[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001236864A - Contact material of vacuum circuit-breaker for electric power - Google Patents

Contact material of vacuum circuit-breaker for electric power

Info

Publication number
JP2001236864A
JP2001236864A JP2000047979A JP2000047979A JP2001236864A JP 2001236864 A JP2001236864 A JP 2001236864A JP 2000047979 A JP2000047979 A JP 2000047979A JP 2000047979 A JP2000047979 A JP 2000047979A JP 2001236864 A JP2001236864 A JP 2001236864A
Authority
JP
Japan
Prior art keywords
alloy
phase
contact material
particles
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000047979A
Other languages
Japanese (ja)
Other versions
JP4159719B2 (en
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2000047979A priority Critical patent/JP4159719B2/en
Publication of JP2001236864A publication Critical patent/JP2001236864A/en
Application granted granted Critical
Publication of JP4159719B2 publication Critical patent/JP4159719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact material of a vacuum circuit-breaker for electric power, that has stabilized reignition characteristics of Cu-Cr alloy and has superior current breaking characteristics. SOLUTION: For this contact material of a vacuum circuit-breaker for electric power, made of a Cu-Cr alloy, the hardness value of Cr particles in the Cu-Cr alloy is indicated as Hs and hardness value of Cu phase is set to Hm after sintering process or after sintering-infiltration process, and hardness value of Cr particles in the Cu-Cr alloy is indicated by Hr and hardness value of Cu phase as Ho, when the material is heated to the temperature directly under the melting point of Cu phase in the Cu-Cr alloy and is cooled to the normal temperature. In this case, the ratio [Hs/Hr] is set to be within the range of 1.0-1.6, and the ratio [Hm/Ho] is set to be within the range of 1.0 to 2.0. In this way, reignition characteristics and current breaking characteristics can be made to stabilize.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、すぐれた遮断特
性と再点弧抑制特性とを備えた真空バルブ等からなる電
力用真空遮断器の接点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum circuit breaker for electric power comprising a vacuum valve and the like having excellent breaking characteristics and restriking suppressing characteristics.

【0002】[0002]

【従来の技術】真空中でのアーク拡散性を利用して、高
真空中で電流遮断を行わせる真空バルブの接点は、対向
する固定、可動の2つの接点から構成されている。
2. Description of the Related Art The contacts of a vacuum valve for interrupting a current in a high vacuum by utilizing arc diffusivity in a vacuum are composed of two fixed and movable contacts facing each other.

【0003】真空遮断器には、大電流断性能、耐電圧性
能、耐溶着性能の基本的3要件の他に再点弧現象の発生
の抑制が重要な要件となっている。
In a vacuum circuit breaker, in addition to the three basic requirements of large current interruption performance, withstand voltage performance and welding resistance performance, suppression of occurrence of restriking is an important requirement.

【0004】しかしながら、これらの要件の中には相反
するものがある関係上、単一の金属種によって総ての要
件を満足させることは不可能である。この為実用されて
いる多くの接点材料に於いては、不足する性能を相互に
補るような2種以上の元素を組合せることによって、例
えば大電流用、高耐圧用などのように特定の用途に合っ
た接点材料の選択採用が行われ、それなりに優れた特性
を持つ真空バルブが開発されているが、さらに強まる要
求を充分満足する真空バルブは未だ得られていないのが
実情である。
[0004] However, since some of these requirements are contradictory, it is impossible to satisfy all the requirements with a single metal species. For this reason, in many contact materials that are in practical use, by combining two or more types of elements that complement each other for insufficient performance, specific contact points such as for large current and high withstand voltage can be obtained. Although a selection and adoption of a contact material suitable for the application has been made and a vacuum valve having excellent characteristics has been developed, a vacuum valve which sufficiently satisfies the increasing demand has not yet been obtained.

【0005】例えば、大電流遮断性を目的とした接点と
して、Crを50wt%程度含有させたCu−Cr合金
(特公昭45−35101号)が知られている。この合
金は、Cr自体がCuと略同等の蒸気圧特性を保持しか
つ強力なガスのゲッタ作用を示す等の効果で高電圧大電
流断性を実現し、高耐圧特性と大容量遮断とを両立させ
得る接点として多用されている。
[0005] For example, a Cu-Cr alloy containing about 50 wt% of Cr (Japanese Patent Publication No. 45-35101) is known as a contact for the purpose of breaking large current. This alloy realizes high-voltage large-current disconnection by the effect that Cr itself retains substantially the same vapor pressure characteristics as Cu and shows a strong gas gettering effect, and achieves high voltage resistance and large capacity interruption. It is often used as a compatible contact.

【0006】この合金は、活性度の高いCrを使用して
いることから、原料粉の選択、不純物の混入、雰囲気の
管理などに十分に配慮しながら接点素材を製造(焼結工
程など)したり、接点素材から接点片へと加工に配慮し
ながら接点製品としている。
Since this alloy uses highly active Cr, the contact material is manufactured (sintering step, etc.) while giving due consideration to the selection of the raw material powder, the mixing of impurities, and the management of the atmosphere. In addition, contact products are made with consideration given to processing from contact materials to contact pieces.

【0007】しかし再点弧の発生が引金となって遮断性
能を低下させる場合が見られ、その改善が望まれてい
る。
However, there have been cases where the occurrence of restriking triggers and lowers the breaking performance, and improvement thereof is desired.

【0008】[0008]

【発明が解決しようとする課題】CuCr接点は、両者
の高温度での蒸気圧特性が近似していることなどが主因
となって、電流遮断後でも接点表面は比較的平滑な損傷
特性を示し、安定した電気特性(安定した接触抵抗特
性、優れた遮断特性、再点弧抑制など)を発揮してい
る。しかし近年では一層の大電流遮断やより高電圧が印
加される可能性のある回路への適応が日常的に行われる
結果、接点として加工した新品時の表面状態、電流遮断
後の接点表面の損傷状態などによっては、再点弧の誘発
が見られるようになってきた。すなわち加工時の表面状
態や、電流遮断によって異常的に損傷・消耗した接点表
面では、次の定常電流の開閉時の接触抵抗の異常上昇や
温度の異常上昇を引起こす原因となったり、耐電圧不良
を示し、再点弧発生の一因となっている。
The contact surface of the CuCr contact shows a relatively smooth damage characteristic even after the current is interrupted, mainly due to the similarity of the vapor pressure characteristics at high temperatures. And stable electrical characteristics (stable contact resistance characteristics, excellent breaking characteristics, suppression of restriking, etc.). However, in recent years, it has been routinely applied to circuits where higher current interruption or higher voltage may be applied, resulting in the surface condition of a new contact processed and damage to the contact surface after current interruption. In some situations, re-ignition has been triggered. In other words, the surface condition during machining, or the contact surface that has been abnormally damaged or worn due to current interruption, may cause an abnormal increase in contact resistance or temperature when opening or closing the next steady current, This indicates a failure and contributes to the occurrence of restriking.

【0009】研究によれば、CuCr合金の再点弧特性
と遮断特性は、合金中のCr量の変動、Cr粒子の粒度
分布、Cr粒子の偏析の程度、合金中に存在する空孔の
程度などに依存することが判明した。また、CuCr合
金の再点弧特性と遮断特性は、合金中のCu相の特に遮
断前と遮断後との表面状態の変化状況にも依存すること
が判明した。
According to research, the re-ignition characteristics and cutoff characteristics of a CuCr alloy are based on the variation of the Cr content in the alloy, the particle size distribution of the Cr particles, the degree of segregation of the Cr particles, and the degree of vacancies existing in the alloy. And so on. It has also been found that the re-ignition characteristics and the cutoff characteristics of the CuCr alloy also depend on the change of the surface state of the Cu phase in the alloy, particularly before and after the cutoff.

【0010】しかしその最適化を進めているにも拘ら
ず、上述した近年の適応状況では、まだばらつきが見ら
れ、両特性を兼備した真空バルブが必要となって来た。
[0010] However, in spite of the progress of the optimization, there is still variation in the above-mentioned adaptation situation in recent years, and a vacuum valve having both characteristics has been required.

【0011】この発明は、このような点に鑑み為された
もので、その目的は、CuCr合金の再点弧特性を安定
化させ電流遮断特性の優れた電力用真空遮断器の接点材
料を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a contact material for a power vacuum circuit breaker which stabilizes a re-ignition characteristic of a CuCr alloy and has an excellent current interruption characteristic. Is to do.

【0012】[0012]

【課題を解決するための手段】上記発明の目的を達成す
る為に、請求項1に記載の本発明は、Cu又はCuを主
成分とするCu合金で構成されるCu相より成る導電性
成分と、粒子径が0.1〜150μmの範囲にあるCr
粒子を所定比率以上含んだCr粒子より成る耐弧性成分
とで構成されたCu−Cr合金からなる電力用真空遮断
器の接点材料に於いて、焼結工程後若しくは焼結・溶浸
工程後の、Cu−Cr合金中のCr粒子の硬度値(マイ
クロビッカース硬さ値)をHs、Cu−Cr合金中のC
u相の持つ融解温度の直下温度に加熱し、これを常温に
まで冷却した時の、Cu−Cr合金中のCr粒子の硬度
値(マイクロビッカース硬さ値)をHrとした時の[H
s/Hr]比を、1.0〜1.6の範囲としたことを特
徴とする電力用真空遮断器の接点材料である。
According to the present invention, there is provided a conductive component comprising a Cu phase composed of Cu or a Cu alloy containing Cu as a main component. And Cr having a particle diameter in the range of 0.1 to 150 μm.
After the sintering process or after the sintering / infiltration process, in the contact material of the electric vacuum circuit breaker made of a Cu-Cr alloy composed of a Cr-resistant component composed of Cr particles containing particles in a predetermined ratio or more. The hardness value (micro Vickers hardness value) of the Cr particles in the Cu-Cr alloy was Hs, and the C value in the Cu-Cr alloy was
[H] when the hardness value (micro Vickers hardness value) of Cr particles in the Cu—Cr alloy when heated to a temperature immediately below the melting temperature of the u phase and cooled to room temperature is Hr.
[s / Hr] ratio in the range of 1.0 to 1.6.

【0013】ここで、上記接点材料製造時(焼結工程後
若しくは焼結・溶浸工程後)のCr粒子の硬度値Hs
は、原料Crの内容や焼結、溶浸時に選択した熱処理条
件や接点材料加工時の残存歪みの程度などが互いに関連
し合って決定され、例えばHsのビッカース硬さは20
0近傍の値を示す。
Here, the hardness value Hs of the Cr particles at the time of manufacturing the contact material (after the sintering process or after the sintering / infiltration process)
Is determined in such a way that the content of the raw material Cr, the heat treatment conditions selected during sintering and infiltration and the degree of residual strain during processing of the contact material are related to each other. For example, the Vickers hardness of Hs is 20.
The value near 0 is shown.

【0014】ところで、この接点材料を真空バルブとし
て組み込み実際に稼働させると、定常電流開閉時や事故
電流遮断時にアーク熱を受け、接点面は次第に変化(軟
化)し最後には一定の硬度値HBを示す様になり、その
間に最初のビッカース硬さ200近傍の硬度値Hsから
大きく低下する。実際に真空バルブを稼働させた後最後
に一定となった時の硬度値HBと、上記Cu相の融解温
度の直下温度T1に加熱した後、常温にまで冷却した時
のCr粒子の硬度値Hrとを対比すると、両者(HB
Hr)はほぼ近似の硬度値を示していることが判った。
By the way, when this contact material is incorporated as a vacuum valve and actually operated, the contact surface is gradually changed (softened) when a steady current is opened or closed or an accident current is interrupted, and finally has a constant hardness value H. B , during which the hardness value greatly decreases from the hardness value Hs near the initial Vickers hardness of 200. The hardness value H B when the temperature finally becomes constant after actually operating the vacuum valve, and the hardness value of Cr particles when heated to a temperature T1 immediately below the melting temperature of the Cu phase and then cooled to room temperature. When compared with Hr, both (H B ,
Hr) was found to show an approximate hardness value.

【0015】ところでHBの測定には真空バルブを製造
すること、実際に電流の遮断や開閉の作業を要すること
などで経済的、時間的負担が大きく不利の為、HBとH
rとがほぼ近似した値となる前記性質を利用して、Hr
によってHBを代用すること、すなわち測定の困難なHB
に代わって、測定の容易なHrによって、定常電流開閉
時や事故電流遮断時の接点面の軟化の状況をおきかえる
ことが可能であり有益である。
By the way to produce the vacuum valve for the measurement of H B, actually economically like requiring a work interrupting and closing the current, because of the large adverse time burden, H B and H
By using the above-mentioned property that r and r are approximately similar, Hr
To substitute H B by, i.e. difficult H B of the measurement
Instead of Hr, which is easy to measure, it is possible and advantageous to change the state of softening of the contact surface at the time of steady-state switching and fault current interruption.

【0016】また上記接点材料製造時のCr粒子の硬度
値Hsが大で、常温にまで冷却した時の硬度値Hrとの
差が大きい程(すなわち[Hs/Hr]比が大)、再点
弧の発生頻度が大の傾向になることも判った。[Hs/
Hr]比として1.6を越えた接点を選択すると、Cu
−Cr合金中のCr粒子とCu相との硬度の差が大とな
り、接点の機械的仕上げ加工に際し硬さの差によって安
定した加工表面状態が得られず、目標とする低再点弧化
に対して好ましくない。
The higher the hardness value Hs of the Cr particles at the time of manufacturing the contact material and the greater the difference from the hardness value Hr at the time of cooling to room temperature (ie, the larger the [Hs / Hr] ratio), the greater the re-pointing. It was also found that the frequency of arc generation tended to be large. [Hs /
If a contact with a [Hr] ratio exceeding 1.6 is selected, Cu
-The difference in hardness between the Cr particles and the Cu phase in the Cr alloy becomes large, and a stable machining surface state cannot be obtained due to the difference in hardness during the mechanical finishing of the contact. Not preferred.

【0017】請求項2に記載の本発明は、Cu−Cr合
金中のCu相の持つ融解温度の直下温度が1030℃〜
1080℃であることを特徴とする請求項1に記載の電
力用真空遮断器の接点材料である。
According to a second aspect of the present invention, the temperature immediately below the melting temperature of the Cu phase in the Cu—Cr alloy is 1030 ° C.
The contact material of the vacuum circuit breaker for electric power according to claim 1, wherein the temperature is 1080 ° C.

【0018】ここで、Cu相の持つ融解温度の直下温度
T1より低い温度(l030℃より低い温度)で熱処理
した時のCrの硬さ値と、電流遮断・開閉経過後のCr
の硬さ値HBとが一致しない。その為、T1より低い温
度で熱処理した時のCrの硬さ値を使用すると、[Hs
/Hr]比と再点弧発生頻度との間の関係は、十分には
対応が取れず製品の管理が出来なくなる。
Here, the hardness value of Cr when heat-treated at a temperature lower than the temperature T1 immediately below the melting temperature of the Cu phase (a temperature lower than 1030 ° C.), and the Cr value after current interruption / opening / closing
Hardness value of the H B do not match. Therefore, when the hardness value of Cr when heat-treated at a temperature lower than T1 is used, [Hs
The relationship between the / Hr] ratio and the frequency of occurrence of restriking cannot be sufficiently coped with, and the product cannot be managed.

【0019】更に請求項3に記載の本発明は、Cu又は
Cuを主成分とするCu合金で構成されるCu相より成
る導電性成分と、粒子径が0.1〜150μmの範囲に
あるCr粒子を所定比率以上含んだCr粒子より成る耐
弧性成分とで構成されたCu−Cr合金からなる電力用
真空遮断器の接点材料に於いて、焼結工程後若しくは焼
結・溶浸工程後の、Cu−Cr合金中のCr粒子の硬度
値(マイクロビッカース硬さ値)をHs、非酸化性雰囲
気中で、Cu−Cr合金中のCu相の融解温度以下の温
度またはCu相の融解温度以上の温度で加熱し、これを
常温にまで冷却した時の、Cu−Cr合金中のCr粒子
の硬度値(マイクロビッカース硬さ値)をHrとした時
の[Hs/Hr]比を、1.0〜1.6の範囲に調整し
たことを特徴とする電力用真空遮断器の接点材料であ
る。
Further, according to the present invention, there is provided a conductive material comprising a Cu phase composed of Cu or a Cu alloy containing Cu as a main component, and a Cr component having a particle diameter in a range of 0.1 to 150 μm. After the sintering process or after the sintering / infiltration process, in the contact material of the electric vacuum circuit breaker made of a Cu-Cr alloy composed of a Cr-resistant component composed of Cr particles containing particles in a predetermined ratio or more. The hardness value (micro-Vickers hardness value) of the Cr particles in the Cu-Cr alloy is Hs, and the temperature is equal to or lower than the melting temperature of the Cu phase in the Cu-Cr alloy in a non-oxidizing atmosphere. [Hs / Hr] ratio when the hardness value (micro Vickers hardness value) of the Cr particles in the Cu-Cr alloy is Hr when heating at the above temperature and cooling it to room temperature is 1 Characterized by being adjusted to a range of 0.0 to 1.6. A contact material for a vacuum circuit breaker for power.

【0020】ここで、Cu−Cr接点材料の製造雰囲気
として、非酸化性雰囲気を選択することは、特に再点弧
発生頻度の低減化に対して好ましい。
Here, it is preferable to select a non-oxidizing atmosphere as the manufacturing atmosphere for the Cu-Cr contact material, particularly for reducing the frequency of restriking.

【0021】更に請求項4に記載の本発明は、Crの一
部を、Cr量に対して50%(重量%)以下のTi,
V,Nb,Taより選ばれた1つによって置換したこと
を特徴とする請求項1乃至請求項3のいずれかに記載の
電力用真空遮断器の接点材料である。
Further, according to the present invention, a part of Cr is made up of 50% (% by weight) of Ti,
4. The contact material for a power vacuum circuit breaker according to claim 1, wherein the contact material is replaced by one selected from V, Nb, and Ta.

【0022】ここで、Crの一部をTi,V,Nb,T
aの1つによって置換することによって、Cu−Cr接
点素材全体の機械的強度を大とし、Cr粒子の脱落が引
き金となって引き起こされる再点弧発生を軽減化する。
50%(重量%)を越えるとこれらの元素が主因となる
熱電子放出が盛んとなり、遮断特性を低下させる。
Here, part of Cr is replaced with Ti, V, Nb, T
Substitution by one of the above a increases the mechanical strength of the entire Cu-Cr contact material, and reduces the occurrence of restriking caused by falling off of Cr particles.
If the content exceeds 50% (% by weight), thermionic emission mainly due to these elements becomes active and the blocking characteristics are deteriorated.

【0023】更に請求項5に記載の本発明は、Cu相中
には、Cu量に対して20%(重量%)以下のCr,T
i,V,B,Nb,Taより選ばれた1つを含有したこ
とを特徴とする請求項1乃至請求項4のいずれかに記載
の電力用真空遮断器の接点材料である。
Further, according to the present invention, the Cu phase contains Cr, T of not more than 20% (% by weight) based on the amount of Cu.
The contact material for a power vacuum circuit breaker according to any one of claims 1 to 4, further comprising one selected from i, V, B, Nb, and Ta.

【0024】ここで、Cu相中でのCr,Ti,V,
B,Nb,Taの存在は、再点弧発生レベルを一層低く
すると共に[Hs/Hr]比を一層低く安定化させる。
Here, Cr, Ti, V,
The presence of B, Nb and Ta lowers the level of restriking and lowers the [Hs / Hr] ratio.

【0025】更に請求項6に記載の本発明は、導電性成
分としてのCu相の量を10〜90%(重量%)、残部
が耐弧性成分としてCrを含有したことを特徴とする請
求項1乃至請求項5のいずれかに記載の電力用真空遮断
器の接点材料である。
Further, the present invention according to claim 6 is characterized in that the amount of the Cu phase as a conductive component is 10 to 90% (% by weight), and the balance contains Cr as an arc resistant component. A contact material for a power vacuum circuit breaker according to any one of claims 1 to 5.

【0026】ここで、Cu−Cr合金中のCu相の量が
10%未満では、電流遮断特性が大幅に低下する。Cu
相の量が90%を越えると、1.6以下の[Hs/H
r]比を確保することが困難となり、再点弧発生頻度が
増大する。
Here, when the amount of the Cu phase in the Cu—Cr alloy is less than 10%, the current interrupting characteristics are significantly reduced. Cu
When the amount of phase exceeds 90%, [Hs / H
[r] ratio, it is difficult to secure the ratio, and the frequency of restriking increases.

