JP2001091411A - Front-rear axle load controlling method in four-wheel drive vehicle bench test - Google Patents
Front-rear axle load controlling method in four-wheel drive vehicle bench testInfo
- Publication number
- JP2001091411A JP2001091411A JP27166499A JP27166499A JP2001091411A JP 2001091411 A JP2001091411 A JP 2001091411A JP 27166499 A JP27166499 A JP 27166499A JP 27166499 A JP27166499 A JP 27166499A JP 2001091411 A JP2001091411 A JP 2001091411A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- control
- running resistance
- vehicle
- command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、四輪駆動車試験
用シャシーダイナモメータにおける前後軸負荷制御方式
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a longitudinal axis load control method for a chassis dynamometer for testing a four-wheel drive vehicle.
【0002】[0002]
【従来の技術】四輪駆動(4WD)の車両4WD方式と
しては次の種類のものがある。 1)パートタイム4WD:4輪駆動と、2輪駆動(前軸
2輪、または後軸2輪)とを選択切り替えするもの。2. Description of the Related Art The following types of four-wheel drive (4WD) vehicle 4WD systems are available. 1) Part-time 4WD: A device that selectively switches between four-wheel drive and two-wheel drive (two front wheels or two rear wheels).
【0003】4WD時には、前後の駆動力配分は動的荷
重配分に比例する。 2)フルタイム4WD:常時4WDにて走行するもので
あり、前後軸への駆動力配分方法により、次のように分
けられる。[0003] In 4WD, the distribution of driving force before and after is proportional to the dynamic load distribution. 2) Full-time 4WD: The vehicle always travels at 4WD, and is divided as follows according to the driving force distribution method to the front and rear axes.
【0004】配分比率一定方式 前後軸の回転速度差により配分比率を変える方式。[0004] Constant distribution ratio method A method in which the distribution ratio is changed according to the rotational speed difference between the front and rear shafts.
【0005】走行状態や路面状況に応じ、電子制御に
より配分比率を変える方式。 3)パッシブ4WD:車両前後輪に回転差が無いときは
2WDで走行し、差回転が生じたときに4WDとするも
の。[0005] A system in which the distribution ratio is changed by electronic control according to the running state or road surface condition. 3) Passive 4WD: When there is no rotation difference between the front and rear wheels of the vehicle, the vehicle runs at 2WD, and when a difference in rotation occurs, it is 4WD.
【0006】図4に4WD駆動車試験用シャシーダイナ
モメータの機械構成図を示す。この試験装置の前軸と後
軸は機械的に独立であり、車両の前,後輪を介して結合
される。なお図4は車の左側面のみを示しており、右側
は省略しているが、実際は右側のタイヤとこれを受ける
ローラがあり、右ローラは左ローラに結合されている。FIG. 4 shows a mechanical configuration diagram of a chassis dynamometer for testing a 4WD drive vehicle. The front and rear shafts of this test device are mechanically independent and are connected via the front and rear wheels of the vehicle. Although FIG. 4 shows only the left side of the vehicle and omits the right side, there is actually a right tire and a roller for receiving the tire, and the right roller is connected to the left roller.
【0007】次にこの制御系統図の例を図5,図6に示
す。この制御系は、図4の試験装置側の動力計2F,2R
とフライホイール3F,3Rが4WD車8に対し、実際に
路上走行したときと同等の負荷を与えるよう制御(走行
抵抗制御)する。即ち、動力計により定常走行抵抗を吸
収し、フライホイールにより加減速走行抵抗を吸収す
る。なお実際の場合はこの他に、機械損失補償回路、電
気慣性制御他が付属されることが多いが、本発明の本質
とは関係ないため、省略する。Next, FIGS. 5 and 6 show examples of this control system diagram. This control system includes dynamometers 2 F and 2 R on the test device side in FIG.
And the flywheels 3 F and 3 R control the 4WD vehicle 8 to apply a load equivalent to that when the vehicle actually travels on the road (running resistance control). That is, the steady running resistance is absorbed by the dynamometer, and the acceleration / deceleration running resistance is absorbed by the flywheel. In the actual case, a mechanical loss compensating circuit, an electric inertia control, and the like are often attached in addition to the above, but they are omitted because they are not related to the essence of the present invention.
