が負の方向に大きくなると(d)、端部の幅が広い部
分で磁化方向が大きく回転していることがわかる。さら
に外部磁場が負に大きくなると(e)、完全に反転した
磁気ドメイン構造となる。
When the external magnetic field is H = + 300 Oersted (b), the magnetization direction of the end portion starts to change its direction from the easy axis, and when H = 0 Oersted (c), the S-type magnetic domain structure is changed. Stabilize. Furthermore, when the external magnetic field increases in the negative direction (d), it can be seen that the magnetization direction is largely rotated at the wide end portion. Further, when the external magnetic field becomes negatively large (e), a completely inverted magnetic domain structure is obtained.

【0041】磁化の反転時には、エッジドメインが拡大
し、エッジドメインと中央部の磁気ドメインとの間にあ
るドメインウォールが素子中央方向に動いていくことで
磁化が反転しておリ、外部磁場掃引時のすべての値に対
して、複雑なドメイン構造は出現しない。従って、小さ
な磁場で反転が可能になるとともに、磁化を完全に反転
させるために必要なスイッチング磁場も小さいものが実
現できる。
At the time of the magnetization reversal, the edge domain expands, and the domain wall between the edge domain and the central magnetic domain moves toward the element center, whereby the magnetization is reversed and the external magnetic field is swept. No complex domain structure appears for all values of time. Therefore, it is possible to realize switching with a small magnetic field and a small switching magnetic field required to completely reverse the magnetization.

【0042】なお、この系では飽和磁化に対する残留磁
化の割合が0.86となっている。これは、エツジドメ
インが存在しているためである。一般に、強磁性体の磁
化方向にずれや乱れた部分があり、飽和磁化に対する残
留磁化の割合が1より小さくなっているとき、その強磁
性体を用いた強磁性トンネル接合では、ずれや乱れのな
い場合に比べて、トンネル磁気抵抗比(MR比)が減少
する。しかし,この系では絶縁層を含め上下の強磁性層
が同じ形状になっているため、上下の強磁性層はほぼ同
様の磁気ドメイン構造を持っている。従って、飽和磁化
に対する残留磁化の割合が1より小さくなっているにも
かかわらず、磁化方向のトンネル磁気抵抗の減少は殆ど
ない。
In this system, the ratio of the residual magnetization to the saturation magnetization is 0.86. This is because an edge domain exists. In general, when a ferromagnetic material has a displaced or disturbed portion in its magnetization direction and the ratio of the residual magnetization to the saturation magnetization is smaller than 1, the ferromagnetic tunnel junction using the ferromagnetic material has a dislocation or disturbed portion. The tunnel magnetoresistance ratio (MR ratio) is reduced as compared with the case where there is no tunnel. However, in this system, since the upper and lower ferromagnetic layers including the insulating layer have the same shape, the upper and lower ferromagnetic layers have almost the same magnetic domain structure. Therefore, although the ratio of the residual magnetization to the saturation magnetization is smaller than 1, there is almost no decrease in the tunnel magnetoresistance in the magnetization direction.

【0043】本発明が効果的であることを示すために、
いくつかの形状について保磁力を比較したものを図5に
示す。この図では、厚さ2.0nm、長さ0.4μm、
中央の幅を0.1μmとし,形状(f)、(g)におけ
る端部の幅は0.15μmとしてシミュレーションを行
なった結果を示している。
To show that the present invention is effective,
FIG. 5 shows a comparison of the coercive force of several shapes. In this figure, the thickness is 2.0 nm, the length is 0.4 μm,
The simulation results are shown with the center width being 0.1 μm and the end widths in the shapes (f) and (g) being 0.15 μm.

【0044】図5において、例えば形状(b)のよう
な、長方形の相対する二つの頂点を切り落とした形状の
ものが保磁力が低いことは、上記の平行四辺形の場合と
同じ理由による。しかし、最も保磁力が小さくなるの
は、本発明の形状である図中の形状(g)のものである
ことがわかる。
In FIG. 5, for example, a rectangular shape such as shape (b) in which two opposing vertices are cut off has a low coercive force for the same reason as in the case of the above-described parallelogram. However, it can be seen that the smallest coercive force is the shape (g) in the figure, which is the shape of the present invention.

【0045】また、別の比較例の一つである平行四辺形
の場合の磁気ドメイン構造を図6に示す。図からわかる
ように,この場合には,斜辺に沿ったわずかな領域にお
いてのみ,磁化が磁化容易軸とは異なる方向に向き,エ
ッジドメインを減少させるような形状となっている。
FIG. 6 shows a magnetic domain structure in the case of a parallelogram as another comparative example. As can be seen from the figure, in this case, only in a small area along the hypotenuse, the magnetization is oriented in a direction different from the easy axis of magnetization, and the shape is such that the edge domain is reduced.

【0046】一方,本発明では,図2のように磁化が分
布しており,エッジドメインの領域は拡張されている。
上記図6の比較例の場合、保磁力は249エルステッド
となり、図2に示した本発明の場合は、これに比べて若
干ではあるが小さくなっている。
On the other hand, in the present invention, the magnetization is distributed as shown in FIG. 2, and the region of the edge domain is expanded.
In the case of the comparative example shown in FIG. 6, the coercive force is 249 Oe, and in the case of the present invention shown in FIG. 2, it is slightly smaller than this.

【0047】(第2の実施形態)図7は、本発明の第2
の実施形態に係る磁気抵抗効果素子の平面図である。第
1の実施形態では、幅広の素子端部の幅は一定であった
が、第2の実施形態では、素子端部の幅が幅広部内で変
化している。この形状のため,幅広部分で磁化の方向が
順次変化していることがわかる。
(Second Embodiment) FIG. 7 shows a second embodiment of the present invention.
It is a top view of a magnetoresistive effect element concerning an embodiment. In the first embodiment, the width of the wide element end is constant, but in the second embodiment, the width of the element end varies within the wide part. It can be seen that, due to this shape, the direction of magnetization changes sequentially in the wide portion.

【0048】強磁性層に用いる材料として、このシミュ
レーションでも第1の実施形態と同様に、Co9 Feを
用いているが、磁性材料はFe,Co,Niやそれらの
積層膜、合金等、通常用いられる磁性材料でよい。ま
た、Cu,Au、Ru,Al等、金属非磁性材料からな
る層を含む積層膜であってもよい。
In this simulation, Co 9 Fe is used as the material used for the ferromagnetic layer in the same manner as in the first embodiment, but the magnetic material is usually Fe, Co, Ni, their laminated films, alloys, etc. The magnetic material used may be used. Further, a laminated film including a layer made of a metal nonmagnetic material such as Cu, Au, Ru, and Al may be used.

【0049】第2の実施形態における磁化曲線は、図8
に示されている。図8から、保磁力Hcは148エルス
テッド(Oe)と非常に低くなり、さらに,飽和磁化に
対する残留磁化の割合が0.96と高く保たれているこ
とがわかる。
The magnetization curve in the second embodiment is shown in FIG.
Is shown in FIG. 8 shows that the coercive force Hc is as low as 148 Oe (Oe), and the ratio of the residual magnetization to the saturation magnetization is kept as high as 0.96.

【0050】(第3の実施形態)第1および第2の実施
形態では、強磁性体の単層膜についてのみ述べたが,少
なくとも2層の強磁性体とその間に介在する少なくとも
1層の絶縁層あるいは非磁性金属層からなる積層膜を含
む場合にも同様の結果が得られる。
(Third Embodiment) In the first and second embodiments, only the ferromagnetic single-layer film has been described. However, at least two ferromagnetic materials and at least one insulating layer interposed therebetween are provided. Similar results can be obtained in the case where a laminated film composed of a layer or a nonmagnetic metal layer is included.

【0051】図9(a)は、強磁性層1と強磁性層3が
絶縁層2を介して積層された強磁性一重トンネル接合構
造の断面図である。この積層構造に対しても、第1或い
は第2の実施形態の平面形状を付与することにより、保
持力の小さい磁気抵抗効果素子10を得ることができ
る。
FIG. 9A is a sectional view of a ferromagnetic single tunnel junction structure in which a ferromagnetic layer 1 and a ferromagnetic layer 3 are stacked via an insulating layer 2. By giving the planar structure of the first or second embodiment also to this laminated structure, the magnetoresistive element 10 having a small coercive force can be obtained.

【0052】この場合、強磁性層1または3のいずれか
一方の外側に反強磁性層付与した、いわゆるスピンバル
ブ型にしてもよい。図9(b)は図9(a)の強磁性層
1を強磁性層1−1と強磁性層1−2が非磁性層6を介
して積層された三層構造としたものである。この三層構
造は、強磁性層3の部分を置換してもよい。さらに、強
磁性層、非磁性層が繰り返して積層された多層膜で置換
することもできる。
In this case, a so-called spin valve type in which an antiferromagnetic layer is provided outside one of the ferromagnetic layers 1 and 3 may be used. FIG. 9B shows a ferromagnetic layer 1 of FIG. 9A having a three-layer structure in which a ferromagnetic layer 1-1 and a ferromagnetic layer 1-2 are stacked with a nonmagnetic layer 6 interposed therebetween. This three-layer structure may replace the part of the ferromagnetic layer 3. Further, it can be replaced with a multilayer film in which a ferromagnetic layer and a nonmagnetic layer are repeatedly laminated.

【0053】図10は、強磁性層11と強磁性層13が
絶縁層12を介して積層され、さらに強磁性層13は強
磁性層15と絶縁層14を介して接合された強磁性二重
トンネル接合構造の断面図である。この積層構造に対し
ても、第1或いは第2の実施形態の平面形状を付与する
ことにより、保持力の小さい磁気抵抗効果素子20を得
ることができる。この場合、強磁性層1,3の外側に反
強磁性層を付与した、いわゆるスピンバルブ型にしても
よい。
FIG. 10 shows a ferromagnetic layer 11 and a ferromagnetic layer 13 laminated via an insulating layer 12, and a ferromagnetic layer 13 joined via a ferromagnetic layer 15 and an insulating layer 14. It is sectional drawing of a tunnel junction structure. By giving the planar structure of the first or second embodiment also to this laminated structure, the magnetoresistive element 20 having a small coercive force can be obtained. In this case, a so-called spin valve type in which an antiferromagnetic layer is provided outside the ferromagnetic layers 1 and 3 may be used.

【0054】図11は、図10の強磁性層11を、強磁
性層11−1と強磁性層11−2が非磁性層16を介し
て積層された3層構造としたものである。この3層構造
は、非磁性層16を介して反強磁性結合記録層を形成す
るものである。この3層構造は、強磁性層15の部分を
置換してもよく、強磁性層11、15の少なくとも1層
に適用することができる。
FIG. 11 shows the ferromagnetic layer 11 of FIG. 10 having a three-layer structure in which a ferromagnetic layer 11-1 and a ferromagnetic layer 11-2 are stacked via a non-magnetic layer 16. In this three-layer structure, an antiferromagnetic coupling recording layer is formed via a nonmagnetic layer 16. This three-layer structure may replace a part of the ferromagnetic layer 15 and can be applied to at least one of the ferromagnetic layers 11 and 15.

【0055】この積層構造に対しても、第1或いは第2
の実施形態の平面形状を付与することにより、保持力の
小さい磁気抵抗効果素子30を得ることができる。
For this laminated structure, the first or second
By giving the planar shape of the embodiment, the magnetoresistive element 30 having a small coercive force can be obtained.

【0056】図12は、図10の強磁性層13を、強磁
性層13−1と強磁性層13−2が非磁性層17を介し
て積層された3層構造としたものである。この積層構造
に対しても、第1或いは第2の実施形態の平面形状を付
与することにより、保持力の小さい磁気抵抗効果素子4
0を得ることができる。
FIG. 12 shows the ferromagnetic layer 13 of FIG. 10 having a three-layer structure in which a ferromagnetic layer 13-1 and a ferromagnetic layer 13-2 are stacked via a non-magnetic layer 17. By giving the planar structure of the first or second embodiment also to this laminated structure, the magnetoresistive element 4 having a small coercive force can be provided.
0 can be obtained.

