JP2002126949A - Electrode wire for wire electric discharge machining - Google Patents
Electrode wire for wire electric discharge machiningInfo
- Publication number
- JP2002126949A JP2002126949A JP2000322500A JP2000322500A JP2002126949A JP 2002126949 A JP2002126949 A JP 2002126949A JP 2000322500 A JP2000322500 A JP 2000322500A JP 2000322500 A JP2000322500 A JP 2000322500A JP 2002126949 A JP2002126949 A JP 2002126949A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- phase
- electrode wire
- alloy
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 title claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 36
- 239000000956 alloy Substances 0.000 claims abstract description 36
- 229910017518 Cu Zn Inorganic materials 0.000 claims abstract description 7
- 229910017752 Cu-Zn Inorganic materials 0.000 claims abstract description 7
- 229910017943 Cu—Zn Inorganic materials 0.000 claims abstract description 7
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 6
- 239000011247 coating layer Substances 0.000 claims description 29
- 239000010410 layer Substances 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910001369 Brass Inorganic materials 0.000 description 8
- 239000010951 brass Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005491 wire drawing Methods 0.000 description 4
- 238000010622 cold drawing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はワイヤ放電加工用電
極線に関する。The present invention relates to an electrode wire for wire electric discharge machining.
【0002】[0002]
【従来の技術】ワイヤ放電加工は、走行するワイヤ放電
加工用電極線(以下、単に「電極線」と示す。)と被加
工物との間で放電を生じさせ、発生する熱によって溶融
切断する加工方法である。難切削性の材料でも自由な形
状かつ高精度の加工ができるという特長があり、近年、
金型加工を中心にその応用は多方面に広がりつつある。2. Description of the Related Art In wire electric discharge machining, a discharge is generated between a traveling electrode wire for wire electric discharge machining (hereinafter, simply referred to as an "electrode wire") and a workpiece, and is melted and cut by generated heat. It is a processing method. It has the feature of being able to perform free-form and high-precision machining even with difficult-to-cut materials.
Its applications are expanding in many fields, mainly in die machining.
【0003】代表的な電極線としては、65〜60重量
%Cu−35〜40重量%Zn組成のいわゆる黄銅製の
電極線がある。種々の報告に見られるように、Znには
放電特性を向上させる効果があり、電極線組成中のZn
量を増やすことによって加工速度向上を図ることができ
る。ただしZn量が35〜40重量%を超えると、導電
性低下の影響が大きくなり、加工速度向上が頭打ちとな
る。また多量のβ相形成によって冷間伸線が困難になる
等の問題も生じる。これらの理由から上記組成の黄銅製
電極線が最もよく使用されている。[0003] A typical electrode wire is a so-called brass electrode wire having a composition of 65 to 60 wt% Cu-35 to 40 wt% Zn. As can be seen from various reports, Zn has an effect of improving the discharge characteristics, and Zn in the electrode wire composition.
The processing speed can be improved by increasing the amount. However, when the Zn content exceeds 35 to 40% by weight, the effect of the decrease in conductivity increases, and the improvement in the processing speed reaches a peak. In addition, problems such as the difficulty in cold drawing due to the formation of a large amount of β phase also occur. For these reasons, the brass electrode wire having the above composition is most often used.
【0004】ところが最近、大幅に加工速度を向上させ
うる電極線として被覆層を有する電極線(以下、「被覆
電極線」と示す。)が提案され、少量ながらも使用され
始めている。この被覆電極線は芯線表面に数μm〜数十
μmの被覆層を形成したものである。芯線はCuまたは
高強度高導電性のCu合金が用いられ、被覆層としては
40重量%を超える高Zn量のCu−Zn合金が用いら
れている。このような層構造を採ることにより高導電性
と高放電特性が両立して得られ、黄銅製の電極線に比べ
高速な加工が可能となっている。However, recently, an electrode wire having a coating layer (hereinafter, referred to as a "coated electrode wire") has been proposed as an electrode wire capable of greatly improving the processing speed, and is being used in a small amount. This coated electrode wire has a coating layer of several μm to several tens μm formed on the surface of the core wire. The core wire is made of Cu or a Cu alloy having high strength and high conductivity, and the coating layer is made of a Cu—Zn alloy having a high Zn content exceeding 40% by weight. By adopting such a layer structure, both high conductivity and high discharge characteristics can be obtained, and high-speed processing can be performed as compared with an electrode wire made of brass.