【0008】図5の制御系は、上記配分比率一定方式の
フルタイム4WD車両に対するもので、車両側の駆動力
前後配分比率が一定(1/2)のため、前後軸の動力計
2F,2Rの負荷吸収量も、車両全体の走行抵抗を定比率
(1/2)で分担するように、走行抵抗指令発生部11
からの走行抵抗指令を比率設定器18および加算器19
により定比率(1/2)としてトルク制御部21Fおよ
び21Rへの走行抵抗指令としてトルク制御している。The control system shown in FIG. 5 is for a full-time 4WD vehicle of the above-mentioned constant distribution ratio type. Since the front and rear distribution ratio of the driving force on the vehicle side is constant (1/2), the dynamometers 2 F and 2F on the front and rear shafts are used. load absorption of 2 R also the running resistance of the entire vehicle to share a constant ratio (1/2), the running resistance command generating unit 11
The running resistance command from the motor is supplied to the ratio setting device 18 and the adder 19.
Are torque control as the running resistance command of the constant ratio (1/2) as the torque control section 21 F and 21 R by.
【0009】走行抵抗指令発生部11は速度検出部24
F,24Rの速度検出値から前後平均車速演算部12で求
めた前後平均速度に基づいて走行抵抗指令を発生する。The running resistance command generator 11 includes a speed detector 24
F, 24 generates a running resistance command based from the speed detection value of R before and after the average speed obtained before and after the average vehicle speed calculating unit 12.
【0010】また、図6の制御系は、上記車両側の駆動
力配分比率が運転中に変化する4WD車両に対応するも
ので、車両の走行抵抗は2台の動力計2F,2Rで分担し
て吸収されるが、その配分は前後のローラ1F,1Rの速
度差が路上走行時の前後軸速度差と等しくなるようにす
るものであり、平坦路定常走行時は速度差は零となる。
これは、車両路上走行時の駆動力配分が前後車の回転速
度差に影響を大きく受けるためであり、これをシャシー
ダイナモメータ上で再現すれば、結果的に車両の駆動力
配分も再現することができる。The control system of FIG. 6 corresponds to a 4WD vehicle in which the driving force distribution ratio on the vehicle side changes during driving, and the running resistance of the vehicle is determined by two dynamometers 2 F and 2 R. The distribution is such that the speed difference between the front and rear rollers 1 F and 1 R is equal to the front-rear axis speed difference when traveling on the road. It becomes zero.
This is because the distribution of driving force when traveling on a vehicle road is greatly affected by the rotational speed difference between the front and rear vehicles, and if this is reproduced on the chassis dynamometer, the distribution of driving force of the vehicle will eventually be reproduced. Can be.
【0011】図6では、トルク制御部21F,21Rは走
行抵抗指令発生部11からの指令とトルク検出部2
3F,23Rからのトルク検出を加算器16で加算したト
ルク検出の和との偏差をPI演算する。差速度演算部1
4は速度検出部24F,24Rからの速度検出の差を演算
し、前後同期制御部13はこの速度差に応じた前後同期
制御の電流指令とこの信号を極性反転回路15で反転さ
れた電流指令をトルク制御部21F,21Rから出力され
る電流指令に加えて駆動力配分を再現させる。In FIG. 6, the torque control units 21 F and 21 R are provided with a command from the running resistance command generation unit 11 and a torque detection unit 2.
The deviation from the sum of the torque detection obtained by adding the torque detection from 3 F and 23 R by the adder 16 is calculated by PI. Differential speed calculator 1
4 calculates the difference between the speed detections from the speed detectors 24 F and 24 R , and the front-rear synchronization control unit 13 inverts the current command of the front-rear synchronization control according to the speed difference and this signal by the polarity reversing circuit 15. The driving command distribution is reproduced by adding the current command to the current command output from the torque control units 21 F and 21 R.
【0012】[0012]
【発明が解決しようとする課題】車両側の駆動力配分が
運転中に変化する車両の場合、この比率は車両の運転状
況に対応して変化するが、この運転状況として、前後軸
の速度差は大きな要因となり、これを零とするよう配分
している。一方従来図6のこれに対応するため、速度検
出の簡単なローラ速度(二動力計速度)に着目し、これ
を同一とするよう制御しているが、ローラとタイヤとの
間にはスプリングがあり、この大きさは駆動力やタイヤ
の状況により変化する。このためローラ速度を合わせて
も、タイヤ間には速度差が残り、結果的に路面上での配
分と異なった比率で運転することがある。In the case of a vehicle in which the driving force distribution on the vehicle side changes during driving, this ratio changes in accordance with the driving condition of the vehicle. Is a major factor, and is allocated to make this a zero. On the other hand, in order to cope with this in the conventional FIG. 6, attention is paid to a roller speed (two dynamometer speeds) that is simple for speed detection, and control is performed so that the speed is the same, but a spring is provided between the roller and the tire. Yes, this size varies depending on driving force and tire conditions. For this reason, even if the roller speed is adjusted, a speed difference remains between the tires, and as a result, the vehicle may be operated at a ratio different from the distribution on the road surface.