【0057】なお、図12の構成に対し、強磁性層1
1,15の少なくとも1層を強磁性層/非磁性層/強磁
性層の3層構造とすることもできる。また、図11の構
成に対し、さらに絶縁層、強磁性層を所望の回数積層し
てもよい。
It should be noted that the structure shown in FIG.
At least one of the layers 1 and 15 may have a three-layer structure of a ferromagnetic layer / a nonmagnetic layer / a ferromagnetic layer. In addition, an insulating layer and a ferromagnetic layer may be further laminated a desired number of times in the configuration of FIG.

【0058】図13は、Co9 Fe/Ru/Co9 Fe
の3層構造に関して、平面形状を変えた場合の保持力H
cの値を比較したものであり、本発明の形状(d).
(e)が通常の長方形のものに比べ,保磁力が大きく低
減できることがわかる。
FIG. 13 shows Co 9 Fe / Ru / Co 9 Fe
Holding force H when the planar shape is changed with respect to the three-layer structure of
c are compared, and the shape (d).
It can be seen that the coercive force of (e) can be greatly reduced as compared with a normal rectangular one.

【0059】第3の実施形態において、磁性材料、バリ
ア層材料等は下記のように選択することができる。本発
明の強磁性層の元素,種類は、特に制限はなく、Fe,
Co,Niまたはそれら合金、スピン分極率の大きいマ
グネタイト、CrO2、RXMnO3-y(R:希土類、
X:Ca、Ba、Sr)などの酸化物の他NiMnS
b、PtMnSb等のホイスラー合金、Zn−Mn−
O、Ti−Mn−O、CdMnP2 、ZnMnP2など
の磁性半導体を用いることができる。
In the third embodiment, the magnetic material, the barrier layer material and the like can be selected as follows. The element and type of the ferromagnetic layer of the present invention are not particularly limited.
Co, Ni or their alloys, magnetite having a large spin polarizability, CrO 2 , RXMnO 3 -y (R: rare earth,
X: oxides such as Ca, Ba, Sr) and NiMnS
b, Heusler alloys such as PtMnSb, Zn-Mn-
Magnetic semiconductors such as O, Ti—Mn—O, CdMnP 2 , and ZnMnP 2 can be used.

【0060】本発明の強磁性層の膜厚は超常磁性になら
ない程度の厚さが必要であり、0.4nm以上であるこ
とが好ましい。また、あまり厚いとスイッチング磁場が
大きくなってしまうため、2.5nm以下で有ることが
好ましい。また、これら磁性体にはAg、Cu、Au、
Al、Mg、Si、Bi、Ta、B、C、O、N、P
d、Pt、Zr、Ir、W、Mo、Nbなどの非磁性元
素が多少含まれていても強磁性を失わない限り良い。
The thickness of the ferromagnetic layer of the present invention must be such that it does not become superparamagnetic, and is preferably at least 0.4 nm. If the thickness is too large, the switching magnetic field becomes large. Therefore, the thickness is preferably 2.5 nm or less. Ag, Cu, Au,
Al, Mg, Si, Bi, Ta, B, C, O, N, P
Even if a small amount of non-magnetic elements such as d, Pt, Zr, Ir, W, Mo, and Nb are contained, it is sufficient as long as the ferromagnetic properties are not lost.

【0061】反強磁性膜は、Fe−Mn、Pt−Mn、
Pt−Cr−Mn、Ni−Mn、Ir−Mn、NiO等
が使用できる。非磁性層としては、Cu、Au、Ru、
Ir、Rh、Agなどを用いることができる。反強磁性
結合として用いる場合(ピン層の場合)は、Ru,I
r,Rhが好ましく、強磁性結合として用いる場合(記
録層の場合)は、Cu,Au,Agが好ましいが、膜厚
等により調整も可能なので、これらに限られるものでは
ない。
The antiferromagnetic film is made of Fe—Mn, Pt—Mn,
Pt-Cr-Mn, Ni-Mn, Ir-Mn, NiO and the like can be used. Cu, Au, Ru,
Ir, Rh, Ag and the like can be used. When used as antiferromagnetic coupling (pin layer), Ru, I
r, (the case of the recording layer) Rh is preferred, when used as a ferromagnetic coupling, Cu, Au, although Ag is preferable, because adjustment possible by the thickness or the like, not limited thereto.

【0062】本発明の誘電体または、絶縁層としては、
Al23、SiO2、MgO、AlN,AlON、Ga
O、Bi23、SrTiO2、AlLaO3などの様々な
誘電体を使用することができる。これらは、酸素、窒素
欠損が存在していても構わない。
As the dielectric or insulating layer of the present invention,
Al 2 O 3 , SiO 2 , MgO, AlN, AlON, Ga
Various dielectrics can be used, such as O, Bi 2 O 3 , SrTiO 2 , AlLaO 3 . These may have oxygen and nitrogen deficiencies.

【0063】誘電体層の厚さはTMRの接合面積に依存
し、3nm以下であることが好ましい。基板は特に制限
はなく、Si、SiO2、Al23、AlN等各種基板
上に作製できる。その上に、下地層,保護層として、T
a、Ti、Pt、Pd、Au等の単層膜や、Ti/P
t、Ta/Pt、Ti/Pd、Ta/Pd等の積層膜を
用いることが好ましい。
The thickness of the dielectric layer depends on the junction area of the TMR, and is preferably 3 nm or less. The substrate is not particularly limited, and can be formed on various substrates such as Si, SiO 2 , Al 2 O 3 , and AlN. On top of that, as an underlayer and a protective layer, T
a, a single layer film of Ti, Pt, Pd, Au, etc .;
It is preferable to use a laminated film of t, Ta / Pt, Ti / Pd, Ta / Pd, or the like.

【0064】次に、上述の第1乃至第3の実施形態で述
べた磁気抵抗効果素子を作製するための製造方法につい
て述べる。一般にこのような素子形成は、膜形成後にレ
ジストを塗布し、光・電子ビーム・X線のいずれかを用
いてパターンを形成し、現像してレジストパターンを形
成、これをマスクとしてイオンミリングまたはエッチン
グを行ない、パターンを形成した後、レジストを剥離す
るというプロセスを経て行なわれる。
Next, a description will be given of a manufacturing method for manufacturing the magnetoresistive element described in the first to third embodiments. In general, such a device is formed by applying a resist after forming a film, forming a pattern using one of light, electron beam, and X-ray, developing the resist pattern, and ion milling or etching using the resist pattern as a mask. After forming a pattern, the resist is peeled off.

【0065】比較的大きなサイズ、例えばミクロンオー
ダーの磁気抵抗効果素子を作製する場合には、TMR膜
をスパッタ後に酸化シリコン、窒化シリコン等のハード
マスクを作製し、反応性イオンエッチング(RIE)に
より、例えば図2や図7に示されるような本発明におけ
る磁気抵抗効果素子のパターンを形成する。この試料を
イオンミリングすることで磁気抵抗効果素子が作製でき
る。
When a magnetoresistive element having a relatively large size, for example, on the order of microns, is manufactured, a TMR film is sputtered, a hard mask such as silicon oxide or silicon nitride is manufactured, and reactive ion etching (RIE) is performed. For example, a pattern of the magnetoresistive element in the present invention as shown in FIGS. 2 and 7 is formed. By ion milling this sample, a magnetoresistance effect element can be manufactured.

【0066】より小さい磁気抵抗効果素子、例えば、2
〜3μm程度から0.1μm程度のサブミクロンサイズ
の素子作製においては、光リソグラフィーを用いること
ができる。この場合は、あらかじめ本発明における磁気
抵抗効果素子の形状パターンを持つハードマスクを作製
しておき、パターン形成することで作製できる。
A smaller magnetoresistive element, for example, 2
Photolithography can be used to fabricate submicron-sized devices of about 3 μm to about 0.1 μm. In this case, the hard mask having the shape pattern of the magnetoresistive effect element according to the present invention is prepared in advance, and the pattern can be formed.

【0067】さらに小さなサイズ、例えば0.5μm程
度以下の素子作製については、電子ビーム露光を用いる
ことができる。しかし、この場合には素子自体が小さい
ため、本発明におけるエッジドメイン領域を広げるため
の形状部分はさらに小さくなり、作製が大変困難にな
る。
Electron beam exposure can be used for producing a device having a smaller size, for example, about 0.5 μm or less. However, in this case, since the element itself is small, the shape portion for expanding the edge domain region in the present invention is further reduced, and the fabrication becomes very difficult.

【0068】上記のような小さなサイズの素子を作製す
るために、電子ビームの近接効果補正を利用することも
できる。通常、近接効果補正は、電子ビームの基板から
の後方散乱により生じる図形内近接効果を補正し、正し
いパターンを形成するために用いられるものである。例
えば、長方形のパターンを形成する場合、頂点付近では
蓄積電荷量が不足し、長方形の頂点が丸くなるという現
象がみられる。頂点をはっきりさせるために、頂点付
近、特に0.5μm程度以下の素子の場合には、図形の
外側に補正点ビームを打ち込んで蓄積電荷量を増やすこ
とで、正常なパターンを得ることができる。この方法を
応用して素子端部の幅が広がった本発明の形状を形成す
ることができる。
In order to manufacture an element having a small size as described above, the proximity effect correction of an electron beam can be used. Usually, the proximity effect correction is used to correct a proximity effect in a figure caused by backscattering of an electron beam from a substrate and form a correct pattern. For example, when a rectangular pattern is formed, there is a phenomenon in which the amount of accumulated charge is insufficient near the vertex, and the vertex of the rectangle is rounded. In order to clarify the vertex, in the case of an element near the vertex, particularly in the case of an element having a size of about 0.5 μm or less, a normal pattern can be obtained by driving a correction point beam outside the figure to increase the amount of accumulated charges. By applying this method, it is possible to form the shape of the present invention in which the width of the element end is widened.

【0069】例えば、第1あるいは第2の実施形態の図
2あるいは図7の形状を形成する場合、長方形を基本パ
ターンとし、相対する2頂点付近にそれぞれ補正点ビー
ムを打ち込むことで端部の幅の広い形状が形成可能とな
る。
For example, when the shape shown in FIG. 2 or FIG. 7 of the first or second embodiment is formed, a rectangle is used as a basic pattern, and a correction point beam is driven near each of two opposing vertices to thereby obtain the width of the end. Can be formed.

【0070】この時、通常の近接効果補正の場合に比べ
て打ち込む電荷量を多くするか、または補正点ビームの
打ち込み位置を適当に調節するか、またはその両方を用
いて、頂点を回復する以上に形状を補正することができ
る。そのようにすることにより、本発明の形状を形成す
ることが可能となる。さらに,例えば図2の素子形状を
形成するために、複数点の補正点ビームを照射すること
も可能である。
At this time, as compared with the case of the normal proximity effect correction, the amount of charges to be injected is increased, or the position of injection of the correction point beam is adjusted appropriately, or both are used to recover the vertex. Can be corrected. By doing so, it is possible to form the shape of the present invention. Further, it is also possible to irradiate a plurality of correction point beams, for example, to form the element shape shown in FIG.

【0071】上記のように、長方形の端部が幅広の本発
明の形状を実現するためには、長方形の素子を形成後補
正ビームを打つことで形成できるが、その前段階にサブ
ミクロンの微細な長方形形状を実現する必要がある。従
来技術では、このような形状を実現しようとすると角部
が丸くなってしまう問題があった。第4乃至第6の実施
形態では、このような問題を解決する実施形態について
説明する。
As described above, in order to realize the shape of the present invention having a wide rectangular end, the rectangular element can be formed by forming a rectangular element and then applying a correction beam. It is necessary to realize a simple rectangular shape. In the prior art, there is a problem that the corners are rounded to realize such a shape. In the fourth to sixth embodiments, embodiments that solve such a problem will be described.