【0005】[0005]
【発明が解決しようとする課題】被覆電極線に限らず従
来の電極線は、表面組成が均一で、かつ表面性状が平滑
なものがほとんどである。このような表面は、放電加工
中に放電の集中を生じさせ、加工速度を低下させる原因
の一つとなる。Not only the coated electrode wire but also the conventional electrode wire has a uniform surface composition and a smooth surface property in most cases. Such a surface causes concentration of electric discharge during electric discharge machining, which is one of the causes for reducing the machining speed.
【0006】それにもかかわらず、電極線の表面性状が
平滑である理由は、黄銅などの延性の高い導電性材料を
伸線加工して製造されているためである。先に述べた従
来の被覆電極線にあっても、表面層は比較的延性のある
均一なβ単相であることがほとんどであり、かつ表面性
状は平滑である。Nevertheless, the reason why the surface properties of the electrode wire are smooth is that the electrode wire is manufactured by drawing a highly ductile conductive material such as brass. Even in the conventional coated electrode wire described above, the surface layer is almost always a relatively ductile and uniform β single phase, and the surface properties are smooth.
【0007】このような均質な表面であれば、被加工物
に近い電極線表面部分で放電が起こり、結果として放電
の集中が起こりやすくなる。最近の放電加工機には、こ
の放電の集中を避け、安定した放電が可能な状態に制御
する機能が設けられている。この制御機能が働けば断線
はしにくくなるものの、印加する電圧が低下させられる
ため、加工速度は低くなる。この制御機能の作動頻度が
電極線による加工速度の優劣差となって現れる。すなわ
ち、一般的に加工速度の高い電極線とは、放電の集中が
起こりにくい電極線であることも意味する。With such a uniform surface, discharge occurs on the surface of the electrode wire close to the workpiece, and as a result, the concentration of discharge tends to occur. A recent electric discharge machine is provided with a function of avoiding the concentration of the electric discharge and controlling the electric discharge so that a stable electric discharge is possible. When this control function is activated, the disconnection is difficult, but the applied voltage is reduced, so that the processing speed is reduced. The frequency of operation of this control function appears as a difference in machining speed between electrode wires. That is, in general, an electrode wire having a high processing speed also means an electrode wire in which concentration of discharge hardly occurs.
【0008】本発明の目的は上記状況に鑑みてなされた
ものであり、その目的とするところは、より高い加工速
度が得られる新規な電極線の提供である。An object of the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel electrode wire capable of obtaining a higher processing speed.
【0009】[0009]
【課題を解決するための手段】上記課題を解決する本発
明は、CuまたはCu合金の芯線と、その芯線表面に設
けられた合金被覆層とから主として構成される電極線で
あり、合金被覆層が、Cu−Zn合金のγ相、またはγ
相とβ相との混合相から構成されおり、かつ合金被覆層
が芯線表面の30%以上を覆っているものである。そし
て、好ましくは、少なくとも合金被覆層表面に高低差2
0μm以内の凹凸が設けられたものである。The present invention for solving the above-mentioned problems is an electrode wire mainly composed of a core wire of Cu or Cu alloy and an alloy coating layer provided on the surface of the core wire. Is a γ phase of a Cu—Zn alloy, or γ
It is composed of a mixed phase of a phase and a β phase, and the alloy coating layer covers 30% or more of the core wire surface. And preferably, at least the height difference 2
In this case, irregularities within 0 μm are provided.
【0010】また、本発明の別の態様は、CuまたはC
u合金の芯線と、その芯線表面に設けられた合金被覆層
と、これらの上に設けられたZnO層とから主として構
成される電極線であり、合金被覆層が、Cu−Zn合金
のγ相、またはγ相とβ相との混合相から構成されお
り、かつ合金被覆層が芯線表面の30%以上を覆ってい
るものであり、好ましくは、少なくとも合金被覆層表面
に高低差20μm以内の凹凸を有するものである。[0010] Another embodiment of the present invention relates to a method for producing Cu or C
An electrode wire mainly composed of a u-alloy core wire, an alloy coating layer provided on the surface of the core wire, and a ZnO layer provided thereon, wherein the alloy coating layer is a γ phase of a Cu—Zn alloy. Or a mixed phase of a γ phase and a β phase, and the alloy coating layer covers at least 30% of the surface of the core wire. Preferably, at least the surface of the alloy coating layer has a height difference of not more than 20 μm. It has.