【0013】この発明は、上記課題に鑑みてなされたも
のであり、その目的とするところは、前後軸負荷配分比
率の制御精度を向上させることができる四輪駆動車台上
試験における前後軸負荷制御方式を提供することにあ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to control longitudinal load control in a four-wheel drive chassis test that can improve the control accuracy of the longitudinal load distribution ratio. It is to provide a method.
【0014】[0014]
【課題を解決するための手段】この発明の四輪駆動車台
上試験における前後軸負荷制御方式は、車両の前輪およ
び後輪で駆動される前輪用左右のローラおよび後輪用左
右のローラにそれぞれ前軸用および後軸用の動力計とフ
ライホイールを結合し、両動力計を走行抵抗制御と同期
制御する四輪駆動車台上試験において、車両の各タイヤ
速度をそれぞれ検出し、その前輪左右の各タイヤ速度お
よび後輪左右のタイヤ速度から前後軸の平均速度および
差速度を演算し、この平均速度に基づいて走行抵抗制御
指令を発生させると共に、差速度に基づいて前後軸同期
制御の電流指令を発生させ、走行抵抗制御指令と両動力
計の平均トルク検出との偏差が無くなるように両動力計
をそれぞれ走行抵抗制御すると共に、両軸の速度差がな
くなるように同期制御の電流指令の極性を異ならして電
流制御することを特徴とする。The front-rear axis load control system in the four-wheel drive chassis test according to the present invention comprises a front left and right roller and a rear left and right roller driven by front and rear wheels of a vehicle, respectively. In a four-wheel-drive undercarriage test that combines the dynamometer for the front axle and the rear axle and the flywheel, and controls both dynamometers in synchronization with the running resistance control, each tire speed of the vehicle is detected, and the left and right front wheels are detected. An average speed and a differential speed of the front-rear axis are calculated from each tire speed and the tire speeds of the right and left rear wheels, a running resistance control command is generated based on the average speed, and a current command of the front-rear axis synchronization control is generated based on the difference speed. And the running resistance of both dynamometers is controlled so that the deviation between the running resistance control command and the average torque detection of both dynamometers is eliminated, and synchronization is performed so that the speed difference between both shafts is eliminated. By different polarities of the control of the current command, characterized in that the current control.
【0015】上記各タイヤ速度を検出することに代え
て、車両に搭載されているエンジン駆動力を前後軸に分
配制御している電子制御装置が持つ軸速度の計測データ
をインターフェイスを介して読み出し、この軸速度の計
測データを用いて前軸と後軸の平均速度および差速度を
演算することができる。[0015] Instead of detecting the tire speeds described above, measurement data of the shaft speed of an electronic control unit that distributes and controls the driving force of the engine mounted on the vehicle to the front and rear axes is read out via an interface. The average speed and the difference speed between the front axis and the rear axis can be calculated using the measured data of the axis speed.
【0016】[0016]
【発明の実施の形態】実施例1 図1に実施例1にかかる四輪駆動車台上試験装置の走行
抵抗・同期制御の制御系を示す。この制御系の前輪側,
後輪側制御回路20F,20Rは同様に構成されている。
制御回路20F(20R)は前輪(後輪)の左右のタイヤ
91,92に速度検出用パルス検出器PP1,PP2を設
け、そのパルスから速度検出部241,242により左右
のタイヤ速度を演算し、速度平均値演算部25により左
右タイヤ速度の平均値を求めている。また、動力計2の
トルクは動力計に設けたロードセルLCによりロードセ
ルにかかる圧力を検出し、トルク検出部23によりトル
クを演算する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 shows a control system for running resistance and synchronization control of a four-wheel drive chassis test apparatus according to a first embodiment. The front wheel side of this control system,
The rear wheel side control circuits 20 F and 20 R have the same configuration.