【0072】(第4の実施形態)図14は、本発明の製
造方法の主旨を模式図で示したものである。前述のよう
に、通常のリソグラフィで矩形形状を形成した場合、フ
ォトリソグラフィでは約0.5μm以下、EBリソグラ
フィでも約0.2μm以下になると、矩形形状の角の先
鋭化が著しく失われてしまう。この問題に対する対策と
して、フォトリソグラフィでは光の反射に対する近接効
果補正、EBリソグラフィでは電子の後方散乱に対する
近接効果補正が検討されているが、補正の操作に時間が
かかるという問題があり、また0.1μmサイズでは十
分な効果を上げられない。
(Fourth Embodiment) FIG. 14 schematically shows the gist of the manufacturing method of the present invention. As described above, when a rectangular shape is formed by ordinary lithography, when the size is about 0.5 μm or less in photolithography and about 0.2 μm or less in EB lithography, sharpening of the corner of the rectangular shape is significantly lost. As a countermeasure against this problem, the proximity effect correction for light reflection in photolithography and the proximity effect correction for backscattering of electrons in EB lithography have been studied. However, there is a problem that the correction operation requires a long time. If the size is 1 μm, a sufficient effect cannot be obtained.

【0073】それに対し、リソグラフィにおける線状パ
ターンの幅制御性は非常に良く、フォトリソグラフィで
も0.2μm以下の幅、EBリソグラフィならば0.1
μm以下の幅を正確に規定することが出来る。この事実
を応用すると、図14に示すように、目的の矩形パター
ン51(斜線部)を形成するために、まず第1の線状パ
ターン52をリソグラフィで形成してマスク層としてそ
れ以外の領域をドライエッチングで除去する。その後、
第2の線状パターン53を第1の線状パターンと直交す
るようにリソグラフィで形成してマスクとし残った矩形
外の領域をドライエッチング除去する。これにより、矩
形パターンの角部54として非常に先鋭なパターンを形
成することが出来る。
On the other hand, the width controllability of the linear pattern in lithography is very good, and the width is 0.2 μm or less in photolithography and 0.1 μm in EB lithography.
A width of less than μm can be accurately defined. Applying this fact, as shown in FIG. 14, in order to form a target rectangular pattern 51 (hatched portion), first, a first linear pattern 52 is formed by lithography, and the other region is used as a mask layer. Remove by dry etching. afterwards,
The second linear pattern 53 is formed by lithography so as to be orthogonal to the first linear pattern, and the remaining region outside the rectangle serving as a mask is removed by dry etching. Thereby, a very sharp pattern can be formed as the corner 54 of the rectangular pattern.

【0074】図14の方法を基本として、以下の実施形
態に述べるように、種々な形に変形して適用することが
出来る。
Based on the method shown in FIG. 14, various forms can be applied as described in the following embodiments.

【0075】まず第4の実施形態として、線状パターン
形成とドライエッチングを2回繰り返すことによりTM
R素子の接合部形状を角部の先鋭性を保ったまま形成し
た方法について説明する。
First, as a fourth embodiment, the formation of a linear pattern and dry etching are repeated twice to
A method of forming the junction shape of the R element while maintaining the sharpness of the corner will be described.

【0076】図15乃至図26は上記のような角部の先
鋭性が保たれたTMR素子の作製プロセスを説明するも
のであり、各工程毎に右側(b)に上面図と左側(a)
に接合部の中心付近の(上面図中のA−A’線に沿っ
た)断面図を示す。
FIGS. 15 to 26 illustrate the manufacturing process of the TMR element in which the sharpness of the corners is maintained as described above. In each step, the right side (b) shows the top view and the left side (a) shows.
2 shows a cross-sectional view (along the line AA 'in the top view) near the center of the joint.

【0077】まず、図15に示すように、Siからなる
基板61上全面にTaの下部配線層62、磁性金属の多
層膜を含む強磁性体/絶縁体/強磁性体構造からなる磁
気トンネル接合(MTJ)層63、Taのコンタクト層
64を連続的に堆積する。上面図には、後にTMR素子
(接合部)65となる領域を破線で示している。
First, as shown in FIG. 15, a lower wiring layer 62 of Ta and a magnetic tunnel junction of a ferromagnetic / insulator / ferromagnetic structure including a magnetic metal multilayer film are formed on the entire surface of a substrate 61 made of Si. An (MTJ) layer 63 and a Ta contact layer 64 are successively deposited. In the top view, a region to be a TMR element (joining portion) 65 later is indicated by a broken line.

【0078】次に図16に示すようにフォトリソグラフ
ィにより下部配線のパターンを形成した後、レジスト
(不図示)をマスクとしてCl2 とArの混合ガスによ
る反応性ドライエッチングを用いて下部配線パターンを
基板面までエッチングする。
Next, as shown in FIG. 16, after forming a pattern of the lower wiring by photolithography, the lower wiring pattern is formed by reactive dry etching with a mixed gas of Cl 2 and Ar using a resist (not shown) as a mask. Etch to the substrate surface.

【0079】次に図17に示すように、ドライエッチン
グしたパターン全体をSiOx の絶縁層66で埋め込
み、CMPまたはエッチバックのプロセスによりTaの
コンタクト層が露出するまで平坦化を行う。
[0079] Then, as shown in FIG. 17, embedding the entire pattern is dry etched in an insulating layer 66 of SiO x, planarization is performed to the contact layer of Ta is exposed by CMP or an etch-back process.

【0080】次に図18に示すように、接合部を形成す
るための第1の線状パターンを目的とする接合部の長さ
よりも長い範囲にわたるようにレジスト67によって形
成する。このとき、第1の線状パターンの幅はこのTM
R素子の最小寸法となるが、0.1μm程度までならば
フォトリソグラフィにより容易に制御性良く形成するこ
とが出来、またそれ以下の場合はEBリソグラフィで形
成すればよい。
Next, as shown in FIG. 18, a first linear pattern for forming a joint is formed by a resist 67 so as to extend over a range longer than the intended length of the joint. At this time, the width of the first linear pattern is TM
The minimum dimension of the R element is that it can be easily formed by photolithography with good controllability up to about 0.1 μm.

【0081】次に図19に示すように、レジスト67の
線状パターンをTaのコンタクト層64に転写し、その
後レジスト67を剥離する。この時、F系の反応ガスと
して例えばSF6 を用いて反応性のドライエッチングを
行うと、レジスト67による線状パターンを正確にTa
のコンタクト層64およびSiOx絶縁層66に転写す
ることが出来る。また、MTJ層63の磁性金属はF系
ガスのドライエッチングに対して耐性があるため、Ta
のコンタクト層64だけを線状パターンに形成できる。
Next, as shown in FIG. 19, the linear pattern of the resist 67 is transferred to the Ta contact layer 64, and then the resist 67 is removed. At this time, if reactive dry etching is performed using, for example, SF 6 as an F-based reaction gas, the linear pattern of the resist 67 can be accurately formed by Ta.
Can be transferred to the contact layer 64 and the SiO x insulating layer 66. Since the magnetic metal of the MTJ layer 63 has resistance to dry etching of the F-based gas, Ta
Only the contact layer 64 can be formed in a linear pattern.

【0082】次に図20に示すように、Taのコンタク
ト層64をマスクとして下地のMTJ層63をイオンミ
リングする。ここで、Taはイオンミリングに対しては
ハードマスクとして十分な耐性を持つため、ビームエネ
ルギー400eVのArイオンミリングをTaの下部配
線層62が露出するまで行った場合にもマスクの後退や
膜厚の減少は少なく、Taの線状パターン64を良好に
MTJ層63に転写することが出来る。
Next, as shown in FIG. 20, the underlying MTJ layer 63 is ion-milled using the Ta contact layer 64 as a mask. Here, Ta has sufficient resistance to ion milling as a hard mask. Therefore, even when Ar ion milling with a beam energy of 400 eV is performed until the lower wiring layer 62 of Ta is exposed, the mask recedes and the film thickness decreases. Is small, and the Ta linear pattern 64 can be satisfactorily transferred to the MTJ layer 63.

【0083】上記のMTJ層63のエッチングには、イ
オンミリングに代えて、Cl2 とArの混合ガスによる
反応性ドライエッチングを用いてもよい。この場合、マ
スク層としては、ダイヤモンドライカーボン(DL
C),AlOx 、SiO2 や多層レジストマスク等のC
l系エッチング耐性に優れたものを用いる。同時にエッ
チングする絶縁膜66(66´)にはTEOS等のやや
Cl系エッチング耐性を弱めたものを用いることが好ま
しい。また、この場合はコンタクト層64上にマスク層
を予め形成しておく必要がある。
For the etching of the MTJ layer 63, reactive dry etching using a mixed gas of Cl 2 and Ar may be used instead of ion milling. In this case, a diamond layer (DL) is used as the mask layer.
C), C of AlO x , SiO 2 , multilayer resist mask, etc.
A material excellent in l-system etching resistance is used. As the insulating film 66 (66 ') to be etched at the same time, it is preferable to use a material such as TEOS with slightly weakened Cl-based etching resistance. In this case, it is necessary to form a mask layer on the contact layer 64 in advance.

【0084】次に図21に示すように、再びSiO
絶縁層66´で埋め込み、平坦化を行ってTaのコンタ
クト層64を露出させる。続いて図22に示すように、
接合部の残った他の2辺を規定し、かつ接合部に対して
十分に長い第2の線状パターンを有するレジスト68
を、フォトリソグラフィによって形成する。
Next, as shown in FIG. 21, the contact layer 64 is buried again with an insulating layer 66 ′ of SiO X and planarized to expose the contact layer 64 of Ta. Subsequently, as shown in FIG.
A resist 68 that defines the other two sides of the joint and has a second linear pattern that is sufficiently long with respect to the joint.
Is formed by photolithography.

【0085】次に図23に示すように、レジスト68に
よる第2の線状パターンをF系の反応性ガスを用いてド
ライエッチングにより、下地のTaのコンタクト層64
に転写する。
Next, as shown in FIG. 23, a second linear pattern of the resist 68 is dry-etched using an F-based reactive gas to form an underlying Ta contact layer 64.
Transfer to

【0086】次に図24に示すように、Taのコンタク
ト層64に形成された第2の線状パターンをハードマス
クとして用いて、イオンミリングによりTaの下部配線
層62に達するまでMTJ層63をエッチングする。こ
の工程迄で、MTJ層63は最終的なTMR素子65の
形状に加工され、その接合部の矩形形状は、角部の先鋭
性を保ったまま形成される。
Next, as shown in FIG. 24, using the second linear pattern formed on the Ta contact layer 64 as a hard mask, the MTJ layer 63 is formed by ion milling until it reaches the lower wiring layer 62 of Ta. Etch. Up to this step, the MTJ layer 63 is processed into the shape of the final TMR element 65, and the rectangular shape of the joint is formed while maintaining the sharpness of the corners.

【0087】第4の実施形態では、接合部の形状として
矩形の場合を示しているが、第2の線状パターンを第1
の線状パターンに直交させるのではなく、傾けて形成す
ることも可能であり、その場合にはやはり低保持力特性
をもつ並行四辺形の接合部を形成することができる。
In the fourth embodiment, the case where the shape of the joint is rectangular is shown.
Can be formed not at right angles to the linear pattern but at an angle. In this case, a parallelogram-shaped joint having low coercive force characteristics can also be formed.