【0027】更に請求項7に記載の本発明は、導電性成
分としてのCu相の量を10〜90%(重量%)、第1
補助成分としてAl,Siの少なくとも一方を最大1.
0%(重量%)、残部が耐弧性成分としてCrを含有し
たことを特徴とする請求項1乃至請求項5のいずれかに
記載の電力用真空遮断器の接点材料である。
Further, according to the present invention, the amount of the Cu phase as a conductive component is 10 to 90% (% by weight),
At least one of Al and Si is used as an auxiliary component at a maximum of 1.
The contact material for a vacuum circuit breaker for electric power according to any one of claims 1 to 5, wherein 0% (% by weight) and Cr as an arc resistant component are contained in the remainder.

【0028】ここで、所定量のAl,Siの存在は、
[Hs/Hr]比を一層低く安定化させ、再点弧発生レ
ベルを低くすると共に、更に電流遮断特性も安定化させ
る。また、Al,Siの少なくとも一方の量が1%を越
えると、遮断時の大きなエネルギー処理の為の接点片表
面の荒れを招き、耐消耗特性と耐溶着特性の低下と再点
弧特性の不安定化を招く。
Here, the existence of the predetermined amounts of Al and Si is as follows.
It stabilizes the [Hs / Hr] ratio even lower, lowers the level of restriking, and further stabilizes the current cutoff characteristics. On the other hand, if the amount of at least one of Al and Si exceeds 1%, the surface of the contact piece is roughened due to a large energy treatment at the time of interruption, and the wear resistance and welding resistance are deteriorated, and the re-ignition characteristic is poor. Invites stabilization.

【0029】更に請求項8に記載の本発明は、第2補助
成分として1%(重量%)以下のBi,Sbの1つを含
有したことを特徴とする請求項1乃至請求項7のいずれ
かに記載の電力用真空遮断器の接点材料である。
The present invention according to claim 8 further comprises 1% (% by weight) or less of one of Bi and Sb as the second auxiliary component. 12. A contact material for a vacuum circuit breaker for electric power according to any one of the above.

【0030】ここで、Cu相中での所定量のBi(又は
Sb)の存在は、1%以下なら電流遮断後の接点表面荒
れを安定化させ、再点弧発生レベルを一層低くする。1
%を越えた量のBi(又はSb)では再点弧発生の頻度
を増加させて好ましくない。
Here, if the presence of a predetermined amount of Bi (or Sb) in the Cu phase is 1% or less, the contact surface roughness after current interruption is stabilized, and the level of restriking is further reduced. 1
If the amount of Bi (or Sb) exceeds%, the frequency of occurrence of restriking increases, which is not preferable.

【0031】更に請求項9に記載の本発明は、第2補助
成分として5%(重量%)以下のTe,Se,Pbの1
つを含有したことを特徴とする請求項1乃至請求項7の
いずれかに記載の電力用真空遮断器の接点材料である。
Further, according to the present invention, as the second auxiliary component, one of Te, Se and Pb of 5% (% by weight) or less is used.
The contact material for a power vacuum circuit breaker according to any one of claims 1 to 7, wherein the contact material comprises:

【0032】ここで、Cu相中での所定量のTe,S
e,Pbの存在も、電流遮断後の接点表面荒れを安定化
させ、再点弧発生レベルを低くする。
Here, a predetermined amount of Te, S in the Cu phase
The presence of e and Pb also stabilizes the contact surface roughness after current interruption and lowers the level of re-ignition.

【0033】更に請求項10に記載の本発明は、Cr粒
子は、平均粒子径が0.1〜150μmの範囲にあるC
r粒子が、Cr粒子全体の少なくとも75%(容積%)
を占めるCr粉よりなることを特徴とする請求項1乃至
請求項9のいずれかに記載の電力用真空遮断器の接点材
料である。
Further, according to the present invention, the Cr particles have a mean particle diameter in the range of 0.1 to 150 μm.
r particles are at least 75% (by volume) of the total Cr particles
The contact material for a vacuum circuit breaker for electric power according to any one of claims 1 to 9, wherein the contact material is made of Cr powder occupying the following.

【0034】ここで、平均粒子径が0.1〜150μm
の範囲のCr粒子が少なくとも75%(容積%)を占め
る時、安定した再点弧特性を発揮する。Cr粒子の平均
粒子径が0.1μm未満では、Cu−Cr合金中のCr
粒子の分布は、十分には分散出来ず凝集部分が存在する
と共に、Cu−Cr接点素材中のガス量が低減化出来
ず、いずれも再点弧発生を増長させている。150μm
を越えると、仕上げ加工した接点表面には、Cr粒子と
Cu相界面に引っかき状の傷を残し平滑で均一な状態が
得難く、再点弧発生に大きなバラツキを示す。
Here, the average particle size is 0.1 to 150 μm
When the Cr particles occupy at least 75% (vol%), stable re-ignition characteristics are exhibited. If the average particle diameter of the Cr particles is less than 0.1 μm, the Cr in the Cu—Cr alloy
The distribution of the particles cannot be sufficiently dispersed and there is an agglomerated portion, and the amount of gas in the Cu—Cr contact material cannot be reduced, and all of them increase the occurrence of restriking. 150 μm
When the surface roughness exceeds 1, the scratched scratches are left on the interface between the Cr particles and the Cu phase on the finished contact surface, making it difficult to obtain a smooth and uniform state, and a large variation in restriking occurs.

【0035】また、請求項11に記載の本発明は、Cu
又はCuを主成分とするCu合金で構成されるCu相よ
り成る導電性成分と、粒子径が0.1〜150μmの範
囲にあるCr粒子を所定比率以上含んだCr粒子より成
る耐弧性成分とで構成されたCu−Cr合金からなる電
力用真空遮断器の接点材料に於いて、焼結工程後若しく
は焼結・溶浸工程後の、Cu−Cr合金中のCu相の硬
度値(マイクロビッカース硬さ値)をHm、Cu−Cr
合金中のCu相の持つ融解温度の直下温度に加熱し、こ
れを常温にまで冷却した時の、Cu−Cr合金中のCu
相の硬度値(マイクロビッカース硬さ値)をHoとした
時の[Hm/Ho]比を、1.0〜2.0の範囲とした
ことを特徴とする電力用真空遮断器の接点材料である。
Further, according to the present invention, the present invention provides the
Alternatively, a conductive component composed of a Cu phase composed of a Cu alloy containing Cu as a main component and an arc-resistant component composed of Cr particles containing Cr particles having a particle diameter in a range of 0.1 to 150 μm or more in a predetermined ratio. The hardness value of the Cu phase in the Cu-Cr alloy after the sintering step or the sintering / infiltration step (micro- Vickers hardness value) is Hm, Cu-Cr
When heated to a temperature just below the melting temperature of the Cu phase in the alloy and cooled to room temperature, the Cu in the Cu-Cr alloy
A contact material for a vacuum circuit breaker for electric power, wherein the [Hm / Ho] ratio when the hardness value of the phase (micro Vickers hardness value) is Ho is in the range of 1.0 to 2.0. is there.

【0036】ここで、上記接点材料製造時(焼結工程後
若しくは焼結・溶浸工程後)のCu相の硬度値Hmは、
焼結、溶浸時に選択した熱処理条件(例えば冷却速度な
ど)や接点加工時の残存歪みの程度などが互いに関連し
合って決定され、Hmのビッカース硬さは100近傍の
値である。
Here, the hardness value Hm of the Cu phase at the time of manufacturing the contact material (after the sintering step or after the sintering / infiltration step) is as follows:
The heat treatment conditions (for example, cooling rate) selected during sintering and infiltration and the degree of residual strain during contact processing are determined in relation to each other, and the Vickers hardness of Hm is a value near 100.

【0037】ところで、この接点材料を真空バルブとし
て組み込み実際に稼働させると、定常電流の開閉時や事
故電流の遮断時のアーク熱により、接点面は次第に変化
(軟化)し、最後には一定の硬度値Hbを示すようにな
り、その間に初期のビッカース硬さ100近傍の硬度値
Hmから大きく変化(低下)する。実際に真空バルブを
稼働させて最後に一定となった時の硬度値Hbと、上記
Cu相の融解温度の直下温度T1に加熱した後、常温に
まで冷却した時のCu相の硬度値Hoとを対比すると、
両者(Hb、Ho)は、ほぼ近似の硬度値を示している
ことが判った。
By the way, when this contact material is incorporated as a vacuum valve and actually operated, the contact surface gradually changes (softens) due to arc heat at the time of opening / closing of a steady current or at the time of interruption of an accident current, and finally, at a constant level. It shows the hardness value Hb, during which it changes (decreases) greatly from the hardness value Hm near the initial Vickers hardness of 100. The hardness value Hb when the vacuum valve was actually operated and finally became constant, and the hardness value Ho of the Cu phase when heated to a temperature T1 immediately below the melting temperature of the Cu phase and then cooled to room temperature, Compared to
It was found that both (Hb, Ho) showed almost similar hardness values.

【0038】ところでHbの測定には,真空バルブを製
造しなければならないこと、実際の電流の遮断や開閉作
業をしなければならないことなどで経済的、時間的負担
が大きく不利の為、HbとHoとがほぼ近似した値とな
る前記性質を利用して、HoによってHbを代用するこ
と、すなわち測定の困難なHbに代わって、測定の容易
なHoによって、定常電流開閉時や事故電流遮断時の接
点面の軟化の状況をおきかえることが可能であり有益で
ある。
However, the measurement of Hb is disadvantageous in that it is economical and time-consuming because the vacuum valve must be manufactured, and the current must be cut off and opened and closed. By using the property that Ho and Hb are almost similar values, Hb is substituted by Ho, that is, when Hb, which is difficult to measure, is replaced by Ho, which is easy to measure, when steady current switching and accident current interruption are performed. It is possible and advantageous to change the state of softening of the contact surface.

【0039】また上記接点材料の焼結・溶浸後のCu相
の硬度値Hmが大で、常温にまで冷却した時のCu相の
硬度値Hoとの差(すなわちHm/Ho]比)が大きい
程、再点弧の発生頻度が大の傾向になることも判った。
[Hm/Ho]比として2.0を越えた接点を選択する
と、Cu−Cr合金中のCu相とCr粒子との硬度の差
が大となり、接点の機械的仕上げ加工に際し硬さの差に
よって安定した加工表面状態が得られず、目標とする低
再点弧化に対して好ましくない。
The hardness value of the Cu phase after sintering and infiltration of the contact material is large, and the difference from the hardness value of the Cu phase when cooled to room temperature (ie, the ratio of Hm / Ho) is Hm. It was also found that the larger the value, the greater the frequency of occurrence of restriking.
When a contact having a [Hm / Ho] ratio exceeding 2.0 is selected, the difference in hardness between the Cu phase and the Cr particles in the Cu-Cr alloy becomes large, and the difference in hardness during mechanical finishing of the contact causes A stable machined surface state cannot be obtained, which is not preferable for target low restrike.

【0040】更に請求項12に記載の本発明は、Cu−
Cr合金中のCu相の持つ融解温度の直下温度が103
0℃〜1080℃であることを特徴とする請求項11に
記載の電力用真空遮断器の接点材料である。
Further, the present invention according to claim 12 is characterized in that Cu-
The temperature just below the melting temperature of the Cu phase in the Cr alloy is 103
The contact material for a power vacuum circuit breaker according to claim 11, wherein the contact temperature is 0C to 1080C.

【0041】ここで、Cu相の持つ融解温度の直下温度
T1より低い温度(1030℃より低い温度)で熱処理
した時のCu相の硬さ値と、電流遮断・開閉経過後のC
u相の硬さ値Hbとが一致しない。その為、T1より低
い温度で熱処理した時のCu相の硬さ値を使用すると、
[Hm/Ho]比と再点弧発生頻度との間の関係は、十分
には対応が取れず製品の品質管理が出来なくなる。
Here, the hardness value of the Cu phase when heat-treated at a temperature lower than the melting temperature T1 of the Cu phase (a temperature lower than 1030 ° C.) and the C
The hardness value Hb of the u phase does not match. Therefore, when the hardness value of the Cu phase when heat-treated at a temperature lower than T1 is used,
The relationship between the [Hm / Ho] ratio and the frequency of occurrence of restriking cannot be sufficiently coped with, and quality control of products cannot be performed.

【0042】更に請求項13に記載の本発明は、Cu又
はCuを主成分とするCu合金で構成されるCu相より
成る導電性成分と、粒子径が0.1〜150μmの範囲
にあるCr粒子を所定比率以上含んだCr粒子より成る
耐弧性成分とで構成されたCu−Cr合金からなる電力
用真空遮断器の接点材料に於いて、焼結工程後若しくは
焼結・溶浸工程後の、Cu−Cr合金中のCu相の硬度
値(マイクロビッカース硬さ値)をHm、非酸化性雰囲
気中で、Cu−Cr合金中のCu相の融解温度以下の温
度またはCu相の融解温度以上の温度で加熱し、これを
常温にまで冷却した時の、Cu−Cr合金中のCu相の
硬度値(マイクロビッカース硬さ値)をHoとした時の
[Hm/Ho]比を、1.0〜2.0の範囲としたこと
を特徴とする電力用真空遮断器の接点材料である。
According to a thirteenth aspect of the present invention, there is provided an electroconductive device comprising a conductive component composed of Cu or a Cu phase composed of a Cu alloy containing Cu as a main component, and a Cr component having a particle diameter in a range of 0.1 to 150 μm. After the sintering process or after the sintering / infiltration process, in the contact material of the electric vacuum circuit breaker made of a Cu-Cr alloy composed of a Cr-resistant component composed of Cr particles containing particles in a predetermined ratio or more. The hardness value (micro-Vickers hardness value) of the Cu phase in the Cu-Cr alloy is Hm, and the temperature is equal to or lower than the melting temperature of the Cu phase in the Cu-Cr alloy in a non-oxidizing atmosphere. [Hm / Ho] ratio when the hardness value (micro-Vickers hardness value) of the Cu phase in the Cu-Cr alloy when heated at the above temperature and cooled to room temperature is 1 Power in the range of 0.0 to 2.0 A contact material for a vacuum circuit breaker.

【0043】ここで、Cu−Cr接点材料の製造雰囲気
として、非酸化性雰囲気を選択することは、特に再点弧
発生頻度の低減化に対して好ましい。
Here, it is preferable to select a non-oxidizing atmosphere as the manufacturing atmosphere for the Cu—Cr contact material, particularly for reducing the frequency of restriking.

【0044】更に請求項14に記載の本発明は、Crの
一部を、Cr量に対して、50%(重量%)以下のT
i,V,Nb,Taより選ばれた1つによって置換した
ことを特徴とする請求項11乃至請求項13のいずれか
に記載の電力用真空遮断器の接点材料である。
Further, according to the present invention, a part of Cr is reduced to a T content of 50% (% by weight) or less based on the amount of Cr.
14. The contact material for a power vacuum circuit breaker according to claim 11, wherein the contact material is replaced by one selected from i, V, Nb, and Ta.

【0045】ここで、Crの一部をTi,V,Nb,T
aの1つによって置換することによって、Cu−Cr接
点素材全体の機械的強度を大とし、Cr粒子の脱落が引
き金となって引き起こされる再点弧発生を軽減化する。
50%(重量%)を越えるとこれらの元素が主因となる
熱電子放出が盛んとなり、遮断特性を低下させる。
Here, a part of Cr is changed to Ti, V, Nb, T
Substitution by one of the above a increases the mechanical strength of the entire Cu-Cr contact material, and reduces the occurrence of restriking caused by falling off of Cr particles.
If the content exceeds 50% (% by weight), thermionic emission mainly due to these elements becomes active and the blocking characteristics are deteriorated.

【0046】更に請求項15に記載の本発明は、Cu相
中には、Cu量に対して20%(重量%)以下のCr,
Ti,B,V,Nb,Taより選ばれた1つを含有した
ことを特徴とする請求項11乃至請求項14のいずれか
に記載の電力用真空遮断器の接点材料である。
Further, according to the present invention, the Cu phase contains not more than 20% (% by weight) of Cr,
The contact material of a vacuum circuit breaker for electric power according to any one of claims 11 to 14, wherein the contact material contains one selected from Ti, B, V, Nb, and Ta.

【0047】ここで、Cu相中でのCr,Ti,V,
B,Nb,Taの存在は、再点弧発生レベルを一層低く
すると共に[Hm/Ho]比を一層低く安定化させる。
Here, Cr, Ti, V,
The presence of B, Nb and Ta further lowers the level of restriking and stabilizes the [Hm / Ho] ratio.

【0048】更に請求項16に記載の本発明は、導電性
成分としてのCu相の量を10〜90%(重量%)、残
部が耐弧性成分としてCrを含有したことを特徴とする
請求項11乃至請求項15のいずれかに記載の電力用真
空遮断器の接点材料である。
The present invention according to claim 16 is characterized in that the amount of the Cu phase as the conductive component is 10 to 90% (% by weight), and the balance contains Cr as the arc resistant component. A contact material for a power vacuum circuit breaker according to any one of claims 11 to 15.

【0049】ここで、Cu−Cr合金中のCu相の量が
10%未満では、電流遮断特性が大幅に低下する。Cu
相の量が90%を越えると、接点表面の消耗が大となり
再点弧発生頻度が増大する。
Here, if the amount of the Cu phase in the Cu—Cr alloy is less than 10%, the current interrupting characteristics are significantly reduced. Cu
When the amount of the phase exceeds 90%, the contact surface is worn away and the frequency of restriking increases.

【0050】更に請求項17に記載の本発明は、導電性
成分としてのCu相の量を10〜90%(重量%)、第
1補助成分としてAl,Siの少なくとも一方を最大
1.0%(重量%)、残部が耐弧性成分としてCrを含
有したことを特徴とする請求項11乃至請求項15のい
ずれかに記載の電力用真空遮断器の接点材料である。
Further, according to the present invention, the amount of the Cu phase as the conductive component is 10 to 90% (% by weight), and at least one of Al and Si is at most 1.0% as the first auxiliary component. The contact material for a vacuum circuit breaker for electric power according to any one of claims 11 to 15, wherein Cr (% by weight) and the remainder contain Cr as an arc-resistant component.

【0051】ここで、所定量のAl,Siの存在は、
[Hm/Ho]比を一層低く安定化させ、再点弧発生レ
ベルを低くすると共に、更に電流遮断特性も安定化させ
る。また、Al,Siの少なくとも一方の量が1%を越
えると、遮断時の大きなエネルギ処理の為の接点片表面
の荒れを招き、耐消耗特性と耐溶着特性の低下と再点弧
特性の不安定化を招く。
Here, the existence of the predetermined amounts of Al and Si is as follows.
It stabilizes the [Hm / Ho] ratio even lower, lowers the level of restriking, and further stabilizes the current cutoff characteristics. On the other hand, if the amount of at least one of Al and Si exceeds 1%, the surface of the contact piece is roughened due to a large energy treatment at the time of interruption, and the wear resistance and welding resistance are deteriorated, and the re-ignition characteristic is poor. Invites stabilization.

【0052】更に請求項18に記載の本発明は、第2補
助成分として1%(重量%)以下のBi,Sbの1つを
含有したことを特徴とする請求項11乃至請求項17の
いずれかに記載の電力用真空遮断器の接点材料である。
The present invention according to claim 18, further comprising 1% (% by weight) or less of one of Bi and Sb as the second auxiliary component. 12. A contact material for a vacuum circuit breaker for electric power according to any one of

【0053】ここで、Cu相中での所定量のBi(又は
Sb)の存在は、1%以下なら電流遮断後の接点表面荒
れを安定化させ、再点弧発生レベルを一層低くする。1
%を越えた量のBi(又はSb)では再点弧発生の頻度
を増加させて好ましくない。
Here, if the presence of a predetermined amount of Bi (or Sb) in the Cu phase is less than 1%, the contact surface roughness after current interruption is stabilized and the level of restriking is further reduced. 1
If the amount of Bi (or Sb) exceeds%, the frequency of occurrence of restriking increases, which is not preferable.

【0054】更に請求項19に記載の本発明は、第2補
助成分として5%(重量%)以下のTe,Se,Pbの
1つを含有したことを特徴とする請求項11乃至請求項
17のいずれかに記載の電力用真空遮断器の接点材料で
ある。
The present invention according to claim 19, further comprising 5% (% by weight) or less of one of Te, Se, and Pb as the second auxiliary component. 5. The contact material for a power vacuum circuit breaker according to any one of the above.

【0055】ここで、Cu相中での所定量のTe,S
e,Pbの存在も、電流遮断後の接点裏面荒れを安定化
させ、再点弧発生レベルを低くする。
Here, a predetermined amount of Te, S in the Cu phase
The presence of e and Pb also stabilizes the contact back surface roughness after current interruption and lowers the level of re-ignition.