The control circuit 20 F (20 R ) is provided with speed detecting pulse detectors PP 1 and PP 2 on the left and right tires 9 1 and 9 2 of the front wheels (rear wheels), and the speed detectors 24 1 and 24 2 detect the pulses from the pulses. The left and right tire speeds are calculated, and the average value of the left and right tire speeds is obtained by the speed average value calculation unit 25. As for the torque of the dynamometer 2, the pressure applied to the load cell is detected by the load cell LC provided in the dynamometer, and the torque is calculated by the torque detection unit 23.
【0017】前後平均速度演算部12は制御回路2
0F,20Rの速度平均値演算部25からの平均速度の平
均をとり全タイヤの平均速度を演算し、走行抵抗指令発
生部11はこの全タイヤの平均速度に基づいて走行抵抗
指令を発生する。The front-rear average speed calculation unit 12 includes a control circuit 2
The average of the average speeds from the speed average value calculation unit 25 of 0 F and 20 R is calculated to calculate the average speed of all tires, and the running resistance command generation unit 11 generates a running resistance command based on the average speed of all tires. I do.
【0018】差速度検出部14は制御回路20F,20R
の速度平均値演算部25からの平均速度の差を演算し、
前後同期制御部13はこの平均速度の差に応じた前後同
期制御用の電流指令を出力する。The differential speed detecting section 14 includes control circuits 20 F and 20 R
Of the average speed from the speed average value calculation unit 25 of
The front-rear synchronization control unit 13 outputs a current command for front-rear synchronization control according to the difference in the average speed.
【0019】制御回路20F,20Rのトルク制御部21
は走行抵抗指令発生部11からの走行抵抗指令と制御回
路20F,20Rのトルク検出部23からのトルク検出を
加算器16で加算した値との偏差をPI演算する。The torque control unit 21 of the control circuits 20 F and 20 R
Calculates the difference between the running resistance command from the running resistance command generating section 11 and the value obtained by adding the torque detection from the torque detecting section 23 of the control circuits 20 F and 20 R by the adder 16 by PI.
【0020】制御回路20Fの電流制御部22はトルク
制御部21からの電流指令と前後同期制御部13からの
電流指令の和を電流指令として動力計2を制御する。ま
た制御回路20Rの電流制御部22はトルク制御部21
からの電流指令と前後同期制御部13からの電流指令を
極性反転回路15で極性が変えられた前後同期制御用の
電流指令の和を電流指令として動力計2を制御する。The current control unit 22 of the control circuit 20 F controls the dynamometer 2 the sum of the current command from the current command and a longitudinal synchronization control unit 13 from the torque control unit 21 as a current command. The current control unit 22 of the control circuit 20 R is
The dynamometer 2 is controlled using the sum of the current command from the controller and the current command from the front-rear synchronization controller 13 as the current command for the front-rear synchronization control whose polarity has been changed by the polarity reversing circuit 15.
【0021】上記実施例1は車両のタイヤ速度を検出
し、その検出したタイヤの前後軸の平均速度を演算し、
この前後軸平均速度から走行抵抗指令を得て前後輪のダ
イナモメータをトルク偏差および電流偏差がなくなるよ
うに同期制御しているので、前後軸の駆動力配分を正し
く再現することができる。In the first embodiment, the tire speed of the vehicle is detected, and the average speed of the detected tire in the front-rear axis is calculated.
Since the running resistance command is obtained from the front-rear axis average speed and the dynamometers of the front and rear wheels are synchronously controlled to eliminate the torque deviation and the current deviation, the driving force distribution of the front-rear axis can be correctly reproduced.
【0022】実施例2 4WD車両にはエンジン駆動力を前後軸に配分制御して
いる電子制御装置(ECU)が搭載されている。ECU
は上記配分制御のためのデータを得るため各部にセンサ
を取り付けて種々のデータを計測している。実施例2は
ECUを搭載している四輪駆動車台上試験の前後軸負荷
制御において、ECUが計測している前後軸左右の速度
データを利用して実施例1同様の前後軸負荷制御を行う
ものである。Embodiment 2 A 4WD vehicle is equipped with an electronic control unit (ECU) for controlling the distribution of the engine driving force to the front and rear axes. ECU
In order to obtain data for the above-mentioned distribution control, sensors are attached to each part to measure various data. In the second embodiment, in the front-rear axis load control of the four-wheel drive chassis test on which the ECU is mounted, the same front-rear axis load control as in the first embodiment is performed using the front-rear axis left and right speed data measured by the ECU. Things.