【0088】次に図25に示すように、再度全体をSi
x 絶縁膜で埋め込み、平坦化して、Taのコンタクト
層64を露出させる。最後に図26に示すように、Ti
/TiN/AlCu/Tiからなる上部配線層69を全
面に堆積した後、フォトリソグラフィとドライエッチン
グによりパターニングを行うことにより、角部が直角に
形成された長方形のTMR素子63が完成する。
Next, as shown in FIG.
Embedded O x insulating film, planarized to expose the contact layer 64 of Ta. Finally, as shown in FIG.
After depositing an upper wiring layer 69 made of / TiN / AlCu / Ti over the entire surface, patterning is performed by photolithography and dry etching, thereby completing a rectangular TMR element 63 having a right-angled corner.

【0089】また、前述したような接合部63を形成し
た後に上部配線層69を形成するプロセスの他にも、図
21の後の工程として、先に上部配線層を全面に堆積し
た後、第2の線状パターンを形成し、その後に上部配線
ごと接合部を線状にパ夕一ニングするプロセスも可能で
ある。その場合は上部配線形成のためのリソグラフィプ
ロセスが不要になるという利点がある。
In addition to the process of forming the upper wiring layer 69 after the formation of the bonding portion 63 as described above, as a step subsequent to FIG. It is also possible to form a second linear pattern, and then perform a linear patterning of the joint portion together with the upper wiring. In this case, there is an advantage that a lithography process for forming the upper wiring is not required.

【0090】さらにまた、上部配線を第2の線状バ夕一
ン形成と同時に行う場合にば、MRAMに好適な矩形形
状として第2の線状パターン幅は幅広いものを形成する
ことが出来るため、TMR素子の接合部に電流磁界を印
加する主要な配線として働く上部配線の幅を、より高磁
場印加が可能な幅広い状態で形成することも可能であ
る。
Further, when the upper wiring is formed simultaneously with the formation of the second linear pattern, the second linear pattern having a wide width can be formed as a rectangular shape suitable for the MRAM. , The width of the upper wiring acting as a main wiring for applying a current magnetic field to the junction of the TMR element can be formed in a wide state in which a higher magnetic field can be applied.

【0091】(第5の実施形態)次に第5の実施形態と
して、線状パターン形成とドライエッチングを2回繰り
返すことにより、TMR素子の接合部形状を角部の先鋭
性を保ったままエッチングするためのハードマスクを形
成する方法について説明する。
(Fifth Embodiment) Next, as a fifth embodiment, the formation of the linear pattern and the dry etching are repeated twice so that the joint of the TMR element is etched while maintaining the sharpness of the corners. A method of forming a hard mask for performing the process will be described.

【0092】図27乃至図38は、角部が直角の微細な
TMR素子の作製プロセスを説明するものであり、各工
程毎に右側に上面図(b)と左側に接合部の中心付近の
(上面図のA−A’線に沿った)断面図を示す。図27
から図29までの工程は、図15から図17までの工程
と全く同様とすることができるため、ここでは重複する
説明を省略する。但し、71はSi基板61、72はT
aの下部配線層、73は磁性金属の多層膜を含む強磁性
体/絶縁体/強磁性体構造からなる磁気トンネル接合
(MTJ)層、74はTaのコンタクト層、75は後に
TMR素子(接合部)となる領域である。
FIGS. 27 to 38 illustrate a process for fabricating a fine TMR element having a right-angled corner. FIG. FIG. 4 shows a cross-sectional view (along line AA ′ of the top view). FIG.
29 to FIG. 29 can be exactly the same as the steps of FIG. 15 to FIG. However, 71 is the Si substrate 61, and 72 is T
Reference numeral 73 denotes a lower wiring layer, 73 denotes a magnetic tunnel junction (MTJ) layer having a ferromagnetic / insulator / ferromagnetic structure including a magnetic metal multilayer film, 74 denotes a Ta contact layer, and 75 denotes a TMR element (junction). Area).

【0093】図29の工程に引き続き、図30に示すよ
うに、平坦化した表面全体に接合部を規定するためのド
ライエッチングマスクとなるCrのマスク層77を堆積
する。
Following the step of FIG. 29, as shown in FIG. 30, a Cr mask layer 77 serving as a dry etching mask for defining a junction is deposited on the entire flattened surface.

【0094】次に図31に示すように、第1の線状パタ
ーンを有するレジスト78をフォトリソグラフィにより
形成する。次に図32に示すように、レジスト78によ
る第1の線状パターンをCl2 とO2 の混合ガスによる
ドライエッチングを用いて下地のCrマスク層に転写す
る。この時、Crのマスク層が薄いことにより、Crマ
スク層のドライエッチングを行っても下地のTa74、
およびSiOx 絶縁膜76の平坦性には殆ど影響を与え
ない。
Next, as shown in FIG. 31, a resist 78 having a first linear pattern is formed by photolithography. Next, as shown in FIG. 32, the first linear pattern of the resist 78 is transferred to the underlying Cr mask layer using dry etching with a mixed gas of Cl 2 and O 2 . At this time, since the Cr mask layer is thin, even if dry etching is performed on the Cr mask layer, the base Ta 74,
And the flatness of the SiO x insulating film 76 is hardly affected.

【0095】次に図33に示すように、第2の線状パタ
ーンを有するレジスト79を第1の線状パターン(7
8)と直交するようにフォトリソグラフィにより形成す
る。
Next, as shown in FIG. 33, a resist 79 having a second linear pattern is applied to the first linear pattern (7
It is formed by photolithography so as to be orthogonal to 8).

【0096】次に図34に示すように、レジスト79の
第2の線状パターンをやはりCl2とO2 の混合ガスに
よるドライエッチングを用いて下地のCrマスク層77
に転写する。こうして2回の線状パターン形成とドライ
エッチングの工程により、Crマスク層77は最終的な
接合部75の形状として角部の先鋭性が保たれたままパ
ターニングされる。
Next, as shown in FIG. 34, the second linear pattern of the resist 79 is also formed by dry etching with a mixed gas of Cl 2 and O 2 , using the underlying Cr mask layer 77.
Transfer to In this manner, by the two linear pattern formation and dry etching processes, the Cr mask layer 77 is patterned while maintaining the sharpness of the corners as the shape of the final joint 75.

【0097】ここで、以下に述べるようにこのCrマス
ク層77と下地のTaコンタクト層74のドライエッチ
ング選択比が大きいことにより、Crマスク層77の膜
厚は約20nmと薄く形成することが出来るため、図3
2の第1の線状パターンの転写後は、特に埋め込みと平
坦化の工程を経ることなく、図33あるいは図34とい
った第2の線状パターンの形成と転写を、接合部の形状
を損なうこと無しに行うことが出来る。
Here, since the dry etching selectivity between the Cr mask layer 77 and the underlying Ta contact layer 74 is large as described below, the thickness of the Cr mask layer 77 can be formed as thin as about 20 nm. Therefore, FIG.
After the transfer of the first linear pattern, the formation and transfer of the second linear pattern shown in FIG. 33 or FIG. It can be done without.

【0098】次に図35に示すように、良好な矩形パタ
ーンとして形成されたCrマスク層77を用いて、SF
6 のドライエッチングによりTaのコンタクト層74を
エッチングする。
Next, as shown in FIG. 35, the SF is formed using the Cr mask layer 77 formed as a good rectangular pattern.
The contact layer 74 of Ta is etched by the dry etching of step 6 .

【0099】次に図36に示すように、良好な矩形パタ
ーンとして形成されたTaコンタクト層74をマスクと
して用いて、ArイオンミリングによりMTJ層73を
下地のTaの下部配線層72が露出するまでエッチング
する。
Next, as shown in FIG. 36, using the Ta contact layer 74 formed as a good rectangular pattern as a mask, the MTJ layer 73 is formed by Ar ion milling until the underlying Ta lower wiring layer 72 is exposed. Etch.

【0100】MTJ層73のエッチングには、第4の実
施形態と同様に、Arイオンミリングに代えて、Cl2
とArの混合ガスによる反応性ドライエッチングを用い
てもよい。
For etching the MTJ layer 73, as in the fourth embodiment, instead of Ar ion milling, Cl 2 is used.
Dry etching using a mixed gas of Ar and Ar may be used.

【0101】その後は第4の実施形態と同様に、図37
に示すように全体をSiOx絶縁層76´で埋め込んで
平坦化し、図38に示すよう上部配線80を形成してT
MR素子(接合部)75の形成プロセスは完了する。
Thereafter, as in the fourth embodiment, FIG.
As shown in FIG. 38, the whole is buried with a SiO x insulating layer 76 ′ to be flattened, and as shown in FIG.
The process of forming the MR element (junction) 75 is completed.

【0102】ここで、接合部を規定するためのマスク層
としては、DLCやポリイミド等の非感光性有機材料を
用いることも出來る。これらの材料をマスク層をして用
いた場合には、そのパターニングにはO2を反応性ガス
としたドライエツチングを用いることが出来るため、下
地の金属コンタクト層との選択比を非常に大きくとるこ
とが出来るため、マスク層のパターニングの際に、下地
の平坦性が損なわれる心配が殆ど無い。但し、その場合
は最初に線状パターンを規定するフオトリソグラフィに
おいて、シリル化プロセスといったレジスト表面の耐O
2プラズマ処理、もしくは多層レジストプロセスが必要
である。また、DLCや非感光性有機材料は非晶質であ
るために、0.1μmオーダーの微小パターンを形成し
た場合にも、非常に平滑な側壁形状が得られるといった
特長を持つ。
Here, a non-photosensitive organic material such as DLC or polyimide can be used as a mask layer for defining the junction. When these materials are used as a mask layer, dry etching using O 2 as a reactive gas can be used for patterning, so that the selectivity with respect to the underlying metal contact layer is very large. Therefore, when patterning the mask layer, there is almost no fear that the flatness of the base is impaired. However, in this case, in the photolithography for defining the linear pattern first, the resist surface such as the silylation process is subjected to O-resistance.
2 plasma treatment, or it is necessary multilayer resist process. Further, since the DLC and the non-photosensitive organic material are amorphous, they have a feature that a very smooth side wall shape can be obtained even when a fine pattern on the order of 0.1 μm is formed.

【0103】第5の実施形態においても、角部が直角に
形成された長方形のTMR素子を得ることができる。
Also in the fifth embodiment, it is possible to obtain a rectangular TMR element whose corner is formed at a right angle.

【0104】(第6の実施形態)次に第6の実施形態と
して、線状パターン形成とドライエッチングを3回繰り
返すことにより、TMR素子の接合部形状をより低保持
力特性が得られるように形成する方法について説明す
る。
(Sixth Embodiment) Next, as a sixth embodiment, the formation of a linear pattern and dry etching are repeated three times so that the joint shape of the TMR element can be obtained with lower coercive force characteristics. A method of forming will be described.

【0105】図5の接合部形状と保持力の関係のグラフ
から分かるように、(a)の角部が十分先鋭化している
矩形パターンの他にも、(b)の矩形の対角する2つの
角を落としたような図形も、比較的低保持力特性が得ら
れると考えられる。
As can be seen from the graph of the relationship between the shape of the joint and the holding force in FIG. 5, in addition to the rectangular pattern in which the corners in FIG. It is considered that a figure in which two corners are dropped can also obtain relatively low holding force characteristics.

【0106】図5の(b)のような接合部形状は、図3
9に示すように、線状パターン82、83,84の形成
とドライエッチングを3回繰り返すことにより、斜線部
で示した接合部81として、正確に得ることが出来る。
さらにまた、このような線状パターン形成とエッチング
を複数回繰り返すことにより、非常に精度良く、こうい
った凸多角形の接合形状を得ることも可能である。
The shape of the joint as shown in FIG.
As shown in FIG. 9, by repeating the formation of the linear patterns 82, 83 and 84 and the dry etching three times, it is possible to accurately obtain the joints 81 indicated by oblique lines.
Furthermore, by repeating such linear pattern formation and etching a plurality of times, it is possible to obtain such a junction shape of a convex polygon with high accuracy.

