JP2001151576A - Sliding member - Google Patents
Sliding memberInfo
- Publication number
- JP2001151576A JP2001151576A JP33009299A JP33009299A JP2001151576A JP 2001151576 A JP2001151576 A JP 2001151576A JP 33009299 A JP33009299 A JP 33009299A JP 33009299 A JP33009299 A JP 33009299A JP 2001151576 A JP2001151576 A JP 2001151576A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- sliding member
- grain boundary
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば機械部品の
軸受(ベアリング)等に使用される耐焼き付き性に優れ
た窒化珪素質焼結体からなる摺動部材に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member made of a silicon nitride sintered body having excellent seizure resistance and used for, for example, a bearing of a mechanical part.
【0002】[0002]
【従来の技術】窒化珪素質焼結体は、高強度で耐摩耗性
や剛性に優れているため構造用機械部品材料として期待
されており、近年ではこれらの特性を利用して軸受の転
動体であるボールやローラー、高圧ポンプ用ローラーピ
ン等に使用されている。2. Description of the Related Art Silicon nitride sintered bodies are expected to be used as structural mechanical component materials because of their high strength and excellent wear resistance and rigidity. Ball, roller, roller pin for high pressure pump, etc.
【0003】上記窒化珪素質焼結体の焼成に際しては、
上記窒化珪素質焼結体の原材料である窒化珪素に自己焼
結性がないため焼結助剤を添加して焼成している。上記
焼結助剤としては、一般にY2O3などの希土類元素酸化
物や、Al2O3、MgO、CaOなどの酸化物が組み合
わされて用いられている。そして、窒化珪素粉末にこれ
らの焼結助剤を混合して成形した後、焼成することによ
り窒化珪素質焼結体を得ている。上記焼成方法として
は、常圧下で行う常圧焼成や窒素やアルゴンガスを用い
た雰囲気加圧焼成などがあり、さらに、上記常圧焼成に
より得られる焼結体においては、焼結体内部の残留気孔
を排除し機械的強度を向上させるために、HIP(熱間
静水圧加圧)処理を行っている。In firing the above silicon nitride sintered body,
Since silicon nitride as a raw material of the silicon nitride-based sintered body has no self-sintering property, it is fired by adding a sintering aid. As the sintering aid, a rare earth element oxide such as Y 2 O 3 or an oxide such as Al 2 O 3 , MgO or CaO is generally used in combination. Then, these sintering aids are mixed with silicon nitride powder, molded, and fired to obtain a silicon nitride sintered body. Examples of the firing method include normal-pressure firing performed under normal pressure and atmospheric pressure firing using nitrogen or argon gas. Further, in the sintered body obtained by the normal-pressure firing, the residual In order to eliminate pores and improve mechanical strength, HIP (Hot Isostatic Pressing) treatment is performed.
【0004】特に摺動部品として用いる場合は、材料に
内在する欠陥(気孔、介在物、組織の異常など)が摺動
面での疲労によって表面で剥離を起こす原因となるた
め、このような欠陥が少なくなるように、結晶の粒成長
を抑制するため比較的低めの温度で焼成したのちHIP
処理を施したり、雰囲気加圧焼成する等の手法が用いら
れている。このようにして得られた焼結体は、製品とし
て精密加工された後、摺動部品として使用される。[0004] In particular, when used as a sliding part, defects inherent in the material (pores, inclusions, abnormalities in the structure, etc.) cause peeling on the surface due to fatigue on the sliding surface. After baking at a relatively low temperature to suppress crystal grain growth, HIP
Techniques such as performing a treatment and firing under atmospheric pressure are used. The sintered body thus obtained is used as a sliding component after precision processing as a product.
【0005】また、軸受部品等の摺動部品は高負荷で高
速回転すると摩擦により高温になりやすく、局部的には
摺動部分のオイルやグリースが炭化してしまう程の温度
まで達する場合があり、この摺動部から発生した熱を効
率よく分散させる事も重要である。このため、軽量で摩
耗や熱に強いセラミック製の摺動部品が注目されてい
る。[0005] Further, sliding parts such as bearing parts tend to be heated to a high temperature due to friction when rotating at a high load and at a high speed, and may locally reach a temperature at which oil or grease in the sliding part is carbonized. It is also important to efficiently disperse the heat generated from the sliding portion. For this reason, ceramic sliding parts that are lightweight and resistant to wear and heat have attracted attention.
【0006】近年は、セラミック軸受の主用途である工
作機械の高速化、及び航空機、宇宙産業への市場展開に
より、さらに高温環境下の高負荷セラミック軸受のニー
ズや、雑音を嫌う高速回転のHDD用軸受としてもセラ
ミック軸受のニーズが高まっている。また、自動車の燃
料噴射用の高圧小型ポンプに使用されるローラーピンな
ども高温・高負荷の環境で使用されるため、セラミック
ス製ローラーピンのニーズが高まっている。In recent years, with the increase in speed of machine tools, which are the main applications of ceramic bearings, and the market development in the aviation and space industries, the need for high-load ceramic bearings in high-temperature environments, and high-speed HDDs that dislike noise have been increasingly developed. There is a growing need for ceramic bearings for bearings. Roller pins used in high-pressure small pumps for fuel injection of automobiles are also used in high-temperature and high-load environments, and thus the need for ceramic roller pins is increasing.
【0007】このように、セラミック軸受の使用される
環境は摩擦熱等により高温になりやすい部分でありなが
ら、近年の傾向では、職場の作業環境の改善目的で軸受
を冷却・潤滑するために使用されるオイルが廃止された
り、HDD用軸受や宇宙産業のように潤滑や冷却が困難
な用途が増えており、無潤滑かつ無冷却と、より過酷な
使用環境になりつつある。そこで問題となるのが、セラ
ミック軸受の焼き付きによる摺動部の破損やグリースの
炭化によるダストの発生等である。これは、セラミック
軸受だけでなく高圧ポンプ用ローラーピン等の摺動部品
全般においても同様である。As described above, the environment in which ceramic bearings are used is a part which is likely to be heated to a high temperature due to frictional heat or the like. However, in recent trends, ceramic bearings are used for cooling and lubricating the bearings for the purpose of improving the work environment in the workplace. The use of oil is abolished, and applications where lubrication and cooling are difficult, such as HDD bearings and the space industry, are increasing, and a harsher and non-cooling environment is becoming more severe. Then, problems such as breakage of the sliding portion due to seizure of the ceramic bearing and generation of dust due to carbonization of the grease are caused. This is true not only for ceramic bearings but also for sliding parts such as roller pins for high-pressure pumps.
【0008】すなわち、セラミック軸受などの摺動部品
が十分な信頼性、良好な摺動特性を長期間維持するため
には、セラミック軸受の転動体のような摺動部材の熱伝
導率を高くし、局部的に高温にならないように摺動部分
の温度を分散させて、摺動部の焼き付きや潤滑オイルま
たはグリースの炭化を防ぐ必要がある。That is, in order for a sliding component such as a ceramic bearing to maintain sufficient reliability and good sliding characteristics for a long period of time, the thermal conductivity of a sliding member such as a rolling element of the ceramic bearing must be increased. In addition, it is necessary to disperse the temperature of the sliding portion so as not to be locally heated to prevent seizure of the sliding portion and carbonization of lubricating oil or grease.
【0009】[0009]
【発明が解決しようとする課題】上記のように、従来の
セラミック軸受に代表されるセラミック製の摺動部品
は、高負荷、高速回転する部分では、摩擦による発熱に
より軸受が焼き付いてしまい使用できなくなるという課
題があった。As described above, ceramic sliding parts typified by conventional ceramic bearings cannot be used in a high-load, high-speed rotating part because the bearing is seized due to heat generation due to friction. There was a problem of disappearing.
【0010】一般的に、窒化珪素質焼結体の熱伝導率を
高くする手法としては、窒化珪素より熱伝導率の高い物
質を混合して焼結させる方法や、窒化珪素質焼結体の組
成を調整したり窒化珪素質焼結体をさらに熱処理するな
どして、結晶粒界の非晶質相を結晶化させる方法があ
る。In general, as a method for increasing the thermal conductivity of a silicon nitride sintered body, a method of mixing and sintering a substance having a higher thermal conductivity than silicon nitride, a method of mixing a silicon nitride sintered body, There is a method in which the amorphous phase at the crystal grain boundaries is crystallized by adjusting the composition or further heat-treating the silicon nitride sintered body.
【0011】しかしながら、上記のような高熱伝導率の
物質を添加する方法や、結晶粒界の非晶質相を結晶化さ
せる方法では多くの場合、添加物が焼結に悪影響を与え
たり、破壊源となったり、また、窒化珪素の粒成長によ
る強度の低下や結晶粒界の脆化などが生じやすく、セラ
ミック軸受の転動体や摺動部品に求められる特性を十分
に満足できないという課題があった。However, in the method of adding a substance having a high thermal conductivity as described above or the method of crystallizing an amorphous phase at a crystal grain boundary, the additive may adversely affect sintering or may be broken. However, there is a problem that the properties required for the rolling elements and sliding parts of the ceramic bearing cannot be sufficiently satisfied, because the strength is likely to decrease due to the growth of silicon nitride grains and the crystal grain boundaries are easily embrittled. Was.
【0012】[0012]
【課題を解決するための手段】本発明者等は鋭意検討し
た結果、窒化珪素を主成分とし、酸化物換算で1〜30
重量%の希土類元素化合物とアスペクト比が3以下で長
径の平均が6μm以下のSiCを2〜20wt%含有
し、嵩密度が理論密度の98%以上である窒化珪素質焼
結体からなることを特徴とする摺動部材とすることによ
り、上記課題を解決できることを見出した。The inventors of the present invention have conducted intensive studies and as a result, have found that silicon nitride is the main component and 1 to 30 in terms of oxide.
A silicon nitride-based sintered body containing 2% to 20% by weight of a rare earth element compound of 2% by weight, 2% to 20% by weight of SiC having an aspect ratio of 3 or less and an average major axis of 6 μm or less, and a bulk density of 98% or more of the theoretical density. It has been found that the above problem can be solved by using the characteristic sliding member.
【0013】また、窒化珪素を主成分とし、酸化物換算
で1〜30重量%の希土類元素化合物と平均粒径が5μ
m以下のHfO2、TiN等を1〜30重量%含んだ窒
化珪素質焼結体においても、同様な結果が得られること
を見出した。A rare earth element compound containing silicon nitride as a main component, 1 to 30% by weight in terms of oxide, and an average particle diameter of 5 μm.
It has been found that a similar result can be obtained in a silicon nitride based sintered body containing 1 to 30% by weight of HfO 2 , TiN or the like of m or less.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。Embodiments of the present invention will be described below.
【0015】本発明の摺動部材は、窒化珪素を主成分と
し、酸化物換算で1〜30重量%の希土類元素化合物と
アスペクト比が3以下で長径の平均が6μm以下のSi
Cを2〜20wt%含有し、嵩比重が理論密度の98%
以上である窒化珪素質焼結体からなることを特徴とす
る。The sliding member of the present invention comprises silicon nitride as a main component, 1 to 30% by weight of a rare earth element compound in terms of oxide, and Si having an aspect ratio of 3 or less and an average long diameter of 6 μm or less.
Contains 2 to 20% by weight of C and has a bulk specific gravity of 98% of the theoretical density
It is characterized by being composed of the silicon nitride sintered body described above.
【0016】窒化珪素の焼結助剤として希土類元素化合
物を用いる理由は、焼結助剤に酸化マグネシウムや酸化
カルシウムなどを用いる場合より破壊靭性値が高く耐摩
耗部品として好ましいからである。この理由は明確でな
いが、粒界相の性質が異なるものと思われ、その量は酸
化物換算で1〜30重量%が望ましい。この範囲を選ん
だ理由は、1重量%未満では緻密化させるために焼成温
度を高温にする必要があるため、得られた窒化質焼結体
の機械的特性が低下する傾向にあるからであり、また、
30重量%を越えると窒化珪素の機械的特性が低下する
傾向にあるからである。すなわち、窒化珪素の特性を損
なわない焼成温度を得るためには、希土類元素化合物の
含有量が酸化物換算で1〜30重量%であることが望ま
しい。The reason why a rare earth element compound is used as a sintering aid for silicon nitride is that it has a higher fracture toughness than a case where magnesium oxide, calcium oxide, or the like is used as a sintering aid, and is preferable as a wear-resistant part. Although the reason for this is not clear, it is considered that the properties of the grain boundary phase are different, and the amount is preferably 1 to 30% by weight in terms of oxide. The reason for selecting this range is that if it is less than 1% by weight, it is necessary to raise the firing temperature for densification, so that the mechanical properties of the obtained nitrided sintered body tend to decrease. ,Also,
If the content exceeds 30% by weight, the mechanical properties of silicon nitride tend to deteriorate. That is, in order to obtain a firing temperature that does not impair the characteristics of silicon nitride, the content of the rare earth element compound is desirably 1 to 30% by weight in terms of oxide.
【0017】なお、本発明に用いられる希土類元素の種
類としては、Y、Er、Yb、Luを使用できる。Incidentally, as the kind of the rare earth element used in the present invention, Y, Er, Yb and Lu can be used.
【0018】次に、含有されるSiCについて説明する
と、その量は2〜20重量%であることが望ましい。S
iCが2重量%未満の場合は、粒界相の結晶化が不十分
で、結晶相全体に対する粒界結晶相の割合が50%以上
にならないため、熱伝導率が低くなり良好な耐焼き付き
性が得られない。また20重量%を越えると、難焼結性
のSiCが焼結助剤中に多く含まれることになり、焼成
中の焼結が進まず十分に緻密化されないため、得られた
焼結体の嵩密度も理論密度の98%以下となりやすく、
機械的特性の劣化が見られる。また、SiCのアスペク
ト比が3以上(たとえばウィスカーのような針状粒子)
やその長径が6μm以上の場合、細かく3次元的に複雑
な形状をしている結晶粒界組織に対してSiC粒子が大
きくなるために、結晶粒界における分散が不均一とな
り、難焼結性のSiC粒子の凝集が見られ焼結体の機械
的特性が低下する傾向があるからである。Next, the contained SiC will be described. The amount is preferably 2 to 20% by weight. S
When the iC is less than 2% by weight, the crystallization of the grain boundary phase is insufficient, and the ratio of the grain boundary crystal phase to the entire crystal phase does not become 50% or more. Can not be obtained. On the other hand, if it exceeds 20% by weight, a large amount of hardly sinterable SiC will be contained in the sintering aid, and the sintering during sintering will not proceed and the densification will not be sufficient. The bulk density tends to be 98% or less of the theoretical density,
Deterioration of mechanical properties is seen. Further, the aspect ratio of SiC is 3 or more (for example, needle-like particles such as whiskers).
When the major axis is 6 μm or more, the SiC particles become large with respect to the crystal grain boundary structure having a fine and three-dimensionally complicated shape, so that the dispersion at the crystal grain boundaries becomes non-uniform, and the sintering resistance becomes poor. This is because the SiC particles tend to agglomerate and the mechanical properties of the sintered body tend to decrease.
【0019】また、良好な耐焼き付き性を得るために
は、結晶相全体に対する粒界結晶相の割合が50%以
上、熱伝導率が22W/m・K以上であることが重要で
ある。セラミックスが用いられる摺動部分は、高荷重を
受けながら高速で摺動する部分や、あるいは冷却および
潤滑が行えない部分であり、摺動部分が高温になりやす
い。すなわち、このような環境で優れた耐焼き付き性を
維持するには、摺動部分の摩擦による発熱を周囲の部材
に効率よく伝達して熱を逃がすことが重要である。その
ためには、高速で運動する摺動部材の熱伝導率が22W
/m・K以上であることが望ましい。一般的に、窒化珪
素質焼結体の熱伝導率を改善する場合、例えば結晶化を
抑制する働きのある酸化アルミニウムの添加量を減らし
て、粒界相の組成を結晶化しやすい組成に調整する。し
かし、このような組成は焼結体本来の機械的特性を大き
く劣化させてしまうので、高荷重を受けながらの高速運
動中や高速回転中に焼結体の破損やカケ、焼結体表面の
剥離や偏摩耗が発生して、騒音の原因となったり、信頼
性を低下させる原因となる。In order to obtain good seizure resistance, it is important that the ratio of the grain boundary crystal phase to the entire crystal phase is 50% or more and the thermal conductivity is 22 W / m · K or more. A sliding portion using ceramics is a portion that slides at a high speed while receiving a high load, or a portion where cooling and lubrication cannot be performed, and the sliding portion is likely to be heated to a high temperature. That is, in order to maintain excellent seizure resistance in such an environment, it is important to efficiently transmit heat generated by friction of the sliding portion to the surrounding members to release the heat. For that purpose, the thermal conductivity of the sliding member moving at high speed is 22 W
/ m · K or more is desirable. In general, when improving the thermal conductivity of a silicon nitride based sintered body, for example, the amount of aluminum oxide that acts to suppress crystallization is reduced, and the composition of the grain boundary phase is adjusted to a composition that facilitates crystallization. . However, such a composition greatly deteriorates the original mechanical properties of the sintered body, so that the sintered body may be damaged or chipped during high-speed motion or high-speed rotation while receiving a high load, and the surface of the sintered body may be damaged. Peeling or uneven wear occurs, causing noise or reducing reliability.
【0020】ここで、上述のSiCを含有させた場合に
は粒界相中にSiCが結晶として分散し、さらに、本来
は非晶質であることが安定な組成の粒界相に、例えばY
10Al2Si3O18N4のような結晶相の析出を助長する
ことが分かった。このような結晶相の析出を助長する理
由は明確でないが、この効果によりSiCの含有量が2
〜4重量%と少ない場合であっても、窒化珪素質焼結体
の本来の特性を損なうことなく粒界相全体に対する粒界
結晶相の割合が50%以上になり、22W/m・K以上
の熱伝導率が得られる。Here, when the above-described SiC is contained, SiC is dispersed as crystals in the grain boundary phase.
It has been found that it promotes the precipitation of a crystalline phase such as 10 Al 2 Si 3 O 18 N 4 . Although the reason for promoting the precipitation of such a crystal phase is not clear, this effect reduces the SiC content to 2%.
Even if the amount is as small as 4% by weight, the ratio of the grain boundary crystal phase to the entire grain boundary phase becomes 50% or more without impairing the intrinsic characteristics of the silicon nitride sintered body, and becomes 22 W / m · K or more. Is obtained.
【0021】なお、このときの粒界結晶相の割合(A)
は下記のようにして算出した。The ratio of the grain boundary crystal phase at this time (A)
Was calculated as follows.
【0022】A=V2/V1*100(%) V1:粒界相全体の体積割合 V2:粒界結晶相の体積割合 粒界相全体の体積割合(V1)は焼結体の研磨面をエッ
チングし、粒界相と窒化珪素粒子が識別できるように処
理を行った後、電子顕微鏡で得られた写真より粒界相の
面積割合(%)を求めてその値を粒界相全体の体積割合
とした。A = V2 / V1 * 100 (%) V1: Volume ratio of the whole grain boundary phase V2: Volume ratio of the grain boundary crystal phase The volume ratio (V1) of the whole grain boundary phase is obtained by etching the polished surface of the sintered body. Then, after performing processing so that the grain boundary phase and the silicon nitride particles can be distinguished, the area ratio (%) of the grain boundary phase is obtained from a photograph obtained by an electron microscope, and the value is calculated as the volume ratio of the whole grain boundary phase. And
【0023】また、粒界結晶相の体積割合(V2)を求
めるには、まず得られた焼結体を粉砕して、X線回折に
より窒化珪素結晶相のピーク強度と粒界結晶相のピーク
強度を求め、下記の式より算出した。To determine the volume ratio (V2) of the grain boundary crystal phase, the obtained sintered body is first crushed, and the peak intensity of the silicon nitride crystal phase and the peak of the grain boundary crystal phase are determined by X-ray diffraction. The strength was determined and calculated by the following equation.
【0024】 V2=H1/H2*5*β*(100−V1)/100 H1: 粒界結晶相のメインピーク高さ H2: Si3N4β(110)ピーク高さ β: Si3N4結晶のβ化率 このとき、粒界結晶相のメインピークがSi3N4のピー
クと重なり判別できない時は、Ix/I0=K(Ix:
調査ピーク高さ、I0:主ピーク高さ)とした場合にK
がなるべく100に近いもののピークを用い、そのピー
ク強度に100/Kを乗じた値を用いる。V2 = H1 / H2 * 5 * β * (100−V1) / 100 H1: Main peak height of grain boundary crystal phase H2: Si 3 N 4 β (110) peak height β: Si 3 N 4 At this time, when the main peak of the grain boundary crystal phase does not overlap with the peak of Si 3 N 4 and cannot be determined, Ix / I0 = K (Ix:
Survey peak height, I0: Main peak height)
Is used, and a value obtained by multiplying the peak intensity by 100 / K is used.
【0025】さらに、上述した効果は、窒化珪素を主成
分とし、酸化物換算で1〜30重量%の希土類元素酸化
物と平均粒径が5μm以下のHfO2 、TiNを0.5〜
30重量%含んだ場合にも確認された。これは高融点物
質のHfO2、ZrB2、TiN粒子が粒界相に固溶せず
に粒界相に残留しているか、焼結過程で一度は粒界相に
固溶したものの冷却過程で粒界相中に初期の状態で再析
出していると考えられるが、明確ではない。この焼結体
を粉砕し蛍光X線で分析を行ったところ、HfO2、T
iNそれぞれ固有のX線ピークが得られた。含有量につ
いては、0.5重量%以下の場合は、粒界結晶相の割合
が少なく22W/m・K以上の熱伝導率が得られない。
また30重量%以上になると、HfO2、TiNが高融
点である弊害として窒化珪素質焼結体の焼結を阻害する
傾向があり、焼結体の機械的特性の劣化が見られた。Further, the above-mentioned effect is achieved by reducing the content of a rare earth element oxide containing 1 to 30% by weight of oxide and HfO 2 and TiN having an average particle diameter of 5 μm or less to 0.5 to 100% by weight.
It was also confirmed when it contained 30% by weight. This is because the HfO 2 , ZrB 2 , and TiN particles of the high-melting point material do not dissolve in the grain boundary phase but remain in the grain boundary phase. It is thought that it is reprecipitated in the initial state in the grain boundary phase, but it is not clear. When this sintered body was pulverized and analyzed by fluorescent X-ray, HfO 2 , T
An X-ray peak unique to each iN was obtained. When the content is 0.5% by weight or less, the proportion of the grain boundary crystal phase is so small that a thermal conductivity of 22 W / m · K or more cannot be obtained.
When the content is 30% by weight or more, HfO 2 and TiN have a high melting point, which tends to hinder the sintering of the silicon nitride sintered body, and the mechanical properties of the sintered body are deteriorated.
【0026】本発明の窒化珪素質焼結体は、窒化珪素質
焼結体の本来の特性を損なうことなく、4点曲げ強度
(JIS R1601)が700MPa以上、破壊靭性
(JIS R1607)が4.0MPam1/2以上の高
強度、高靭性の機械的特性を有している。The silicon nitride-based sintered body of the present invention has a four-point bending strength (JIS R1601) of 700 MPa or more and a fracture toughness (JIS R1607) of 4 without impairing the original characteristics of the silicon nitride-based sintered body. It has high strength and high toughness mechanical properties of 0 MPam 1/2 or more.
【0027】次に、本発明の窒化珪素質焼結体を得るた
めの製造方法を説明する。Next, a manufacturing method for obtaining the silicon nitride sintered body of the present invention will be described.
【0028】原料粉末を所定量秤量し、公知の混合方
法、例えば回転ミルや振動ミル、バレルミルを用いてI
PAやメタノール、水等を溶媒として混合する。場合に
よっては、溶媒を使わない乾式混合でも構わない。A predetermined amount of the raw material powder is weighed, and mixed by a known mixing method, for example, a rotary mill, a vibration mill, or a barrel mill.
PA, methanol, water and the like are mixed as a solvent. In some cases, dry mixing without using a solvent may be used.
【0029】できあがった混合粉末を所望の成形手段、
例えば、金型プレス、冷間静水圧プレス、押し出し成
形、射出成形、鋳込み成形等により任意の形状にする。
成型手段によっては、スプレードライ等による造粒や、
水、有機バインダーと共にある一定粘度の杯土を作製す
るなどの準備も必要であるが、通常のセラッミクスの成
形手順に従えばよい。The resulting mixed powder is molded into a desired molding means,
For example, an arbitrary shape is formed by a die press, a cold isostatic press, an extrusion molding, an injection molding, a casting molding, or the like.
Depending on the molding method, granulation by spray drying or the like,
Preparations such as preparation of a clay having a certain viscosity together with water and an organic binder are also required, but a normal ceramics molding procedure may be used.
【0030】成形後、乾燥、脱脂が必要な場合、窒素中
や真空中、大気中で、50℃〜1400℃の温度で加熱
処理する。If drying and degreasing are required after molding, heat treatment is performed at a temperature of 50 ° C. to 1400 ° C. in nitrogen, vacuum, or air.
【0031】焼成は、窒素を含有した非酸化物雰囲気中
1600℃〜2000℃で行うが、焼成温度が高すぎる
と主相である窒化珪素結晶が粒成長し強度が低下するた
め、1600〜1900℃で行うことが望ましい。ま
た、1800℃以上で焼成を行う場合は、窒化珪素の分
解が生じるので平衡圧力以上の窒素分圧下で焼成する必
要がある。さらに、これらの焼成後、HIP(熱間静水
圧加圧)処理を施すことによりさらに緻密な焼結体を得
ることができる。HIP温度としては、1500〜17
50℃が好ましい。The sintering is performed at 1600 ° C. to 2000 ° C. in a nitrogen-containing non-oxide atmosphere. If the sintering temperature is too high, silicon nitride crystals, which are the main phase, grow and the strength decreases. It is desirable to carry out at a temperature of ° C. In the case of firing at 1800 ° C. or more, it is necessary to fire at a partial pressure of nitrogen equal to or higher than the equilibrium pressure since silicon nitride is decomposed. Furthermore, after these calcinations, a more dense sintered body can be obtained by performing HIP (Hot Isostatic Pressing) treatment. The HIP temperature is 1500 to 17
50 ° C. is preferred.
【0032】上記の焼成により窒化珪素は、原料がα、
βのいずれの場合においても最終的にはβ−窒化珪素主
結晶相と粒界相を含む焼結体が得られる。この粒界相は
希土類元素酸化物、酸化アルミニウムを焼結助剤として
用いた場合は、希土類元素、アルミニウム、酸素および
窒素を含む粒界相からなり、この粒界相中にSiCまた
はHfO2、TiNが結晶として分布し、さらにはY10
Al2Si3O18N4等の結晶化も助長され、結晶相全体
に対する粒界結晶相の割合が50%以上になり、22W
/m・K以上の熱伝導率を有する窒化珪素質焼結体を得
ることができる。As a result of the above calcination, the raw material of the silicon nitride is α,
In any case of β, a sintered body containing a β-silicon nitride main crystal phase and a grain boundary phase is finally obtained. When a rare earth element oxide or aluminum oxide is used as a sintering aid, the grain boundary phase is composed of a grain boundary phase containing a rare earth element, aluminum, oxygen and nitrogen. SiC or HfO 2 , TiN is distributed as crystals, and furthermore, Y 10
The crystallization of Al 2 Si 3 O 18 N 4 and the like is also promoted, and the ratio of the grain boundary crystal phase to the entire crystal phase becomes 50% or more, and 22 W
A silicon nitride-based sintered body having a thermal conductivity of / mK or more can be obtained.
【0033】以上、本発明の窒化珪素質焼結体は種々の
セラミックス部品、特に、軸受の転動体であるボール
や、ピストンピン、ローラーピン、ロッカーアームチッ
プ、ローラーブッシュ、カムローラー、バルブ等の摺動
部品、切削工具等の高温度にさらされる部品に広く使用
する事が可能である。As described above, the silicon nitride sintered body of the present invention can be used for various ceramic parts, in particular, for balls such as rolling elements of bearings, piston pins, roller pins, rocker arm chips, roller bushes, cam rollers, valves and the like. It can be widely used for parts exposed to high temperatures such as sliding parts and cutting tools.
【0034】[0034]
【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.
【0035】まず窒化珪素粉末(BET比表面積9m2
/g)粉末に、焼結助剤としてYb2O3粉末、Er2O3
粉末、Y2O3粉末のうち1種を0.5〜35重量%、A
l2O 3粉末を3重量%、およびSiC粉末を1〜22重
量%またはHfO2粉末、TiN粉末の内1種を0.5
〜40重量%の範囲でそれぞれの割合で添加し、水を使
い十分に混合して原料スラリーを調整した。ついで上記
スラリーに有機バインダーを加え、スプレードライによ
り原料顆粒を得た。次に、上記原料顆粒を用いて、プレ
ス成形により円柱状成形体を作製し、この成形体を1.
33kPa以下の減圧下800℃〜1400℃の温度域
で加熱して脱バインダー処理した。First, silicon nitride powder (BET specific surface area 9 mTwo
/ G) Yb as a sintering aidTwoOThreePowder, ErTwoOThree
Powder, YTwoOThree0.5 to 35% by weight of one of the powders, A
lTwoO Three3% by weight of powder and 1-22 weight of SiC powder
% Or HfOTwoPowder, one of TiN powders is 0.5
4040% by weight in each proportion, and use water.
The slurry was prepared by mixing well. Then the above
Add an organic binder to the slurry and spray dry.
Raw material granules were obtained. Next, using the raw material granules,
Then, a columnar molded body was produced by molding, and this molded body was used for 1.
Temperature range of 800 ° C to 1400 ° C under reduced pressure of 33 kPa or less
To remove the binder.
【0036】次いで、上記成形体を窒素ガス中にて雰囲
気加圧焼成した。雰囲気加圧を窒化珪素の焼結が始まる
前に行い、加圧下で各々1600〜200℃まで昇温し
て焼成した。その後さらに、1000〜2000気圧の
窒素加圧下にてHIP処理を施し、円柱状ローラーピン
の焼結体を得た。得られた円柱状ローラーピンの焼結体
をセンタレス研磨機にて所定の外径寸法まで加工し、さ
らに摺動面となる表面は鏡面研磨加工を行った。Next, the compact was fired in a nitrogen gas atmosphere under pressure. The atmosphere was pressurized before the sintering of the silicon nitride was started, and the pressure was increased to 1600 to 200 ° C. under the pressure to fire. Thereafter, HIP treatment was further performed under a nitrogen pressure of 1000 to 2000 atm to obtain a sintered body of a cylindrical roller pin. The obtained sintered body of the cylindrical roller pin was processed to a predetermined outer diameter by a centerless polishing machine, and a surface to be a sliding surface was mirror-polished.
【0037】この円柱状のローラーピン焼結体を切断
し、その断面を鏡面加工してエッチングを行い電子顕微
鏡を用いて撮影した3000倍の反射電子像の写真から
粒界相の面積割合、すなわち粒界相全体の体積割合を求
めた。The columnar roller pin sintered body was cut, the cross section thereof was mirror-polished, etched, and the area ratio of the grain boundary phase was determined from the photograph of the 3,000-fold reflected electron image taken with an electron microscope, that is, The volume ratio of the whole grain boundary phase was determined.
【0038】さらに、焼結体を粉砕してX線により窒化
珪素結晶相のピーク高さと粒界結晶相のピーク高さを測
定した。これにより、含有させたSiC結晶ピーク、お
よびこのSiC結晶ピークより大きなY10Al2Si3O
18N4の結晶相が観察された。また、このY10Al2Si
3O18N4結晶相のピーク強度は添加するSiCの量に比
例することが判った。このそれぞれのピーク高さを前述
の式に代入して粒界中の結晶相の割合を求めた。Further, the sintered body was pulverized, and the peak height of the silicon nitride crystal phase and the peak height of the grain boundary crystal phase were measured by X-ray. Thereby, the contained SiC crystal peak and Y 10 Al 2 Si 3 O larger than this SiC crystal peak were obtained.
A crystal phase of 18 N 4 was observed. In addition, this Y 10 Al 2 Si
It was found that the peak intensity of the 3 O 18 N 4 crystal phase was proportional to the amount of SiC added. The ratio of the crystal phase in the grain boundary was determined by substituting the respective peak heights into the above-mentioned equation.
【0039】また、抗折強度および破壊靭性の評価は、
上記顆粒を用いてプレス成形によりテストピースを作製
し、同様の焼成条件で焼成後、平面研削盤にて研磨を行
い、JIS R1601に基づき抗折強度を、JIS
R1607に基づき破壊靭性をインストロン万能試験機
によりクロスヘッドスピード5mm/分で測定した。The bending strength and fracture toughness were evaluated as follows:
A test piece was prepared by press molding using the above granules, fired under the same firing conditions, polished with a surface grinder, and determined to have a bending strength based on JIS R1601.
Based on R1607, the fracture toughness was measured with an Instron universal testing machine at a crosshead speed of 5 mm / min.
【0040】耐焼き付き性の評価は、3/8インチ径に
加工したローラーピンを8ピンタイプの軸受(グリー
ス:潤滑油5W−30ベースオイル)にセットし、軸受
に対する荷重1000Nで2100rpmの負荷条件で
耐久評価試験を行い、耐焼き付き性を評価した。軸受の
内輪および外輪の材質は、SUK−2とした。The evaluation of seizure resistance was performed by setting a roller pin machined to a / inch diameter in an 8-pin type bearing (grease: lubricating oil 5W-30 base oil) under a load condition of 2100 rpm with a load of 1000 N on the bearing. A durability evaluation test was performed to evaluate seizure resistance. The material of the inner ring and the outer ring of the bearing was SUK-2.
【0041】次に、嵩密度の理論密度に対する比率の求
め方について説明する。理論密度(T)はX線回折によ
る構造解析と組成分析値に従い、窒化珪素およびそれぞ
れの成分の構造と成分比を決定し、それぞれの成分が各
々の理論密度、成分比で配合されているとして算出し
た。また、嵩密度(B)はJIS R−2205に従っ
て測定した。そして、嵩密度の理論密度に対する比率
は、B/Tを計算することにより求めた。Next, how to determine the ratio of the bulk density to the theoretical density will be described. The theoretical density (T) determines the structure and component ratio of silicon nitride and each component according to the structural analysis and composition analysis values by X-ray diffraction, and assumes that each component is blended at each theoretical density and component ratio. Calculated. The bulk density (B) was measured according to JIS R-2205. The ratio of the bulk density to the theoretical density was determined by calculating B / T.
【0042】これらの評価結果を表1にまとめた。Table 1 summarizes the evaluation results.
【0043】[0043]
【表1】 [Table 1]
【0044】表1から明らかなように、焼結助剤として
の希土類元素化合物が酸化物換算で1重量%未満である
No.1の場合、焼結が不十分で嵩密度が理論密度の7
9%以下となり、このため焼結体の表面および内部に多
くのボイドが存在するので摺動部品として使用できな
い。また、希土類元素酸化物が30重量%を越えるN
o.8は脆弱な粒界相の体積割合が増えるために、焼結
体の強度が劣化することが判る。これに対し、本発明の
請求範囲内であるNO.2〜7および希土類元素として
Er、Yb、Yを用いたNo.9〜12は、嵩密度が理
論密度の98%以上で強度も700MPa以上であり摺
動部品として使用可能である。As is apparent from Table 1, the rare earth element compound as the sintering aid was less than 1% by weight in terms of oxide. In the case of 1, the sintering is insufficient and the bulk density is 7
It becomes 9% or less, so that there are many voids on the surface and inside of the sintered body, so that it cannot be used as a sliding part. Further, when the rare earth element oxide contains more than 30% by weight of N
o. 8 shows that the strength of the sintered body is deteriorated because the volume ratio of the fragile grain boundary phase is increased. On the other hand, NO. Nos. 2 to 7 and No. 2 using Er, Yb, and Y as rare earth elements. Nos. 9 to 12 have a bulk density of 98% or more of the theoretical density and a strength of 700 MPa or more, and can be used as sliding parts.
【0045】次に、含有されるSiCの量についてはN
o.14〜19の結果より、SiCが2重量%未満であ
るNo.14は、粒界相の結晶化が不十分で、結晶相全
体に対する粒界結晶相の割合が50%以上にならないた
め、熱伝導率が低く良好な耐焼き付き性が得られない。
耐久評価においても、熱伝導率が22W/m・K以上の
組成では400時間以上焼き付くことはなかったが、熱
伝導率が低いNo.14は120時間で焼き付きが生じ
た。またSiCが20重量%を越えるNo.19は、難
焼結性のSiCが焼結助剤中に多く含まれることにな
り、得られた焼結体の密度が低く強度劣化も大きいとい
う結果が得られた。これに対して本発明の範囲内である
No.15〜18は粒界中の粒界結晶相の割合は計算上
52〜112%の範囲となり大きな強度劣化も見られな
い。また、熱伝導率はSiC量が2重量%の時22W/
m・K、10重量%の時30W/m・Kとなり、SiC
添加量と粒界結晶相の割合、SiC添加量と熱伝導率と
の間に良い相関が見られた。Next, regarding the amount of SiC contained,
o. From the results of Nos. 14 to 19, No. 14 containing less than 2% by weight of SiC. In No. 14, the crystallization of the grain boundary phase is insufficient, and the ratio of the grain boundary crystal phase to the entire crystal phase does not become 50% or more, so that the thermal conductivity is low and good seizure resistance cannot be obtained.
In the durability evaluation, the composition having a thermal conductivity of 22 W / m · K or more did not burn for 400 hours or more. In No. 14, burning occurred in 120 hours. In the case of No. 3 having SiC exceeding 20% by weight. In No. 19, a large amount of hardly sinterable SiC was contained in the sintering aid, and the result was that the obtained sintered body had a low density and a large deterioration in strength. On the other hand, No. 1 within the scope of the present invention. In Nos. 15 to 18, the ratio of the grain boundary crystal phase in the grain boundaries was calculated to be in the range of 52 to 112%, and no significant strength deterioration was observed. The thermal conductivity was 22 W / when the amount of SiC was 2% by weight.
m · K, 10 Wt%, 30 W / m · K, SiC
A good correlation was found between the addition amount and the ratio of the grain boundary crystal phase, and between the SiC addition amount and the thermal conductivity.
【0046】SiCのアスペクト比および形状について
は、No.4およびNo.20〜24より、SiCのア
スペクト比が3を越える(たとえばウィスカーのような
針状粒子)であるNo.24やその長径が6μm以上で
あるNo.22は、細かく3次元的に複雑な形状をして
いる窒化珪素結晶粒に対して大きなSiC粒子が焼結を
阻害し、また、SiC粒子が結晶粒界に均一に分散でき
ず分散が不均一となり難焼結性のSiC粒子の凝集が見
られ、焼結体の機械的特性が低下する傾向が見られた。
これに対して、本発明の請求範囲である、SiCのアス
ペクト比が3以下でその長径が6μm以下であるNo.
4、20、21、23は、焼結体の嵩密度が理論密度の
98%以上となるので強度劣化がない。Regarding the aspect ratio and shape of SiC, 4 and no. According to Nos. 20 to 24, the aspect ratio of SiC exceeds 3 (for example, needle-like particles such as whiskers). No. 24 and No. 24 whose major axis is 6 μm or more. No. 22, large SiC particles hinder sintering of silicon nitride crystal grains having a fine and three-dimensionally complex shape, and the SiC particles cannot be uniformly dispersed at crystal grain boundaries, resulting in non-uniform dispersion. Thus, aggregation of the hardly sinterable SiC particles was observed, and the mechanical properties of the sintered body tended to decrease.
On the other hand, according to the claims of the present invention, No. 1 having an aspect ratio of SiC of 3 or less and a major axis of 6 μm or less was used.
Nos. 4, 20, 21, and 23 have no strength deterioration because the bulk density of the sintered body is 98% or more of the theoretical density.
【0047】さらに、平均粒径が5μm以下のHf
O2、TiNを0.5〜30重量%含んだものについて
の評価をNo.25〜34に示した。HfO2、TiN
の添加量を1重量%未満としたNo.25とNo.30
は、粒界結晶相の割合が少ないため22W/m・K以上
の熱伝導率が得られなかった。また前記含有量が30重
量%を越えるNo.29とNo.34は、HfO2、T
iNが高融点であるため窒化珪素質焼結体の焼結を阻害
する傾向があり、焼結体の機械的特性の劣化が見られ
た。Further, Hf having an average particle size of 5 μm or less
No. was evaluated for those containing 0.5 to 30% by weight of O 2 and TiN. 25 to 34. HfO 2 , TiN
No. was added in an amount of less than 1% by weight. 25 and no. 30
No thermal conductivity of 22 W / m · K or more was obtained due to the low proportion of the grain boundary crystal phase. In addition, the content of No. 29 and No. 34 is HfO 2 , T
Since iN has a high melting point, it tends to inhibit the sintering of the silicon nitride-based sintered body, and the mechanical properties of the sintered body have been deteriorated.
【0048】これに対し、HfO2、TiNの添加量が
本発明の範囲内であるNo.26〜28およびNo.3
1〜33は、熱伝導率が22W/m・K以上となり、良
好な耐焼き付き性を示すことが判った。On the other hand, when the amounts of HfO 2 and TiN added were within the scope of the present invention, 26 to 28 and No. 26; Three
Samples Nos. 1 to 33 were found to have a thermal conductivity of 22 W / m · K or more and exhibit good seizure resistance.
【0049】[0049]
【発明の効果】本発明によれば、該窒化珪素質焼結体の
粒界中の結晶相割合を50%以上、熱伝導率を22W/
m・K以上とすることにより、耐焼き付き性を改善した
窒化珪素質焼結体からなる摺動部材を提供することが可
能となる。According to the present invention, the ratio of the crystal phase in the grain boundary of the silicon nitride based sintered body is 50% or more, and the thermal conductivity is 22 W /
By setting it to m · K or more, it becomes possible to provide a sliding member made of a silicon nitride sintered body having improved seizure resistance.
Claims (4)
30重量%の希土類元素化合物と、アスペクト比が3以
下で長径の平均が6μm以下のSiCを2〜20重量%
含有し、嵩密度が理論密度の98%以上である窒化珪素
質焼結体からなることを特徴とする摺動部材。1. A composition comprising silicon nitride as a main component and an oxide equivalent of 1 to 1.
30% by weight of a rare earth element compound and 2 to 20% by weight of SiC having an aspect ratio of 3 or less and an average long diameter of 6 μm or less
A sliding member comprising: a silicon nitride sintered body having a bulk density of 98% or more of a theoretical density.
30重量%の希土類元素化合物と平均粒径が5μm以下
のHfO2、TiNを1〜30重量%含有することを特
徴とする摺動部材。2. A composition containing silicon nitride as a main component and having an oxide equivalent of 1 to 2.
A sliding member having an average particle size of 30 wt% of the rare earth compound is characterized by containing the following HfO 2, TiN 5μm 1~30 wt%.
0%以上で、熱伝導率が22W/m・K以上であること
を特徴とする請求項1または2に記載の摺動部材。3. The ratio of the grain boundary crystal phase to the entire crystal phase is 5%.
The sliding member according to claim 1, wherein the sliding member has a thermal conductivity of 22 W / m · K or more at 0% or more.
性が4.0MPam 1/2以上であることを特徴とする請
求項1または2に記載の摺動部材。4. A four-point bending strength of 700 MPa or more, a fracture toughness
4.0MPam 1/2It is characterized by the above
The sliding member according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33009299A JP2001151576A (en) | 1999-11-19 | 1999-11-19 | Sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33009299A JP2001151576A (en) | 1999-11-19 | 1999-11-19 | Sliding member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001151576A true JP2001151576A (en) | 2001-06-05 |
Family
ID=18228709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33009299A Withdrawn JP2001151576A (en) | 1999-11-19 | 1999-11-19 | Sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001151576A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009008231A (en) * | 2007-06-29 | 2009-01-15 | Ntn Corp | Sliding device, slide member and manufacturing process therefor |
JP2014129223A (en) * | 2012-11-30 | 2014-07-10 | Kyocera Corp | Ceramic sintered compact and abrasion-resistant component possessing the same |
EP2760807A4 (en) * | 2011-09-30 | 2015-06-03 | Saint Gobain Ceramics | Composite body and method of making |
US9097280B2 (en) | 2007-06-27 | 2015-08-04 | Ntn Corporation | Rolling contact member, rolling bearing, and method of producing rolling contact member |
US9103382B2 (en) | 2006-12-20 | 2015-08-11 | Ntn Corporation | Rolling bearing, hub unit, rolling contact member, universal joint, torque transmission member for universal joint, and method of producing the same |
JP2015209352A (en) * | 2014-04-25 | 2015-11-24 | 京セラ株式会社 | Silicon nitride base sintered compact and impact wear resistant member made of the same |
JP2016008167A (en) * | 2014-06-26 | 2016-01-18 | 京セラ株式会社 | Silicon nitride-based sintered compact, and impact wear-resistant member including the compact |
-
1999
- 1999-11-19 JP JP33009299A patent/JP2001151576A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9103382B2 (en) | 2006-12-20 | 2015-08-11 | Ntn Corporation | Rolling bearing, hub unit, rolling contact member, universal joint, torque transmission member for universal joint, and method of producing the same |
US9097280B2 (en) | 2007-06-27 | 2015-08-04 | Ntn Corporation | Rolling contact member, rolling bearing, and method of producing rolling contact member |
JP2009008231A (en) * | 2007-06-29 | 2009-01-15 | Ntn Corp | Sliding device, slide member and manufacturing process therefor |
EP2760807A4 (en) * | 2011-09-30 | 2015-06-03 | Saint Gobain Ceramics | Composite body and method of making |
JP2014129223A (en) * | 2012-11-30 | 2014-07-10 | Kyocera Corp | Ceramic sintered compact and abrasion-resistant component possessing the same |
JP2015209352A (en) * | 2014-04-25 | 2015-11-24 | 京セラ株式会社 | Silicon nitride base sintered compact and impact wear resistant member made of the same |
JP2016008167A (en) * | 2014-06-26 | 2016-01-18 | 京セラ株式会社 | Silicon nitride-based sintered compact, and impact wear-resistant member including the compact |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100417967B1 (en) | Abrasion resistance materials and preparation method therefor | |
JP5487099B2 (en) | Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member | |
JP2003034581A (en) | Silicon nitride abrasion resistant member and method for producing the same | |
JP2719941B2 (en) | Silicon nitride sintered body | |
JP5486044B2 (en) | Silicon nitride body and method for producing the same | |
JP2001151576A (en) | Sliding member | |
JP5031602B2 (en) | Silicon nitride sintered body, cutting tool, cutting apparatus, and cutting method | |
JP4850007B2 (en) | Silicon nitride sintered body | |
JP5362758B2 (en) | Wear resistant parts | |
JP2855243B2 (en) | Silicon nitride sintered body with excellent wear resistance | |
KR100613956B1 (en) | Silicon nitride anti-wear member and process for producing the same | |
JP2004002067A (en) | Wear-resistant member and its production process | |
JP2000256066A (en) | Silicon nitride-base sintered compact, its production and wear resistant member using same | |
JP5989602B2 (en) | Silicon nitride sintered body, manufacturing method thereof, and rolling element for bearing | |
JP2001114565A (en) | Sintered silicon nitride and abrasion-resistant part made thereof | |
JPH08323509A (en) | Boron nitride cutting-tool and its manufacture | |
JP2000072553A (en) | Silicon nitride wear resistance member and its production | |
JP4822573B2 (en) | Method for producing silicon nitride sintered body | |
JP4642971B2 (en) | Silicon nitride ceramic sintered body and wear-resistant member using the same | |
JP3426823B2 (en) | Silicon nitride sintered body and method for producing the same | |
EP0705805A2 (en) | Sintered body of silicon nitride for use as sliding member | |
JP2000335976A (en) | Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same | |
JP2756653B2 (en) | Silicon nitride based sintered body for sliding member and method of manufacturing the same | |
JP4565954B2 (en) | Conductive silicon nitride material and manufacturing method thereof | |
JP2009173508A (en) | Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071218 |