【0023】実施例2について図2、図3を用いて説明
する。図2について、ECU30はCPU31、計測用
インターフェイス32とメモリ33及びテスト用のイン
ターフェイス34を備えている。上記各センサSからの
各信号は計測用インターフェイス32に入力し、CPU
31で順次処理されメモリ33及びテスト用インターフ
ェイス34が備えているメモリに一時記憶される。一
方、動力計計測装置Aは図3に示すように上記図1と同
様に構成されているが、試験される4WD車両にはパル
ス検出器PP1,PP2を取り付けない。なお、制御回路
はダイナモメータ2を駆動する電流制御部22の出力部
を除いてCPUで構成されている。Embodiment 2 will be described with reference to FIGS. 2 and 3. FIG. 2, the ECU 30 includes a CPU 31, a measurement interface 32, a memory 33, and a test interface 34. Each signal from each of the sensors S is input to the measurement interface 32 and the CPU
The processing is sequentially performed at 31 and temporarily stored in a memory provided in the memory 33 and the test interface 34. On the other hand, the dynamometer measuring device A is configured as shown in FIG. 1 as shown in FIG. 3, but the pulse detectors PP 1 and PP 2 are not attached to the 4WD vehicle to be tested. The control circuit is constituted by a CPU except for the output unit of the current control unit 22 that drives the dynamometer 2.
【0024】この動力計測装置AのCPUは、上記EC
U30で計測しインターフェイス34のメモリに一時記
憶されている計測データを利用して前後軸負荷制御を行
えるようにECU30のテスト用インターフエイス34
と接続する。The CPU of the power measuring device A is based on the EC
The test interface 34 of the ECU 30 is used to perform longitudinal axis load control using the measurement data measured by the U30 and temporarily stored in the memory of the interface 34.
Connect with
【0025】次に、実施例2の動作について説明する。
ECU30のインターフェイス34は順次計測している
データが揃う度毎に動力計制御装置Aに計測割込信号を
出力する。動力計制御装置Aはこの計測割込信号が入力
する毎にECU30のインターフェイス34に計測デー
タを要求してインターフェイス34から計測データを
得、その前軸左右の回転速度、後軸左右の回転速度デー
タを用いて図3の前輪側20Fと後輪側20Rの平均値演
算部25でそれぞれ前後軸の平均速度を演算して以下図
1の場合と同様に前後軸同期制御する。Next, the operation of the second embodiment will be described.
The interface 34 of the ECU 30 outputs a measurement interrupt signal to the dynamometer control device A every time the sequentially measured data becomes available. The dynamometer control device A requests measurement data from the interface 34 of the ECU 30 every time the measurement interrupt signal is input, obtains measurement data from the interface 34, and obtains the rotation speed of the front shaft left and right and the rear shaft left and right rotation speed data. If the front wheel side 20 F and the rear wheel side 20 by calculating the average value the average speed of the front and rear axes respectively in the calculating portion 25 of the R: Figure 1 of FIG. 3 as well as to control longitudinal axis synchronously with.
【0026】上記実施例2によれば、車両に搭載された
ECUとシャシーダイナモメータとの間に存在する計測
値の差を考慮しなくてもよくなる。また、シャシーダイ
ナモメータの制御をECU側での駆動力配分制御と同時
に行うことができるため、実施例1のタイヤに回転速度
差が発生してから修正動作する場合に比べ、早い制御が
可能となる。また、タイヤ回転速度の検出よりECUイ
ンターフェイスの方が信頼性が高い。According to the second embodiment, it is not necessary to consider the difference between the measured values existing between the ECU mounted on the vehicle and the chassis dynamometer. In addition, since the control of the chassis dynamometer can be performed simultaneously with the driving force distribution control on the ECU side, the control can be performed faster than in the case of performing the correcting operation after the rotation speed difference occurs in the tire of the first embodiment. Become. In addition, the ECU interface has higher reliability than the detection of the tire rotation speed.