【0107】このような、複数回の線状パターン形成と
ドライエッチングというプロセスは第4の実施形態のよ
うな接合部まで線状パターンでエッチングしてしまう方
法と第5の実施形態のようなマスク層だけを線状パター
ンでエッチングする方法の両方、もしくはその併用の方
法に適用できることは明らかである。
The process of forming a linear pattern and performing dry etching a plurality of times in this manner includes a method of etching to a joint portion in a linear pattern as in the fourth embodiment and a mask as in the fifth embodiment. Obviously, the method can be applied to both the method of etching only the layer in the linear pattern or the method of using both.

【0108】さらにまた、上記の多重線状パターン形成
の手法を、MRAMにおいて格子状に配列される複数の
TMR素子の形成に用いる場合には、リソグラフィ工程
を効率化させることができる。
Furthermore, when the above-described method of forming a multiple linear pattern is used for forming a plurality of TMR elements arranged in a lattice in an MRAM, the lithography process can be made more efficient.

【0109】(第7の実施形態)第7の実施形態とし
て、本発明の第2の実施形態(図7)のTMR素子の製
造方法を説明する。図40に示すように、第1の線状パ
ターン92をフォトリソグラフィで形成する際に、同時
にEB描画のスポット描画により、矩形となる端部で点
対象となる2点の位置に半円形状のパターン93を追加
する。この時、レジストとしてSAL601等といった
電子線および遠紫外光に感度を有する化学増感型レジス
トを用いれば、フォトリソグラフィとEBリソグラフィ
を重ねて行うミックスアンドマッチの手法を用いること
ができ、一部に半球状の突起を有する線状パターン、即
ちTMR素子91を形成することが出来る。
(Seventh Embodiment) As a seventh embodiment, a method of manufacturing a TMR element according to a second embodiment (FIG. 7) of the present invention will be described. As shown in FIG. 40, when the first linear pattern 92 is formed by photolithography, a semicircular shape is formed at two rectangular positions at the rectangular end by spot drawing of EB drawing at the same time. A pattern 93 is added. At this time, if a chemically sensitized resist having sensitivity to electron beam and far ultraviolet light such as SAL601 is used as the resist, a mix-and-match method in which photolithography and EB lithography are overlapped can be used. A linear pattern having hemispherical projections, that is, a TMR element 91 can be formed.

【0110】ここで、一般にEBリソグラフィはプロセ
ススループットが低いプロセスではあるものの、上記の
ようなスポット描画だけならば直径50nmのパターン
を非常に高速に描画することが出来る。例えば、化学増
感型のSAL601レジストを用いて100pAのビ一
ム電流でスポット描画を行えば、メモリ容量1Gb1t
に対応する約10個のスポットをわすか数分で描画す
ることが可能である。よつて、フオトリソグラフィによ
る約0.1μm幅の線状パターン露光とEBリソグラフ
ィによる直径約50nmのスポツト露光を組み台わせる
ことにより、lGbit相当のMRAMを生産性良く作
製することが出来る。
Here, although EB lithography is generally a process having a low process throughput, a pattern having a diameter of 50 nm can be drawn at a very high speed only by the above-described spot drawing. For example, if spot drawing is performed with a beam current of 100 pA using a chemically sensitized SAL601 resist, the memory capacity is 1 Gb1t.
It is possible to draw in about 10 nine minutes or Wath the spots corresponding to. Therefore, by combining linear pattern exposure of about 0.1 μm width by photolithography and spot exposure of about 50 nm in diameter by EB lithography, an MRAM equivalent to 1 Gbit can be manufactured with high productivity.

【0111】上記の強磁性トンネル接合は、磁気記録素
子、磁気抵抗効果型磁気へッド、磁気再生装置等に適用
することができる。以下、本発明の磁気抵抗効果素子の
応用例の実施形態を説明する。
The above-described ferromagnetic tunnel junction can be applied to a magnetic recording element, a magneto-resistance effect type magnetic head, a magnetic reproducing device, and the like. Hereinafter, embodiments of application examples of the magnetoresistance effect element of the present invention will be described.

【0112】(第8の実施形態)第8の実施形態では、
本発明の磁気抵抗効果素子を磁気記録装置(MRAM)
に適用した例を説明する。
(Eighth Embodiment) In the eighth embodiment,
Magnetic recording device (MRAM) using magnetoresistive element of the present invention
An example in which the present invention is applied will be described.

【0113】一般に、MRAMにおいては、小さなダイ
サイズで大容量であることが要求される。従って、配線
幅は勿論のこと、各セルの面積は必然的に小さくならざ
るを得ない。しかし、本発明の磁気抵抗効果素子を用い
ることによりスイッチング磁場が低減できるため。記憶
ビットの書き込みの際に必要な書き込み電流が小さくて
済み,消費電力を抑え,かつ高速なスイッチングが可能
となる。従って,本発明の磁気素子は、MRAMのセル
に用いるのに好適である。
In general, an MRAM is required to have a small die size and a large capacity. Therefore, not only the wiring width but also the area of each cell is inevitably reduced. However, the switching magnetic field can be reduced by using the magnetoresistance effect element of the present invention. A small write current is required for writing the storage bit, which reduces power consumption and enables high-speed switching. Therefore, the magnetic element of the present invention is suitable for use in an MRAM cell.

【0114】図41は個別の記録素子の構成を説明する
ための断面図、図42はMRAMの摸式的な回路図であ
る。
FIG. 41 is a sectional view for explaining the configuration of an individual recording element, and FIG. 42 is a schematic circuit diagram of an MRAM.

【0115】MRAMは、図42に示すように、ローデ
コーダ140で制御される複数の読み出しワード線WL
1(122)と、カラムデーダ150で制御され、ワー
ド線122と交差する複数のビット線BL(134)を
備える。ワード線122とビット線134の各交点に
は、本発明の磁気抵抗効果素子(例えば第3の実施形態
の10、20、30、40、或いは第7の実施形態の9
1等)と、ワード線122によりその導通が制御される
スイッチ(導通制御素子)としてのMOSFET120
を備える。また、読み出しワード線122と平行方向
に、磁気抵抗素子10に近接して延在する書き込みワー
ド線WL2(131)を備える。
The MRAM has a plurality of read word lines WL controlled by a row decoder 140, as shown in FIG.
1 (122) and a plurality of bit lines BL (134) controlled by the column data 150 and intersecting with the word lines 122. At each intersection of the word line 122 and the bit line 134, a magnetoresistive element of the present invention (for example, 10, 20, 30, 40 in the third embodiment, or 9 in the seventh embodiment) is provided.
1) and a MOSFET 120 as a switch (conduction control element) whose conduction is controlled by the word line 122.
Is provided. In addition, a write word line WL2 (131) extending in the direction parallel to the read word line 122 and close to the magnetoresistive element 10 is provided.

【0116】各メモリ素子は図40のように構成されて
いる。半導体基板の表面にMOSFET120を形成す
る。123,124がソース・ドレイン領域であり、ゲ
ート電極122が延在して形成され、ワード線WL1
(122)となる。ソース・ドレイン領域の一方124
に接続したコンタクト132を介して、下地配線133
が形成されており、この下地配線133とビット線13
4の間に本発明の磁性抵抗効果素子10を形成する。ま
た、磁気抵抗効果素子10に近接して書き込み用のワー
ド線WL2(131)を形成する。
Each memory element is configured as shown in FIG. The MOSFET 120 is formed on the surface of the semiconductor substrate. 123 and 124 are source / drain regions, the gate electrode 122 is formed to extend, and the word line WL1 is formed.
(122). One of the source / drain regions 124
Through the contact 132 connected to the base wiring 133
Are formed, and the underlying wiring 133 and the bit line 13 are formed.
4, the magnetoresistance effect element 10 of the present invention is formed. Further, a word line WL2 (131) for writing is formed close to the magnetoresistive element 10.

【0117】なお、MOSトランジスタの代わりにダイ
オードを本発明の磁気抵抗効果素子と積層してMRAM
を構成してもよい。即ち、ワード線上にダイオードと本
発明の磁気抵抗効果素子からなるセルを積層して形成
し、磁気抵抗効果素子上にビット線を配置して形成し、
さらにこのセルを多数個アレイ状に配置することで、M
RAMが構成できる。このようなMRAMは、携帯電話
等の形態端末のメモリ部に搭載できる。
Incidentally, instead of the MOS transistor, a diode is laminated on the magnetoresistive effect element of the present invention to form an MRAM.
May be configured. That is, a diode and a cell comprising the magnetoresistive element of the present invention are stacked and formed on a word line, and a bit line is arranged and formed on the magnetoresistive element,
Further, by arranging a large number of these cells in an array, M
A RAM can be configured. Such an MRAM can be mounted in a memory section of a portable terminal such as a mobile phone.

【0118】(第9の実施形態)第9の実施形態は、本
発明の磁気抵抗効果素子を磁気ヘッドに応用した例を説
明する。
(Ninth Embodiment) A ninth embodiment describes an example in which the magnetoresistive element of the present invention is applied to a magnetic head.

【0119】図43は、第3の実施形態の磁気抵抗効果
素子10(20、30、40、91であってもよい)を
搭載した磁気ヘッドアセンブリの斜視図である。アクチ
ュエータアーム301は、磁気ディスク装置内の固定軸
に固定されるための穴が設けられ、図示しない駆動コイ
ルを保持するボビン部等を有する。アクチュエータアー
ム301の一端にはサスペンション302が固定されて
いる。サスペンション302の先端には信号の書き込
み、および読み取り用のリード線304が配線され、こ
のリード線304の一端はヘッドスライダ303に組み
込まれた磁気抵抗効果素子10の各電極に接続され、リ
ード線304の他端は電極パッド305に接続されてい
る。
FIG. 43 is a perspective view of a magnetic head assembly on which the magnetoresistive element 10 (may be 20, 30, 40, or 91) of the third embodiment is mounted. The actuator arm 301 is provided with a hole to be fixed to a fixed shaft in the magnetic disk device, and has a bobbin or the like for holding a drive coil (not shown). A suspension 302 is fixed to one end of the actuator arm 301. A lead wire 304 for writing and reading signals is wired to the tip of the suspension 302, and one end of the lead wire 304 is connected to each electrode of the magnetoresistive element 10 incorporated in the head slider 303. Is connected to the electrode pad 305.

【0120】図44は、図43に示す磁気ヘッドアセン
ブリを搭載した磁気ディスク装置(磁気再生装置)の内
部構造を示す斜視図である。磁気ディスク311はスピ
ンドル312に装着され、図示しない駆動装置制御部か
らの制御信号に応答する図示しないモータにより回転す
る。
FIG. 44 is a perspective view showing the internal structure of a magnetic disk device (magnetic reproducing device) on which the magnetic head assembly shown in FIG. 43 is mounted. The magnetic disk 311 is mounted on a spindle 312, and is rotated by a motor (not shown) that responds to a control signal from a drive controller (not shown).

【0121】アクチュエータアーム301は固定軸31
3に固定され、サスペンション302およびその先端の
ヘッドスライダ303を支持している。磁気ディスク3
11が回転すると、ヘッドスライダ303の媒体対向面
は磁気ディスク311の表面から所定量浮上した状態で
保持され、情報の記録再生を行う。
The actuator arm 301 has the fixed shaft 31
3 and supports a suspension 302 and a head slider 303 at the tip of the suspension 302. Magnetic disk 3
When 11 rotates, the medium facing surface of the head slider 303 is held in a state of floating above the surface of the magnetic disk 311 by a predetermined amount, and information is recorded and reproduced.

【0122】アクチュエータアーム301の基端にはリ
ニアモータの一種であるボイスコイルモータ314が設
けられている。ボイスコイルモータ314はアクチュエ
ータアーム301のボビン部に巻き上げられた図示しな
い駆動コイルとこのコイルを挟み込むように対向して配
置された永久磁石および対向ヨークからなる磁気回路と
から構成されている。
At the base end of the actuator arm 301, a voice coil motor 314, which is a kind of linear motor, is provided. The voice coil motor 314 includes a drive coil (not shown) wound around a bobbin portion of the actuator arm 301, and a magnetic circuit including a permanent magnet and an opposing yoke which are opposed to each other so as to sandwich the coil.