【0011】[0011]
【発明の実施の形態】電極線の加工速度を向上させるた
めには、表面層の放電特性を向上させるだけでは不十分
である。放電点を分散させるために、電極線表面の組成
を不均一にし、あるいは電極線表面に凹凸をつけること
も重要である。具体的な例として表面層がCu−Zn合
金系の電極線の場合、Zn量の高い部分と低い部分を混
在させて表面層を形成し、あるいは表面のみに脆性的な
層をもつワイヤを高伸線加工して電極線用芯線表面に凹
凸を意図的に設けることが重要となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to increase the processing speed of an electrode wire, it is not sufficient to simply improve the discharge characteristics of a surface layer. In order to disperse the discharge points, it is also important to make the composition of the electrode wire surface non-uniform or to make the electrode wire surface uneven. As a specific example, when the surface layer is a Cu-Zn alloy-based electrode wire, the surface layer is formed by mixing a high Zn content and a low Zn content, or a wire having a brittle layer only on the surface is used. It is important to intentionally provide irregularities on the surface of the electrode wire core by wire drawing.
【0012】従って、本発明では、上記したように、電
極線表面の組成を不均一とし、好ましくは表面に凹凸を
設ける。また、別の態様としてこれらの電極線の最表面
にZnO層を設ける。Therefore, in the present invention, as described above, the composition of the electrode wire surface is made non-uniform, and preferably, the surface is provided with irregularities. As another embodiment, a ZnO layer is provided on the outermost surface of these electrode wires.
【0013】本発明において、合金被覆層としてCu−
Zn合金のγ相、またはγ相とβ相との混合相とするの
は、こうすることにより加工速度の向上と電極線表面の
凹凸形成の両立が可能になるためである。γ相は60重
量%以上のZnを含むのに対し、β相は45重量%程度
にとどまる。したがってγ相、またはγ相とβ相との混
合相を合金被覆層に用いたほうが加工速度を向上させる
ことができる。[0013] In the present invention, Cu-
The reason for using the γ phase or the mixed phase of the γ phase and the β phase of the Zn alloy is that by doing so, it is possible to improve the processing speed and form irregularities on the electrode wire surface at the same time. The γ phase contains 60% by weight or more of Zn, whereas the β phase contains only about 45% by weight. Therefore, the processing speed can be improved by using the γ phase or the mixed phase of the γ phase and the β phase for the alloy coating layer.
【0014】また本来、脆性的なγ相の伸線加工は困難
であるが、延性的な芯線の被覆層として伸線加工した場
合、クラックの発生したγ相は加工の進行とともに分割
され、しだいに延性的な芯線に埋め込まれていき、結果
的に表面に凹凸を形成する。すなわち適度な厚さのγ
相、またはγ相とβ相との混合相を被覆層とすれば、伸
線加工のみによって電極線表面に凹凸が容易に形成でき
る。Although it is originally difficult to wire the brittle γ phase, when the wire is drawn as a coating layer for the ductile core wire, the γ phase in which cracks are generated is divided as the working progresses, and gradually. It is embedded in a ductile core wire, and as a result, irregularities are formed on the surface. That is, γ of moderate thickness
If the coating layer is a phase or a mixed phase of a γ phase and a β phase, irregularities can be easily formed on the electrode wire surface only by wire drawing.
【0015】また、本発明において合金被覆層が芯線表
面を覆う割合を30%以上とするが、こうするのは、3
0%未満では芯線自体の影響が大きくなり、加工速度が
低下してしまうためである。In the present invention, the rate at which the alloy coating layer covers the surface of the core wire is set to 30% or more.
If it is less than 0%, the influence of the core wire itself becomes large, and the processing speed is reduced.