【0027】[0027]
【発明の効果】この発明は、上述のとおり構成されてい
るので、次に記載する効果を奏する。 (1)タイヤ速度を直接計測し、制御することにより、
ローラとタイヤ間に存在するスリップの影響を無くし、
車両の前後軸速度を正確に制御することができる。これ
により前後軸負荷分配比率の制御精度が向上する。 (2)車両の駆動力配分を行うECUの計測値を利用し
た場合は、ECUと試験装置との間に存在する計測値の
差を考慮しなくてもよくなる。 (3)また、試験装置の制御を、ECU側での駆動力配
分制御と同時に行うことができ、タイヤに回転速度差が
発生してから修正動作をする制御が早くなる。 (4)また、ECUインターフェイスの軸速度の計測デ
ータの方がタイヤ回転速度を検出より信頼性が高く、作
業も簡単で、コスト的に有利となる。Since the present invention is configured as described above, the following effects can be obtained. (1) By directly measuring and controlling the tire speed,
Eliminate the effect of slip between the roller and tire,
The longitudinal axis speed of the vehicle can be accurately controlled. This improves the control accuracy of the front-rear shaft load distribution ratio. (2) When the measurement values of the ECU that distributes the driving force of the vehicle are used, it is not necessary to consider the difference between the measurement values existing between the ECU and the test device. (3) In addition, the control of the test apparatus can be performed simultaneously with the driving force distribution control on the ECU side, and the control for performing the correcting operation after the rotation speed difference occurs in the tire is quickened. (4) Also, the measurement data of the shaft speed of the ECU interface is more reliable than the detection of the tire rotation speed, the operation is simple, and the cost is advantageous.
【図1】実施例1にかかる動力計制御ブロック図。FIG. 1 is a dynamometer control block diagram according to a first embodiment.
【図2】実施例2にかかる動力計制御装置がECUの計
測データを利用する場合の計測データ取り合い部分の概
略構成図。FIG. 2 is a schematic configuration diagram of a measurement data exchange portion when the dynamometer control device according to the second embodiment uses measurement data of an ECU.
【図3】実施例2にかかる動力制御ブロック図。FIG. 3 is a power control block diagram according to a second embodiment.
【図4】4WD試験用シャシーダイナモメータの概略構
成図。FIG. 4 is a schematic configuration diagram of a chassis dynamometer for a 4WD test.
【図5】従来例にかかる定比率走行抵抗制御ブロック
図。FIG. 5 is a block diagram of a constant-ratio running resistance control according to a conventional example.
【図6】従来例にかかる走行抵抗・同期制御ブロック
図。FIG. 6 is a block diagram of a running resistance / synchronous control according to a conventional example.
1…試験装置のローラ 2…負荷吸収用動力計 3…機械式フライホイール 4…負荷吸収用動力計 9…タイヤ 11…走行抵抗指令発生部 12…前後平均速度演算部 13…前後同期制御部 14…差速度演算部 21…トルク制御部 22…電流制御部 23…トルク検出部 24…速度検出部 25…速度平均値演算部。 DESCRIPTION OF SYMBOLS 1 ... Roller of a test apparatus 2 ... Load absorbing dynamometer 3 ... Mechanical flywheel 4 ... Load absorbing dynamometer 9 ... Tire 11 ... Running resistance command generation part 12 ... Front-back average speed calculation part 13 ... Front-back synchronization control part 14 ... Differential speed calculation unit 21. Torque control unit 22. Current control unit 23. Torque detection unit 24. Speed detection unit 25. Speed average value calculation unit.
Claims (2)
用左右のローラおよび後輪用左右のローラにそれぞれ前
軸用および後軸用の動力計とフライホイールを結合し、
両動力計を走行抵抗制御と同期制御する四輪駆動車台上
試験において、 車両の各タイヤ速度をそれぞれ検出し、その前輪左右の
各タイヤ速度および後輪左右のタイヤ速度から前後軸の
平均速度および差速度を演算し、 この平均速度に基づいて走行抵抗制御指令を発生させる
と共に、差速度に基づいて前後軸同期制御の電流指令を
発生させ、 走行抵抗制御指令と両動力計の平均トルク検出との偏差
が無くなるように両動力計をそれぞれ走行抵抗制御する
と共に、両軸の速度差がなくなるように同期制御の電流
指令の極性を異ならして電流制御することを特徴とする
四輪駆動車台上試験における前後軸負荷制御方式。1. A dynamometer and a flywheel for a front shaft and a rear shaft are respectively coupled to left and right rollers for a front wheel and left and right rollers for a rear wheel driven by front and rear wheels of a vehicle, respectively.