【0123】アクチュエータアーム301は、固定軸3
13の上下2箇所に設けられた図示しないボールベアリ
ングによって支持され、ボイスコイルモータ314によ
り回転摺動が自在にできるようになっている。
The actuator arm 301 has a fixed shaft 3
It is supported by ball bearings (not shown) provided at two places above and below 13, and can be freely rotated and slid by a voice coil motor 314.

【0124】上記のように本発明の磁気抵抗効果素子を
使用した磁気ヘッドあるいは磁気再生装置は、従来の磁
気抵抗効果素子より高速で安定した動作と大容量化が可
能になる。
As described above, the magnetic head or the magnetic reproducing apparatus using the magnetoresistive effect element of the present invention can operate at higher speed and more stably than the conventional magnetoresistive effect element, and can increase the capacity.

【0125】[0125]

【発明の効果】本発明の磁気抵抗効果素子においては、
保磁力が小さく、またスイッチング磁場が小さい。この
素子を磁気メモリのメモリセルとして用いた場合、磁化
反転に必要な磁場を生成するための書き込み配線電流を
小さくすることができる。従って、本発明の磁気素子を
メモリセルとした磁気メモリでは高集積化が可能であ
り、かつ、消費電力を低減するともに、スイッチング速
度を高速化することが可能となる。
According to the magnetoresistance effect element of the present invention,
Low coercive force and small switching magnetic field. When this element is used as a memory cell of a magnetic memory, a write wiring current for generating a magnetic field required for magnetization reversal can be reduced. Therefore, the magnetic memory using the magnetic element of the present invention as a memory cell can achieve high integration, reduce power consumption, and increase switching speed.

【0126】また、本発明の磁気抵抗効果素子の製造方
法によれば、上記の素子を容易なプロセスで、歩留まり
良く製作することができる。
Further, according to the method of manufacturing a magnetoresistive effect element of the present invention, the above element can be manufactured by a simple process with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における磁気抵抗効果素子の概略平面
図。
FIG. 1 is a schematic plan view of a magnetoresistance effect element according to the present invention.

【図2】本発明の第1の実施形態に係る磁気抵抗効果素
子で、磁化の方向を示した平面図。
FIG. 2 is a plan view showing a direction of magnetization in the magnetoresistive element according to the first embodiment of the present invention.

【図3】第1の実施形態に係る磁気抵抗効果素子の磁化
ヒステリシス図。
FIG. 3 is a magnetization hysteresis diagram of the magnetoresistive element according to the first embodiment.

【図4】第1の実施形態に係る磁気抵抗効果素子の磁化
反転過程を示した図。
FIG. 4 is a view showing a magnetization reversal process of the magnetoresistive element according to the first embodiment.

【図5】第1の実施形態に係る磁気抵抗効果素子(g)
の保磁力を他のさまざまの形状を持つ素子((a)〜
(f))の保磁力と比較した図。
FIG. 5 is a magnetoresistance effect element (g) according to the first embodiment;
The coercive force of the element having various other shapes ((a) ~
The figure which compared with the coercive force of (f)).

【図6】本発明に対する比較例のひとつの形状と磁化の
方向を示した図。
FIG. 6 is a diagram showing one shape and a direction of magnetization of a comparative example with respect to the present invention.

【図7】本発明の第2の実施形態に係る磁気抵抗効果素
子の形状と磁化の方向を示した平面図。
FIG. 7 is a plan view showing the shape and the direction of magnetization of a magnetoresistive element according to a second embodiment of the present invention.

【図8】第2の実施形態に係る磁気抵抗効果素子の磁化
ヒステリシス図。
FIG. 8 is a magnetization hysteresis diagram of the magnetoresistive element according to the second embodiment.

【図9】本発明の第3の実施形態に係る磁気抵抗効果素
子の断面図。
FIG. 9 is a sectional view of a magnetoresistive element according to a third embodiment of the present invention.

【図10】第3の実施形態に係る他の磁気抵抗効果素子
の断面図。
FIG. 10 is a sectional view of another magnetoresistive element according to the third embodiment.

【図11】第3の実施形態に係る更に他の磁気抵抗効果
素子の断面図。
FIG. 11 is a sectional view of still another magnetoresistive element according to the third embodiment.

【図12】第3の実施形態に係る更に他の磁気抵抗効果
素子の断面図。
FIG. 12 is a sectional view of still another magnetoresistive element according to the third embodiment.

【図13】第3の実施形態に係る磁気抵抗効果素子
(e)の保磁力を他のさまざまの形状を持つ素子
((a)〜(d))の保磁力と比較した図。
FIG. 13 is a diagram comparing the coercive force of the magnetoresistive element (e) according to the third embodiment with the coercive forces of other elements ((a) to (d)) having various shapes.

【図14】本発明の磁気抵抗効果素子の形成法の概念を
説明する模式的な平面図。
FIG. 14 is a schematic plan view illustrating the concept of a method of forming a magnetoresistive element according to the present invention.

【図15】本発明の第4の実施形態に係る磁気抵抗効果
素子の作製プロセスを説明するための素子の断面図
(a)と平面図(b)。
FIGS. 15A and 15B are a cross-sectional view and a plan view of an element for explaining a manufacturing process of a magnetoresistive element according to a fourth embodiment of the present invention.

【図16】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 16A and 16B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図17】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 17A and 17B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図18】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 18A and 18B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図19】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 19A and 19B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図20】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIG. 20 is a cross-sectional view (a) and a plan view (b) of an element for explaining a step following the previous figure.

【図21】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 21A and 21B are a cross-sectional view and a plan view, respectively, of an element illustrating a step following the previous figure.

【図22】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 22A and 22B are a cross-sectional view and a plan view of a device illustrating a step following the previous figure.

【図23】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 23A and 23B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図24】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 24A and 24B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図25】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 25A and 25B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図26】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 26A and 26B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図27】本発明の第5の実施形態に係る磁気抵抗効果
素子の作製プロセスを説明するための素子の断面図
(a)と平面図(b)。
FIGS. 27A and 27B are a cross-sectional view and a plan view of an element for explaining a manufacturing process of a magnetoresistive element according to a fifth embodiment of the present invention.

【図28】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 28A and 28B are a cross-sectional view and a plan view, respectively, of an element for explaining a step following the previous figure.

【図29】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 29A and 29B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図30】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 30A and 30B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図31】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 31A and 31B are a cross-sectional view and a plan view, respectively, of an element for explaining a step following the previous figure.

【図32】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIG. 32 is a cross-sectional view (a) and a plan view (b) of an element for explaining a step following the previous figure.

【図33】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIG. 33 is a cross-sectional view (a) and a plan view (b) of an element for explaining a step following the previous figure.

【図34】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
34A and 34B are a cross-sectional view and a plan view of a device illustrating a step following the previous figure.

【図35】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 35A and 35B are a cross-sectional view and a plan view of an element for explaining a step following the previous step; FIGS.

【図36】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 36A and 36B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図37】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
FIGS. 37A and 37B are a cross-sectional view and a plan view of an element for explaining a step following the previous figure.

【図38】前図に続く工程を説明する素子の断面図
(a)と平面図(b)。
38A and 38B are a cross-sectional view and a plan view of a device illustrating a step following the previous figure.

【図39】本発明の第6の実施形態に係る磁気抵抗効果
素子の製造方法を説明する模式的な平面図。
FIG. 39 is a schematic plan view illustrating the method for manufacturing the magnetoresistive element according to the sixth embodiment of the present invention.

【図40】本発明の第7の実施形態に係る磁気抵抗効果
素子の製造方法を説明する模式的な平面図。
FIG. 40 is a schematic plan view illustrating the method for manufacturing the magnetoresistive element according to the seventh embodiment of the present invention.

【図41】本発明の第8の実施形態に係るMRAMの1
セルの構成を示す摸式的な断面図。
FIG. 41 shows an MRAM according to an eighth embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a configuration of a cell.

【図42】第8の実施形態のMRAMの回路図。FIG. 42 is a circuit diagram of an MRAM according to an eighth embodiment.

【図43】本発明の第9の実施形態に係る磁気ヘッドの
摸式的な斜視図。
FIG. 43 is a schematic perspective view of a magnetic head according to a ninth embodiment of the present invention.

【図44】第9の実施形態に係る磁気ヘッドを使用した
磁気再生装置の摸式的な斜視図。
FIG. 44 is a schematic perspective view of a magnetic reproducing apparatus using a magnetic head according to a ninth embodiment.

【図45】微小な磁性体において現われる一般的な磁気
的構造を示した図。
FIG. 45 is a view showing a general magnetic structure appearing in a minute magnetic body.

【図46】従来の磁気抵抗効果素子の作製プロセスを断
面図と平面図の対で段階的に示す図。
FIG. 46 is a view showing step by step a pair of a cross-sectional view and a plan view of a manufacturing process of a conventional magnetoresistance effect element.

【符号の説明】[Explanation of symbols]

1、3,5、11,13,15、11−1,11−2…
強磁性層 2,12,14…バリア層 16,17…非磁性層 10,20,30,40…磁気抵抗効果素子 61、71…Si基板 62、72…下部配線線層 63、73…MTJ層 64、74…コンタクト層 65、75…接合部(TMR素子) 66、66´、76,76´…絶縁層 67、68、77、78…フォトレジスト(マスク層) 69、80…上部配線層 81、91…接合部(TMR素子) 82、92…第1の線状パターン 83、94…第2の線状パターン 84…第3の線状パターン 93…EB描画パターン
1, 3, 5, 11, 13, 15, 11-1, 11-2 ...
Ferromagnetic layer 2, 12, 14 ... Barrier layer 16, 17 ... Non-magnetic layer 10, 20, 30, 40 ... Magnetoresistance effect element 61, 71 ... Si substrate 62, 72 ... Lower wiring line layer 63, 73 ... MTJ layer 64, 74 ... contact layer 65, 75 ... junction (TMR element) 66, 66 ', 76, 76' ... insulating layer 67, 68, 77, 78 ... photoresist (mask layer) 69, 80 ... upper wiring layer 81 , 91 ... junction (TMR element) 82, 92 ... first linear pattern 83, 94 ... second linear pattern 84 ... third linear pattern 93 ... EB drawing pattern

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/16 H01F 10/32 10/32 H01L 43/12 H01L 27/105 G01R 33/06 R 43/12 H01L 27/10 447 (72)発明者 中島 健太郎 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 天野 実 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 砂井 正之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 斉藤 好昭 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 2G017 AA01 AB07 AD55 AD65 5D034 BA03 BA08 BA15 DA07 5E049 AA01 AA04 AA07 AA09 AC00 AC05 BA12 CB02 DB12 5F083 FZ10 GA09 GA27 GA30 JA39 JA56 PR01 PR03 PR04 PR39 PR40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/16 H01F 10/32 10/32 H01L 43/12 H01L 27/105 G01R 33/06 R 43/12 H01L 27/10 447 (72) Inventor Kentaro Nakajima 1st Toshiba R & D Center, Komukai-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Minoru Amano 1 Toshiba-cho, Komukai Toshiba-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Address: Toshiba R & D Center (72) Inventor: Masayuki Sunai 1: Komukai Toshiba-cho, Yuki-ku, Kawasaki-shi, Kanagawa 1F, Komukai Toshiba-cho, Toshiba R & D Center F-term (reference) 2G017 AA01 AB07 AD55 AD65 5D034 BA03 BA08 BA15 DA07 5E049 AA01 AA04 AA07 AA09 AC00 AC05 BA12 CB02 DB12 5F083 FZ10 GA09 GA27 GA30 JA39 JA56 PR01 PR03 PR04 PR39 PR40