【0016】また、合金被覆層表面に設ける凹凸の高低
差を好ましくは20μm以内としたのは、一般的な放電
加工によって黄銅系の電極線が消耗する深さが大きくて
も20μmであるためである。すなわち20μm以上の
高低差をつけても加工速度の更なる向上に寄与しないか
らである。また大きすぎる凹凸が形成される過程では、
それ以上に深いクラックが形成されることになり、伸線
加工における断線の原因となり得る。The reason why the height difference of the irregularities provided on the surface of the alloy coating layer is preferably within 20 μm is that the depth at which the brass-based electrode wire is consumed by general electric discharge machining is at most 20 μm. is there. That is, even if a height difference of 20 μm or more is provided, it does not contribute to further improvement of the processing speed. In the process of forming too large irregularities,
A crack deeper than that will be formed, which may cause disconnection in wire drawing.
【0017】この合金被覆層の形成は、例えば、芯線を
溶融亜鉛メッキし、次いで所望の温度で加熱処理するこ
とにより可能である。また、合金被覆層表面に凹凸を形
成するためには、前述したように伸線加工するだけでよ
い。This alloy coating layer can be formed, for example, by subjecting the core wire to hot dip galvanizing and then performing a heat treatment at a desired temperature. Further, in order to form irregularities on the surface of the alloy coating layer, it is only necessary to perform wire drawing as described above.
【0018】本発明の別の態様において、最上層にZn
O層を設けるが、この厚さは10Å〜1μmとすること
が好ましい。ZnO層には電極線と被加工物の間隔、い
わゆる放電ギャップを小さくする効果があり、これによ
って与えられたエネルギーを効率よく加工に費やすこと
ができる。そのためには10Å以上の厚さが必要である
が、1μmを超えるようになると、その下層であるγ
相、またはγ相とβ相との混合相の効果をなくしてしま
う。In another embodiment of the invention, the top layer comprises Zn
An O layer is provided, and its thickness is preferably 10 ° to 1 μm. The ZnO layer has an effect of reducing the distance between the electrode wire and the workpiece, that is, the so-called discharge gap, so that the applied energy can be efficiently used for processing. For this purpose, a thickness of 10 ° or more is required, but when the thickness exceeds 1 μm, the lower layer γ
The effect of the phase or the mixed phase of the γ phase and the β phase is lost.
【0019】また、このZnO層の厚さは、必ずしも均
一である必要は無いが、合金被覆層表面に設けられた凹
凸の高低差を大きく減少させるものでないことが望まれ
る。このZnO層は合金層皮膜層形成時に雰囲気を調整
することにより容易に形成でき、層の厚さも調整可能で
ある。Although the thickness of the ZnO layer is not necessarily required to be uniform, it is desirable that the thickness of the ZnO layer does not significantly reduce the difference in height of the irregularities provided on the surface of the alloy coating layer. This ZnO layer can be easily formed by adjusting the atmosphere when forming the alloy layer coating layer, and the thickness of the layer can also be adjusted.
【0020】[0020]
【実施例】次に実施例を用いて本発明をさらに説明す
る。 (実施例1)熱間押出によって作製した直径8mmの8
0重量%Cu−20重量%Zn線に、冷間伸線および熱
処理を繰り返し施し、直径0.8mmの芯線を作製し
た。この芯線表面に溶融めっき法に従ってよって所定厚
さのZnめっき層を形成した。続いて熱処理を施し、拡
散層を形成した。表1に熱処理条件と熱処理後に形成さ
れた合金被覆層の平均厚さを示す。Next, the present invention will be further described with reference to examples. (Example 1) 8 mm in diameter 8 manufactured by hot extrusion
Cold drawing and heat treatment were repeatedly applied to a 0 wt% Cu-20 wt% Zn wire to produce a core wire having a diameter of 0.8 mm. A Zn plating layer having a predetermined thickness was formed on the surface of the core wire by a hot-dip plating method. Subsequently, heat treatment was performed to form a diffusion layer. Table 1 shows the heat treatment conditions and the average thickness of the alloy coating layer formed after the heat treatment.
【0021】[0021]
【表1】 【table 1】
【0022】その後、再び冷間伸線および熱処理操作を
繰り返し、最終的に直径0.25mmの本発明のワイヤ
放電加工用電極線を得た。得られた電極線の構造を調べ
表2に示した。Thereafter, the cold drawing and heat treatment operations were repeated again to finally obtain an electrode wire for wire electric discharge machining of the present invention having a diameter of 0.25 mm. The structure of the obtained electrode wire was examined and shown in Table 2.