【0056】更に請求項20に記載の本発明は、Cr粒
子は、平均粒子径が0.1〜150μmの範囲にあるC
r粒子が、Cr粒子全体の少なくとも75%(容積%)
を占めるCr粉よりなることを特徴とする請求項11乃
至請求項19のいずれかに記載の電力用真空遮断器の接
点材料である。
According to a twentieth aspect of the present invention, the Cr particles have a mean particle size of 0.1 to 150 μm.
r particles are at least 75% (by volume) of the total Cr particles
20. The contact material for a power vacuum circuit breaker according to any one of claims 11 to 19, wherein the contact material is made of Cr powder.

【0057】ここで、平均粒子径が0.1〜150μm
の範囲のCr粒子が少なくとも7575%(容積%)を
占める時、安定した再点弧特性を発揮する。Cr粒子の
平均粒子径が0.1μm未満では、Cu−Cr合金中の
Cr粒子の分布は、十分には分散出来ず凝集部分が存在
すると共に、Cu−Cr接点素材中のガス量が低域化出
来ず、いずれも再点弧発生を増長させている。Cr粒子
が150μmを越えると、仕上げ加工した接点表面に
は、相対的にCu相の幅も大となり、CuのまくれやC
u面に引っかき状の傷を残し平滑で均一な状態が得難
く、再点弧発生に大きなバラツキを示す。
Here, the average particle diameter is 0.1 to 150 μm
When the Cr particles in the range occupy at least 7575% (% by volume), stable re-ignition characteristics are exhibited. When the average particle diameter of the Cr particles is less than 0.1 μm, the distribution of the Cr particles in the Cu—Cr alloy cannot be sufficiently dispersed, and there is an agglomerated portion, and the gas amount in the Cu—Cr contact material is low. In each case, the occurrence of restriking is increased. If the Cr particles exceed 150 μm, the width of the Cu phase becomes relatively large on the finished contact surface, and the Cu curl and C
Scratch-like flaws are left on the u-surface, making it difficult to obtain a smooth and uniform state, and showing large variations in the occurrence of restriking.

【0058】[0058]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0059】Cu−Cr接点の材料状態と再点弧発生に
ついて、発明者らの観察では、遮断前後の材料特性と、
再点弧のバラツキ発生との間の関連性について、以下の
様な知見を得た。Cu−Cr接点は、研磨、研削や切
削手段によって仕上げ加工するのが一般である。しかし
Cu−Crの諸内容(製造条件や加工条件など)を一定
としても、なお再点弧の発生にバラツキが見られる。発
明者らの観察の結果、接点表面にはCr粒子の脱落、C
u相部分の脱落、流れ(CuがCr粒子上にまでかぶ
る)や剥離、Cr粒子端部の欠け、引っかき状の傷など
種々存在していた。その一因として接点面上の特にミク
ロ領域での加工性の差異、すなわち再点弧発生のバラツ
キとミクロ領域での硬度の均一度の違いとの間に相関性
を認めた。この傾向は、接点素材の製造ロット間で、お
よび1枚の接点のミクロ領域中でも観察された。更
に、定常電流開閉動作や事故電流遮断動作の経過によっ
て、次第に再点弧発生頻度は、ほぼ一定値に安定してゆ
く場合が認められた。この状況はアーク熱を受け接点面
が次第に変化(軟化)し最後には一定の硬度値となる現
象を示していると考えられる。
Regarding the material state of the Cu—Cr contact and the occurrence of restriking, the inventors have observed that the material properties before and after the interruption and the
The following findings were obtained regarding the relationship between the re-ignition variation and the occurrence. The Cu-Cr contact is generally finished by polishing, grinding or cutting means. However, even if the contents of Cu-Cr (manufacturing conditions, processing conditions, etc.) are fixed, variation in restriking still occurs. As a result of the observations by the inventors, it was found that Cr particles fell off on the contact surface and C
There were various things such as drop-off of the u-phase portion, flow (Cu covers the Cr particles) and peeling, chipping of Cr particle end portions, and scratches. One reason for this is that there was a correlation between the difference in workability on the contact surface, especially in the micro region, that is, the variation in the occurrence of restriking and the difference in hardness uniformity in the micro region. This tendency was observed between production lots of the contact material and also in the micro region of one contact. Further, it was recognized that the re-ignition frequency gradually became stable to a substantially constant value with the progress of the steady current switching operation and the fault current interruption operation. This situation is considered to indicate a phenomenon in which the contact surface gradually changes (softens) due to the arc heat and finally has a constant hardness value.

【0060】そこで、実際の真空バルブに対して、事故
電流遮断動作を多数回与えてほぼ一定値となった接点の
Cr粒子の硬度値HB、及びCu相の硬度値Hbを測定
した。その接点のCu相部分の融解温度の直下温度を選
択し、その温度で十分加熱した後、常温にまで冷却した
時の、同接点中のCr粒子の硬度値Hr及びCu相の硬
度値Hoとそれぞれ対比すると、両者は、それぞれ、ほ
ぼ近似の値(HB=Hr、Hb=Ho)を示しているこ
とが判った。更に、Cr粒子の硬度値については、焼
結工程後若しくは焼結・溶浸工程後の、Cu−Cr合金
中のCr粒子の硬度値(マイクロビッカース硬さ値)を
Hsとして、Cu−Cr合金中のCu相の融解温度の直
下温度に加熱し、これを常温にまで冷却した時の、Cu
−Cr合金中のCr粒子の硬度値(マイクロビッカース
硬さ値)をHrとした時、Hsが大で、Hrとの差が大
きい程(すなわち[Hs/Hr]比が大の程)、再点弧
の発生頻度が大の傾向にあることを認めた。[Hs/H
r]比として1.6を越えた接点を選択すると、Cu−
Cr合金中のCr粒子とCu相との硬度の差が大とな
り、接点の機械的仕上げ加工の際に好ましい加工表面状
態が得られず、目標とする低再点弧化に対して好ましく
ない。これに対して、[Hs/Hr]比として1.6以
下好ましくは1.3以下の接点を選択すると、Cr粒子
とCu相との硬度の差が小となり、接点の機械的仕上げ
加工に際し、好ましい加工表面状態が得られ、常に一定
の安定した表面状態を得て、アークの停滞、集中が低減
化される結果、接点面の局部的異常蒸発現象の阻止や表
面荒れの軽減化などによって、低再点弧化の利益と共に
遮断特性の向上に寄与する。
Therefore, the hardness value H B of the Cr particles and the hardness value Hb of the Cu phase of the contact which became substantially constant after the accident current interruption operation was applied to the actual vacuum valve many times were measured. The hardness value Hr of the Cr particles in the same contact point and the hardness value Ho of the Cu phase when the temperature immediately below the melting temperature of the Cu phase portion of the contact point is selected, sufficiently heated at that temperature, and then cooled to room temperature. When compared with each other, it was found that both of them showed almost approximate values (H B = Hr, Hb = Ho). Further, regarding the hardness value of the Cr particles, the hardness value (micro-Vickers hardness value) of the Cr particles in the Cu—Cr alloy after the sintering step or after the sintering / infiltration step is defined as Hs, When heated to a temperature just below the melting temperature of the Cu phase in and cooled to room temperature, Cu
Assuming that the hardness value (micro-Vickers hardness value) of the Cr particles in the Cr alloy is Hr, Hs is large, and the difference from Hr is large (that is, the [Hs / Hr] ratio is large), It was found that the frequency of occurrence of ignition tended to be large. [Hs / H
[r] ratio, a contact exceeding 1.6 is selected.
The difference in hardness between the Cr particles and the Cu phase in the Cr alloy becomes large, so that a favorable finished surface state cannot be obtained at the time of mechanical finishing of the contact point, which is not desirable for the target low re-ignition. On the other hand, when a contact having an [Hs / Hr] ratio of 1.6 or less, preferably 1.3 or less, is selected, the difference in hardness between the Cr particles and the Cu phase becomes small, and the mechanical finishing of the contact requires A favorable machined surface condition is obtained, a constant and stable surface condition is always obtained, and the stagnation and concentration of the arc are reduced.As a result, local abnormal evaporation of the contact surface is prevented and the surface roughness is reduced. It contributes to the improvement of the cutoff characteristics together with the benefit of low re-ignition.

【0061】また、Cu相の硬度値についても、焼結工
程後若しくは焼結・溶浸工程直後の、Cu−Cr合金中
のCu相の硬度値(マイクロビッカース硬さ値)をHm
として、Cu−Cr合金中のCu相の融解温度の直下温
度に加熱し、これを常温にまで冷却した時の、Cu−C
r合金中のCu相の硬度値(マイクロビッカース硬さ
値)をHoとした時、Hmが大で、Hoとの差が大きい
程(すなわち[Hm/Ho]比が大の程)、再点弧の発
生頻度が大の傾向にあることを認めた。[Hm/Ho]
比として2.0を越えた接点を選択すると、Cr粒子と
Cu相との硬度の差が大となり、接点の機械的仕上げ加
工の際に好ましい加工表面状態が得られず、目標とする
低再点弧化に対して好ましくない。これに対して、[H
m/Ho]比として2.0以下好ましくは1.3以下の
接点を選択すると、Cr粒子とCu相との硬度の差が小
となり、接点の機械的仕上げ加工に際し、好ましい加工
表面状態が得られ、常に一定の安定した表面状態を得
て、アークの停滞、集中が低減化される結果、接点面の
Cu相部分の局部的な異常蒸発現象を阻止、表面荒れの
軽減化などによって、低再点弧化の利益と共に遮断特性
の向上に寄与する。このような接点に外部磁界(例え
ば縦磁界)を与えると、遮断により発生したアークは、
接点面上に一様に拡がり移動拡散し、電流遮断特性を向
上させることが出来る。観察によれば、一定値以上の電
流値を遮断すると、アークは予測出来ない一点もしくは
複数点の場所で停滞する傾向を示すが、〔Hs/Hr]
比が1.6以下の接点の方が、1.6を越えた接点より
もその程度は低く優れている傾向にあり、また[Hm/
Ho]比が2.0以下の接点の方が、2.0を越えた接
点よりもその程度は低く優れている傾向にある。最終的
には接点の一部分を異常融解させ遮断限界に至る。また
異常融解によって瞬時的爆発的な蒸発によって発生した
金属蒸気は、開極過程にあった真空遮断器の絶縁回復性
を著しく阻害し、遮断限界の一層の劣化を招く。さらに
異常融解は、巨大な融滴を作り接点面の荒れを招き耐電
圧特性の低下、再点弧発生率の増加、材料の異常な消耗
をも招く。これらの現象の一因となるアークが、接点面
上のどこで停滞するかは全く予測出来ない以上、発生し
たアークが停滞させることなく移動拡散できるような表
面条件と移動拡散を促進させる手段とを接点に与えるこ
とが望ましい。本発明では、その望ましい条件として、
Cu−Cr合金中のCr粒子に関する[Hs/Hr]
比、またはCu−Cr合金中のCu相に関する[Hm/
Ho]比が重要となる。
As for the hardness value of the Cu phase, the hardness value (micro Vickers hardness value) of the Cu phase in the Cu—Cr alloy after the sintering step or immediately after the sintering / infiltration step is represented by Hm.
When heating to a temperature just below the melting temperature of the Cu phase in the Cu-Cr alloy and cooling this to room temperature, Cu-C
Assuming that the hardness value (micro Vickers hardness value) of the Cu phase in the r alloy is Ho, Hm is large and the difference from Ho is large (that is, the [Hm / Ho] ratio is large). It was recognized that the frequency of arc generation tended to be large. [Hm / Ho]
When a contact having a ratio exceeding 2.0 is selected, the difference in hardness between the Cr particles and the Cu phase becomes large, and a favorable machined surface state cannot be obtained during mechanical finishing of the contact. It is not preferable for ignition. In contrast, [H
When a contact having an [m / Ho] ratio of 2.0 or less, preferably 1.3 or less, is selected, the difference in hardness between the Cr particles and the Cu phase becomes small, and a favorable finished surface state is obtained during mechanical finishing of the contact. As a result, a constant and stable surface state is obtained at all times, and stagnation and concentration of the arc are reduced. As a result, local abnormal evaporation of the Cu phase portion on the contact surface is prevented, and surface roughness is reduced. This contributes to the improvement of the cutoff characteristics together with the benefit of restriking. When an external magnetic field (such as a vertical magnetic field) is applied to such a contact, the arc generated by the interruption is
It spreads uniformly on the contact surface and moves and diffuses, so that the current interruption characteristics can be improved. According to observation, when a current value equal to or more than a certain value is cut off, the arc tends to stagnate at one or more unpredictable points, but [Hs / Hr].
Contacts with a ratio of 1.6 or less tend to be lower and better than contacts with a ratio exceeding 1.6, and [Hm /
A contact having a [Ho] ratio of 2.0 or less tends to be lower and superior to a contact having a ratio exceeding 2.0. Eventually, a portion of the contact will melt abnormally, reaching the breaking limit. In addition, metal vapor generated by instantaneous explosive evaporation due to abnormal melting significantly impairs the insulation recovery of the vacuum circuit breaker in the process of opening, and further deteriorates the breaking limit. In addition, abnormal melting causes the formation of huge droplets, resulting in rough contact surfaces, lowering the withstand voltage characteristics, increasing the rate of restriking, and causing abnormal consumption of materials. Since it is impossible to predict at all where the arc contributing to these phenomena stagnates on the contact surface, a surface condition that allows the generated arc to move and diffuse without stagnation and means for promoting the movement and diffusion are provided. It is desirable to give to the contacts. In the present invention, as its desirable conditions,
[Hs / Hr] related to Cr particles in Cu-Cr alloy
Ratio, or [Hm /
Ho] ratio is important.

【0062】[1][Hs/Hr]比を調整する実施例 上述のように、CuCr合金の接点特性の安定化には、
合金中のCr量の変動、Cr粒子の粒度、粒度分布、C
rの偏析の程度、合金中に存在する空孔の程度などに依
存することを認めたが、特に再点弧特性のより一層の安
定化には、上記に加えてCuCr合金中のCr粒子の挙
動が極めて重要であることが判った。すなわち真空バル
ブの再点弧の発生頻度は、遮断前後の合金中のCrの硬
度の変化について注目する必要があることが判った。
[1] Embodiment of Adjusting [Hs / Hr] Ratio As described above, to stabilize the contact characteristics of a CuCr alloy,
Variation of Cr content in alloy, Cr particle size, particle size distribution, C
Although it was recognized that the degree of segregation of r depends on the degree of vacancies present in the alloy, etc., in particular, in order to further stabilize the re-ignition characteristics, in addition to the above, the Cr particles in the CuCr alloy The behavior turned out to be extremely important. That is, it was found that it is necessary to pay attention to the change in the hardness of Cr in the alloy before and after shutting off the frequency of occurrence of restriking of the vacuum valve.

【0063】そこで、まずCu−Cr合金中のCr粒子
に関する[Hs/Hr]比を調整して接点材料を製造す
る実施例及び比較例について説明する。なお、実施例及
び比較例の試作の条件を図1及び図2に、またこれらの
実施例及び比較例の評価結果を図3及び図4に示す。
Therefore, first, an example and a comparative example in which a contact material is manufactured by adjusting the [Hs / Hr] ratio for Cr particles in a Cu—Cr alloy will be described. FIGS. 1 and 2 show the conditions for the trial production of the examples and comparative examples, and FIGS. 3 and 4 show the evaluation results of these examples and comparative examples.

【0064】(遮断特性の評価)表面粗さを5μmに仕
上げたフラット接点と、同じ表面粗さを持つ曲率半径1
00Rの凸状接点とを対向させ、両接点を、開閉機構を
持つ真空度10-3Pa.以下に排気した着脱可能な真空
遮断実験装置に取り付け、荷重40kg、7.2kV−
20kA〜31.5kAで投入・遮断を10回操り返
し、溶着や再点弧の発生が軽微の時を「合格」とし、投
入・遮断を10回繰り返し、溶着や再点弧の発生多発の
時を「不合格」とした。
(Evaluation of Breaking Characteristics) A flat contact having a surface roughness of 5 μm and a curvature radius of 1 having the same surface roughness
00R and a contact having a switching mechanism of a degree of vacuum of 10 −3 Pa. Attached to the evacuated detachable vacuum cut-off experimental device below, with a load of 40 kg and 7.2 kV-
Injection / interruption is repeated 10 times at 20 kA to 31.5 kA. When the occurrence of welding or re-ignition is slight, it is judged as "Pass." Was "failed".

【0065】(再点弧特性の評価)6kV×500Aの
回路を1000回遮断させた時の再点弧発生頻度を6台
の真空バルブについて測定した。発生率(×10
-3(%))が0.3以下を評価S、0.3〜1の範囲を
評価A、1〜3の範囲を評価B、3〜10の範囲を評価
C、10〜100の範囲を評価Y、100以上を評価Z
とした。
(Evaluation of Restriking Characteristics) The frequency of restriking when the circuit of 6 kV × 500 A was cut off 1,000 times was measured for six vacuum valves. Incidence rate (× 10
-3 (%)) is 0.3 or less, S is evaluated, the range of 0.3-1 is evaluated A, the range of 1-3 is evaluated B, the range of 3-10 is evaluated C, and the range of 10-100 is evaluated. Evaluation Y, rating 100 or more Z
And

【0066】(硬さの測定)Cu相部分、Cr粒子を個
別にマイクロビッカース硬度計を用いて荷重10〜25
gr.にて測定した。
(Measurement of Hardness) The Cu phase portion and the Cr particles were individually subjected to a load of 10 to 25 using a micro Vickers hardness tester.
gr. Was measured.

【0067】([Hs/Hr]比の調整)接点は固相焼
結法、固相・溶浸法のいずれでも製造は可能であるが、
ここではCrスケルトンを製造し、その空隙にCuを溶
浸させる方法で製造した例について示す。粒子直径が4
4〜62μmの範囲にあるCu粉(全Cu粉中に95〜
99%占める)を用意した。粒子直径が0.1〜150
μmの範囲にあるCr粉(全Cr粉中に95〜99%占
める)の中から、これと近似した粒子直径を持つCuを
用意した。
(Adjustment of [Hs / Hr] ratio) The contact can be manufactured by either solid phase sintering or solid phase / infiltration.
Here, an example in which a Cr skeleton is manufactured and Cu is infiltrated into the voids will be described. Particle diameter 4
Cu powder in the range of 4 to 62 μm (95 to
99%). Particle diameter 0.1-150
Cu having a particle diameter similar to that of Cr powder in the range of μm (95-99% of all Cr powder) was prepared.