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 第1の強磁性層と、この第1の強磁性層
上に形成された絶縁体層と、この絶縁体層上に形成され
た第2の強磁性層を有し、前記絶縁体層をトンネルして
前記第1の強磁性層と第2の強磁性層の間にトンネル電
流が流れ,そのトンネル電流または前記第1および第2
の強磁性層間に生じる電圧を検出する磁気抵抗効果素子
であって,その平面形状が,中央部分の幅より端部の幅
が大きいことを特徴とする磁気抵抗効果素子。
A first ferromagnetic layer, an insulator layer formed on the first ferromagnetic layer, and a second ferromagnetic layer formed on the insulator layer. A tunnel current flows between the first ferromagnetic layer and the second ferromagnetic layer by tunneling through an insulator layer, and the tunnel current or the first and second ferromagnetic layers
A magneto-resistance effect element for detecting a voltage generated between the ferromagnetic layers of the magneto-resistance effect element, wherein a planar shape of the magneto-resistance effect element is larger at an end portion than at a central portion.
【請求項2】 前記第1および第2の強磁性層の少なく
とも一方が、第3の強磁性層と、この第3の強磁性層上
に形成された非磁性層と、この非磁性層上に形成された
第4の強磁性層を含むことを特徴とする請求項1に記載
の磁気抵抗効果素子。
2. A method according to claim 1, wherein at least one of said first and second ferromagnetic layers has a third ferromagnetic layer, a non-magnetic layer formed on said third ferromagnetic layer, and a non-magnetic layer formed on said non-magnetic layer. 2. The magnetoresistive element according to claim 1, further comprising a fourth ferromagnetic layer formed on the substrate.
【請求項3】 第1の強磁性層と、この第1の強磁性層
上に形成された第1の絶縁体層と、この第1の絶縁体層
上に形成された第2の強磁性層と、この第2の強磁性層
上に形成された第2の絶縁体層と、この第2の絶縁体層
上に形成された第3の強磁性層とを有する磁気抵抗効果
素子であって、その平面形状が,中央部分の幅より端部
の幅が大きいことを特徴とする磁気抵抗効果素子。
3. A first ferromagnetic layer, a first insulator layer formed on the first ferromagnetic layer, and a second ferromagnetic layer formed on the first insulator layer. A magnetoresistive element having a layer, a second insulator layer formed on the second ferromagnetic layer, and a third ferromagnetic layer formed on the second insulator layer. A magnetoresistive element whose planar shape has a width at an end portion larger than a width at a central portion.
【請求項4】 前記第1、第2、第3の強磁性層の少な
くとも1層が、第4の強磁性層と、この第4の強磁性層
上に形成された非磁性層と、この非磁性層上に形成され
た第5の強磁性層を含むことを特徴とする請求項3に記
載の磁気抵抗効果素子。
4. At least one of the first, second, and third ferromagnetic layers includes a fourth ferromagnetic layer, a non-magnetic layer formed on the fourth ferromagnetic layer, 4. The magnetoresistive element according to claim 3, further comprising a fifth ferromagnetic layer formed on the nonmagnetic layer.
【請求項5】 前記平面形状が,磁化容易軸に対して非
対称で,膜面垂直方向を軸としてほぼ回転対称であるこ
とを特徴とする請求項1乃至4に記載の磁気抵抗効果素
子。
5. The magnetoresistive element according to claim 1, wherein the planar shape is asymmetric with respect to the axis of easy magnetization and substantially rotationally symmetric about a direction perpendicular to the film surface.
【請求項6】 複数のワード線と、この複数のワード線
に交差する複数のビット線と、前記複数のワード線と複
数のビット線の各交点において、前記ビット線とワード
線の間に接続された請求項1乃至請求項5のいずれかに
記載の磁気抵抗効果素子を備えることを特徴とする磁気
ランダムアクセスメモリ。
6. A plurality of word lines, a plurality of bit lines crossing the plurality of word lines, and a connection between the bit lines and the word lines at respective intersections of the plurality of word lines and the plurality of bit lines. A magnetic random access memory comprising the magnetoresistive element according to claim 1.
【請求項7】 請求項6に記載の磁気ランダムアクセス
メモリを搭載したことを特徴とする携帯端末装置。
7. A portable terminal device comprising the magnetic random access memory according to claim 6.
【請求項8】 磁気検知部に請求項1乃至請求項5のい
ずれかに記載の磁気抵抗効果素子を備えることを特徴と
する磁気ヘッド。
8. A magnetic head comprising the magneto-resistive element according to claim 1 in a magnetic detecting section.
【請求項9】 磁気検知部に請求項1乃至請求項5のい
ずれかに記載の磁気抵抗効果素子を備えた磁気ヘッドを
搭載することを特徴とする磁気再生装置。
9. A magnetic reproducing apparatus comprising: a magnetic head provided with a magnetoresistive element according to claim 1 mounted on a magnetic detector.
【請求項10】 少なくとも強磁性体/絶縁体/強磁性
体の積層体からなる接合領域を形成し、この接合領域を
横切る線状パターンのマスクを用いて前記接合領域をエ
ッチングし、このマスクエッチングを位置を変えて複数
回実施し、前記接合領域を所定の形状に加工することを
特徴とする磁気抵抗効果素子の製造方法。
10. A bonding region comprising at least a ferromagnetic / insulator / ferromagnetic laminate is formed, and said bonding region is etched using a mask having a linear pattern crossing said bonding region. Is carried out a plurality of times while changing the position, and the joining region is processed into a predetermined shape.
【請求項11】 前記所定の形状の角部に対し、電子ビ
ームによる加工をさらに加えることを特徴とする請求項
10に記載の磁気抵抗効果素子の製造方法。
11. The method of manufacturing a magnetoresistive element according to claim 10, wherein the corners having the predetermined shape are further processed by an electron beam.
JP2001076614A 2001-03-16 2001-03-16 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device Expired - Fee Related JP4458703B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001076614A JP4458703B2 (en) 2001-03-16 2001-03-16 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device
US10/097,571 US6605836B2 (en) 2001-03-16 2002-03-15 Magnetoresistance effect device, magnetic memory apparatus, personal digital assistance, and magnetic reproducing head, and magnetic information
US10/626,707 US7140096B2 (en) 2001-03-16 2003-07-25 Method of manufacturing a magnetoresistance effect device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076614A JP4458703B2 (en) 2001-03-16 2001-03-16 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device

Publications (2)

Publication Number Publication Date
JP2002280637A true JP2002280637A (en) 2002-09-27
JP4458703B2 JP4458703B2 (en) 2010-04-28

Family

ID=18933517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076614A Expired - Fee Related JP4458703B2 (en) 2001-03-16 2001-03-16 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device

Country Status (2)

Country Link
US (2) US6605836B2 (en)
JP (1) JP4458703B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163330A (en) * 2001-11-27 2003-06-06 Toshiba Corp Magnetic memory
JP2004047992A (en) * 2002-06-17 2004-02-12 Hewlett-Packard Development Co Lp Magnetic memory element having controlled nucleation site in data layer
US6757192B2 (en) * 2001-05-21 2004-06-29 Hokkaido University Magnetic recording element, magnetic memory, magnetic recording method, method for fabricating a magnetic recording element, and method for fabricating a magnetic memory
JP2004186274A (en) * 2002-11-29 2004-07-02 Japan Science & Technology Agency Spin injection element and magnetic apparatus using the same
WO2004109805A1 (en) * 2003-06-05 2004-12-16 National Institute Of Advanced Industrial Science And Technology Minute magnetic body having annular single magnetic domain structure, manufacturing method thereof, or magnetic recording element using the same
US6949779B2 (en) 2002-09-30 2005-09-27 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
JP2005317739A (en) * 2004-04-28 2005-11-10 Toshiba Corp Magnetic storage device and method for manufacturing the same
JP2006135292A (en) * 2004-10-08 2006-05-25 Toshiba Corp Magnetoresistive element
US7099185B2 (en) 2002-12-13 2006-08-29 Osaka University Magnetic memory array, method for recording in a magnetic memory array and method for reading out from a magnetic memory array
JP2006310597A (en) * 2005-04-28 2006-11-09 Nippon Hoso Kyokai <Nhk> Thin-film pattern forming method, coating material, thin-film laminate and tunnel magnetoresistive element
WO2006120845A1 (en) * 2005-05-11 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. Negative resist composition and method for forming resist pattern
JP2007067064A (en) * 2005-08-30 2007-03-15 Toshiba Corp Magnetic random access memory
JP2007096092A (en) * 2005-09-29 2007-04-12 Toshiba Corp Magnetoresistive element
KR100780130B1 (en) 2002-03-29 2007-11-27 가부시끼가이샤 도시바 Magnetoresistance effect element and magnetic memory
US7355884B2 (en) 2004-10-08 2008-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element
US7473646B2 (en) 2003-08-27 2009-01-06 Sony Corporation Dry etching method and production method of magnetic memory device
JP2009099994A (en) * 2007-10-17 2009-05-07 Magic Technologies Inc Method of manufacturing mtj element
US7599156B2 (en) 2004-10-08 2009-10-06 Kabushiki Kaisha Toshiba Magnetoresistive element having specially shaped ferromagnetic layer
JP2010093277A (en) * 2002-06-25 2010-04-22 Renesas Technology Corp Semiconductor integrated circuit device
US8013407B2 (en) 2008-04-03 2011-09-06 Renesas Electronics Corporation Magnetic memory device having a recording layer
EP2372766A1 (en) 2010-03-29 2011-10-05 Renesas Electronics Corporation Magnetic memory element and magnetic memory device
US8427866B2 (en) 2011-03-29 2013-04-23 Renesas Electronics Corporation Magnetic storage element and magnetic storage device
US8492881B2 (en) 2009-04-01 2013-07-23 Renesas Electronics Corporation Magnetic storage device
US8518562B2 (en) 2008-12-15 2013-08-27 Renesas Electronics Corporation Magnetic storage device
US10103198B2 (en) 2015-03-11 2018-10-16 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458703B2 (en) 2001-03-16 2010-04-28 株式会社東芝 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device
US6735112B2 (en) * 2002-02-06 2004-05-11 Micron Technology, Inc. Magneto-resistive memory cell structures with improved selectivity
US6936763B2 (en) * 2002-06-28 2005-08-30 Freescale Semiconductor, Inc. Magnetic shielding for electronic circuits which include magnetic materials
JP4399211B2 (en) * 2002-12-21 2010-01-13 株式会社ハイニックスセミコンダクター Biosensor
KR100923299B1 (en) * 2003-01-28 2009-10-23 삼성전자주식회사 Method for forming magnetic tunneling junction layer of Magnetic Random Access Memory
US6765823B1 (en) * 2003-01-29 2004-07-20 Micron Technology Incorporated Magnetic memory cell with shape anisotropy
US6807092B1 (en) * 2003-06-13 2004-10-19 Infineon Technologies Ag MRAM cell having frustrated magnetic reservoirs
US7183130B2 (en) * 2003-07-29 2007-02-27 International Business Machines Corporation Magnetic random access memory and method of fabricating thereof
US7274080B1 (en) * 2003-08-22 2007-09-25 International Business Machines Corporation MgO-based tunnel spin injectors
US7029941B2 (en) * 2003-08-25 2006-04-18 Headway Technologies, Inc. Magnetic random access memory designs with controlled magnetic switching mechanism
JP4095527B2 (en) * 2003-09-29 2008-06-04 株式会社日立製作所 Magnetization information recording / reproducing method and apparatus
US6798690B1 (en) * 2004-01-10 2004-09-28 Honeywell International Inc. Magnetic switching with expanded hard-axis magnetization volume at magnetoresistive bit ends
KR100624417B1 (en) * 2004-01-31 2006-09-18 삼성전자주식회사 Tunneling Magnetoresisance Device
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7330369B2 (en) 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
US20050218398A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US20050218397A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics for programmable array IC
KR100541558B1 (en) * 2004-04-19 2006-01-11 삼성전자주식회사 Magnetic tunnel junction structures having bended tips at both ends thereof, magnetic random access memory cells employing the same and photo masks used in formation thereof
SE528901C2 (en) * 2004-05-25 2007-03-13 Nm Spintronics Ab Magnetic filter barrier
US7580228B1 (en) * 2004-05-29 2009-08-25 Lauer Mark A Current perpendicular to plane sensor with non-rectangular sense layer stack
WO2006038193A2 (en) * 2004-10-05 2006-04-13 Csi Technology, Inc. Transferring arbitrary binary data over a fieldbus network
JP2006114762A (en) * 2004-10-15 2006-04-27 Toshiba Corp Magnetic random access memory
US20060096723A1 (en) * 2004-11-10 2006-05-11 Hung-Chih Wu Magnetically attractable paper structure
JP2006185961A (en) * 2004-12-24 2006-07-13 Toshiba Corp Magnetic random access memory
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
WO2006092849A1 (en) * 2005-03-01 2006-09-08 Fujitsu Limited Magnetoresistive element and magnetic memory
US20070019337A1 (en) * 2005-07-19 2007-01-25 Dmytro Apalkov Magnetic elements having improved switching characteristics and magnetic memory devices using the magnetic elements
KR100763910B1 (en) * 2006-02-23 2007-10-05 삼성전자주식회사 Magnetic memory device using magnetic domain dragging
US7393699B2 (en) 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
US8477528B2 (en) * 2006-10-16 2013-07-02 Nec Corporation Magnetic memory cell and magnetic random access memory
US20090128966A1 (en) * 2007-10-10 2009-05-21 Krishnakumar Mani Magnetic memory cell based on a magnetic tunnel junction(mtj) with low switching field shapes
EP2306540B1 (en) * 2008-06-24 2014-08-27 Fuji Electric Co., Ltd. Spin valve recording element and storage device
JP5387990B2 (en) * 2008-06-25 2014-01-15 富士電機株式会社 Magnetic memory element, driving method thereof, and nonvolatile memory device
CN102148327A (en) * 2010-12-31 2011-08-10 钱正洪 Minor hysteresis spin valve magnetic resistor
US8582247B2 (en) * 2011-03-08 2013-11-12 Seagate Technology Llc Magnetic element with increased scissoring angle
CN102288927A (en) * 2011-06-28 2011-12-21 钱正洪 Giant magnetoresistance (GMR) spin valve magnetic sensor and manufacturing method thereof
US8339752B1 (en) 2011-09-26 2012-12-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with wide sensor back edge, low resistance, and high signal to-noise ratio and methods of production thereof
US20130270227A1 (en) * 2012-04-13 2013-10-17 Lam Research Corporation Layer-layer etch of non volatile materials
KR102137476B1 (en) * 2013-06-29 2020-07-24 인텔 코포레이션 Magnetic element for memory and logic