【0023】[0023]
【表2】 [Table 2]
【0024】次に、本発明の電極線の放電加工速度を評
価した。使用した放電加工機は三菱電機製DWC−11
0SZであり、これにより一般的な鉄系金型材料である
厚さ30mmのSKD−11を加工した。最近の放電加
工では、加工を目的とするエネルギーの高いパルスと放
電状態を安定化させることを目的とするエネルギーの低
いパルスの2種類のパルスを制御して加工を行う。した
がって、前者のパルスの電流値Ipと停止時間OFF、
および後者のパルスの電流値SAと停止時間SBを設定
した。なお2種類のパルスの継続時間に関しては、加工
機側が放電状態を判断して自動制御する方式になってい
る。Next, the electric discharge machining speed of the electrode wire of the present invention was evaluated. The used EDM is Mitsubishi Electric DWC-11
The SKD-11 having a thickness of 30 mm, which is a common iron-based mold material, was processed by using the SKD-11. In recent electric discharge machining, machining is performed by controlling two types of pulses, a high-energy pulse for machining and a low-energy pulse for stabilizing a discharge state. Therefore, the former pulse current value Ip and the stop time OFF,
In addition, the latter pulse current value SA and stop time SB were set. As for the duration of the two types of pulses, the processing machine side determines the discharge state and performs automatic control.
【0025】今回の条件は三菱電機推奨の通り、Ip=
400A,OFF=5.5μs,SA=235A,OF
F=6.0μsに設定した。3分間の直線加工距離を5
回測定し、平均加工速度を求めた。表3に得られた電極
線の加工速度測定結果を示した。This time, as recommended by Mitsubishi Electric, Ip =
400A, OFF = 5.5 μs, SA = 235A, OF
F was set to 6.0 μs. 3 minutes straight machining distance of 5
The measurement was repeated twice to determine the average processing speed. Table 3 shows the processing speed measurement results of the obtained electrode wires.
【0026】[0026]
【表3】 [Table 3]
【0027】(比較例1)合金被覆層の被覆割合を23
%とした以外は実施例と同様にして電極線を得、加工速
度を求めた。その結果、加工速度は3.26mm/mi
nであった。(Comparative Example 1) The coating ratio of the alloy coating layer was 23
%, An electrode wire was obtained in the same manner as in Example, and the processing speed was determined. As a result, the processing speed is 3.26 mm / mi.
n.
【0028】(比較例2)合金被覆層の被覆割合を93
%とし、凹凸高低差を22μmとした以外は実施例と同
様にして電極線を得、加工速度を求めた。その結果、加
工速度は4.29mm/minであり、更なる加工速度
の上昇は見られなかった。(Comparative Example 2) The coating ratio of the alloy coating layer was 93
%, And an electrode wire was obtained in the same manner as in Example except that the height difference between the concavities and convexities was set to 22 μm, and the processing speed was obtained. As a result, the processing speed was 4.29 mm / min, and no further increase in the processing speed was observed.
【0029】(比較例3)従来の被覆電極線(芯線;8
0/20、表面層;β相)の表面にZnO層を設けたも
のを用い実施例と同様にして加工速度を求めた。その結
果、加工速度は3.76mm/minであった。(Comparative Example 3) Conventional coated electrode wire (core wire; 8
0/20, surface layer; β-phase) provided with a ZnO layer on the surface, and the processing speed was determined in the same manner as in the example. As a result, the processing speed was 3.76 mm / min.
【0030】(従来例1,2)従来の被覆電極線(芯
線;80/20、表面層;β相)(従来例1)および黄
銅電極線(Cu/Zn比=65/35)(従来例2)を
用い実施例と同様にして加工速度を求めた。その結果、
加工速度はそれぞれ3.76,3.05mm/minで
あった。(Conventional Examples 1 and 2) Conventional coated electrode wires (core wire: 80/20, surface layer: β phase) (conventional example 1) and brass electrode wires (Cu / Zn ratio = 65/35) (conventional example) The processing speed was determined in the same manner as in Example using 2). as a result,
The processing speed was 3.76 and 3.05 mm / min, respectively.
【0031】以上の結果から、本発明の電極線の加工速
度が、従来の被覆電極線に対して最大で約20%、従来
の黄銅電極線に対して約48%と、著しく向上している
ことが明らかである。From the above results, the processing speed of the electrode wire of the present invention is remarkably improved to a maximum of about 20% with respect to the conventional coated electrode wire and about 48% with respect to the conventional brass electrode wire. It is clear that.
【0032】[0032]
【発明の効果】以上説明した通り、本発明のワイヤ放電
加工用電極線は、従来の被覆電極線や黄銅電極線と比較
して加工速度が著しく高い。放電加工機を利用した製造
工程では、加工速度が時間あたりの製品製造量を決める
ため、加工速度の向上がコストダウンに直結する。した
がって本発明のワイヤ放電加工用電極線を用いれば、従
来に比べて大幅なコストダウンが可能になる。As described above, the electrode wire for wire electric discharge machining of the present invention has a remarkably high machining speed as compared with the conventional coated electrode wire or brass electrode wire. In a manufacturing process using an electric discharge machine, since the machining speed determines the amount of product produced per hour, an improvement in the machining speed directly leads to a cost reduction. Therefore, if the electrode wire for wire electric discharge machining according to the present invention is used, the cost can be significantly reduced as compared with the related art.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 巌 兵庫県西宮市二見町12−7−202 Fターム(参考) 3C059 AA01 AB05 DA06 DB03 DC02 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Iwao Iwao 12-7-202 Futami-cho, Nishinomiya-shi, Hyogo F-term (reference) 3C059 AA01 AB05 DA06 DB03 DC02
Claims (4)
線表面に設けられた合金被覆層とから主として構成され
る電極線であり、合金被覆層が、Cu−Zn合金のγ
相、またはγ相とβ相との混合相から構成されおり、か
つ合金被覆層が芯線表面の30%以上を覆っていること
を特徴とするワイヤ放電加工用電極線。1. An electrode wire mainly composed of a core wire of Cu or Cu alloy and an alloy coating layer provided on the surface of the core wire, wherein the alloy coating layer is made of a Cu—Zn alloy γ.
An electrode wire for wire electric discharge machining, comprising a phase or a mixed phase of a γ phase and a β phase, wherein the alloy coating layer covers 30% or more of the surface of the core wire.
0μm以内の凹凸が設けられた請求項1記載の電極線。2. A height difference 2 at least on the surface of the alloy coating layer.
2. The electrode wire according to claim 1, wherein irregularities of 0 μm or less are provided.
線表面に設けられた合金被覆層と、これらの上に設けら
れたZnO層とから主として構成される電極線であり、
合金被覆層が、Cu−Zn合金のγ相、またはγ相とβ
相との混合相から構成されおり、かつ合金被覆層が芯線
表面の30%以上を覆っていることを特徴とするワイヤ
放電加工用電極線。3. An electrode wire mainly composed of a core wire of Cu or Cu alloy, an alloy coating layer provided on the surface of the core wire, and a ZnO layer provided thereon.
The alloy coating layer is a γ phase of a Cu—Zn alloy, or a γ phase and β
An electrode wire for wire electric discharge machining, wherein the electrode wire is composed of a mixed phase with a phase, and the alloy coating layer covers 30% or more of the core wire surface.
0μm以内の凹凸が設けられた請求項3記載の電極線。4. A height difference 2 at least on the surface of the alloy coating layer.
4. The electrode wire according to claim 3, wherein irregularities within 0 μm are provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000322500A JP2002126949A (en) | 2000-10-23 | 2000-10-23 | Electrode wire for wire electric discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000322500A JP2002126949A (en) | 2000-10-23 | 2000-10-23 | Electrode wire for wire electric discharge machining |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002126949A true JP2002126949A (en) | 2002-05-08 |
Family
ID=18800374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000322500A Pending JP2002126949A (en) | 2000-10-23 | 2000-10-23 | Electrode wire for wire electric discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002126949A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007144582A (en) * | 2005-11-29 | 2007-06-14 | Kanai Hiroaki | Electric discharge machining electrode |
US20080061038A1 (en) * | 2005-02-11 | 2008-03-13 | Thermocompact | Composite Wire For Electrical Discharge Machining |
JP2008183704A (en) * | 2007-01-29 | 2008-08-14 | Thermocompact | Electrode wire for electric discharge machining |
JP2012510378A (en) * | 2008-12-03 | 2012-05-10 | ベルケンホフ ゲーエムベーハー | Wire electrode for electrical discharge cutting |
CN102756188A (en) * | 2011-04-29 | 2012-10-31 | 成机哲 | Electrode wire for electro-discharge machining and method for manufacturing the same |
EP2556911A1 (en) * | 2011-08-08 | 2013-02-13 | Ki-Chul Seong | Electrode wire for electro-discharge machining and method for manufacturing the same |
CN103769703A (en) * | 2012-10-23 | 2014-05-07 | 成机哲 | Electrode wire for electro-discharge machining and method for manufacturing the same |
JP2014136285A (en) * | 2013-01-17 | 2014-07-28 | Hitachi Metals Ltd | Wire for electric-discharge machining and method of producing the same |
US8895885B2 (en) | 2008-10-01 | 2014-11-25 | Berkenhoff Gmbh | Wire electrode for spark-erosion cutting |
KR20150103234A (en) * | 2013-09-09 | 2015-09-09 | 스미토모덴키고교가부시키가이샤 | Electrode wire for wire electric discharge machining, and method for producting same |
WO2016068209A1 (en) * | 2014-10-28 | 2016-05-06 | 沖電線株式会社 | Electrode wire for electrical discharge machining, and method for manufacturing electrode wire for electrical discharge machining |
JP2017035753A (en) * | 2015-08-10 | 2017-02-16 | 元祥金屬工業股▲ふん▼有限公司 | Electrode wire for electric discharge machining |
WO2021198245A1 (en) * | 2020-03-31 | 2021-10-07 | Berkenhoff Gmbh | Wire electrode for spark-erosion cutting |
TWI784706B (en) * | 2021-09-10 | 2022-11-21 | 德商貝肯赫佛股份有限公司 | Wire electrode for spark erosion cutting |
-
2000
- 2000-10-23 JP JP2000322500A patent/JP2002126949A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080061038A1 (en) * | 2005-02-11 | 2008-03-13 | Thermocompact | Composite Wire For Electrical Discharge Machining |
JP2008535668A (en) * | 2005-02-11 | 2008-09-04 | テルモコンパクト | Composite wire for electrical discharge machining |
US8378247B2 (en) * | 2005-02-11 | 2013-02-19 | Thermocompact | Composite wire for electrical discharge machining |
JP2007144582A (en) * | 2005-11-29 | 2007-06-14 | Kanai Hiroaki | Electric discharge machining electrode |
JP2008183704A (en) * | 2007-01-29 | 2008-08-14 | Thermocompact | Electrode wire for electric discharge machining |
US8895885B2 (en) | 2008-10-01 | 2014-11-25 | Berkenhoff Gmbh | Wire electrode for spark-erosion cutting |
US8853587B2 (en) | 2008-12-03 | 2014-10-07 | Berkenhoff Gmbh | Wire electrode for electrical discharge cutting |
JP2012510378A (en) * | 2008-12-03 | 2012-05-10 | ベルケンホフ ゲーエムベーハー | Wire electrode for electrical discharge cutting |
CN102756188A (en) * | 2011-04-29 | 2012-10-31 | 成机哲 | Electrode wire for electro-discharge machining and method for manufacturing the same |
CN102756188B (en) * | 2011-04-29 | 2016-03-30 | 成机哲 | For welding wire and the manufacture method thereof of spark machined |
EP2556911A1 (en) * | 2011-08-08 | 2013-02-13 | Ki-Chul Seong | Electrode wire for electro-discharge machining and method for manufacturing the same |
JP2013035119A (en) * | 2011-08-08 | 2013-02-21 | Ki-Chul Seong | Electrode wire for electric discharge machining and method of manufacturing the same |
CN102922065A (en) * | 2011-08-08 | 2013-02-13 | 成机哲 | Electrode wire for electro-discharge machining and method for manufacturing the same |
CN103769703B (en) * | 2012-10-23 | 2017-06-23 | 成机哲 | For the welding wire and its manufacture method of electrical discharge machining |
CN103769703A (en) * | 2012-10-23 | 2014-05-07 | 成机哲 | Electrode wire for electro-discharge machining and method for manufacturing the same |
JP2014136285A (en) * | 2013-01-17 | 2014-07-28 | Hitachi Metals Ltd | Wire for electric-discharge machining and method of producing the same |
KR20150103234A (en) * | 2013-09-09 | 2015-09-09 | 스미토모덴키고교가부시키가이샤 | Electrode wire for wire electric discharge machining, and method for producting same |
KR101711040B1 (en) * | 2013-09-09 | 2017-02-28 | 스미토모덴키고교가부시키가이샤 | Electrode wire for wire electric discharge machining, and method for producting same |
US9849531B2 (en) | 2013-09-09 | 2017-12-26 | Sumitomo Electric Industries, Ltd. | Electrode wire for wire electric discharge machining, and method for producing same |
JP2016083741A (en) * | 2014-10-28 | 2016-05-19 | 沖電線株式会社 | Electrode wire for electric discharge machining and manufacturing method of electrode wire for electric discharge machining |
WO2016068209A1 (en) * | 2014-10-28 | 2016-05-06 | 沖電線株式会社 | Electrode wire for electrical discharge machining, and method for manufacturing electrode wire for electrical discharge machining |
CN107073615A (en) * | 2014-10-28 | 2017-08-18 | 冲电线株式会社 | Electric discharge machining polar curve and electric discharge machining polar curve manufacture method |
US10589369B2 (en) | 2014-10-28 | 2020-03-17 | Oki Electric Cable Co., Ltd. | Electrode wire for electrical discharge machining and method of manufacturing electrode wire for electrical discharge machining |
JP2017035753A (en) * | 2015-08-10 | 2017-02-16 | 元祥金屬工業股▲ふん▼有限公司 | Electrode wire for electric discharge machining |
WO2021198245A1 (en) * | 2020-03-31 | 2021-10-07 | Berkenhoff Gmbh | Wire electrode for spark-erosion cutting |
TWI784706B (en) * | 2021-09-10 | 2022-11-21 | 德商貝肯赫佛股份有限公司 | Wire electrode for spark erosion cutting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6781081B2 (en) | Wire electrode for spark erosion cutting | |
JP2002126949A (en) | Electrode wire for wire electric discharge machining | |
CN102922065B (en) | For the wire electrode of processing and the method for the manufacture of this wire electrode of discharging | |
CA2267621C (en) | Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire | |
EP2067560B1 (en) | System for manufacturing a base wire for an electrode wire for wire electrodischarge machining | |
KR100376755B1 (en) | wire electrode | |
JP3894501B2 (en) | Method for producing zinc coated electrode wire for electric discharge machine using hot dip galvanizing method | |
JPS6344491B2 (en) | ||
JPS61136733A (en) | Electrode wire for wire-cut spark erosion work and preparation thereof | |
JPS59134624A (en) | Composite electrode wire for electric discharge machining and preparation thereof | |
KR20140100796A (en) | Wire electrode for electro discharge machining and thesame methode | |
JP2002137123A (en) | Electrode wire for wire electric discharge machining | |
JP2003291030A (en) | Electrode wire for wire electrical discharge machining | |
JP2004082246A (en) | Electrode wire for wire electric discharge machining | |
JP2005254408A (en) | Electrode wire for electric discharge machining, and manufacturing method thereof | |
JPS61117021A (en) | Electrode wire for wire-cut electric discharge machining and manufacturing method thereof | |
KR100345958B1 (en) | Zr-contained electrode wire for electrical discharge machining and its method | |
JP2001030008A (en) | Manufacture of copper or copper alloy-iron combined wire | |
JPS59110517A (en) | Electrode wire for wire-cut electric discharge machining and its manufacturing method | |
JP2001334415A (en) | Electrode wire for wire cutting electric discharge machining | |
JPS59156625A (en) | Electrode wire for wire cut electric discharge machining | |
JPH05337742A (en) | Manufacture of electrode wire for wire electrodischarge machining | |
JPS59129625A (en) | Electrode wire for wire cut electro-discharge machining and its manufacture | |
JP2001328028A (en) | Electrode wire for wire cut electronic discharge machining | |
JPS62213924A (en) | Wire electrode for high-precision machining |