【0068】焼結工程後若しくは焼結・溶浸工程後の、
前記Cu−Cr合金中のCr粒子の硬度値(マイクロビ
ッカース硬さ値)をHs、該Cu−Cr合金中のCu相
の持つ融解温度の直下温度に加熱し、これを常温にまで
冷却した時の、Cu−Cr合金中のCr粒子の硬度値
(マイクロビッカース硬さ値)をHrとした時の[Hs
/Hr]比は、次のようにして調整した。 Cr粉を成形する時にCr粉に与える加圧力を、0〜
8トン/cm2(Crを容器にいれそのまま焼結した時
を加圧力0とする)の範囲で調整する。例えば同比率を
大とする時には、高加圧力値を選択する。 Crスケルトンを製造する時の焼結温度を、800〜
1400℃の範囲で調整する。例えば同比率を大とする
時には、この温度範囲の中から低めの温度を選択する。 Crスケルトン中にCuを溶浸する時の温度を、11
00〜1400℃の範囲で調整する。例えば同比率を大
とする時には、溶浸温度は低目を選択する。 溶浸後の常温にまで冷却する時の冷却速度を、0.1
〜10℃/分の範囲に調整する。例えば同比率を大とす
る時には、小さい冷却速度を選択する。 焼結、焼結・溶浸後の接点に対して、再加熱処理を追
加し、その温度を、500〜1070℃の範囲で調整す
る。例えば同比率を大とする時には、例えば低めの65
0〜750℃での再加熱処理温度を選択する。 焼結、焼結・溶浸後の接点に対して、再加圧処理を追
加し、再加圧力を4〜10トン/cm2の範囲で調整す
る。例えば同比率を大とする時には、再加圧処理前の相
対密度が大となるよう、高めの再加圧力を選択する。 [Hs/Hr]比を更に微調整する際には、Cu相に
対してはCr,Ti,V,B,Nb,Taより選ばれた
1つを適宜量添加する。 Cr粒子に対してTi,V,Nb,Taより選ばれた
1つ、または第1の補助成分としてのAl,Siの少な
くとも一方を適宜量添加することによって、前記比率の
微調整は可能である。
After the sintering step or the sintering / infiltration step,
When the hardness value (micro-Vickers hardness value) of the Cr particles in the Cu-Cr alloy is heated to Hs, a temperature just below the melting temperature of the Cu phase in the Cu-Cr alloy, and cooled to room temperature. [Hs] when the hardness value (micro-Vickers hardness value) of the Cr particles in the Cu—Cr alloy is Hr.
/ Hr] ratio was adjusted as follows. The pressing force applied to the Cr powder when molding the Cr powder is from 0 to
It is adjusted within a range of 8 tons / cm 2 (the pressure is 0 when Cr is put in a container and sintered as it is). For example, when increasing the ratio, a high pressure value is selected. The sintering temperature when manufacturing the Cr skeleton is 800-
Adjust within the range of 1400 ° C. For example, when increasing the ratio, a lower temperature is selected from this temperature range. The temperature at which Cu is infiltrated into the Cr skeleton is 11
Adjust within the range of 00 to 1400 ° C. For example, when the ratio is increased, a lower infiltration temperature is selected. The cooling rate when cooling to room temperature after infiltration is 0.1
Adjust within the range of 〜1010 ° C./min. For example, when increasing the same ratio, a small cooling rate is selected. A reheating treatment is added to the contact after sintering, sintering and infiltration, and the temperature is adjusted in the range of 500 to 1070 ° C. For example, when the ratio is increased, for example, a lower 65
Select a reheat temperature of 0-750 ° C. A re-pressurizing process is added to the contact after sintering, sintering and infiltration, and the re-pressing force is adjusted in a range of 4 to 10 ton / cm 2 . For example, when the ratio is increased, a higher re-pressing force is selected so that the relative density before the re-pressing process is increased. When the [Hs / Hr] ratio is further finely adjusted, one selected from Cr, Ti, V, B, Nb, and Ta is appropriately added to the Cu phase. The ratio can be finely adjusted by adding an appropriate amount of one selected from Ti, V, Nb and Ta to Cr particles, or at least one of Al and Si as a first auxiliary component. .

【0069】これらなどを適宜組合わ
せることによって[Hs/Hr]比を調整した接点を得
た。
By appropriately combining these components, a contact having an adjusted [Hs / Hr] ratio was obtained.

【0070】(実施例1〜3、比較例1〜2)上述のよ
うに用意したCu粉とCr粉とを用いて、固相・溶浸法
によって所定の[Hs/Hr]比を有する75%Cu−
残部Cr合金を製造した(実施例1〜3、比較例1〜
2)。[Hs/Hr]比を調整する為に、接点製造に際
しては上記〜の適宜選択又は組み合わせによって、
1.0〜1.6(実施例1〜3)、1.9〜2.3(比
較例1〜2)の[Hs/Hr]比を有する接点を選出し
た。
(Examples 1 to 3 and Comparative Examples 1 and 2) Using the Cu powder and the Cr powder prepared as described above, the powder having a predetermined [Hs / Hr] ratio by a solid-phase infiltration method is used. % Cu-
The remaining Cr alloy was manufactured (Examples 1 to 3, Comparative Examples 1 to 3).
2). In order to adjust the [Hs / Hr] ratio, at the time of manufacturing a contact, the above-mentioned or the above may be appropriately selected or combined.
Contacts having an [Hs / Hr] ratio of 1.0 to 1.6 (Examples 1 to 3) and 1.9 to 2.3 (Comparative Examples 1 and 2) were selected.

【0071】これらの接点を評価用真空パルプに搭載
し、前記所定条件で再点弧発生頻度(×10-3%で示し
た数値)と遮断特性とを測定した。[Hs/Hr]比=
1.0の場合では、6台のバルブを評価したところ、再
点弧発生頻度は、評価(S〜A)を示し良好な特性を発
揮した。遮断特性は、31.5kAの10回遮断に成功
し遮断特性も「合格」である。評価前の接点加工表面の
観察によれば、Cr粒子部分、Cu相部分の区別なくほ
ぼ均一に切削研磨された状況が見られ、極めて安定した
接点表面状態を示し、Cr粒子の脱落、研磨傷などによ
る表面荒れは見られていない。評価後の接点の最表面層
の顕微鏡的観察でも、最表面層領域からのCr粒子の脱
落もなかった(実施例1)。
These contacts were mounted on a vacuum pulp for evaluation, and the re-ignition occurrence frequency (numerical value indicated by × 10 −3 %) and the breaking characteristics were measured under the above-mentioned predetermined conditions. [Hs / Hr] ratio =
In the case of 1.0, when six valves were evaluated, the re-ignition occurrence frequency was evaluated (S to A), indicating good characteristics. As for the cutoff characteristic, the cutoff was successfully performed 10 times at 31.5 kA, and the cutoff characteristic was “pass”. According to the observation of the contact processing surface before the evaluation, it can be seen that almost uniformly polished and polished without distinction of the Cr particle portion and the Cu phase portion, showing an extremely stable contact surface condition, falling off of the Cr particles, polishing scratches. No surface roughness due to such factors has been observed. Microscopic observation of the outermost surface layer of the contact after the evaluation did not show any loss of Cr particles from the outermost layer region (Example 1).

【0072】また、[Hs/Hr]比=1.3の場合で
は、再点弧発生頻度は、評価(A〜B)を示し良好な特
性を発揮した。遮断特性は、24kAの10回遮断に成
功し遮断特性も「合格」である。Cr粒子部分、Cu相
部分の区別なくほぼ均一に切削研磨された状況が見ら
れ、極めて安定した接点表面の加工状態を示し、Cr粒
子の脱落、研磨傷などによる表面荒れは見られていない
(実施例2)。
When the [Hs / Hr] ratio was 1.3, the re-ignition frequency was evaluated (A to B), indicating good characteristics. As for the cutoff characteristic, the cutoff was successful 10 times at 24 kA, and the cutoff characteristic was “pass”. It can be seen that the surface is almost uniformly polished without distinction of the Cr particle portion and the Cu phase portion, and shows a very stable contact surface processing state, and no surface roughness due to falling off of the Cr particles, polishing scratches, etc. is observed ( Example 2).

【0073】更に、[Hs/Hr]比=1.6の場合で
も、再点弧発生頻度は、評価(C)を示し良好な特性を
発揮した。遮断特性は、20kAの10回遮断に成功し
遮断特性も「合格」である。Cr粒子部分、Cu相部分
の区別なくほぼ均一に切削研磨された状況が見られ、C
r粒子の脱落、研磨傷などによる表面荒れはなく、極め
て安定した接点表面状態を示している(実施例3)。
Further, even when the [Hs / Hr] ratio was 1.6, the frequency of occurrence of restriking was evaluated (C) and good characteristics were exhibited. As for the cutoff characteristics, the cutoff was successfully performed 10 times at 20 kA, and the cutoff characteristics were “pass”. It can be seen that almost uniformly cut and polished without distinction between the Cr particle portion and the Cu phase portion.
There is no surface roughness due to dropping of r-particles, polishing scratches, etc., and the contact surface state is extremely stable (Example 3).

【0074】これに対して、[Hs/Hr]比=1.9
の場合では、再点弧発生頻度は、評価(C〜Y)を示し
再点弧特性に大幅な劣化が見られると共に大きなバラツ
キも示し好ましくない。遮断特性も、20kAの遮断テ
ストに於いて多数の遮断不能を示し「不合格」である。
遮断前の加工表面にはCr粒子の脱落跡が観察されてい
る。遮断後の接点面には局所的な荒れが存在している
(比較例1)。
On the other hand, [Hs / Hr] ratio = 1.9
In the case of (1), the re-ignition occurrence frequency is evaluated (C to Y), and the re-ignition characteristics show a large deterioration and a large variation, which is not preferable. The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test.
Traces of Cr particles falling off are observed on the processed surface before cutoff. There is local roughness on the contact surface after the interruption (Comparative Example 1).

【0075】また、[Hs/Hr]比=2.3の場合で
は、再点弧発生頻度は、評価(Z)を示し再点弧特性に
大幅な劣化が見られる。遮断特性も、20kAの遮断テ
ストに於いて多数の遮断不能を示し「不合格」である。
加工面の静耐圧値に大きなバラツキが見られている(比
較例2)。
When the [Hs / Hr] ratio is 2.3, the re-ignition occurrence frequency indicates the evaluation (Z), and the re-ignition characteristics are significantly deteriorated. The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test.
A large variation is observed in the static withstand voltage value of the processed surface (Comparative Example 2).

【0076】以上から、再点弧特性と遮断特性との両立
に対して、[Hs/Hr]比の管理が極めて重要である
と共に、同比率を1.0〜1.6の範囲を選択する時に
目的を達する。
As described above, the management of the [Hs / Hr] ratio is extremely important for achieving both the restriking characteristic and the cutoff characteristic, and the ratio is selected from the range of 1.0 to 1.6. Sometimes the goal is reached.

【0077】(実施例4〜6、比較例3〜4)前記実施
例では、Cu−Cr合金中のCuの量を75%に一定と
した時の、[Hs/Hr]比を変動させた場合の再点弧
特性と遮断特性に及ぼす効果を示したが、本発明技術は
Cu量75%に限ることなく、Cuの量が90〜10%
(実施例4〜6)に於いても効果を発揮する。
(Examples 4 to 6 and Comparative Examples 3 and 4) In the above example, the [Hs / Hr] ratio was varied when the amount of Cu in the Cu—Cr alloy was fixed at 75%. The effect of the present invention on restriking characteristics and cutoff characteristics was shown, but the present invention technology is not limited to the Cu amount of 75%, but the Cu amount is 90 to 10%.
The effects are also exerted in (Examples 4 to 6).

【0078】すなわち、[Hs/Hr]比=1.4に一
定とした時、Cu量が90%の場合では、再点弧発生頻
度は、評価(C)を示し良好な特性を発揮した。遮断特
性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例4)。
That is, when the [Hs / Hr] ratio was kept constant at 1.4, when the Cu content was 90%, the frequency of restriking was evaluated (C), indicating good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 4).

【0079】Cu量が50%の場合でも、再点弧発生頻
度は、評価(B〜C)を示し良好な特性を発揮した。遮
断特性も、24kAの10回遮断に成功し遮断特性も
「合格」である(実施例5)。
Even when the Cu content was 50%, the frequency of restriking was evaluated (B to C), and good characteristics were exhibited. As for the blocking characteristics, the blocking was successfully performed 10 times at 24 kA, and the blocking characteristics were “pass” (Example 5).

【0080】Cu量が10%の場合でも、再点弧発生頻
度は、評価(A〜B)を示し良好な特性を発揮した。遮
断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例6)。
Even when the Cu content was 10%, the re-ignition frequency was evaluated (A to B), and good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 6).

【0081】これに対して、Cu量が95%の場合で
は、再点弧発生頻度は、評価(C〜Y)を示し、再点弧
特性に大福な劣化が見られると共に大きなバラツキも示
し好ましくない。但し遮断特性は、20kAの遮断に成
功し遮断特性では「合格」であったが、総合的には目的
達成に対して好ましくない(比較例3)。
On the other hand, when the Cu content is 95%, the re-ignition frequency indicates the evaluation (C to Y), and the re-ignition characteristics show a great deterioration and a large variation. Absent. However, the cutoff characteristic was 20 kA, and the cutoff characteristic was “pass”, but it is not preferable for achieving the object as a whole (Comparative Example 3).

【0082】一方、Cu量が5%の場合では、再点弧発
生頻度は、評価(Y〜Z)を示し再点弧特性に大福な劣
化が見られる共に大きなバラツキも示し好ましくない。
遮断特性も、20kAの遮断テストに於いて多数の遮断
不能を示し「不合格」である。遮断特性が著しく低下し
ていると共に遮断テスト中の温度上昇特性、遮断テスト
後の接触抵抗特性共に低下が顕著に示された(比較例
4)。
On the other hand, when the Cu content is 5%, the re-ignition occurrence frequency is evaluated (Y to Z), and the re-ignition characteristics show a large deterioration and a large variation, which is not preferable.
The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test. The breaking characteristics were remarkably reduced, and the temperature rise characteristics during the breaking test and the contact resistance characteristics after the breaking test were both significantly reduced (Comparative Example 4).

【0083】(実施例7〜12)前記実施例1〜6で
は、Cu−Cr合金中のCu相中には、0.01%のC
r成分を含有したCuを使用した例についてその効果を
示したが、本発明技術はCu相中の成分は、0.01%
のCrに限ることなく効果を発揮する。
(Examples 7 to 12) In Examples 1 to 6, the Cu phase in the Cu-Cr alloy contained 0.01% C
Although the effect was shown about the example which used Cu containing the r component, the present invention technology showed that the component in the Cu phase was 0.01%.
The effect is exhibited without being limited to Cr.

【0084】すなわち、Cu−Cr合金中のCuの量を
75%に一定とした時、Cu相中に、0.2%のCr成
分を含有した75%Cu接点では、再点弧発生頻度は、
評価(S〜A)を示し極めて良好な特性を発揮した。遮
断特性も、31.5kAの10回遮断に成功し遮断特性
も「合格」である(実施例7)。
That is, when the amount of Cu in the Cu—Cr alloy is fixed at 75%, the frequency of restriking occurs at a 75% Cu contact point containing 0.2% Cr component in the Cu phase. ,
Evaluations (S to A) were shown, and extremely good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 31.5 kA, and the breaking characteristics were “pass” (Example 7).

【0085】Cu相中に、0.5%のTiを含有させた
接点では、再点弧発生頻度は、評価(B〜C)を示し良
好な特性を発揮した。遮断特性も、20kAの10回遮
断に成功し遮断特性も「合格」である(実施例8)。
The contact point in which 0.5% of Ti was contained in the Cu phase was evaluated for the occurrence of restriking (B to C) and exhibited good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 8).

【0086】Cu相中に、1.0%のVを含有させた接
点では、再点弧発生頻度は、評価(B〜C)を示し良好
な特性を発揮した。遮断特性も、20kAの10回遮断
に成功し遮断特性も「合格」である(実施例9)。
In the case of a contact containing 1.0% of V in the Cu phase, the re-ignition frequency was evaluated (B to C), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 9).

【0087】Cu相中に、1.0%のBを含有させた接
点では、再点弧発生頻度は、評価(B〜C)を示し良好
な特性を発揮した。遮断特性も、20kAの10回遮断
に成功し遮断特性も「合格」である(実施例10)。
At the contact point where 1.0% of B was contained in the Cu phase, the frequency of restriking was evaluated (B to C), and good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 10).

【0088】Cu相中に、10%のNbを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、24kAの10回遮断に成
功し遮断特性も「合格」である(実施例10)。
In the case of the contact containing 10% of Nb in the Cu phase, the re-ignition frequency was evaluated (B), and good characteristics were exhibited. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 10).

【0089】Cu相中に、20%のTaを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、24kAの10回遮断に成
功し遮断特性も「合格」である(実施例12)。
In the case of a contact containing 20% of Ta in the Cu phase, the frequency of occurrence of restriking was evaluated (B), indicating good characteristics. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 12).

【0090】(実施例13〜16)Cu−Cr合金中の
Cr粒子中の成分として、Ti,V,Nb,Taを含有
したCrを使用した場合には、再点弧特性、遮断特性の
安定化に有益である。
(Examples 13 to 16) When Cr containing Ti, V, Nb and Ta was used as a component in Cr particles in a Cu-Cr alloy, the re-ignition characteristics and the breaking characteristics were stable. Is useful for

【0091】すなわち、Cr粒子中1.0%のTiを含
有させた接点では、再点弧発生頻度は、評価(S〜A)
を示し極めて良好な特性を発揮した。遮断特性も、3
1.5kAの10回遮断に成功し遮断特性も「合格」で
ある(実施例13)。
That is, at the contact point where 1.0% of Ti is contained in the Cr particles, the re-ignition frequency is evaluated (S to A).
And exhibited extremely good characteristics. 3
The circuit was successfully cut off 10 times at 1.5 kA, and the cut-off characteristics were “pass” (Example 13).

【0092】Cr粒子中2.0%のVを含有させた接点
では、再点弧発生頻度は、評価(B)を示し良好な特性
を発揮した。遮断特性も、24kAの10回遮断に成功
し遮断特性も「合格」である(実施例14)。
In the contact point containing 2.0% of V in the Cr particles, the frequency of occurrence of restriking was evaluated (B), and good characteristics were exhibited. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 14).

【0093】Cr粒子中25%のNbを含有させた接点
では、再点弧発生頻度は、評価(A〜B)を示し良好な
特性を発揮した。遮断特性も、24kAの10回遮断に
成功し遮断特性も「合格」である(実施例15)。
In the case of the contact containing 25% of Nb in the Cr particles, the frequency of occurrence of restriking was evaluated (A to B), and excellent characteristics were exhibited. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 15).

【0094】Cr粒子中50%のTaを含有させた接点
では、再点弧発生頻度は、評価(B)を示し良好な特性
を発揮した。遮断特性も、24kAの10回遮断に成功
し遮断特性も「合格」である(実施例16)。
In the case of the contact containing 50% Ta in the Cr particles, the frequency of occurrence of restriking was evaluated (B), and good characteristics were exhibited. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 16).

【0095】(実施例17〜18、比較例5)前記実施
例1〜16では、0.1〜150μmの平均粒子直径を
有するCr粒子が全Cr粒子の95%(容積%)以上を
占める例についてその効果を示したが、本発明技術では
全Cr粒子中に占める0.1〜150μmの平均粒子直
径を有するCr粒子は95%以上の場合に限ることなく
効果を発揮する。
(Examples 17-18, Comparative Example 5) In Examples 1-16, the Cr particles having an average particle diameter of 0.1-150 μm account for 95% or more (% by volume) of all Cr particles. However, in the present invention, the effect of Cr particles having an average particle diameter of 0.1 to 150 μm in all Cr particles is not limited to 95% or more.

【0096】すなわち、全Cr粒子中に占める平均粒子
直径0.1〜150μmのCrの比率が85%(容積
%)のCrを使用した接点では、再点弧発生頻度は、評
価(B)を示し良好な特性を発揮した。遮断特性も、2
4kAの10回遮断に成功し遮断特性も「合格」である
(実施例17)。
That is, in the case of a contact using Cr in which the ratio of Cr having an average particle diameter of 0.1 to 150 μm in all Cr particles is 85% (vol%), the re-ignition frequency is evaluated (B). It showed good characteristics. 2
The blockage was successfully performed 10 times at 4 kA, and the cutoff characteristics were “pass” (Example 17).

【0097】全Cr粒子中に占める平均粒子直径0.1
〜150μmのCrの比率が75%(容積%)のCrを
使用した接点では、再点弧発生頻度は、評価(B〜C)
を示し良好な特性を発揮した。遮断特性も、20kAの
10回遮断に成功し遮断特性も「合格」である(実施例
18)。
Average particle diameter of all Cr particles 0.1
In the case of contacts using Cr having a Cr content of 75 μm (volume%) of 150 μm, the re-ignition occurrence frequency was evaluated (B to C).
And exhibited good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 18).

【0098】これに対して、全Cr粒子中に占める平均
粒子直径0.1〜150μmのCrの比率必50%(容
積%)のCrを使用した接点では、再点弧発生頻度は、
評価(B〜Z)を示し再点弧特性に大幅な劣化が見られ
ると共に大きなバラツキも示し好ましくない。遮断特性
も、20kAの遮断に成功と20kAの遮断に失敗とが
存在しバラツキが大で遮断特性は「不合格」である(比
較例5)。
On the other hand, in the case of a contact using Cr having a ratio of Cr having an average particle diameter of 0.1 to 150 μm in all the Cr particles and 50% (vol%), the re-ignition frequency is as follows:
The results (B to Z) show that the re-ignition characteristics show significant deterioration and large variations, which are not preferable. As for the shutoff characteristics, there were a success in shutting off at 20 kA and a failure in shutoff at 20 kA.

【0099】(実施例19〜23、比較例6)Cu−C
r合金中のCr粒子中の第1の補助成分として、1.0
%以下のAl,Siを含有したCrを使用した場合に
は、再点弧特性、遮断特性の安定化に有益である。
(Examples 19 to 23, Comparative Example 6) Cu-C
As a first auxiliary component in the Cr particles in the r alloy, 1.0
The use of Cr containing less than 0.1% of Al and Si is useful for stabilizing the re-ignition characteristics and cutoff characteristics.

【0100】すなわち、Cr粒子中に1.0%のAlを
含有させた接点では、再点弧発生頻度は、評価(A〜
B)を示し良好な特性を発揮した。遮断特性も、24k
Aの10回遮断に成功し遮断特性も「合格」である(実
施例19)。
That is, at the contact point where 1.0% of Al was contained in the Cr particles, the re-ignition frequency was evaluated (A to A).
B) and good characteristics were exhibited. 24k blocking characteristics
A was successfully cut off 10 times, and the cut-off characteristics were “pass” (Example 19).

【0101】Cr粒子中に0.1%のAlを含有させた
接点では、再点弧発生頻度は、評価(S〜A)を示し良
好な特性を発揮した。遮断特性も、31.5kAの10
回遮断に成功し遮断特性も「合格」である(実施例2
0)。
At the contact point where 0.1% of Al was contained in the Cr particles, the re-ignition frequency was evaluated (S to A), indicating good characteristics. The breaking characteristic is 10 at 31.5 kA.
Times and the cutoff characteristics are "pass" (Example 2)
0).

【0102】Cr粒子中に0.01%のAlを含有させ
た接点では、再点弧発生頻度は、評価(S〜A)を示し
極めて良好な特性を発揮した。遮断特性も、31.5k
Aの10回遮断に成功し遮断特性も「合格」である(実
施例21)。
In the case of the contact in which 0.01% of Al was contained in the Cr particles, the frequency of occurrence of restriking was evaluated (S to A), and extremely good characteristics were exhibited. 31.5k breaking characteristics
A was successfully cut off 10 times, and the cut-off characteristic was “pass” (Example 21).

【0103】Cr粒子中に0.001%のAlを含有さ
せた接点では、再点弧発生頻度は、評価(S〜A)を示
し極めて良好な特性を発揮した。遮断特性も、31.5
kAの10回遮断に成功し遮断特性も「合格」である
(実施例22)。
In the contact point where 0.001% of Al was contained in the Cr particles, the re-ignition frequency was evaluated (S to A), and extremely good characteristics were exhibited. 31.5
The kA was successfully cut off 10 times, and the cutoff characteristics were “pass” (Example 22).

【0104】Cr粒子中に0.01%のSiを含有させ
た接点では、再点弧発生頻度は、評価(S〜A)を示し
極めて良好な特性を発揮した。遮断特性も、31.5k
Aの10回遮断に成功し遮断特性も「合格」である(実
施例23)。
In the contacts containing 0.01% of Si in the Cr particles, the re-ignition occurrence frequency was evaluated (S to A), and extremely good characteristics were exhibited. 31.5k breaking characteristics
A was successfully cut off 10 times, and the cut-off characteristic was “pass” (Example 23).

【0105】これに対して、Cr粒子中に1.5%のA
lを含有させた接点では、再点弧発生頻度は、評価(Y
〜Z)を示し好ましくない。遮断特性も、31.5kA
の遮断テストに於いて10回中8回再点弧発生したバル
ブがあり「不合格」である(比較例6)。
On the other hand, 1.5% of A
In the contact containing l, the re-ignition occurrence frequency is evaluated (Y
To Z) are not preferred. 31.5kA breaking characteristics
In the shut-off test, there was a valve which re-ignited 8 times out of 10 times, and was "Fail" (Comparative Example 6).

【0106】(実施例24〜29、比較例7〜8)第2
の補助成分として、1.0%以下のBi,Sbを含有し
たCu−Cr合金を使用した場合には、再点弧特性、遮
断特性の安定化に有益である。また他の第2の補助成分
として、5.0%以下のTe,Se,Pbを含有したC
u−Cr合金を使用した場合にも、再点弧特性、遮断特
性の安定化に有益である。
(Examples 24-29, Comparative Examples 7-8) Second
When a Cu—Cr alloy containing 1.0% or less of Bi and Sb is used as an auxiliary component, it is useful for stabilizing the re-ignition characteristics and the cutoff characteristics. C containing 5.0% or less of Te, Se, and Pb as another second auxiliary component
Use of a u-Cr alloy is also useful for stabilizing restriking characteristics and cutoff characteristics.

【0107】すなわち、Cu−Cr合金中の第2の補助
成分として、0.1%のBiを含有させた接点では、再
点弧発生頻度は、評価(B)を示し良好な特性を発揮し
た。遮断特性も、24kAの10回遮断に成功し遮断特
性も「合格」である(実施例24)。
That is, in the contact containing 0.1% Bi as the second auxiliary component in the Cu—Cr alloy, the re-ignition occurrence frequency was evaluated (B), and excellent characteristics were exhibited. . As for the breaking characteristics, the breaking was successful 10 times at 24 kA, and the breaking characteristics were “pass” (Example 24).

【0108】Cu−Cr合金中の第2の補助成分として
1.0%のBiを含有させた接点では、再点弧発生頻度
は、評価(B〜C)を示し良好な特性を発揮した。遮断
特性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例25)。
In the contact containing 1.0% Bi as the second auxiliary component in the Cu-Cr alloy, the re-ignition frequency was evaluated (B to C) and showed good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 25).

【0109】Cu−Cr合金中の第2の補助成分とし
て、0.2%のSbを含有させた接点では、再点弧発生
頻度は、評価(B〜C)を示し良好な特性を発揮した。
遮断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例26)。
In the contact containing 0.2% of Sb as the second auxiliary component in the Cu-Cr alloy, the re-ignition occurrence frequency was evaluated (B to C), and excellent characteristics were exhibited. .
As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 26).

【0110】Cu−Cr合金中の第2の補助成分とし
て、2.5%のTeを含有させた接点では、再点弧発生
頻度は、評価(B〜C)を示し良好な特性を発揮した。
遮断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例27)。
In the case of the contact containing 2.5% Te as the second auxiliary component in the Cu-Cr alloy, the re-ignition frequency was evaluated (B to C) and exhibited good characteristics. .
As for the breaking characteristic, the breaking was successful 10 times at 20 kA, and the breaking characteristic was “pass” (Example 27).

【0111】Cu−Cr合金中の第2の補助成分とし
て、5.0%のTeを含有させた接点では、再点弧発生
頻度は、評価(C)を示し良好な特性を発揮した。遮断
特性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例28)。
In the case of the contact containing 5.0% Te as the second auxiliary component in the Cu-Cr alloy, the re-ignition occurrence frequency was evaluated (C), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 28).

【0112】Cu−Cr合金中の第2の補助成分とし
て、2.5%のSeを含有させた接点では、再点弧発生
頻度は、評価(B〜C)を示し良好な特性を発揮した。
遮断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例29)。
In the contact containing 2.5% of Se as the second auxiliary component in the Cu-Cr alloy, the frequency of restriking was evaluated (B to C), and good characteristics were exhibited. .
As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 29).

【0113】また、第2の補助成分として、0.2%の
Pbを含有させた接点でも同等の再点弧発生頻度および
遮断特性を発揮し「合格」である。
Also, the contacts containing 0.2% of Pb as the second auxiliary component exhibit the same re-ignition occurrence frequency and cutoff characteristics, and are "passed".

【0114】Cu−Cr合金中の第2の補助成分とし
て、3.0%のBiを含有させた接点では、再点弧発生
頻度は、評価(Y〜Z)を示し再点弧特性に大幅な劣化
が見られ好ましくない。遮断特性も、20kA以下の遮
断で再点弧が多発し遮断特性は「不合格」である(比較
例7)。遮断テスト後の接点表面には著しい荒れが見ら
れる。接触抵抗にもバラツキが見られた。
In the case of the contact containing 3.0% Bi as the second auxiliary component in the Cu-Cr alloy, the re-ignition occurrence frequency was evaluated (Y to Z), indicating a large re-ignition characteristic. It is not preferable because of serious deterioration. As for the cutoff characteristic, re-ignition frequently occurs at a cutoff of 20 kA or less, and the cutoff characteristic is “fail” (Comparative Example 7). After the cutoff test, the contact surface is markedly rough. The contact resistance also varied.

【0115】Cu−Cr合金中の第2の補助成分とし
て、8.0%のTeを含有させた接点では、再点弧発生
頻度は、評価(Y〜Z)を示し再点弧特性に大福な劣化
が見られると共に大きなバラツキも示し好ましくない。
遮断特性も、20kAの遮断に成功と20kAの遮断に
失敗とが存在しバラツキが大で遮断特性は「不合格」で
ある(比較例8)。遮断テスト後の接点表面には著しい
荒れが見られる。接触抵抗にもバラツキが見られた。
For the contact containing 8.0% of Te as the second auxiliary component in the Cu-Cr alloy, the re-ignition occurrence frequency is evaluated (Y to Z), and the re-ignition characteristic is shown by Daifuku. This is not preferable because significant deterioration is observed and large variations occur.
As for the cutoff characteristics, there were a success in shutting off at 20 kA and a failure in shutoff at 20 kA. After the cutoff test, the contact surface is markedly rough. The contact resistance also varied.

【0116】(その他の実施例)焼結工程後若しくは焼
結・溶浸工程後のCu−Crを、非酸化性雰囲気中で、
Cu−Cr合金中のCu相の融解温度以下の温度または
Cu相の融解温度以上の温度で加熱し、これを常温にま
で冷却することとし、この場合も焼結工程後若しくは焼
結・溶浸工程後の、Cu−Cr合金中のCr粒子の硬度
値(マイクロビッカース硬さ値)をHs、非酸化性雰囲
気中で、Cu−Cr合金中のCu相の融解温度以下の温
度またはCu相の融解温度以上の温度で加熱し、これを
常温にまで冷却した時の、Cu−Cr合金中のCr粒子
の硬度値(マイクロビッカース硬さ値)をHrとした時
の[Hs/Hr]比を、1.0〜1.6の範囲に調整す
ることとしてもよい。
(Other Embodiments) Cu-Cr after the sintering step or after the sintering / infiltration step is removed in a non-oxidizing atmosphere.
The Cu-Cr alloy is heated at a temperature lower than the melting temperature of the Cu phase or higher than the melting temperature of the Cu phase, and is cooled to room temperature. After the process, the hardness value (micro Vickers hardness value) of the Cr particles in the Cu—Cr alloy is Hs, and the temperature is equal to or lower than the melting temperature of the Cu phase in the Cu—Cr alloy in a non-oxidizing atmosphere. The [Hs / Hr] ratio when the hardness value (micro Vickers hardness value) of the Cr particles in the Cu-Cr alloy when Hr is heated at a temperature equal to or higher than the melting temperature and cooled to room temperature is Hr. , 1.0 to 1.6.

【0117】このように、Cu−Cr接点材料の製造雰
囲気として、非酸化性雰囲気を選択することにより、特
に再点弧発生頻度の低減化を図ることができる。
As described above, by selecting a non-oxidizing atmosphere as the manufacturing atmosphere for the Cu-Cr contact material, it is possible to reduce the frequency of occurrence of restriking in particular.

【0118】[2][Hm/Ho]比を調整する実施例 また、上述のように、CuCr合金の接点特性の安定化
には、合金中のCu相の状態(表面荒れ、空孔の程
度)、Cu相の大きさ(粒度、粒度分布析の程度)など
に依存することを認めたが、特に再点弧特性のより一層
の安定化には、上記に加えてCu−Cr合金中のCu相
の挙動が極めて重要であることが判った。すなわち真空
バルブの再点弧の発生頻度は、遮断前後の合金中のCu
の硬度の変化について注目する必要があることが判っ
た。
[2] Example of Adjusting [Hm / Ho] Ratio As described above, the stabilization of the contact characteristics of a CuCr alloy depends on the state of the Cu phase in the alloy (surface roughness, degree of vacancies). ), The size of the Cu phase (grain size, degree of grain size distribution), etc., but in particular, for further stabilization of restrike characteristics, in addition to the above, the Cu-Cr alloy It has been found that the behavior of the Cu phase is extremely important. That is, the frequency of occurrence of restriking of the vacuum valve depends on the Cu in the alloy before and after shutoff.
It was found that it was necessary to pay attention to the change in hardness of the steel.

【0119】そこで、Cu−Cr合金中のCu相に関す
る[Hm/Ho]比を調整して接点材料を製造する実施
例及び比較例について説明する。なお、実施例及び比較
例の試作の条件を図5及び図6に、またこれらの実施例
及び比較例の評価結果を図7及び図8に示す。
An example and a comparative example in which the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy is adjusted to produce a contact material will be described. 5 and 6 show the conditions for trial production of the examples and comparative examples, and FIGS. 7 and 8 show the evaluation results of these examples and comparative examples.

【0120】(遮断特性の評価)この[Hm/Ho]比
を調整する実施例の場合も、[Hs/Hr]比を調整す
る実施例の場合と同様に、表面粗さを5μmに仕上げた
フラット接点と、同じ表面粗さを持つ曲率半径100R
の凸状接点とを対向させ、両接点を開閉機構を持つ真空
度10-3Pa.以下に排気した着脱可能な真空遮断実験
装置に取り付け、荷重40kg、7.2kV−20kA
〜31.5kAで投入・遮断を10回繰り返し、溶着や
再点弧の発生が軽徴の時を「合格」とした。投入・遮断
を10回繰り返し、再点弧や溶着の発生多発の時を「不
合格」とした。
(Evaluation of cut-off characteristics) In the case of adjusting the [Hm / Ho] ratio, the surface roughness was finished to 5 μm in the same manner as in the case of adjusting the [Hs / Hr] ratio. Flat contact, radius of curvature 100R with the same surface roughness
And a contact degree of 10 -3 Pa. Attached to the evacuated detachable vacuum cut-off experimental device below, load 40 kg, 7.2 kV-20 kA
Injection / interruption was repeated 10 times at 331.5 kA, and when the occurrence of welding or restriking was light, it was regarded as “pass”. Injection / shutoff was repeated 10 times, and when re-ignition or welding frequently occurred, it was regarded as "fail".

【0121】(再点弧特性の評価)6kV×500Aの
回路を1000回遮断させた時の再点弧発生頻度を6台
の真空バルブについて測定した。発生率(×10
-3(%))が0.3以下を評価S、0.3から〜1の範
囲を評価A、1〜3の範囲を評価B、3〜10の範囲を
評価C、10〜100の範囲を評価Y、100以上を評
価Zとした。
(Evaluation of Restriking Characteristics) The frequency of restriking when the circuit of 6 kV × 500 A was cut off 1,000 times was measured for six vacuum valves. Incidence rate (× 10
-3 (%)) is 0.3 or less, S is evaluated, 0.3 to 1 is evaluated A, 1 to 3 is evaluated B, 3 to 10 is evaluated C, and 10 to 100 is evaluated. Was evaluated as Y, and 100 or more was evaluated as Z.

【0122】(硬さの測定)Cu相部分を、マイクロビ
ッカース硬度計を用いて荷重10〜25gr.にて測定
した。
(Measurement of Hardness) A Cu phase portion was subjected to a load of 10 to 25 gr using a micro Vickers hardness meter. Was measured.

【0123】([Hm/Ho]の調整)接点は固相焼結
法、焼結・溶浸法のいずれでも製造は可能である。焼結
工程後若しくは焼結・溶浸工程後のCu−Cr合金中の
Cu相の硬度値(マイクロビッカース硬さ値)をHm、
Cu−Cr合金中のCu相の持つ融解温度の直下温度に
加熱し、これを常温にまで冷却した時の、Cu−Cr合
金中のCu相の硬度値(マイクロビッカース硬さ値)を
Hoとした時の所定の[Hm/Ho]比を持つ接点は、
次のようにして調整した。 (1)前者の固相焼結法を採用した製造では、粒子直径
が0.1〜150μmの範囲にあるCr粉(全Cr粉中
に95〜99%占める)を用意し、これと近似した粒子
直径を持つCuとして、44〜62μmの範囲にあるC
u粉(全Cu粉中に95〜99%占める)を用意する。
所定比率のCuとCrとを混合、成型した後、例えば1
030℃で固相焼結してCu−Cr合金を製造する。な
おCu−Cr合金中のCu量が5〜95%の総ての範囲
の合金に対して採用可能であるが、主としてCu量が6
0〜95%、5〜45%の範囲の合金に対して適用し
た。
(Adjustment of [Hm / Ho]) The contact can be manufactured by either the solid phase sintering method or the sintering / infiltration method. The hardness value (micro Vickers hardness value) of the Cu phase in the Cu—Cr alloy after the sintering step or the sintering / infiltration step is Hm,
When heated to a temperature just below the melting temperature of the Cu phase in the Cu-Cr alloy and cooled to room temperature, the hardness value (micro-Vickers hardness value) of the Cu phase in the Cu-Cr alloy is denoted by Ho. The contact having a predetermined [Hm / Ho] ratio at the time of
The adjustment was made as follows. (1) In the former method employing the solid phase sintering method, Cr powder having a particle diameter in the range of 0.1 to 150 μm (occupying 95 to 99% of the total Cr powder) is prepared and approximated to this. As Cu having a particle diameter, C in the range of 44 to 62 μm
u powder (95-99% of the total Cu powder) is prepared.
After mixing and molding a predetermined ratio of Cu and Cr, for example, 1
Solid phase sintering is performed at 030 ° C. to produce a Cu—Cr alloy. It is to be noted that the Cu content in the Cu—Cr alloy can be adopted in all ranges of alloys having a Cu content of 5 to 95%.
Applied for alloys in the range 0-95%, 5-45%.

【0124】A)Cu−Cr混合粉を成形する時に混合
粉に与える加圧力を、0〜8トン/cm2(Crを容器
に入れそのまま焼結した時を加圧力0とする)の範囲で
[Hm/Ho]比を小さく調整する。
A) The pressing force applied to the mixed powder at the time of molding the Cu-Cr mixed powder is in the range of 0 to 8 ton / cm 2 (the pressing force is 0 when Cr is put in a container and sintered as it is). [Hm / Ho] ratio is adjusted to be small.

【0125】B)固相焼結後の常温にまで冷却する時の
冷却速度を、0.1〜10℃/分の範囲に調整する。例
えば冷却速度をより小さく選択すると、Cu相の硬度値
Hmは小となり、[Hm/Ho]比率を小とするのに有
益である。
B) The cooling rate at the time of cooling to room temperature after solid-phase sintering is adjusted to a range of 0.1 to 10 ° C./min. For example, if the cooling rate is selected to be smaller, the hardness value Hm of the Cu phase becomes smaller, which is useful for reducing the [Hm / Ho] ratio.

【0126】C)固相焼結後の接点に対して、再加圧力
が4〜10トン/cm2の範囲の再加圧処理を追加し、
[Hm/Ho]比を小さく調整する。
C) A re-pressurizing treatment with a re-pressing force in the range of 4 to 10 ton / cm 2 is added to the contact after the solid phase sintering,
[Hm / Ho] ratio is adjusted to be small.

【0127】D)[Hm/Ho]比を更に微調整する際
には、Cu相に対してはCr,Ti,V,B,Nb,T
aより選ばれた1つを適宜量添加することによって、ま
たは第1の補助成分としてのAl,Siの少なくとも一
方を適宜量添加することによって、前記比率の微調整は
可能である。これらA)B)C)D)などを適宜組合わ
せることによって[Hm/Ho]比を調整した接点を得
た。 (2)後者の溶浸法を採用した製造では、粒子直径が
0.1〜150μmの範囲にあるCr粉(全Cr粉中に
95〜99%占める)を用意する。溶浸用のCu塊を用
意する。このCrを用いて例えば1200℃でCrスケ
ルトンを製造した後、その空隙にCuを溶浸させCu−
Cr合金を製造する。なおCu−Cr合金中のCu量が
45〜60%の範囲の合金に対して適用した。 Cr粉を成形する時にCr粉に与える加圧力を、0〜
8トン/cm2(Crを容器にいれそのまま焼結した時
を加圧力0とする)の範囲で調整する。例えば同比率を
大とする時には、高加圧力値を選択する。 Crスケルトン中にCuを溶浸する時の温度を、11
00〜1400℃の範囲で調整する。 溶浸後の常温にまで冷却する時の冷却速度を、0.1
〜10℃/分の範囲に調整する。例えば冷却速度をより
小さく選択すると、Cu相の硬度Hmは小となり、[H
m/Ho]比を小とするのに有益である。 溶浸後の接点に対して、再加熱処理を追加し、その温
度を、500〜1070℃の範囲、実質的には650〜
750℃での再加熱処理温度を選択し、[Hm/Ho]
比を小さく謂整する。 溶浸後の接点に対して、再加圧力が4〜10トン/c
2の範囲の再加圧処理を追加し、[Hm/Ho]比を
小さく調整する。 [Hm/Ho]比を更に微調整する際には、Cu相に
対してはCr,Ti,V,B,Nb,Taより選ばれた
1つを適宜量添加することによって、または第1の補助
成分としてのAl,Siの少なくとも一方を適宜量添加
することによって、前記比率の微調整は可能である。こ
れらなどを適宜組合わせることによって
[Hm/Ho]比を調整した接点を得た。
D) When further finely adjusting the [Hm / Ho] ratio, Cr, Ti, V, B, Nb, T
The ratio can be finely adjusted by adding an appropriate amount of one selected from a or by adding an appropriate amount of at least one of Al and Si as the first auxiliary component. By appropriately combining A), B), C) and D), a contact having an adjusted [Hm / Ho] ratio was obtained. (2) In the latter production using the infiltration method, a Cr powder having a particle diameter in the range of 0.1 to 150 μm (occupying 95 to 99% of the total Cr powder) is prepared. A Cu lump for infiltration is prepared. After producing a Cr skeleton at, for example, 1200 ° C. using this Cr, Cu is infiltrated into the voids to form Cu-
Manufacture a Cr alloy. In addition, it applied to the alloy whose Cu content in a Cu-Cr alloy is 45-60%. The pressing force applied to the Cr powder when molding the Cr powder is from 0 to
It is adjusted within a range of 8 tons / cm 2 (the pressure is 0 when Cr is put in a container and sintered as it is). For example, when increasing the ratio, a high pressure value is selected. The temperature at which Cu is infiltrated into the Cr skeleton is 11
Adjust within the range of 00 to 1400 ° C. The cooling rate when cooling to room temperature after infiltration is 0.1
Adjust within the range of -10 ° C / min. For example, if the cooling rate is selected to be smaller, the hardness Hm of the Cu phase becomes smaller and [H
[m / Ho] ratio. A reheat treatment is added to the contact after infiltration, and the temperature is increased in the range of 500 to 1070 ° C, substantially 650 to
Select the reheating temperature at 750 ° C., [Hm / Ho]
The ratio is adjusted to be small. For the contact point after infiltration, the re-pressing force is 4 to 10 tons / c
A re-pressurizing process in the range of m 2 is added to adjust the [Hm / Ho] ratio to a small value. When the [Hm / Ho] ratio is further finely adjusted, one of Cr, Ti, V, B, Nb, and Ta is appropriately added to the Cu phase, or the first phase is added. Fine adjustment of the ratio is possible by adding at least one of Al and Si as an auxiliary component in an appropriate amount. By appropriately combining these, a contact having an adjusted [Hm / Ho] ratio was obtained.

【0128】(実施例30〜32、比較例9〜10)上
述のように用意したCu粉とCr粉とを用いて、固相焼
結法によって所定の[Hm/Ho]比を有する75%C
u−残部Cr合金を製造した(実施例30〜32、比較
例9〜10)。
(Examples 30 to 32, Comparative Examples 9 to 10) 75% having a predetermined [Hm / Ho] ratio by the solid phase sintering method using the Cu powder and the Cr powder prepared as described above. C
A u-remainder Cr alloy was produced (Examples 30 to 32, Comparative Examples 9 to 10).

【0129】[Hm/Ho]比を調整する為に、接点製
造に際しては上記A)B)C)D)の適宜選択又は組み
合わせによって、1.0〜2.0(実施例30〜3
2)、2.6〜3.0(比較例9〜10)の[Hm/H
o]比を有する接点を選出した。
In order to adjust the [Hm / Ho] ratio, 1.0 to 2.0 (Examples 30 to 3) can be obtained by appropriately selecting or combining the above A), B), C) and D) when manufacturing the contacts.
2) [Hm / H] of 2.6 to 3.0 (Comparative Examples 9 to 10)
o] A contact having a ratio was selected.

【0130】これらの接点を評価用真空バルブに搭載
し、前記所定条件で再点弧発生頻度(×10-3%で示し
た数値)と遮断特性とを測定した。[Hm/Ho]比=
1.0の場合では、6台のバルブを評価したところ、再
点弧発生頻度は、評価(S)を示し極めて良好な特性を
発揮した。遮断特性も、24.kAの10回遮断に成功
し遮断特性も「合格」である。評価前の接点加工表面の
観察によれば、Cu相部分は完全に均一に切削研磨され
た状況が見られ、極めて安定した接点表面状態を示し、
Cu相の脱落、研磨傷などによる表面荒れは見られてい
ない。評価後の接点の最表面層の顕微鏡的観察でも、最
表面層領域からのCu相の脱落はなかった(実施例3
0)。なお[Hm/Ho]比が1.0未満の合金でも特
性的には同等の良好な性能を発揮する。
These contacts were mounted on an evaluation vacuum valve, and the re-ignition occurrence frequency (a numerical value indicated by × 10 −3 %) and the cutoff characteristics were measured under the above-mentioned predetermined conditions. [Hm / Ho] ratio =
In the case of 1.0, when six valves were evaluated, the frequency of restriking was evaluated (S) and exhibited extremely good characteristics. 24. The kA was successfully cut off 10 times, and the cutoff characteristics were "pass". According to the observation of the contact processing surface before the evaluation, it can be seen that the Cu phase portion was completely uniformly cut and polished, showing an extremely stable contact surface state,
No surface roughness due to falling off of the Cu phase, polishing scratches or the like is observed. Microscopic observation of the outermost surface layer of the contact after the evaluation did not show that the Cu phase dropped out of the outermost layer region (Example 3).
0). Note that an alloy having an [Hm / Ho] ratio of less than 1.0 exhibits the same good performance in terms of characteristics.

【0131】また、[Hm/Ho]比=1.3とした場
合では、再点弧発生頻度は、評価(A〜B)を示し良好
な特性を発揮した。遮断特性も24kAの10回遮断に
成功し「合格」である。Cu相部分はほぼ均一に切削研
磨された状況が見られ、極めて安定した接点表面の加工
状態を示し、Cu相の脱落、研磨傷などによる表面荒れ
は見られていない。評価後の接点の最表面層の顕微鏡的
観察でも、最表面層領域からのCu相の脱落はなかった
(実施例31)。
When the [Hm / Ho] ratio was set to 1.3, the re-ignition frequency was evaluated (A to B), indicating good characteristics. The cutoff characteristic was “passed” because the cutoff was successful 10 times at 24 kA. It can be seen that the Cu phase portion is almost uniformly cut and polished, and shows an extremely stable processing state of the contact surface. No surface roughness due to falling off of the Cu phase, polishing scratches or the like is observed. Microscopic observation of the outermost surface layer of the contact after the evaluation did not show the Cu phase falling off from the outermost surface layer region (Example 31).

【0132】更に、[Hm/Ho]比=2.0とした場
合でも、再点弧発生頻度は、評価(C)を示し良好な特
性を発揮した。遮断特性も20kAの10回遮断に成功
し遮断特性も「合格」である。Cu相部分はほぼ均一に
切削研磨された状況が見られ、Cu相の脱落、研磨傷な
どによる表面荒れはなく、極めて安定した接点表面状態
を示している(実施例32)。
Further, even when the [Hm / Ho] ratio was set to 2.0, the frequency of restriking was evaluated (C), indicating good characteristics. The cutoff characteristics were also successfully cut off 10 times at 20 kA, and the cutoff characteristics were "pass". It can be seen that the Cu phase portion was almost uniformly cut and polished, and there was no surface roughness due to falling off of the Cu phase, polishing scratches, etc., and the contact surface state was extremely stable (Example 32).

【0133】これに対して、[Hm/Ho]比=2.6
の場合では、再点弧発生頻度は、評価(Y〜Z)を示し
再点弧特性に大幅な劣化が見られると共に大きなバラツ
キも示し好ましくない。遮断特性も、20kAの遮断テ
ストに於いて多数の遮断不能を示し「不合格」である。
遮断前の加工表面にはCu相の脱落跡が観察されてい
る。遮断後の接点面には局所的な荒れが存在している
(比較例9)。
On the other hand, [Hm / Ho] ratio = 2.6.
In the case of (1), the re-ignition occurrence frequency indicates the evaluation (Y to Z), and the re-ignition characteristics show a large deterioration and a large variation, which is not preferable. The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test.
Traces of detachment of the Cu phase are observed on the processed surface before cutoff. There is local roughness on the contact surface after the interruption (Comparative Example 9).

【0134】また、[Hm/Ho]比=3.0の場合で
も、再点弧発生頻度は、評価(Z)を示し再点弧特性に
大幅な劣化が見られる。遮断特性も、20kAの遮断テ
ストに於いて多数の遮断不能を示し「不合格」である。
加工面の静耐圧値に大きなバラツキが見られている(比
較例10)。
Further, even when the [Hm / Ho] ratio is 3.0, the re-ignition occurrence frequency indicates the evaluation (Z), and the re-ignition characteristics are significantly deteriorated. The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test.
A large variation is observed in the static withstand voltage value of the processed surface (Comparative Example 10).

【0135】以上から、再点弧特性と遮断特性との両立
に対して、[Hm/Ho]比の管理が極めて重要である
と共に、[Hm/Ho]比を2.0以下の範囲を選択す
る時に目的を達する。
As described above, the management of the [Hm / Ho] ratio is extremely important for achieving both the restriking characteristic and the cutoff characteristic, and the [Hm / Ho] ratio is selected in a range of 2.0 or less. When you reach your goal.

【0136】(実施例33〜35、比較例11〜12)
前記実施例では、Cu−Cr合金中のCuの量を75%
に一定とした時の、[Hm/Ho]比を変動させた場合
の、[Hm/Ho]比が再点弧特性と遮断特性に及ぼす
効果を示したが、本発明技術ではCu量は75%に限る
ことなく、Cuの量が90〜10%(実施例33〜3
5)に於いても効果を発揮する。
(Examples 33 to 35, Comparative Examples 11 to 12)
In the above embodiment, the amount of Cu in the Cu—Cr alloy was reduced to 75%
The effect of the [Hm / Ho] ratio on restriking characteristics and cutoff characteristics when the [Hm / Ho] ratio was varied when the ratio was constant was shown. %, The amount of Cu is 90 to 10% (Examples 33 to 3)
The effect is also exhibited in 5).

【0137】すなわち、[Hm/Ho]比=1.2〜
1.4に一定とした時,Cu量が90%の場合では、再
点弧発生頻度は、評価(B〜C)を示し良好な特性を発
揮した。遮断特性も、24kAの10回遮断に成功し遮
断特性も「合格」である(実施例33)。最表面層の顕
微鏡的観察では、加工面からのCu相の脱落や加工傷も
無く、評価後の接点面からもCu相の脱落はなかった。
That is, [Hm / Ho] ratio = 1.2 to
When the Cu content was 90% when the Cu content was constant at 1.4, the re-ignition occurrence frequency was evaluated (B to C) and exhibited good characteristics. As for the blocking characteristics, the blocking was successfully performed 10 times at 24 kA, and the blocking characteristics were “pass” (Example 33). Microscopic observation of the outermost layer showed that there was no Cu phase falling off from the processed surface and no scratches were formed, and no Cu phase was dropped from the contact surface after the evaluation.

【0138】Cu量が60%の場合でも、再点弧発生頻
度は、評価(B)を示し良好な特性を発揮した。遮断特
性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例34)。
Even when the Cu content was 60%, the frequency of occurrence of restriking was evaluated (B) and good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 34).

【0139】Cu量が10%の場合でも、再点弧発生頻
度は、評価(A〜B)を示し良好な特性を発揮した。遮
断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例35)。最表面層の顕微鏡的観
察では、加工面からのCu相の脱落や加工傷も無く、評
価後の接点面からのCu相の脱落もなかった。
Even when the Cu content was 10%, the re-ignition frequency was evaluated (A to B), showing good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 35). Microscopic observation of the outermost layer showed that there was no Cu phase falling off from the processed surface and no processing damage, and no Cu phase dropped out of the contact surface after the evaluation.

【0140】これに対して、Cu量が95%の場合で
は、再点弧発生頻度は、評価(C〜Y)を示し再点弧特
性に大幅な劣化が見られると共に大幅なバラツキも示し
好ましくない。但し遮断特性は、20kAの遮断に成功
し遮断特性では「合格」であったが、一部に溶着の発生
が見られ総合的には目的達成に対して好ましくない(比
較例11)。
On the other hand, when the Cu content is 95%, the re-ignition frequency is evaluated (C to Y), and the re-ignition characteristics show a large deterioration and a large variation. Absent. However, the cutoff characteristics were 20 kA, and the cutoff characteristics were "pass". However, welding was observed in some parts, which was not preferable for achieving the objective (Comparative Example 11).

【0141】一方、Cu量が5%の場合では、再点弧発
生頻度は、評価(Y〜Z)を示し再点弧特性に大幅な劣
化が見られる共に大福なバラツキも示し好ましくない。
遮断特性も、20kAの遮断テストに於いて多数の遮断
不能を示し「不合格」である。遮断特性の著しく低下し
ていると共に遮断テスト中の温度上昇特性、遮断テスト
後の接触抵抗特性の安定性に乏しい(比較例12)。最
表面層の顕微鏡的観察では、加工面上には著しい加工傷
が見られた。この加工傷が原因となって静耐圧値が低下
している。また加工時の機械的衝撃によってCu相部分
の一部に脱落が見られた。遮断評価後の接点面からもC
u相の脱落が認められた。
On the other hand, when the amount of Cu is 5%, the re-ignition frequency is evaluated (Y to Z), and the re-ignition characteristics show a large deterioration, and unfortunately show a large variation.
The shutoff characteristics are also "fail" indicating a large number of shutoff failures in the 20 kA shutoff test. The breaking characteristics are remarkably reduced, and the temperature rise characteristics during the breaking test and the stability of the contact resistance characteristics after the breaking test are poor (Comparative Example 12). Microscopic observation of the outermost layer showed remarkable processing flaws on the processed surface. The static withstand voltage value is lowered due to the processing flaw. In addition, a part of the Cu phase was dropped due to mechanical impact during processing. C from the contact surface after breaking evaluation
Dropout of the u phase was observed.

【0142】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、Cu−Cr合金中のCu相の量が90〜10%の時
にその効果を発揮する。
As described above, the technology of the present invention for controlling the [Hm / Ho] ratio of the Cu phase in the Cu—Cr alloy to a predetermined amount is effective when the Cu phase amount in the Cu—Cr alloy is 90 to 10%. It is effective.

【0143】(実施例36〜41)前記実施例30〜3
5では、Cu−Cr合金中のCu相中に存在する成分に
ついては、注目していなかったが、Cu−Cr合金中の
Cu相に関する[Hm/Ho]比を管理する本発明技術
は、Cu相中への所定量のCr,Ti,B,V,Nb,
Taを含有したCuを使用したCu(Cr,Ti,B,
V,Nb,Taのいずれか1つ)−Cr合金に対して
も、再点弧特性、遮断特性が安定化する。
(Examples 36 to 41) Examples 30 to 3
In No. 5, the component present in the Cu phase in the Cu—Cr alloy was not noted, but the present invention technology for managing the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy uses Cu Cu. A predetermined amount of Cr, Ti, B, V, Nb,
Cu (Cr, Ti, B,
V, Nb, or Ta) The re-ignition characteristics and the cutoff characteristics are stabilized even for the -Cr alloy.

【0144】すなわち、Cu−Cr合金中のCuの量を
75%に一定とした時、Cu相中に、0.1%のCr成
分を含有した75%Cu接点では、再点弧発生頻度は、
評価(A)を示し良好な特性を発揮した。遮断特性も、
24.kAの10回遮断に成功し遮断特性も「合格」で
ある(実施例36)。
That is, when the amount of Cu in the Cu—Cr alloy is fixed at 75%, the frequency of restriking occurs at a 75% Cu contact point containing 0.1% Cr component in the Cu phase. ,
Evaluation (A) was shown and good characteristics were exhibited. The blocking characteristics are also
24. The kA was successfully cut off 10 times, and the cut-off characteristic was “pass” (Example 36).

【0145】Cu相中に、0.3%のTiを含有させた
接点では、再点弧発生頻度は、評価(A〜B)を示し良
好な特性を発揮した。遮断特性も、20kAの10回遮
断に成功し遮断特性も「合格」である(実施例37)。
In the case of the contact containing 0.3% of Ti in the Cu phase, the re-ignition occurrence frequency was evaluated (A to B), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 37).

【0146】Cu相中に、0.5%のBを含有させた接
点では、再点弧発生頻度は、評価(A〜B)を示し良好
な特性を発揮した。遮断特性も、24kAの10回遮断
に成功し遮断特性も「合格」である(実施例38)。
In the case of the contacts containing 0.5% of B in the Cu phase, the re-ignition frequency was evaluated (A to B), and good characteristics were exhibited. As for the cutoff characteristic, the cutoff was successful 10 times at 24 kA, and the cutoff characteristic was “pass” (Example 38).

【0147】Cu相中に、1.5%のVを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、20kAの10回遮断に成
功し遮断特性も「合格」である(実施例39)。
In the case of the contacts containing 1.5% of V in the Cu phase, the re-ignition occurrence frequency was evaluated (B), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 39).

【0148】Cu相中に、10%のNbを含有させた接
点では、再点弧発生頻度は、評価(B〜C)を示し良好
な特性を発揮した。遮断特性も、24kAの10回遮断
に成功し遮断特性も「合格」である(実施例40)。
For the contacts containing 10% Nb in the Cu phase, the re-ignition occurrence frequency was evaluated (B to C), and good characteristics were exhibited. As for the blocking characteristics, the blocking was successfully performed 10 times at 24 kA, and the blocking characteristics were “pass” (Example 40).

【0149】Cu相中に、20%のTaを含有させた接
点では、再点弧発生頻度は、評価(B〜C)を示し良好
な特性を発揮した。遮断特性も、24kAの10回遮断
に成功し遮断特性も「合格」である(実施例41)。
In the case of a contact containing 20% of Ta in the Cu phase, the frequency of occurrence of restriking was evaluated (B to C), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 24 kA, and the breaking characteristics were “pass” (Example 41).

【0150】実施例36〜41で示したように、Cu相
中への所定量のCr,Ti,B,V,Nb,Taの添加
は、Cu相の脱落を抑制し再点弧特性の安定化に寄与す
る。
As shown in Examples 36 to 41, the addition of a predetermined amount of Cr, Ti, B, V, Nb, and Ta to the Cu phase suppresses the falling off of the Cu phase and stabilizes the re-ignition characteristics. Contributes to

【0151】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、Cu相中に所定量のCr,Ti,B,V,Nb,T
aのいずれか1つを含有したCuを採用したCu−Cr
合金に対しても有効に発揮される。
As described above, the technique of the present invention for controlling the [Hm / Ho] ratio with respect to the Cu phase in the Cu—Cr alloy to a predetermined amount is based on the fact that a predetermined amount of Cr, Ti, B, V, Nb, T
Cu-Cr employing Cu containing any one of a
It is also effective for alloys.

【0152】(実施例42〜45)Cu−Cr合金中の
Cu相に関する[Hm/Ho]比を管理する本発明技術
は、Cr粒子中に所定量のTi,V,Nb,Taを含有
したCrを使用したCu−Cr(Ti,V,Nb,Ta
のいずれか1つ)合金に対しても、再点弧特性、遮断特
性が安定化する。
(Examples 42 to 45) In the technique of the present invention for controlling the [Hm / Ho] ratio for the Cu phase in a Cu-Cr alloy, a predetermined amount of Ti, V, Nb, Ta was contained in Cr particles. Cu-Cr (Ti, V, Nb, Ta) using Cr
Any one of the above) also stabilizes the restriking characteristic and the breaking characteristic.

【0153】すなわち、[Hm/Ho]比を1.2〜
1.4に一定とした上で、Cr粒子中に0.5%のTi
を含有させた接点では、再点弧発生頻度は、評価(A〜
B)を示し良好な特性を発揮した。遮断特性も、24.
kAの10回遮断に成功し遮断特性も「合格」である
(実施例42)。
That is, the [Hm / Ho] ratio is set to 1.2 to
After keeping constant at 1.4, 0.5% Ti
In the contact containing, the re-ignition occurrence frequency is evaluated (A to
B) and good characteristics were exhibited. 24.
The kA was successfully cut off 10 times and the cut-off characteristic was “pass” (Example 42).

【0154】Cr粒子中に2.0%のVを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、20kAの10回遮断に成
功し遮断特性も「合格」である(実施例43)。
At the contact point where 2.0% V was contained in the Cr particles, the re-ignition frequency was evaluated (B), indicating good characteristics. As for the breaking characteristic, the breaking was successful 10 times at 20 kA, and the breaking characteristic was “pass” (Example 43).

【0155】Cr粒子中に25%のNbを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、24kAの10回遮断に成
功し遮断特性も「合格」である(実施例44)。
In the case of the contact in which Cr particles contained 25% of Nb, the re-ignition frequency was evaluated (B), and excellent characteristics were exhibited. As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 44).

【0156】Cr粒子中に50%のTaを含有させた接
点では、再点弧発生頻度は、評価(B)を示し良好な特
性を発揮した。遮断特性も、24kAの10回遮断に成
功し遮断特性も「合格」である(実施例45)。
At the contact point where 50% of Ta was contained in the Cr particles, the re-ignition frequency was evaluated (B), indicating good characteristics. As for the blocking characteristics, the blocking was successfully performed 10 times at 24 kA, and the blocking characteristics were “pass” (Example 45).

【0157】Cr粒子中での所定量のTi,V,Nb,
Taの存在効果は、Cu相とCr粒子との界面に作用し
合金全体としての耐消耗性や耐電圧特性を改善し、[H
m/Ho]比を所定量に管理する本発明技術との相乗的
効果によって、再点弧発生頻度のバラツキ幅を圧縮し接
点特性の安定化に寄与している。
A predetermined amount of Ti, V, Nb,
The effect of the presence of Ta acts on the interface between the Cu phase and the Cr particles to improve the wear resistance and the withstand voltage characteristics of the alloy as a whole.
[m / Ho] ratio is controlled to a predetermined amount, and the synergistic effect with the technology of the present invention contributes to stabilization of the contact characteristics by reducing the variation width of the re-ignition occurrence frequency.

【0158】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、Cr粒子中に所定量のTi,V,Nb,Taを含有
したCrを採用したCu−Cr(Ti,V,Nb,Ta
のいずれか1つ)合金に対しても有効に発揮される。
As described above, the technique of the present invention for controlling the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy to a predetermined amount is based on the Cr containing Cr, which contains a predetermined amount of Ti, V, Nb, and Ta. Cu-Cr (Ti, V, Nb, Ta)
One of them) is also effectively exerted on alloys.

【0159】(実施例46〜47、比較例13)前記実
施例30〜45では、0.1〜150μmの平均粒子直
径を有するCr粒子が、全Cr粒子の95%(容積%)
以上(0.95〜0.99)を占める例についてその効
果を示したが、本発明技術では、全Cr粒子中に占める
0.1〜150μmの平均粒子直径を有するCr粒子
は、95%(容積%)以上のCu−Cr合金の場合に限
ることなく適応が可能である。
(Examples 46 to 47, Comparative Example 13) In Examples 30 to 45, Cr particles having an average particle diameter of 0.1 to 150 μm accounted for 95% (% by volume) of all Cr particles.
Although the effect was shown for the example occupying the above (0.95 to 0.99), in the present invention technology, 95% of the Cr particles having an average particle diameter of 0.1 to 150 μm occupy 95% ( The present invention can be applied without being limited to the case of a Cu—Cr alloy having a volume percentage of at least.

【0160】すなわち、全Cr粒子中に占める平均粒子
直径が、0.1〜150μmのCrの比率が85%(容
積%)のCrを使用したCu−Cr接点では、再点弧発
生頻度は、評価(B)を示し良好な特性を発揮した。遮
断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例46)。
That is, in a Cu-Cr contact using Cr having an average particle diameter of 0.1 to 150 μm in all the Cr particles and a ratio of Cr of 85% (vol%), the re-ignition occurrence frequency is as follows: Evaluation (B) was shown and good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 46).

【0161】全Cr粒子中に占める平均粒子直径が、
0.1〜150μmのCrの比率が75%(容積%)の
Crを使用した接点では、再点弧発生頻度は、評価(B
〜C)を示し良好な特性を発揮した。遮断特性も、20
kAの10回遮断に成功し遮断特性も「合格」である
(実施例47)。
The average particle diameter of all Cr particles is
For a contact using Cr having a Cr content of 75% (volume%) of 0.1 to 150 μm, the re-ignition frequency was evaluated (B
To C) and exhibited good characteristics. 20
The kA was successfully cut off 10 times, and the cut-off characteristic was “pass” (Example 47).

【0162】これに対して、全Cr粒子中に占める平均
粒子直径が、0.1〜150μmのCrの比率が50%
(容積%)のCrを使用した接点では、再点弧発生頻度
は、評価(C〜Z)を示し再点弧特性に大幅な劣化が見
られると共に大幅なバラツキも示し好ましくない。遮断
特性も、評価したバルブのうちの1本のみ20kAの遮
断に成功しているが、他の5本の総てのバルブでは20
kAの遮断不能多発し、バラツキが大で遮断特性は「不
合格」である(比較例13)。
On the other hand, the proportion of Cr having an average particle diameter of 0.1 to 150 μm in all Cr particles was 50%.
In the case of contacts using (volume%) Cr, the re-ignition occurrence frequency is evaluated (C to Z), and the re-ignition characteristics show a large deterioration and a large variation, which is not preferable. As for the shutoff characteristics, only one of the evaluated valves succeeded in shutting down 20 kA, but all the other five valves did not.
The kA could not be cut off frequently, the dispersion was large, and the cutoff characteristics were "fail" (Comparative Example 13).

【0163】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、全Cr粒子中に占める平均粒子直径の比率が75%
(容積%)以上のCr粒子を採用したCu−Cr合金に
於いて有効に発揮される。
As described above, the technique of the present invention for controlling the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy to a predetermined amount is such that the ratio of the average particle diameter in all Cr particles is 75%.
(% By volume) is effectively exhibited in a Cu-Cr alloy employing Cr particles of not less than (volume%).

【0164】(実施例48〜52、比較例14)Cu−
Cr合金中のCr粒子中の第1の補助成分として、1.
0%以下のAl,Siを含有したCrを使用した場合に
は、再点弧特性、遮断特性の安定化に有益である。
(Examples 48 to 52, Comparative Example 14) Cu-
As the first auxiliary component in the Cr particles in the Cr alloy,
The use of Cr containing 0% or less of Al and Si is useful for stabilizing the re-ignition characteristics and the cutoff characteristics.

【0165】すなわち、Cr粒子中に1.0%のAlを
含有させた接点では、再点弧発生頻度は、評価(C)を
示し良好な特性を発揮した。遮断特性も、20kAの1
0回遮断に成功し遮断特性も「合格」である(実施例4
8)。
That is, at the contact point where 1.0% of Al was contained in the Cr particles, the frequency of restriking was evaluated (C), and excellent characteristics were exhibited. The breaking characteristics are also 20kA.
The interruption was successful 0 times, and the interruption characteristics were “pass” (Example 4).
8).

【0166】Cr粒子中に0.1%のAlを含有させた
接点では、再点弧発生頻度は、評価(B)を示し良好な
特性を発揮した。遮断特性も、20kAの10回遮断に
成功し遮断特性も「合格」である(実施例49)。
In the case of the contact containing 0.1% of Al in the Cr particles, the frequency of occurrence of restriking was evaluated (B) and good characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 49).

【0167】Cr粒子中に0.01%のAlを含有させ
た接点では、再点弧発生頻度は、評価(S〜A)を示し
極めて良好な特性を発揮した。遮断特性も、31.5k
Aの10回遮断に成功し遮断特性も「合格」である(実
施例50)。
At the contact point where 0.01% of Al was contained in the Cr particles, the frequency of occurrence of restriking was evaluated (S to A), and extremely good characteristics were exhibited. 31.5k breaking characteristics
A was successfully cut off 10 times, and the cut-off characteristics were "pass" (Example 50).

【0168】Cr粒子中に0.001%のAlを含有さ
せた接点では、再点弧発生頻度は、評価(A)を示し極
めて良好な特性を発揮した。遮断特性も、20kAの1
0回遮断に成功し遮断特性も「合格」である(実施例5
1)。
In the case of the contact in which 0.001% of Al was contained in the Cr particles, the re-ignition occurrence frequency was evaluated (A), and extremely good characteristics were exhibited. The breaking characteristics are also 20kA.
The blockage was successfully performed 0 times and the cutoff characteristics were “pass” (Example 5).
1).

【0169】Cr粒子中に0.01%のSiを含有させ
た接点では、再点弧発生頻度は、評価(S〜A)を示し
極めて良好な特性を発揮した。遮断特性も、31.5k
Aの10回遮断に成功し遮断特性も「合格」である(実
施例52)。
At the contact point where 0.01% of Si was contained in the Cr particles, the re-ignition frequency was evaluated (S to A), and extremely good characteristics were exhibited. 31.5k breaking characteristics
A was successfully cut off ten times, and the cut-off characteristics were "pass" (Example 52).

【0170】いずれもCu相の脱落や剥離がなく安定し
た接点面となっている。
In each case, the contact surfaces were stable without the Cu phase falling off or peeling off.

【0171】これに対して、Cu−Cr合金中のCr粒
子中の第1の補助成分として、1.5%のAlを含有し
たCrを使用した場合には、再点弧発生頻度は、評価
(Z)を示し再点弧特性に大幅な劣化が見られ好ましく
ない。遮断特性も、10回の24kA遮断中に8回、2
0kA遮断中に2回の再点弧発生を記録し、遮断不能が
多発し遮断特性は「不合格」である(比較例14)。加
工直後の接点面にはすでにCu相の脱落が見られ、これ
が最初の再点弧発生の引き金となっている。
On the other hand, when Cr containing 1.5% of Al was used as the first auxiliary component in the Cr particles in the Cu—Cr alloy, the frequency of occurrence of restriking was evaluated as follows. (Z), which is not preferable because re-ignition characteristics are significantly deteriorated. The blocking characteristics are 8 times during 10 times 24 kA blocking, 2 times.
The occurrence of re-ignition twice was recorded during the 0 kA interruption, and interruption was frequently caused, and the interruption characteristic was “fail” (Comparative Example 14). A drop of the Cu phase has already been seen on the contact surface immediately after processing, and this has triggered the first re-ignition.

【0172】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、Cr粒子中の第1の補助成分として、1.0%以下
のAl,Siを含有したCr粒子を採用したCu−Cr
合金に対しても適用が可能である。
As described above, the technology of the present invention for controlling the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy to a predetermined amount is based on the following. Cu-Cr using Cr particles containing Si and Si
It is also applicable to alloys.

【0173】(実施例53〜58、比較例15〜16)
第2の補助成分として、1.0%以下のBi,Sbを含
有したCu−Cr合金を使用した場合には、再点粉特
性、遮断特性の安定化に有益である。また他の第2の補
助成分として、5.0%以下のTe,Se,Pbを含有
したCu−Cr合金を使用した場合にも、再点弧特性、
遮断特性の安定化に有益である。
(Examples 53 to 58, Comparative Examples 15 to 16)
When a Cu-Cr alloy containing 1.0% or less of Bi and Sb is used as the second auxiliary component, it is useful for stabilizing the re-pointing property and the blocking property. Also, when a Cu—Cr alloy containing 5.0% or less of Te, Se, and Pb is used as another second auxiliary component, the re-ignition characteristics,
It is useful for stabilizing the blocking characteristics.

【0174】すなわち、Cu−Cr合金中の第2の補助
成分として、0.1%のBiを含有させた接点では、再
点弧発生頻度は、評価(B)を示し良好な特性を発揮し
た。遮断特性も、24kAの10回遮断に成功し遮断特
性も「合格」である(実施例53)。
That is, in the contact containing 0.1% Bi as the second auxiliary component in the Cu—Cr alloy, the re-ignition occurrence frequency was evaluated (B), and excellent characteristics were exhibited. . As for the breaking characteristics, the blocking was successfully performed 10 times at 24 kA, and the breaking characteristics were “pass” (Example 53).

【0175】Cu−Cr合金中の第2の補助成分として
1.0%のBiを含有させた接点では、再点弧発生頻度
は、評価(B〜C)を示し良好な特性を発揮した。遮断
特性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例54)。
For the contact containing 1.0% Bi as the second auxiliary component in the Cu-Cr alloy, the frequency of restriking was evaluated (B to C), and excellent characteristics were exhibited. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 54).

【0176】Cu−Cr合金中の第2の補助成分とし
て、0.2%のSbを含有させた接点では、再点弧発生
頻度は、評価(B〜C)を示し良好な特性を発揮した。
遮断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例55)。
In the contact containing 0.2% of Sb as the second auxiliary component in the Cu-Cr alloy, the re-ignition frequency was evaluated (B to C) and exhibited good characteristics. .
As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 55).

【0177】Cu−Cr合金中の第2の補助成分とし
て、2.5%のTeを含有させた接点では、再点弧発生
頻度は、評価(B〜C)を示し良好な特性を発揮した。
遮断特性も、20kAの10回遮断に成功し遮断特性も
「合格」である(実施例56)。
For the contact containing 2.5% of Te as the second auxiliary component in the Cu-Cr alloy, the frequency of restriking was evaluated (B to C), and good characteristics were exhibited. .
As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 56).

【0178】Cu−Cr合金中の第2の補助成分とし
て、5.0%のTeを含有させた接点では、再点弧発生
頻度は、評価(C)を示し良好な特性を発揮した。遮断
特性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例57)。
In the case of the contact containing 5.0% Te as the second auxiliary component in the Cu-Cr alloy, the frequency of occurrence of restriking was evaluated (C) and good characteristics were exhibited. As for the cutoff characteristic, the cutoff was successfully performed 10 times at 20 kA, and the cutoff characteristic was “pass” (Example 57).

【0179】Cu−Cr合金中の第2の補助成分とし
て、2.5%のSeを含有させた接点では、再点弧発生
頻度は、評価(C)を示し良好な特性を発揮した。遮断
特性も、20kAの10回遮断に成功し遮断特性も「合
格」である(実施例58)。
In the case of the contact containing 2.5% Se as the second auxiliary component in the Cu-Cr alloy, the re-ignition frequency was evaluated (C) and showed good characteristics. As for the breaking characteristics, the breaking was successful 10 times at 20 kA, and the breaking characteristics were “pass” (Example 58).

【0180】また、Cu−Cr合金中の第2の補助成分
として、0.2%のPbを含有させた接点でも同等の再
点弧発生頻度および遮断特性を発揮し「合格」である。
Further, even if the contact contains 0.2% of Pb as the second auxiliary component in the Cu-Cr alloy, the same re-ignition occurrence frequency and cutoff characteristics are exhibited, and the result is "pass".

【0181】いずれもCu相の脱落や剥離がなく安定し
た接点面となっている。
In each case, a stable contact surface was obtained without dropping or peeling of the Cu phase.

【0182】これに対して、Cu−Cr合金中の第2の
補助成分として、3.0%のBiを含有させた接点で
は、再点弧発生頻度は、評価(Y〜Z)を示し再点弧特
性に大幅な劣化が見られ好ましくない。遮断特性も、2
0kA以下の遮断で再点弧が多発し遮断特性は「不合
格」である(比較例15)。遮断テスト後の接点表面に
は著しい荒れが見られる。接触抵抗にもバラツキが見ら
れた。
On the other hand, at the contact containing 3.0% Bi as the second auxiliary component in the Cu—Cr alloy, the frequency of occurrence of restriking is evaluated (Y to Z), and Significant deterioration is observed in the ignition characteristics, which is not preferable. 2
Re-ignition frequently occurs at a cut-off of 0 kA or less, and the cut-off characteristic is “fail” (Comparative Example 15). After the cutoff test, the contact surface is markedly rough. The contact resistance also varied.

【0183】Cu−Cr合金中の第2の補助成分とし
て、8.0%のTeを含有させた接点では、再点弧発生
頻度は、評価(Z)を示し再点弧特性に大幅な劣化が見
られれ好ましくない。遮断特性も、20kAの遮断に成
功と20kAの遮断失敗が多発し遮断特性は「不合格」
である(比較例16)。遮断テスト後の接点表面には著
しい荒れが見られる。接触抵抗にもバラツキが見られ
た。
At the contact containing 8.0% of Te as the second auxiliary component in the Cu-Cr alloy, the frequency of occurrence of restriking is evaluated (Z), indicating a significant deterioration in restriking characteristics. Is not preferred. As for the cutoff characteristics, 20 kA cutoff was successful and 20 kA cutoff failure occurred frequently, and the cutoff characteristics were “fail”.
(Comparative Example 16). After the cutoff test, the contact surface is markedly rough. The contact resistance also varied.

【0184】以上から、Cu−Cr合金中のCu相に関
する[Hm/Ho]比を所定量に管理する本発明技術
は、Cr粒子中の第2の補助成分として、1.0%以下
のBi,Sbを含有したCu−Cr合金、または他の第
2の補助成分として、5.0%以下のTe,Se,Pb
を含有したCu−Cr合金に対しても適用が可能であ
る。
As described above, the technology of the present invention for controlling the [Hm / Ho] ratio for the Cu phase in the Cu—Cr alloy to a predetermined amount is a method for controlling the Bi content of 1.0% or less as the second auxiliary component in the Cr particles. , Sb-containing Cu-Cr alloy, or other second auxiliary component of less than 5.0% of Te, Se, Pb
Can also be applied to Cu-Cr alloys containing.

【0185】(その他の実施例)焼結工程後若しくは焼
結・溶浸工程後のCu−Crを、非酸化性雰囲気中で、
Cu−Cr合金中のCu相の融解温度以下の温度または
Cu相の融解温度以上の温度で加熱し、これを常温にま
で冷却することとし、この場合も焼結工程後若しくは焼
結・溶浸工程後の、Cu−Cr合金中のCu相の硬度値
(マイクロビッカース硬さ値)をHm、非酸化性雰囲気
中で、Cu−Cr合金中のCu相の融解温度以下の温度
またはCu相の融解温度以上の温度で加熱し、これを常
温にまで冷却した時の、Cu−Cr合金中のCu相の硬
度値(マイクロビッカース硬さ値)をHoとした時の
[Hm/Ho]比を、1.0〜2.0の範囲に調整する
こととしてもよい。
(Other Embodiments) Cu—Cr after the sintering step or after the sintering / infiltration step is subjected to a non-oxidizing atmosphere,
The Cu-Cr alloy is heated at a temperature lower than the melting temperature of the Cu phase or higher than the melting temperature of the Cu phase, and is cooled to room temperature. After the process, the hardness value (micro Vickers hardness value) of the Cu phase in the Cu—Cr alloy is Hm, and the temperature is equal to or lower than the melting temperature of the Cu phase in the Cu—Cr alloy in a non-oxidizing atmosphere. The [Hm / Ho] ratio when the hardness value (micro Vickers hardness value) of the Cu phase in the Cu—Cr alloy when the material is heated at a temperature equal to or higher than the melting temperature and cooled to room temperature is Ho. , 1.0 to 2.0.

【0186】このように、Cu−Cr接点材料の製造雰
囲気として、非酸化性雰囲気を選択することにより、特
に再点弧発生頻度の低減化を図ることができる。
As described above, by selecting a non-oxidizing atmosphere as the manufacturing atmosphere for the Cu-Cr contact material, it is possible to particularly reduce the frequency of restriking.

【0187】[0187]

【発明の効果】以上説明したように、本発明によれば、
CuCr合金の再点弧特性を安定化させ電流遮断特性の
優れた電力用真空遮断器の接点材料を提供することがで
きるので、その工業的価値は大である。
As described above, according to the present invention,
Since the re-ignition characteristics of the CuCr alloy can be stabilized to provide a contact material for a power vacuum circuit breaker having excellent current interruption characteristics, its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る電力用真空遮断器の接点材料の
実施例1〜16及び比較例1〜4の評価条件を示す表
図。
FIG. 1 is a table showing evaluation conditions of Examples 1 to 16 and Comparative Examples 1 to 4 of contact materials for a power vacuum circuit breaker according to the present invention.

【図2】 本発明に係る電力用真空遮断器の接点材料の
実施例17〜29及び比較例5〜8の評価条件を示す表
図。
FIG. 2 is a table showing evaluation conditions of Examples 17 to 29 and Comparative Examples 5 to 8 of the contact material of the power vacuum circuit breaker according to the present invention.

【図3】 本発明に係る電力用真空遮断器の接点材料の
実施例1〜16及び比較例1〜4の評価結果を示す表
図。
FIG. 3 is a table showing the evaluation results of Examples 1 to 16 and Comparative Examples 1 to 4 of the contact material of the electric vacuum circuit breaker according to the present invention.

【図4】 本発明に係る電力用真空遮断器の接点材料の
実施例17〜29及び比較例5〜8の評価結果を示す表
図。
FIG. 4 is a table showing evaluation results of Examples 17 to 29 and Comparative Examples 5 to 8 of the contact material of the electric vacuum circuit breaker according to the present invention.

【図5】 本発明に係る電力用真空遮断器の接点材料の
実施例30〜45及び比較例9〜12の評価条件を示す
表図。
FIG. 5 is a table showing the evaluation conditions of Examples 30 to 45 and Comparative Examples 9 to 12 of the contact material of the power vacuum circuit breaker according to the present invention.

【図6】 本発明に係る電力用真空遮断器の接点材料の
実施例46〜58及び比較例13〜16の評価条件を示
す表図。
FIG. 6 is a table showing the evaluation conditions of Examples 46 to 58 and Comparative Examples 13 to 16 of the contact material of the power vacuum circuit breaker according to the present invention.

【図7】 本発明に係る電力用真空遮断器の接点材料の
実施例30〜45及び比較例9〜12の評価結果を示す
表図。
FIG. 7 is a table showing evaluation results of Examples 30 to 45 and Comparative Examples 9 to 12 of the contact material of the vacuum circuit breaker for electric power according to the present invention.

【図8】 本発明に係る電力用真空遮断器の接点材料の
実施例46〜58及び比較例13〜16の評価結果を示
す表図。
FIG. 8 is a table showing evaluation results of Examples 46 to 58 and Comparative Examples 13 to 16 of the contact material of the power vacuum circuit breaker according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/08 C22F 1/08 B 1/11 1/11 H01H 1/02 H01H 1/02 C 11/04 11/04 D // B22F 7/00 B22F 7/00 A C22F 1/00 627 C22F 1/00 627 628 628 661 661A 687 687 691 691B H01B 1/02 H01B 1/02 A (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中工場内 Fターム(参考) 4K018 BB04 FA36 JA10 KA34 5G023 AA05 BA11 CA33 CA35 CA50 5G026 BA01 BB02 BB14 BB16 BB17 BB18 BB22 BC04 BC09 5G050 AA02 AA04 AA12 AA13 AA27 AA33 AA40 AA42 AA43 AA46 AA47 AA48 AA50 BA01 CA01 DA03 EA02 5G301 AA07 AA08 AD04 AE02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/08 C22F 1/08 B 1/11 1/11 H01H 1/02 H01H 1/02 C 11/04 11/04 D // B22F 7/00 B22F 7/00 A C22F 1/00 627 C22F 1/00 627 628 628 661 661A 687 687 691 691B H01B 1/02 H01B 1/02 A (72) Inventor Takashi Kusano Tokyo 1 Toshiba-cho, Fuchu-shi, Toshiba Fuchu Plant (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Inside Fuchu Plant, Toshiba F-term (reference) 4K018 BB04 FA36 JA10 KA34 5G023 AA05 BA11 CA33 CA35 CA50 5G026 BA01 BB02 BB14 BB16 BB17 BB18 BB22 BC04 BC09 5G050 AA02 AA04 AA12 AA13 AA27 AA33 AA40 AA42 AA43 AA46 AA47 AA48 AA50 BA01 CA01 D A03 EA02 5G301 AA07 AA08 AD04 AE02

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】Cu又はCuを主成分とするCu合金で構
成されるCu相より成る導電性成分と、粒子径が0.1
〜150μmの範囲にあるCr粒子を所定比率以上含ん
だCr粒子より成る耐弧性成分とで構成されたCu−C
r合金からなる電力用真空遮断器の接点材料に於いて、
焼結工程後若しくは焼結・溶浸工程後の、前記Cu−C
r合金中のCr粒子の硬度値(マイクロビッカース硬さ
値)をHs、前記Cu−Cr合金中のCu相の持つ融解
温度の直下温度に加熱し、これを常温にまで冷却した時
の、前記Cu−Cr合金中のCr粒子の硬度値(マイク
ロビッカース硬さ値)をHrとした時の[Hs/Hr]
比を、1.0〜1.6の範囲としたことを特徴とする電
力用真空遮断器の接点材料。
1. A conductive component comprising a Cu phase composed of Cu or a Cu alloy containing Cu as a main component, and a conductive material having a particle diameter of 0.1%.
Cu-C composed of a Cr particle containing Cr particles in a range of .about.150 .mu.m or more and having a predetermined ratio or more.
In the contact material of the power vacuum circuit breaker made of r alloy,
After the sintering step or the sintering / infiltration step, the Cu-C
Heating the hardness value (micro Vickers hardness value) of the Cr particles in the r alloy to Hs, a temperature just below the melting temperature of the Cu phase in the Cu-Cr alloy, and cooling the same to room temperature, [Hs / Hr] when the hardness value (micro Vickers hardness value) of Cr particles in the Cu-Cr alloy is Hr
A contact material for an electric vacuum circuit breaker, wherein a ratio is in a range of 1.0 to 1.6.
【請求項2】前記Cu−Cr合金中のCu相の持つ融解
温度の直下温度が1030℃〜1080℃であることを
特徴とする請求項1に記載の電力用真空遮断器の接点材
料。
2. The contact material for a vacuum circuit breaker for electric power according to claim 1, wherein the temperature immediately below the melting temperature of the Cu phase in the Cu—Cr alloy is 1030 ° C. to 1080 ° C.
【請求項3】Cu又はCuを主成分とするCu合金で構
成されるCu相より成る導電性成分と、粒子径が0.1
〜150μmの範囲にあるCr粒子を所定比率以上含ん
だCr粒子より成る耐弧性成分とで構成されたCu−C
r合金からなる電力用真空遮断器の接点材料に於いて、
焼結工程後若しくは焼結・溶浸工程後の、前記Cu−C
r合金中のCr粒子の硬度値(マイクロビッカース硬さ
値)をHs、非酸化性雰囲気中で、前記Cu−Cr合金
中のCu相の融解温度以下の温度またはCu相の融解温
度以上の温度で加熱し、これを常温にまで冷却した時
の、前記Cu−Cr合金中のCr粒子の硬度値(マイク
ロビッカース硬さ値)をHrとした時の[Hs/Hr]
比を、1.0〜1.6の範囲に調整したことを特徴とす
る電力用真空遮断器の接点材料。
3. A conductive component comprising a Cu phase composed of Cu or a Cu alloy containing Cu as a main component, and a conductive material having a particle diameter of 0.1%.
Cu-C composed of a Cr particle containing Cr particles in a range of .about.150 .mu.m or more and having a predetermined ratio or more.
In the contact material of the power vacuum circuit breaker made of r alloy,
After the sintering step or the sintering / infiltration step, the Cu-C
The hardness value (micro Vickers hardness value) of the Cr particles in the r alloy is Hs, and the temperature is equal to or lower than the melting temperature of the Cu phase or equal to or higher than the melting temperature of the Cu phase in the Cu—Cr alloy in a non-oxidizing atmosphere. [Hs / Hr] when the hardness value (micro Vickers hardness value) of the Cr particles in the Cu—Cr alloy when the material is cooled to room temperature is Hr.
A contact material for a power vacuum circuit breaker, wherein a ratio is adjusted in a range of 1.0 to 1.6.
【請求項4】前記Crの一部を、Cr量に対して50%
(重量%)以下のTi,V,Nb,Taより選ばれた1
つによって置換したことを特徴とする請求項1乃至請求
項3のいずれかに記載の電力用真空遮断器の接点材料。
4. A method according to claim 1, wherein a part of said Cr is 50% based on the amount of Cr.
(Weight%) 1 selected from the following Ti, V, Nb, Ta
4. The contact material for a power vacuum circuit breaker according to claim 1, wherein the contact material is replaced by one.
【請求項5】前記Cu相中には、Cu量に対して20%
(重量%)以下のCr,Ti,V,B,Nb,Taより
選ばれた1つを含有したことを特徴とする請求項1乃至
請求項4のいずれかに記載の電力用真空遮断器の接点材
料。
5. The Cu phase contains 20% by weight of Cu.
5. The vacuum circuit breaker for electric power according to claim 1, further comprising one selected from the group consisting of Cr, Ti, V, B, Nb, and Ta. Contact material.
【請求項6】導電性成分としてのCu相の量を10〜9
0%(重量%)、残部が耐弧性成分としてCrを含有し
たことを特徴とする請求項1乃至請求項5のいずれかに
記載の電力用真空遮断器の接点材料。
6. The amount of Cu phase as a conductive component is 10 to 9
The contact material for a vacuum circuit breaker for electric power according to any one of claims 1 to 5, wherein 0% (% by weight) and the balance contain Cr as an arc resistant component.
【請求項7】導電性成分としてのCu相の量を10〜9
0%(重量%)、第1補助成分としてAl,Siの少な
くとも一方を最大1.0%(重量%)、残部が耐弧性成
分としてCrを含有したことを特徴とする請求項1乃至
請求項5のいずれかに記載の電力用真空遮断器の接点材
料。
7. The amount of the Cu phase as a conductive component is 10 to 9
4. The method according to claim 1, wherein the first auxiliary component contains at least one of Al and Si at a maximum of 1.0% (% by weight), and the remainder contains Cr as an arc resistant component. Item 6. A contact material for a power vacuum circuit breaker according to any one of Items 5.
【請求項8】第2補助成分として1%(重量%)以下の
Bi,Sbの1つを含有したことを特徴とする請求項1
乃至請求項7のいずれかに記載の電力用真空遮断器の接
点材料。
8. The method according to claim 1, wherein the second auxiliary component contains 1% (% by weight) or less of one of Bi and Sb.
A contact material for a power vacuum circuit breaker according to claim 7.
【請求項9】第2補助成分として5%(重量%)以下の
Te,Se,Pbの1つを含有したことを特徴とする請
求項1乃至請求項7のいずれかに記載の電力用真空遮断
器の接点材料。
9. The power vacuum according to claim 1, wherein the second auxiliary component contains one of Te, Se, and Pb of 5% (% by weight) or less. Contact material for circuit breakers.
【請求項10】前記Cr粒子は、平均粒子径が0.1〜
150μmの範囲にあるCr粒子が、Cr粒子全体の少
なくとも75%(容積%)を占めるCr粉よりなること
を特徴とする請求項1乃至請求項9のいずれかに記載の
電力用真空遮断器の接点材料。
10. The Cr particles have an average particle size of 0.1 to 0.1.
The power vacuum circuit breaker according to any one of claims 1 to 9, wherein the Cr particles in the range of 150 µm comprise Cr powder occupying at least 75% (by volume) of the entire Cr particles. Contact material.
【請求項11】Cu又はCuを主成分とするCu合金で
構成されるCu相より成る導電性成分と、粒子径が0.
1〜150μmの範囲にあるCr粒子を所定比率以上含
んだCr粒子より成る耐弧性成分とで構成されたCu−
Cr合金からなる電力用真空遮断器の接点材料に於い
て、焼結工程後若しくは焼結・溶浸工程後の、前記Cu
−Cr合金中のCu相の硬度値(マイクロビッカース硬
さ値)をHm、前記Cu−Cr合金中のCu相の持つ融
解温度の直下温度に加熱し、これを常温にまで冷却した
時の、前記Cu−Cr合金中のCu相の硬度値(マイク
ロビッカース硬さ値)をHoとした時の[Hm/Ho]
比を、1.0〜2.0の範囲としたことを特徴とする電
力用真空遮断器の接点材料。
11. A conductive component consisting of Cu or a Cu phase composed of a Cu alloy containing Cu as a main component, and a particle size of 0.1.
Cu-consisting of a Cr-resistant component composed of Cr particles containing Cr particles in a range of 1 to 150 μm or more in a predetermined ratio or more.
In the contact material of a vacuum circuit breaker for electric power made of a Cr alloy, the Cu after the sintering process or after the sintering / infiltration process is used.
-Heating the hardness value (micro Vickers hardness value) of the Cu phase in the Cr alloy to Hm, a temperature just below the melting temperature of the Cu phase in the Cu-Cr alloy, and cooling this to room temperature; [Hm / Ho] when the hardness value (micro Vickers hardness value) of the Cu phase in the Cu-Cr alloy is Ho.
A contact material for a vacuum circuit breaker for electric power, wherein the ratio is in the range of 1.0 to 2.0.
【請求項12】前記Cu−Cr合金中のCu相の持つ融
解温度の直下温度が1030℃〜1080℃であること
を特徴とする請求項11に記載の電力用真空遮断器の接
点材料。
12. The contact material for a vacuum circuit breaker for electric power according to claim 11, wherein the temperature immediately below the melting temperature of the Cu phase in the Cu—Cr alloy is 1030 ° C. to 1080 ° C.
【請求項13】Cu又はCuを主成分とするCu合金で
構成されるCu相より成る導電性成分と、粒子径が0.
1〜150μmの範囲にあるCr粒子を所定比率以上含
んだCr粒子より成る耐弧性成分とで構成されたCu−
Cr合金からなる電力用真空遮断器の接点材料に於い
て、焼結工程後若しくは焼結・溶浸工程後の、前記Cu
−Cr合金中のCu相の硬度値(マイクロビッカース硬
さ値)をHm、非酸化性雰囲気中で、前記Cu−Cr合
金中のCu相の融解温度以下の温度またはCu相の融解
温度以上の温度で加熱し、これを常温にまで冷却した時
の、前記Cu−Cr合金中のCu相の硬度値(マイクロ
ビッカース硬さ値)をHoとした時の[Hm/Ho]比
を、1.0〜2.0の範囲としたことを特徴とする電力
用真空遮断器の接点材料。
13. A conductive component consisting of Cu or a Cu phase composed of a Cu alloy containing Cu as a main component, and a particle size of 0.1.
Cu-consisting of a Cr-resistant component composed of Cr particles containing Cr particles in a range of 1 to 150 μm or more in a predetermined ratio or more.
In the contact material of a vacuum circuit breaker for electric power made of a Cr alloy, the Cu after the sintering process or after the sintering / infiltration process is used.
-The hardness value (micro Vickers hardness value) of the Cu phase in the Cr alloy is Hm, and in a non-oxidizing atmosphere, the temperature is equal to or lower than the melting temperature of the Cu phase in the Cu-Cr alloy or equal to or higher than the melting temperature of the Cu phase. [Hm / Ho] ratio when the hardness value (micro-Vickers hardness value) of the Cu phase in the Cu-Cr alloy when heated at a temperature and cooled to room temperature is set to 1. A contact material for a vacuum circuit breaker for electric power, wherein the contact material has a range of 0 to 2.0.
【請求項14】前記Crの一部を、Cr量に対して、5
0%(重量%)以下のTi,V,Nb,Taより選ばれ
た1つによって置換したことを特徴とする請求項11乃
至請求項13のいずれかに記載の電力用真空遮断器の接
点材料。
14. The method according to claim 14, wherein a part of said Cr is
The contact material for a vacuum circuit breaker for electric power according to any one of claims 11 to 13, wherein the material is replaced by one selected from Ti, V, Nb, and Ta of 0% (% by weight) or less. .
【請求項15】前記Cu相中には、Cu量に対して20
%(重量%)以下のCr,Ti,B,V,Nb,Taよ
り選ばれた1つを含有したことを特徴とする請求項11
乃至請求項14のいずれかに記載の電力用真空遮断器の
接点材料。
15. The Cu phase has a content of 20 to the Cu content.
% (% By weight) or less of one selected from the group consisting of Cr, Ti, B, V, Nb and Ta.
A contact material for a power vacuum circuit breaker according to claim 14.
【請求項16】導電性成分としてのCu相の量を10〜
90%(重量%)、残部が耐弧性成分としてCrを含有
したことを特徴とする請求項11乃至請求項15のいず
れかに記載の電力用真空遮断器の接点材料。
16. The amount of the Cu phase as a conductive component is set to 10 to 10.
The contact material for a vacuum circuit breaker for electric power according to any one of claims 11 to 15, wherein 90% (% by weight) and Cr as an arc resistant component are contained in the balance.
【請求項17】導電性成分としてのCu相の量を10〜
90%(重量%)、第1補助成分としてAl,Siの少
なくとも一方を最大1.0%(重量%)、残部が耐弧性
成分としてCrを含有したことを特徴とする請求項11
乃至請求項15のいずれかに記載の電力用真空遮断器の
接点材料。
17. The amount of the Cu phase as a conductive component is adjusted to 10 to 10.
12. The method according to claim 11, wherein the first auxiliary component contains at least one of Al and Si at a maximum of 1.0% (% by weight), and the remainder contains Cr as an arc resistant component.
A contact material for a power vacuum circuit breaker according to claim 15.
【請求項18】第2補助成分として1%(重量%)以下
のBi,Sbの1つを含有したことを特徴とする請求項
11乃至請求項17のいずれかに記載の電力用真空遮断
器の接点材料。
18. The vacuum circuit breaker for electric power according to claim 11, wherein one of Bi and Sb of 1% (% by weight) or less is contained as the second auxiliary component. Contact material.
【請求項19】第2補助成分として5%(重量%)以下
のTe,Se,Pbの1つを含有したことを特徴とする
請求項11乃至請求項17のいずれかに記載の電力用真
空遮断器の接点材料。
19. The power vacuum according to claim 11, wherein the second auxiliary component contains one of Te, Se, and Pb of 5% (% by weight) or less. Contact material for circuit breakers.
【請求項20】前記Cr粒子は、平均粒子径が0.1〜
150μmの範囲にあるCr粒子が、Cr粒子全体の少
なくとも75%(容積%)を占めるCr粉よりなること
を特徴とする請求項11乃至請求項19のいずれかに記
載の電力用真空遮断器の接点材料。
20. The Cr particles have an average particle size of 0.1 to 0.1.
The power vacuum circuit breaker according to any one of claims 11 to 19, wherein the Cr particles in the range of 150 µm comprise Cr powder occupying at least 75% (by volume) of the entire Cr particles. Contact material.
JP2000047979A 2000-02-24 2000-02-24 Method of manufacturing contact material for power vacuum circuit breaker Expired - Lifetime JP4159719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047979A JP4159719B2 (en) 2000-02-24 2000-02-24 Method of manufacturing contact material for power vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047979A JP4159719B2 (en) 2000-02-24 2000-02-24 Method of manufacturing contact material for power vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2001236864A true JP2001236864A (en) 2001-08-31
JP4159719B2 JP4159719B2 (en) 2008-10-01

Family

ID=18570139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047979A Expired - Lifetime JP4159719B2 (en) 2000-02-24 2000-02-24 Method of manufacturing contact material for power vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP4159719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149967A (en) * 2007-11-30 2009-07-09 Jfe Seimitsu Kk Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
CN108456798A (en) * 2018-03-30 2018-08-28 中国科学院金属研究所 Cu-Cr alloys containing micro Bi elements and its solidification preparation method
CN114951665A (en) * 2022-05-17 2022-08-30 浙江省冶金研究院有限公司 A kind of preparation method of low-cost, high-density, high-conductivity copper-chromium contact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458385B (en) * 2020-10-16 2021-09-21 陕西斯瑞新材料股份有限公司 Forging deformation and heat treatment method of CuCrTe metal section bar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149967A (en) * 2007-11-30 2009-07-09 Jfe Seimitsu Kk Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
CN108456798A (en) * 2018-03-30 2018-08-28 中国科学院金属研究所 Cu-Cr alloys containing micro Bi elements and its solidification preparation method
CN114951665A (en) * 2022-05-17 2022-08-30 浙江省冶金研究院有限公司 A kind of preparation method of low-cost, high-density, high-conductivity copper-chromium contact
CN114951665B (en) * 2022-05-17 2024-04-16 浙江省冶金研究院有限公司 A method for preparing a low-cost, high-density, high-conductivity copper-chromium contact

Also Published As

Publication number Publication date
JP4159719B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2778826B2 (en) Contact material for vacuum valve
US6551374B2 (en) Method of controlling the microstructures of Cu-Cr-based contact materials for vacuum interrupters and contact materials manufactured by the method
JP3598195B2 (en) Contact material
JP3773644B2 (en) Contact material
JPH1173830A (en) Vacuum valve
JP2001236864A (en) Contact material of vacuum circuit-breaker for electric power
EP0460680B1 (en) Contact for a vacuum interrupter
JP4404980B2 (en) Vacuum valve
CN100378884C (en) Method for producing silver-oxide-based electrical contact material and product thereof
JP3442644B2 (en) Contact material for vacuum valve
JP2004071436A (en) Vacuum circuit breaker
JP2002008499A (en) Vacuum circuit breaker
JP2001236865A (en) Vacuum valve
JP2878787B2 (en) Contact for vacuum valve
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
WO2018154848A1 (en) Contact material, method for manufacturing same, and vacuum valve
JPS63150822A (en) Manufacture of contact alloy for vacuum valve
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve
JP3840044B2 (en) Vacuum circuit breaker
JP2001243857A (en) Vacuum valve
JP2004332046A (en) Contact material for circuit breaker, and vacuum circuit breaker
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP2511019B2 (en) Contact material for vacuum valve
JP4421173B2 (en) Vacuum circuit breaker
JP2904448B2 (en) Contact material for vacuum valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4159719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term