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9013869D0 (en) * 1990-06-21 1990-08-15 Toby Lane Limited Improvements in or relating to electrical connectors
US5549978A (en) * 1992-10-30 1996-08-27 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US5898546A (en) * 1994-09-08 1999-04-27 Fujitsu Limited Magnetoresistive head and magnetic recording apparatus
US5652445A (en) * 1995-04-21 1997-07-29 Johnson; Mark B. Hybrid hall effect device and method of operation
US5757695A (en) 1997-02-05 1998-05-26 Motorola, Inc. Mram with aligned magnetic vectors
JPH10294217A (en) * 1997-04-21 1998-11-04 Victor Co Of Japan Ltd Spin valve type magnetoresistance effect film and magnetic head having the same
US6104633A (en) 1998-02-10 2000-08-15 International Business Machines Corporation Intentional asymmetry imposed during fabrication and/or access of magnetic tunnel junction devices
US5953248A (en) 1998-07-20 1999-09-14 Motorola, Inc. Low switching field magnetic tunneling junction for high density arrays
US6209193B1 (en) * 1998-08-24 2001-04-03 International Business Machines Corporation Method of making read sensor with self-aligned low resistance leads
US6788502B1 (en) * 1999-09-02 2004-09-07 International Business Machines Corporation Co-Fe supermalloy free layer for magnetic tunnel junction heads
JP4458703B2 (en) 2001-03-16 2010-04-28 株式会社東芝 Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757192B2 (en) * 2001-05-21 2004-06-29 Hokkaido University Magnetic recording element, magnetic memory, magnetic recording method, method for fabricating a magnetic recording element, and method for fabricating a magnetic memory
JP2003163330A (en) * 2001-11-27 2003-06-06 Toshiba Corp Magnetic memory
KR100780130B1 (en) 2002-03-29 2007-11-27 가부시끼가이샤 도시바 Magnetoresistance effect element and magnetic memory
JP2004047992A (en) * 2002-06-17 2004-02-12 Hewlett-Packard Development Co Lp Magnetic memory element having controlled nucleation site in data layer
JP2010093277A (en) * 2002-06-25 2010-04-22 Renesas Technology Corp Semiconductor integrated circuit device
US7470963B2 (en) 2002-09-30 2008-12-30 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
US6949779B2 (en) 2002-09-30 2005-09-27 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
KR100776879B1 (en) 2002-09-30 2007-11-19 가부시끼가이샤 도시바 Magneto-resistance effect device and magnetic memory
JP2004186274A (en) * 2002-11-29 2004-07-02 Japan Science & Technology Agency Spin injection element and magnetic apparatus using the same
JP4714918B2 (en) * 2002-11-29 2011-07-06 独立行政法人科学技術振興機構 Spin injection device and magnetic device using spin injection device
US7099185B2 (en) 2002-12-13 2006-08-29 Osaka University Magnetic memory array, method for recording in a magnetic memory array and method for reading out from a magnetic memory array
WO2004109805A1 (en) * 2003-06-05 2004-12-16 National Institute Of Advanced Industrial Science And Technology Minute magnetic body having annular single magnetic domain structure, manufacturing method thereof, or magnetic recording element using the same
US7808026B2 (en) 2003-08-27 2010-10-05 Sony Corporation Dry etching method and production method of magnetic memory device
US7473646B2 (en) 2003-08-27 2009-01-06 Sony Corporation Dry etching method and production method of magnetic memory device
US7592189B2 (en) 2004-04-28 2009-09-22 Kabushiki Kaisha Toshiba MRAM and method of manufacturing the same
JP2005317739A (en) * 2004-04-28 2005-11-10 Toshiba Corp Magnetic storage device and method for manufacturing the same
US8009465B2 (en) 2004-10-08 2011-08-30 Kabushiki Kaisha Toshiba Magnetoresistive element
US7518907B2 (en) 2004-10-08 2009-04-14 Kabushiki Kaisha Toshiba Magnetoresistive element
JP2006135292A (en) * 2004-10-08 2006-05-25 Toshiba Corp Magnetoresistive element
US7599156B2 (en) 2004-10-08 2009-10-06 Kabushiki Kaisha Toshiba Magnetoresistive element having specially shaped ferromagnetic layer
US7355884B2 (en) 2004-10-08 2008-04-08 Kabushiki Kaisha Toshiba Magnetoresistive element
JP2006310597A (en) * 2005-04-28 2006-11-09 Nippon Hoso Kyokai <Nhk> Thin-film pattern forming method, coating material, thin-film laminate and tunnel magnetoresistive element
WO2006120845A1 (en) * 2005-05-11 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. Negative resist composition and method for forming resist pattern
JP2007067064A (en) * 2005-08-30 2007-03-15 Toshiba Corp Magnetic random access memory
JP4557841B2 (en) * 2005-08-30 2010-10-06 株式会社東芝 Magnetic random access memory, method of writing data in magnetic random access memory, and method of manufacturing magnetic random access memory
JP4594839B2 (en) * 2005-09-29 2010-12-08 株式会社東芝 Magnetic random access memory, method for manufacturing magnetic random access memory, and data writing method for magnetic random access memory
JP2007096092A (en) * 2005-09-29 2007-04-12 Toshiba Corp Magnetoresistive element
US8349622B2 (en) 2005-09-29 2013-01-08 Kabushiki Kaisha Toshiba Magneto-resistive element
JP2009099994A (en) * 2007-10-17 2009-05-07 Magic Technologies Inc Method of manufacturing mtj element
US8269295B2 (en) 2008-04-03 2012-09-18 Renesas Electronics Corporation Magnetic memory device having a recording layer
US8013407B2 (en) 2008-04-03 2011-09-06 Renesas Electronics Corporation Magnetic memory device having a recording layer
US8518562B2 (en) 2008-12-15 2013-08-27 Renesas Electronics Corporation Magnetic storage device
US8492881B2 (en) 2009-04-01 2013-07-23 Renesas Electronics Corporation Magnetic storage device
EP2372766A1 (en) 2010-03-29 2011-10-05 Renesas Electronics Corporation Magnetic memory element and magnetic memory device
US8362581B2 (en) 2010-03-29 2013-01-29 Renesas Electronics Corporation Magnetic memory element and magnetic memory device
US8427866B2 (en) 2011-03-29 2013-04-23 Renesas Electronics Corporation Magnetic storage element and magnetic storage device
US10103198B2 (en) 2015-03-11 2018-10-16 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory

Also Published As

Publication number Publication date
US20020130339A1 (en) 2002-09-19
JP4458703B2 (en) 2010-04-28
US20050078417A1 (en) 2005-04-14
US7140096B2 (en) 2006-11-28
US6605836B2 (en) 2003-08-12

Similar Documents

Publication Publication Date Title
JP4458703B2 (en) Magnetoresistive element, manufacturing method thereof, magnetic random access memory, portable terminal device, magnetic head, and magnetic reproducing device
US7002839B2 (en) Magnetic ring unit and magnetic memory device
US6956765B2 (en) Magneto-resistance effect element, magnetic memory and magnetic head
JP3959335B2 (en) Magnetic storage device and manufacturing method thereof
US6751074B2 (en) Magnetic memory having antiferromagnetically coupled recording layer
KR101055595B1 (en) Magnetoresistive element and magnetic memory device
US8269295B2 (en) Magnetic memory device having a recording layer
JP2001156357A (en) Magneto-resistance effect element and magnetic recording element
JP2002319664A (en) Semiconductor memory device and manufacturing method therefor
JP2000332317A (en) Magnetic element, memory, magnetic reproduction head, and magnetic disc drive
US7238540B2 (en) Magnetic random access memory and method of manufacturing the same
JP2003198003A (en) Magnetoresistive effect device, its manufacturing method, and magnetic memory device
JP3977576B2 (en) Magnetic memory device
JP3607609B2 (en) Magnetoresistive element, magnetic memory, magnetic head, and magnetic reproducing apparatus
KR20030062276A (en) Magnetic memory
JP2004192744A (en) Magnetic head and magnetic recording device
US6898115B2 (en) Magnetoresistive element, and magnetic memory using the same
JP2004146614A (en) Magnetoresistance effect element and magnetic memory device
JP4516086B2 (en) Magnetoresistive element and manufacturing method thereof, magnetic memory, magnetic head, and magnetic recording apparatus
JP2004087870A (en) Magnetoresistive effect element and magnetic memory device
JP3872962B2 (en) Magnetoresistive element and magnetic storage device
JP4660512B2 (en) Method for writing to magnetic recording element and magnetic recording element
KR20040040364A (en) Magnetic memory device and manufacturing method of the same
JP4615797B2 (en) Magnetoresistive element, manufacturing apparatus thereof, and magnetic memory device
JP2002280642A (en) Magnetoresistive effect element, magnetic storage, portable terminal apparatus, magnetoresistive effect head, and magnetic reproduction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees