[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001351690A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JP2001351690A
JP2001351690A JP2000173351A JP2000173351A JP2001351690A JP 2001351690 A JP2001351690 A JP 2001351690A JP 2000173351 A JP2000173351 A JP 2000173351A JP 2000173351 A JP2000173351 A JP 2000173351A JP 2001351690 A JP2001351690 A JP 2001351690A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
lithium carbonate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000173351A
Other languages
Japanese (ja)
Other versions
JP4795509B2 (en
Inventor
Tomohito Okamoto
朋仁 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo GS Soft Energy Co Ltd
Original Assignee
GS Melcotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Melcotec Co Ltd filed Critical GS Melcotec Co Ltd
Priority to JP2000173351A priority Critical patent/JP4795509B2/en
Publication of JP2001351690A publication Critical patent/JP2001351690A/en
Application granted granted Critical
Publication of JP4795509B2 publication Critical patent/JP4795509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively improve a safety at high temperature and to secure an excellent safety at charge and discharge. SOLUTION: A cathode contains lithium carbonate and lithium complex oxide shown by the formula LixM(1-y)AlyO2, (where; 0.05<=x<=1.10, 0.01<=y<0.10, M is an element chosen from transition metal), and the ratio of the content of lithium carbonate to the content of lithium complex oxide is 1 weight % or higher but less than 5 weight %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小形・軽量化を次々と実現させている。それに
伴い、電源である電池に対しても、一層の小型化、軽量
化、高エネぜんルギー密度化が求められるようになって
いる。従来、一般用途の電池としては、鉛電池、ニッケ
ルカドミウム電池等の水溶液系電池が主流であった。し
かし、これらの水溶液系電池は、サイクル特性には優れ
るものの、電池重量やエネルギー密度の点では十分に満
足できるものとは言えない。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has realized a reduction in size and weight of electronic devices one after another. Along with this, there is an increasing demand for batteries that are power sources to be further reduced in size, weight, and energy density. Conventionally, aqueous batteries such as lead batteries and nickel cadmium batteries have been the mainstream as batteries for general use. However, although these aqueous batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0003】そこで、最近、電池電圧が高く、高エネル
ギー密度を有し、サイクル特性にも優れた非水電解質電
池が使用され始めている。非水電解質電池の代表的なも
のとしては、リチウムイオンの可逆的インターカレーシ
ョンが可能な物質を電極材料に用いたリチウムイオン電
池がある。このようなリチウムイオン電池は、エネルギ
ー密度、充放電サイクル特性に優れることから、比較的
消費電力の大きい携帯用機器の供給電源としての用途が
期待されている。
Therefore, recently, non-aqueous electrolyte batteries having a high battery voltage, a high energy density and excellent cycle characteristics have begun to be used. A typical nonaqueous electrolyte battery is a lithium ion battery using a material capable of reversible lithium ion intercalation as an electrode material. Since such a lithium ion battery is excellent in energy density and charge / discharge cycle characteristics, it is expected to be used as a power supply for a portable device having relatively high power consumption.

【0004】ところが、リチウムイオン電池において
は、過充電時に電解質や活物質の分解等の異常反応が起
こり、電池の発熱や破損に至る場合がある。このため、
過充電時における熱暴走を防止するために、正極合材中
に炭酸リチウムを添加して電気化学的な分解反応による
CO2ガスの発生を利用して、電池に装着される電流遮
断素子を作動させる方法が提案されている(例えば、特
開平4−328278号、特開平4−329268号等
参照)。なお、正極に炭酸リチウムを添加した電池で
は、電流遮断素子ではなく、電池の内圧上昇によって開
弁する安全弁によっても、上記と同様にCO2ガスの発
生により容易に安全弁を作動させることができるため、
過充電時における熱暴走を防止することができる。
However, in a lithium ion battery, an abnormal reaction such as decomposition of an electrolyte or an active material occurs at the time of overcharge, and the battery may generate heat or be damaged. For this reason,
In order to prevent thermal runaway at the time of overcharging, a lithium ion carbonate is added to the positive electrode mixture and a current interruption element mounted on the battery is operated by utilizing the generation of CO2 gas by an electrochemical decomposition reaction. Methods have been proposed (see, for example, JP-A-4-328278, JP-A-4-329268). In a battery in which lithium carbonate is added to the positive electrode, the safety valve can be easily operated by the generation of CO2 gas in the same manner as described above by using a safety valve, which is opened by increasing the internal pressure of the battery, instead of the current interrupting element.
Thermal runaway during overcharge can be prevented.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ように炭酸リチウムを正極に添加した場合には、炭酸リ
チウムと電解液中の電解質とが発熱反応を起こすため
に、高温下における電池の安全性が低下するなどの悪影
響を電池に及ぼすことがあることがわかった。また、過
充電時の安全性の向上に関しても、炭酸リチウムの添加
が必ずしも効果を発揮するわけではなく、添加量や活物
質の種類により種々異なることがわかった。
However, when lithium carbonate is added to the positive electrode as described above, since the lithium carbonate and the electrolyte in the electrolyte cause an exothermic reaction, the safety of the battery at high temperatures is increased. It has been found that the battery may have an adverse effect such as a decrease in the battery capacity. It was also found that the addition of lithium carbonate does not always exert an effect on the improvement of safety at the time of overcharging, and that the addition varies depending on the amount added and the type of active material.

【0006】以上に鑑み、本願発明は、炭酸リチウムを
利用した電池の高温下における安全性を効果的に向上さ
せると共に、過充電に対しても優れた安全性を有する電
池を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a battery using lithium carbonate, which effectively improves the safety at high temperatures and has excellent safety against overcharging. And

【0007】[0007]

【課題を解決するための手段】本願第一の発明は、一般
式がLix(1-y)Aly2(但し、0.05≦x≦1.
10,0.01≦y<0.10、Mは遷移金属から選ば
れる少なくとも1種以上の元素を含む元素。)で示され
るリチウム複合酸化物と炭酸リチウムとを含有した正極
を備えたことを特徴とする非水電解質電池である。
According to the first invention of the present application, the general formula is Li x M (1-y) Al y O 2 (provided that 0.05 ≦ x ≦ 1.
10, 0.01 ≦ y <0.10, M is an element containing at least one element selected from transition metals. A non-aqueous electrolyte battery comprising a positive electrode containing a lithium composite oxide represented by the formula (1) and lithium carbonate.

【0008】このように、特定量のAlが添加されたリ
チウム複合酸化物と炭酸リチウムとを正極に含有させる
ことにより、炭酸リチウム添加によるCO2ガス発生で
の過充電時の熱暴走防止効果は落とすことなく、高温下
における安全性も向上させることができる。さらに、過
充電時の安全性もさらに向上させることができ、電池の
容量を落とすこともない。
As described above, by including a lithium composite oxide to which a specific amount of Al has been added and lithium carbonate in the positive electrode, the effect of preventing thermal runaway during overcharging due to the generation of CO 2 gas due to the addition of lithium carbonate is reduced. Without this, safety under high temperatures can be improved. Further, safety at the time of overcharging can be further improved, and the capacity of the battery is not reduced.

【0009】このような効果は以下のよう作用によると
考えられる。すなわち、炭酸リチウムを正極に添加した
電池では、過充電時の電気化学的な分解反応によるCO
2ガスの発生を利用して、早期に電流遮断素子や安全弁
を作動させることにより過充電時における熱暴走を防止
することができる。しかしながら、炭酸リチウムと電解
液中の電解質とが発熱反応を起こすために、これがリチ
ウム複合酸化物等を不安定にし、電池が高温にさらされ
た場合に逆に電池の安全性を低下させてしまう場合が生
じる。これに対し、リチウム複合酸化物にアルミニウム
を添加することによってリチウム複合酸化物の熱安定性
が向上するために、炭酸リチウムの添加によることが原
因となる熱発生に伴う電池の不安定化を相殺することが
でき、このような問題を解決できるようになる。さら
に、アルミニウムの添加されたリチウム複合酸化物を用
いると、詳細なメカニズムは不明であるが、従来のリチ
ウム複合酸化物との組み合わせの場合に比べて熱暴走が
生じにくくなり、安全性が向上する。
It is considered that such an effect is due to the following operation. In other words, in a battery in which lithium carbonate is added to the positive electrode, CO2 due to an electrochemical decomposition reaction during overcharge is reduced.
By using the generation of the two gases to activate the current cutoff element and the safety valve at an early stage, thermal runaway during overcharge can be prevented. However, since lithium carbonate and the electrolyte in the electrolyte cause an exothermic reaction, this destabilizes the lithium composite oxide and the like, and conversely reduces the safety of the battery when the battery is exposed to high temperatures. Cases arise. In contrast, the addition of aluminum to the lithium composite oxide improves the thermal stability of the lithium composite oxide, thereby offsetting the instability of the battery due to heat generation due to the addition of lithium carbonate. Can solve such a problem. Furthermore, when a lithium composite oxide to which aluminum is added is used, although the detailed mechanism is unknown, thermal runaway is less likely to occur than in the case of a combination with a conventional lithium composite oxide, and safety is improved. .

【0010】なお、正極活物質Lix(1-y)Aly2
おいて、MとAlのモル比において、Alが少なすぎる
と、正極活物質自身の熱安定性が向上せず、また、多す
ぎると正極活物質自身の充放電容量が大きく低下するこ
とになり好ましくない。正極活物質中におけるMとAl
のモル比は、このようなことからも0.01以上、0.
1未満であることが望ましい。
In the positive electrode active material Li x M (1-y) Al y O 2 , if the molar ratio of M to Al is too small, the thermal stability of the positive electrode active material itself does not improve, and If the amount is too large, the charge / discharge capacity of the positive electrode active material itself is greatly reduced, which is not preferable. M and Al in positive electrode active material
Thus, the molar ratio of 0.01 or more and 0.
Desirably less than 1.

【0011】本願第二の発明は、上記本願第1の発明の
非水電解質電池において、上記リチウム複合酸化物の含
有量に対する上記炭酸リチウムの含有量の割合を、1重
量%以上かつ5重量%以下としたことを特徴とするもの
である。
The second invention of the present application is the non-aqueous electrolyte battery according to the first invention of the present application, wherein the ratio of the content of the lithium carbonate to the content of the lithium composite oxide is 1% by weight or more and 5% by weight or more. It is characterized by the following.

【0012】炭酸リチウムを添加した正極においては、
正極中に含有する炭酸リチウムの割合が少なすぎると、
過充電時の電気化学的な分解反応によるCO2ガスの発
生を利用した電流遮断素子や安全弁を作動させることが
十分に発揮できない。また、炭酸リチウムの割合が多す
ぎると、正極板の抵抗が大きくなり放電容量が小さくな
ることや、炭酸リチウムと電解液中の電解質による発熱
反応が大きくなり、正極活物質自身の熱安定性を向上し
ても高温における安全性を確保することが困難になる。
このようなことから、各成分の添加量は適宜調整して用
いるが、このような範囲とすることにより、本願発明の
効果がより確実に、また、顕著に発揮されるようにな
る。
In the positive electrode to which lithium carbonate is added,
If the proportion of lithium carbonate contained in the positive electrode is too small,
Activating a current interrupting element or a safety valve utilizing the generation of CO2 gas due to an electrochemical decomposition reaction during overcharging cannot be sufficiently demonstrated. On the other hand, if the proportion of lithium carbonate is too large, the resistance of the positive electrode plate will increase and the discharge capacity will decrease, and the exothermic reaction between lithium carbonate and the electrolyte in the electrolyte will increase, and the thermal stability of the positive electrode active material itself will decrease. Even if improved, it becomes difficult to ensure safety at high temperatures.
For this reason, the added amount of each component is appropriately adjusted and used, but by setting the content in such a range, the effects of the present invention can be more reliably and remarkably exhibited.

【0013】[0013]

【発明の実施の形態】以下、本願発明について具体的に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below.

【0014】本願発明は、一般式がLix(1-y)Aly
2(但し、0.05≦x≦1.10,0.01≦y<
0.10、Mは遷移金属から選ばれる少なくとも1種以
上の元素を含む元素。)で示されるリチウム複合酸化物
と炭酸リチウムとを含有した正極を備えたことを特徴と
する非水電解質電池であり、正極中のリチウム複合酸化
物は正極活物質として作用し、炭酸リチウムはCO2
スを発生する役割をする。
According to the present invention, the general formula is Li x M (1-y) Al y
O 2 (however, 0.05 ≦ x ≦ 1.10, 0.01 ≦ y <
0.10 and M are elements containing at least one or more elements selected from transition metals. A non-aqueous electrolyte battery comprising a positive electrode containing a lithium composite oxide represented by the formula (1) and lithium carbonate, wherein the lithium composite oxide in the positive electrode acts as a positive electrode active material and lithium carbonate is CO 2 It plays the role of generating gas.

【0015】リチウム複合酸化物を示す一般式中、Mは
遷移金属から選ばれる少なくとも1種以上の元素を含む
元素を示すが、特にCo、Ni、Mnが望ましい。例え
ば、本願発明において用いることのできるリチウム複合
酸化物としては、LixCo( 1-y)Aly2、LixNi
(1-y)Aly2、Li2xMn2(1-y)Al2y4、Li
x(Co1-ZNiZ(1-y)Aly2等のMがCo、Ni、
Mn等の1種類の遷移金属元素からなるもの、CoとN
i、NiとMn、MnとCo等の2種類の遷移金属元素
からなるもの、CoとNiとMn等の3種類の遷移金属
元素からなるもの、さらには、LixCo(1-y Z)Aly
MeZ2(Meは金属元素のうちの少なくとも1種の元
素を示し、以下も同じ)、LixNi(1-y Z)AlyMeZ
2、Lix(Co1-aNia(1-y Z)AlyMeZ2等の
MとしてCo、Ni、Mnの遷移金属に加えてさらに別
の金属元素、例えば、Si、Ti、Sn、Mg等のうち
の少なくとも1種類が添加されたもの等があり、中で
も、LixCo(1-y)Aly2、LixNi(1-y)Al
y2、Lix(Co1-ZNiZ(1-y)Aly2、Lix
(1-y Z)AlyMeZ2、LixNi(1-y Z)AlyMeZ
2、Lix(Co1-aNia(1- y Z)AlyMeZ2のM
としてCoまたはNiを含むものが好ましく、特に、C
oを含むものが好ましい。
In the general formula showing a lithium composite oxide, M is
Contains at least one element selected from transition metals
The elements are shown, but Co, Ni, and Mn are particularly desirable. example
A lithium composite that can be used in the present invention
As the oxide, LixCo( 1-y)AlyOTwo, LixNi
(1-y)AlyOTwo, Li2xMn2 (1-y)Al2yOFour, Li
x(Co1-ZNiZ)(1-y)AlyOTwoM of Co, Ni,
One composed of one type of transition metal element such as Mn, Co and N
i, two types of transition metal elements such as Ni and Mn, and Mn and Co
, Three types of transition metals such as Co, Ni and Mn
Those composed of elements, and also LixCo(1-y Z)Aly
MeZOTwo(Me is the element of at least one of the metal elements
And the same applies to the following), LixNi(1-y Z)AlyMeZ
OTwo, Lix(Co1-aNia)(1-y Z)AlyMeZOTwoEtc.
In addition to Co, Ni, and Mn transition metals, M
Metal elements such as Si, Ti, Sn, Mg, etc.
And at least one of them is added.
Also LixCo(1-y)AlyOTwo, LixNi(1-y)Al
yOTwo, Lix(Co1-ZNiZ)(1-y)AlyOTwo, LixC
o(1-y Z)AlyMeZOTwo, LixNi(1-y Z)AlyMeZ
OTwo, Lix(Co1-aNia)(1- y Z)AlyMeZOTwoM
Are preferably those containing Co or Ni as
Those containing o are preferred.

【0016】正極の作製は、例えば、リチウム複合酸化
物粉末と炭酸リチウム粉末、さらに、導電剤と結着剤と
を混合した合剤をペースト状にし、これをアルミニウム
等の金属集電体上に塗布形成することで作製する。
For the preparation of the positive electrode, for example, a mixture obtained by mixing a lithium composite oxide powder, a lithium carbonate powder, and a conductive agent and a binder is formed into a paste, which is then put on a metal current collector such as aluminum. It is produced by coating and forming.

【0017】この際、好ましくは、正極中におけるリチ
ウム複合酸化物の含有量に対する正極中における炭酸リ
チウムの含有量の割合が、1重量%以上かつ5重量%以
下となるように混合割合を調整する。
In this case, preferably, the mixing ratio is adjusted so that the ratio of the content of lithium carbonate in the positive electrode to the content of the lithium composite oxide in the positive electrode is 1% by weight or more and 5% by weight or less. .

【0018】上記導電剤としては、例えば、アチレンブ
ラック、ケッチェンブラック、ファーネスブラック等を
単体、もしくはこれらを組み合わせて使用する事ができ
る。
As the conductive agent, for example, acetylene black, Ketjen black, furnace black or the like can be used alone or in combination.

【0019】上記結着剤としては、例えば、ポリフッ化
ビニリデン、ポリテトラフルオロエチレン、ゴム系高分
子もしくはこれらとセルロース系高分子との混合物また
はポリフッ化ビニリデンを主体とするコポリマー等を使
用することができる。
As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, a rubber-based polymer, a mixture of these with a cellulose-based polymer, a copolymer mainly containing polyvinylidene fluoride, or the like can be used. it can.

【0020】非水電解質電池を作製する場合に必要とな
る負極も上記正極と同様にして作製することができる
が、この際用いられる負極活物質としては、例えば、リ
チウム金属、またはリチウムアルミニウム合金や熱分解
炭素、コークス類、天然黒鉛や人造黒鉛等のグラファイ
ト類、有機高分子化合物焼成体、炭素繊維、活性炭など
リチウムを吸蔵放出する炭素材料、またはポリピロール
やポリアセチレンのようなポリマー材料を用いることが
できる。
A negative electrode required for producing a nonaqueous electrolyte battery can be produced in the same manner as the above-mentioned positive electrode. The negative electrode active material used at this time is, for example, lithium metal, lithium aluminum alloy, or the like. It is possible to use carbon materials that occlude and release lithium, such as pyrolytic carbon, coke, graphite such as natural graphite and artificial graphite, fired organic polymer compounds, carbon fibers, and activated carbon, or polymer materials such as polypyrrole and polyacetylene. it can.

【0021】また、非水電解質に非水電解液を用いる場
合には、電解液溶媒として、例えば、エチレンカーボネ
ート、プロピレンカーボネート、ジエチルカーボネー
ト、ジメチルカーボネート、メチルエチルカーボネート
などの炭酸エステルやγ-ブチルラクトン、1,2ジメトキ
シエタン、テトラヒドロフラン、2-メチルテトラヒドロ
フラン、プロピオン酸メチル等の有機溶媒を単独または
二種以上を混合して使用することができる。
When a non-aqueous electrolyte is used as the non-aqueous electrolyte, examples of the electrolyte solvent include carbonates such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate and methyl ethyl carbonate, and γ-butyl lactone. , 1,2 dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, methyl propionate, and other organic solvents can be used alone or in combination of two or more.

【0022】非水電解質の溶質としては、例えば、Li
ClO4、LiAsF6、LiPF6、LiBF4、LiC
3SO3、LiN(CF3SO22等を単独または二種
以上を混合して使用することができる。なかでもLiP
6が最も望ましい。
As the solute of the non-aqueous electrolyte, for example, Li
ClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiC
F 3 SO 3 , LiN (CF 3 SO 2 ) 2 and the like can be used alone or in combination of two or more. Above all, LiP
F 6 is the most desirable.

【0023】また、本願発明の電池において、電流遮断
素子や安全弁等の電池内圧の上昇により動作する安全装
置を設ける場合には、この安全装置の動作圧力を3〜2
5kg/cm2の範囲となるように設定するのが好まし
く、特に、リチウム複合酸化物の含有量に対する上記炭
酸リチウムの含有量の割合を1重量%以上かつ5重量%
以下とする場合により好ましい。これは、安全装置を良
好に動作させることができるからである。
When the battery of the present invention is provided with a safety device such as a current interrupting element or a safety valve which operates by increasing the internal pressure of the battery, the operating pressure of the safety device is set to 3 to 2
The content is preferably set to be in a range of 5 kg / cm 2 , and particularly, the ratio of the content of the lithium carbonate to the content of the lithium composite oxide is 1 wt% or more and 5 wt%.
The following case is more preferable. This is because the safety device can operate well.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、下記実施例により何ら限定されるもので
はなく、その要旨を変更しない範囲において適宜変更し
て実施することが可能であることはいうまでもない。 <実施例1> [正極] コバルトとアルミニウムのモル比が異なる正
極活物質5種、 LiAl 0.01Co0.99O2、LiAl0.03Co
0.97O2、LiAl0.05Co0.95O2、LiAl0.07Co0.93O2、及びLi
Al0.10Co0.90O2を100重量%に対して、炭酸リチウム
をそれぞれ0.5重量%、1.5重量%、3.5重量
%、5.0重量%及び6.0重量%の割合、炭素系導電
剤であるアセチレンブラックを100重量%のLiCo
O2に対し、3重量%の割合、さらに結着剤としてのポ
リフッ化ビニリデン(PVdF)を全体の4重量%、分
散溶媒としてのNMP(N−メチルピロリドン)を加え
て混練して正極ペーストを得た。次にこの活物質ペース
トをアルミニウム箔よりなる電極基体に塗布、乾燥さ
せ、リチウム電池用正極を得た。従ってここで作製した
正極板の種類は、上記のコバルトとアルミのモル比が異
なる5種類の正極活物質と炭酸リチウム量の異なる5種
類の組み合わせとなり計25種類である。
The present invention will be described in more detail with reference to the following examples.
However, it is limited by the following examples.
There is no
It goes without saying that it is possible to carry out the operation. <Example 1> [Positive electrode] A positive electrode having a different molar ratio of cobalt and aluminum.
5 kinds of polar active materials, LiAl 0.01Co0.99OTwo, LiAl0.03Co
0.97OTwo, LiAl0.05Co0.95OTwo, LiAl0.07Co0.93OTwo, And Li
Al0.10Co0.90OTwoTo 100% by weight of lithium carbonate
Are 0.5% by weight, 1.5% by weight and 3.5% by weight, respectively.
%, 5.0% by weight and 6.0% by weight, carbon-based conductive
Acetylene black, 100% by weight LiCo
3% by weight with respect to O2, and further as a binder
4% by weight of vinylidene fluoride (PVdF)
Add NMP (N-methylpyrrolidone) as a solvent
And kneaded to obtain a positive electrode paste. Next, this active material pace
Is applied to the electrode substrate made of aluminum foil and dried.
Then, a positive electrode for a lithium battery was obtained. Therefore made here
The type of positive electrode plate differs in the above molar ratio of cobalt and aluminum.
Five kinds of positive electrode active materials and five kinds with different amounts of lithium carbonate
And 25 types in total.

【0025】[負極] ピッチの炭素化過程で生ずるメ
ソフェーズ小球体を原料としたメソカーボンマイクロビ
ーズをリチウムイオンインターカレーション部材とし、
ポリフッ化ビニリデン(PVdF)を結着剤として混練
し、適宜NMPを添加してペーストとしたものを、銅箔
基体に塗布・乾燥させて負極を作製した。尚、このとき
のメソカーボンマイクロビーズは粒子径が5〜50μ
m、比表面積が1〜10m2/gである。
[Negative Electrode] Mesocarbon microbeads made of mesophase spheres generated during the carbonization process of pitch are used as lithium ion intercalation members,
A paste was prepared by kneading polyvinylidene fluoride (PVdF) as a binder, adding NMP as appropriate, and applying the paste to a copper foil substrate and drying the paste. The mesocarbon microbeads at this time had a particle size of 5 to 50 μm.
m, specific surface area is 1 to 10 m2 / g.

【0026】[非水電解液] エチレンカーボネートと
ジエチルカーボネートとの体積比1:1の混合溶媒に、
LiPF6をモル/1リットル溶かしたもの調整して、
これを用いた。
[Non-Aqueous Electrolyte] A mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1
Adjust what dissolved LiPF6 mol / 1L,
This was used.

【0027】[セパレータ] 厚さ25μm、空孔率4
0%であるポリエチレン微多孔膜をセパレータとして使
用した。セパレータについても、特に制限されず、従来
から使用されている種々のセパレータを用いることがで
きる。
[Separator] Thickness 25 μm, porosity 4
A 0% polyethylene microporous membrane was used as a separator. The separator is not particularly limited, and various types of conventionally used separators can be used.

【0028】[リチウムイオン電池] 上記正負両極、
セパレータ、電解液を、幅30mm高さ48mm厚み5
mmの角型の電池容器に収納し、非水電解質電池を作製
した。この電池の概略構成図を図1に示す。この電池の
主な構成要素は、正極3と負極4とセパレータ5を巻回
した電極群2、電池ケース6、安全弁8、電解液(図示
せず)等である。また本実施例においては、上記正極板
だけが異なる25種類の電池を作製した。安全弁の動作
圧力は、10kg/cm2とした。
[Lithium ion battery]
Separator, electrolyte solution, width 30mm height 48mm thickness 5
A non-aqueous electrolyte battery was prepared by storing the battery in a square-shaped battery container having a thickness of 2 mm. FIG. 1 shows a schematic configuration diagram of this battery. The main components of this battery are an electrode group 2 in which a positive electrode 3, a negative electrode 4, and a separator 5 are wound, a battery case 6, a safety valve 8, an electrolyte (not shown), and the like. In this example, 25 types of batteries differing only in the positive electrode plate were manufactured. The operating pressure of the safety valve was 10 kg / cm 2 .

【0029】<比較例1>炭酸リチウムを添加しないこ
とを除いては、実施例1と同様に電池を作製した。すな
わち、上記正極活物質のコバルトとアルミニウムのモル
比だけが異なる5種類の電池を作製した。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that lithium carbonate was not added. That is, five types of batteries were prepared which differed only in the molar ratio of cobalt and aluminum in the positive electrode active material.

【0030】<比較例2>正極活物質のコバルトとアル
ミニウムのモル比が100対0、すなわち、正極活物質
にLiCoO2を用いたことを除いては、実施例1と同
様に電池を作製した。すなわち、正極への炭酸リチウム
添加量だけが異なる5種類の電池を作製した。
Comparative Example 2 A battery was manufactured in the same manner as in Example 1, except that the molar ratio of cobalt and aluminum in the positive electrode active material was 100 to 0, that is, LiCoO 2 was used as the positive electrode active material. That is, five types of batteries differing only in the amount of lithium carbonate added to the positive electrode were manufactured.

【0031】<比較例3>正極に炭酸リチウムを添加せ
ず、さらに正極活物質にLiCoO2を用いたことを除
いては、実施例1と同様に電池を作製した。
Comparative Example 3 A battery was fabricated in the same manner as in Example 1 except that lithium carbonate was not added to the positive electrode and LiCoO 2 was used as the positive electrode active material.

【0032】[初期容量試験]上記実施例と比較例の電池
を各々10個ずつ、下記条件において充放電試験を行
い、電池の初期容量を測定した。 充電:570mA定電流 4.2V定電圧5h(25
℃) 放電:570mA定電流 終止電圧3.0V(25℃) [ホットプレート加熱試験]上記実施例と比較例の電池
を各々5個ずつ、下記条件において、充電した電池を1
20℃に加熱したホットプレート上において、その電池
の挙動を観察した。充電:570mA定電流 4.2V
定電圧5h(25℃) [過充電試験方法]上記実施例と従来例の電池を各々5
個ずつ、下記条件での過充電試験に供した。
[Initial Capacity Test] A charge and discharge test was performed on each of the ten batteries of the above Examples and Comparative Examples under the following conditions to measure the initial capacity of the batteries. Charge: 570 mA constant current 4.2 V constant voltage 5 h (25
C) Discharge: 570 mA constant current End voltage 3.0 V (25 ° C.) [Hot plate heating test] Five batteries each of the above Examples and Comparative Examples were charged under the following conditions.
The behavior of the battery was observed on a hot plate heated to 20 ° C. Charge: 570mA constant current 4.2V
Constant voltage 5 h (25 ° C.) [Overcharge test method]
Each was subjected to an overcharge test under the following conditions.

【0033】3A定電流による連続充電3h(25℃) 実施例ならびに各比較例における、電池の初期容量試験
の結果を表1(実施例)、表2(比較例1)、表3(比
較例2,3)に示す。本試験電池はいずれも570mA
hになるように設計されたものである。
Continuous charging at 3 A constant current for 3 hours (25 ° C.) The results of the initial capacity test of the batteries in the examples and comparative examples are shown in Table 1 (Example), Table 2 (Comparative Example 1), and Table 3 (Comparative Example). It is shown in 2, 3). The test batteries were all 570 mA
h.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表1、2から正極活物質におけるコバルト
とアルミニウムのモル比が0.93:0.07までなら
容量劣化はないが、コバルトとアルミニウムのモル比が
0.9:0.1になると容量劣化が大きくなることがわ
かる。これより、正極活物質におけるコバルトとアルミ
ニウムのモル比は、アルミニウムが0.1より小さいこ
とが望ましいのがわかる。
From Tables 1 and 2, there is no capacity degradation when the molar ratio of cobalt and aluminum in the positive electrode active material is up to 0.93: 0.07, but when the molar ratio of cobalt and aluminum becomes 0.9: 0.1. It can be seen that the capacity deterioration is large. This indicates that the molar ratio of cobalt to aluminum in the positive electrode active material is preferably such that aluminum is smaller than 0.1.

【0038】次に、実施例ならびに各比較例における、
ホットプレート加熱試験の結果を表4(実施例)、表5
(比較例1)、表6(比較例2、3)に示す。表中、
「発煙または漏液」したものはいずれも弁が作動してお
り、「異常なし」としたものは、弁の作動も生じていな
い。
Next, in Examples and Comparative Examples,
Table 4 (Example) and Table 5 show the results of the hot plate heating test.
The results are shown in (Comparative Example 1) and Table 6 (Comparative Examples 2, 3). In the table,
In each case of "smoke or leak", the valve was operated, and in the case of "no abnormality", no valve was operated.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】表4、6から、炭酸リチウムの添加量が多
くなるほど、安全性が低下する傾向にあり、炭酸リチウ
ムの添加量が6.5重量%においては、正極活物質のコ
バルトとアルミニウムのモル比にかかわらず、電池はす
べて漏液または発煙に至った。また、正極活物質のコバ
ルトとアルミニウムのモル比が1:0、すなわちLiC
oO2の時は、正極に添加する炭酸リチウムの添加量が
1.5重量%以上であると電池は漏液または発煙に至っ
た。これは、炭酸リチウムと電解液中の電解質が発熱反
応を起こしたために、電池が熱暴走を起こすに至ったた
めと考えられる。
From Tables 4 and 6, it can be seen that the greater the amount of lithium carbonate added, the lower the safety. When the amount of lithium carbonate added is 6.5% by weight, the moles of cobalt and aluminum of the positive electrode active material are reduced. Regardless of the ratio, all batteries resulted in leakage or fuming. Further, the molar ratio of cobalt to aluminum of the positive electrode active material is 1: 0, that is, LiC
At the time of oO2, when the amount of lithium carbonate added to the positive electrode was 1.5% by weight or more, the battery leaked or smoked. This is presumably because the lithium carbonate and the electrolyte in the electrolyte caused an exothermic reaction, which led to thermal runaway of the battery.

【0043】しかし、表4、表6から上記正極活物質の
アルミニウムのモル比が0.01以上においては、高温
時における正極活物質の熱安定性も向上することかする
ことから、ホットプレート加熱に対しても優れた安全性
を示すことがわかった。以上から、正極活物質における
コバルトとアルミニウムのモル比は、アルミニウムが
0.01以上であり、炭酸リチウムの添加量は5重量%
以下であることが望ましいことがわかる。
However, from Tables 4 and 6, when the molar ratio of aluminum in the positive electrode active material is 0.01 or more, the thermal stability of the positive electrode active material at high temperatures is also improved. It also proved to be excellent in safety. From the above, the molar ratio of cobalt to aluminum in the positive electrode active material was such that aluminum was 0.01 or more and the amount of lithium carbonate added was 5% by weight.
It is understood that the following is desirable.

【0044】さらに、実施例ならびに各比較例におけ
る、過充電の結果を表7(実施例)、表8(比較例
1)、表9(比較例2,3)に示す。過充電試験におい
て,表中の○は異常がなかったもの、×は漏液または発
煙したものを表し、異常のなかったものでは、弁が円滑
に作動し漏液または発煙はなかった。
Table 7 (Example), Table 8 (Comparative Example 1), and Table 9 (Comparative Examples 2 and 3) show the results of overcharging in Examples and Comparative Examples. In the overcharge test, in the table, ○ indicates that there was no abnormality, and X indicates that there was liquid leakage or smoke. If there was no abnormality, the valve operated smoothly and there was no liquid leakage or smoke.

【0045】[0045]

【表7】 [Table 7]

【0046】[0046]

【表8】 [Table 8]

【0047】[0047]

【表9】 [Table 9]

【0048】表7、表8、表9から、炭酸リチウムが無
添加、あるいは添加量が0.5重量%では、正極活物質
におけるコバルトとアルミニウムのモル比が0.9:
0.1以外の電池はすべて漏液または発煙に至ったこと
がわかる。また、1.5重量%以上においては、過充電
時において電池が熱暴走を起こす前に、電気化学的な分
解反応によるCO2ガスの発生により安全弁を作動し
て、いずれも発煙、漏液には至らなかった。この結果か
ら、炭酸リチウムの添加量は1重量%以上であることが
望ましいことが分かる。
As can be seen from Tables 7, 8 and 9, when lithium carbonate was not added or the amount of addition was 0.5% by weight, the molar ratio of cobalt to aluminum in the positive electrode active material was 0.9:
It can be seen that all the batteries other than 0.1 led to liquid leakage or smoke. At 1.5% by weight or more, before the battery undergoes thermal runaway during overcharging, the safety valve is activated by the generation of CO2 gas due to the electrochemical decomposition reaction. Did not reach. From this result, it can be seen that it is desirable that the addition amount of lithium carbonate is 1% by weight or more.

【0049】以上の結果からもわかるように、リチウム
コバルト複合酸化物を正極活物質とした場合には、コバ
ルトとアルミニウムのモル比において、アルミニウムの
モル比を0.01以上かつ0.1未満とし、正極活物質
量に対する炭酸リチウム量を1重量%以上かつ5重量%
以下とした場合に、特に優れた熱安定性と、耐過充電性
能を有する電池が得られる。
As can be seen from the above results, when the lithium-cobalt composite oxide is used as the positive electrode active material, the molar ratio of aluminum is at least 0.01 and less than 0.1 in the molar ratio of cobalt to aluminum. The amount of lithium carbonate is 1% by weight or more and 5% by weight based on the amount of the positive electrode active material.
A battery having particularly excellent thermal stability and overcharge resistance can be obtained in the following cases.

【0050】本実施例においては、リチウムコバルト複
合酸化物を正極活物質とした場合について説明したが、
上記実施形態で説明したような他のリチウム複合酸化物
を用いた場合にも同様の効果が得られる。また、本例で
は電解質として電解液を用いた例を示したが、電解質に
ポリマー電解質や固体電解質を用いたものにおいても同
様の効果が得られ、負極に金属リチウム等が用いられた
いわゆるリチウムイオン電池以外のリチウム電池の場合
にも同様の効果が得られる。
In this embodiment, the case where the lithium cobalt composite oxide is used as the positive electrode active material has been described.
Similar effects can be obtained when other lithium composite oxides as described in the above embodiment are used. In this example, an example in which an electrolytic solution was used as an electrolyte was shown. However, a similar effect can be obtained in a case where a polymer electrolyte or a solid electrolyte is used as an electrolyte. Similar effects can be obtained with lithium batteries other than batteries.

【0051】[0051]

【発明の効果】本発明によれば、高温時における電池の
安全性、過充電に対する安全性の優れた電池を提供する
ことが可能となる。
According to the present invention, it is possible to provide a battery excellent in the safety of the battery at high temperatures and the safety against overcharging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の電池の概略構造図である。FIG. 1 is a schematic structural view of a battery of an example.

【符号の説明】[Explanation of symbols]

1 電池本体 2 電極群 3 正極 4 負極 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 9 正極端子 10 正極集電リード DESCRIPTION OF SYMBOLS 1 Battery main body 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Positive electrode terminal 10 Positive electrode current collecting lead

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式がLix(1-y)Aly2(但し、
0.05≦x≦1.10,0.01≦y<0.10、M
は遷移金属から選ばれる少なくとも1種以上の元素を含
む元素。)で示されるリチウム複合酸化物と炭酸リチウ
ムとを含有した正極を備えたことを特徴とする非水電解
質電池。
(1) The general formula is Li x M (1-y) Al y O 2 (provided that
0.05 ≦ x ≦ 1.10, 0.01 ≦ y <0.10, M
Is an element containing at least one or more elements selected from transition metals. A non-aqueous electrolyte battery comprising a positive electrode containing a lithium composite oxide represented by the formula (1) and lithium carbonate.
【請求項2】 上記リチウム複合酸化物の含有量に対す
る上記炭酸リチウムの含有量の割合が、1重量%以上か
つ5重量%以下であることを特徴とする請求項1記載の
非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein a ratio of the content of the lithium carbonate to the content of the lithium composite oxide is 1% by weight or more and 5% by weight or less.
JP2000173351A 2000-06-09 2000-06-09 Non-aqueous electrolyte battery Expired - Lifetime JP4795509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173351A JP4795509B2 (en) 2000-06-09 2000-06-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173351A JP4795509B2 (en) 2000-06-09 2000-06-09 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001351690A true JP2001351690A (en) 2001-12-21
JP4795509B2 JP4795509B2 (en) 2011-10-19

Family

ID=18675599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173351A Expired - Lifetime JP4795509B2 (en) 2000-06-09 2000-06-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4795509B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093248A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte, and battery using the same
KR101201044B1 (en) 2006-04-27 2012-11-14 삼성에스디아이 주식회사 Anode plate and Lithium rechargeable battery using the same and Method of making anode plate
GB2517460A (en) * 2013-08-21 2015-02-25 Univ Newcastle Metal-air batteries
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same
KR20190044579A (en) * 2017-10-20 2019-04-30 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP7562219B2 (en) 2021-08-04 2024-10-07 エルジー・ケム・リミテッド Lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH05182667A (en) * 1991-12-28 1993-07-23 Sony Corp Manufacture of positive electrode material
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH05182667A (en) * 1991-12-28 1993-07-23 Sony Corp Manufacture of positive electrode material
JPH11219706A (en) * 1998-01-30 1999-08-10 Dowa Mining Co Ltd Positive electrode active material for lithium ion secondary battery, manufacture thereof and lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093248A (en) * 2003-09-17 2005-04-07 Sony Corp Electrolyte, and battery using the same
JP4702511B2 (en) * 2003-09-17 2011-06-15 ソニー株式会社 Secondary battery
KR101201044B1 (en) 2006-04-27 2012-11-14 삼성에스디아이 주식회사 Anode plate and Lithium rechargeable battery using the same and Method of making anode plate
GB2517460A (en) * 2013-08-21 2015-02-25 Univ Newcastle Metal-air batteries
KR102237952B1 (en) * 2017-07-28 2021-04-08 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
KR20190012839A (en) * 2017-07-28 2019-02-11 주식회사 엘지화학 Positive electorde for secondary battery and lithium secondary battery including the same
CN110073525A (en) * 2017-07-28 2019-07-30 株式会社Lg化学 Anode of secondary cell and lithium secondary battery comprising it
EP3534437A4 (en) * 2017-07-28 2020-03-18 LG Chem, Ltd. Secondary battery cathode and lithium secondary battery comprising same
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same
US11145860B2 (en) 2017-07-28 2021-10-12 Lg Chem, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same
CN110073525B (en) * 2017-07-28 2022-03-08 株式会社Lg化学 Positive electrode for secondary battery and lithium secondary battery comprising same
KR20190044579A (en) * 2017-10-20 2019-04-30 주식회사 엘지화학 Positive electrode for lithium secondary battery and lithium secondary battery including the same
KR102643520B1 (en) * 2017-10-20 2024-03-05 주식회사 엘지에너지솔루션 Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP7562219B2 (en) 2021-08-04 2024-10-07 エルジー・ケム・リミテッド Lithium secondary battery

Also Published As

Publication number Publication date
JP4795509B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
JP5209964B2 (en) Lithium secondary battery
US7867657B2 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3897387B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5348090B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2010056091A (en) Lithium secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP7536331B2 (en) Secondary battery manufacturing method
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JP4795509B2 (en) Non-aqueous electrolyte battery
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2002110251A (en) Lithium ion secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP2003077478A (en) Lithium ion secondary battery
JPH09213306A (en) Secondary battery with non-aqueous electrolyte
JPH10334918A (en) Nonaqueous secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery
JP2000208167A (en) Nonaqueous electrolyte secondary battery
JP2000285959A (en) Nonaqueous electrolyte secondary battery
JP2001236950A (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20230268555A1 (en) Prevention of gassing in si dominant lithium-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term