In a four-wheel drive chassis test in which both dynamometers are controlled synchronously with running resistance control, each tire speed of the vehicle is detected, and the average speed of the front and rear axes and Calculate the differential speed, generate a running resistance control command based on this average speed, and generate a current command for front-rear axis synchronization control based on the difference speed, and calculate the running resistance control command and the average torque of both dynamometers. The dynamometer is controlled by running resistance so as to eliminate the deviation, and the current is controlled by changing the polarity of the current command of the synchronous control so that the speed difference between the two axes is eliminated. Front-rear axis load control method in test.
用左右のローラおよび後輪用左右のローラにそれぞれ前
軸用および後軸用の動力計とフライホイールを結合し、
両動力計を走行抵抗制御と同期制御する四輪駆動車台上
試験において、 車両に搭載されているエンジン駆動力を前後軸に分配制
御している電子制御装置が持つ軸速度の計測データをイ
ンターフェイスを介して読み出し、 この軸速度の計測データを用いて前軸と後軸の平均速度
および差速度を演算し、 この平均速度に基づいて走行
抵抗制御指令を発生させると共に、差速度に基づいて前
後軸同期制御の電流指令を発生させ、 走行抵抗制御指令と両動力計の平均トルク検出との偏差
が無くなるように両動力計をそれぞれ走行抵抗制御する
と共に、両軸の速度差がなくなるように同期制御の電流
指令の極性を異ならして電流制御することを特徴とする
四輪駆動車台上試験における前後軸負荷制御方式。2. A dynamometer and a flywheel for a front shaft and a rear shaft are respectively connected to left and right rollers for a front wheel and left and right rollers for a rear wheel driven by front and rear wheels of a vehicle,
In a four-wheel drive chassis test in which both dynamometers are controlled synchronously with running resistance control, shaft speed measurement data of an electronic control unit that distributes and controls the engine driving force mounted on the vehicle to the front and rear axes is used as an interface. The average speed and the differential speed of the front axis and the rear axis are calculated using the measured data of the axis speed, a running resistance control command is generated based on the average speed, and the longitudinal axis is calculated based on the differential speed. Generates a current command for synchronous control, controls the running resistance of both dynamometers so that there is no deviation between the running resistance control command and the average torque detection of both dynamometers, and performs synchronous control so that there is no speed difference between both shafts. A front-rear axis load control method in a four-wheel drive chassis test, wherein current control is performed by changing the polarity of the current command.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27166499A JP2001091411A (en) | 1999-09-27 | 1999-09-27 | Front-rear axle load controlling method in four-wheel drive vehicle bench test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27166499A JP2001091411A (en) | 1999-09-27 | 1999-09-27 | Front-rear axle load controlling method in four-wheel drive vehicle bench test |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001091411A true JP2001091411A (en) | 2001-04-06 |
Family
ID=17503179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27166499A Pending JP2001091411A (en) | 1999-09-27 | 1999-09-27 | Front-rear axle load controlling method in four-wheel drive vehicle bench test |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001091411A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003315240A (en) * | 2002-04-18 | 2003-11-06 | Nec Corp | Nanotube, near-field light detection apparatus and near- field-light detection method |
JP2010071771A (en) * | 2008-09-18 | 2010-04-02 | Meidensha Corp | Chassis dynamometer for 4wd vehicle and synchronous control method |
JP2010078384A (en) * | 2008-09-25 | 2010-04-08 | Meidensha Corp | Chassis dynamometer for 4wd vehicle |
JP2010217123A (en) * | 2009-03-19 | 2010-09-30 | Meidensha Corp | Testing device and its control method of vehicle |
WO2016143492A1 (en) * | 2015-03-06 | 2016-09-15 | 株式会社堀場製作所 | Vehicle testing device, vehicle testing method, and program for vehicle testing device |
-
1999
- 1999-09-27 JP JP27166499A patent/JP2001091411A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003315240A (en) * | 2002-04-18 | 2003-11-06 | Nec Corp | Nanotube, near-field light detection apparatus and near- field-light detection method |
JP2010071771A (en) * | 2008-09-18 | 2010-04-02 | Meidensha Corp | Chassis dynamometer for 4wd vehicle and synchronous control method |
JP2010078384A (en) * | 2008-09-25 | 2010-04-08 | Meidensha Corp | Chassis dynamometer for 4wd vehicle |
JP2010217123A (en) * | 2009-03-19 | 2010-09-30 | Meidensha Corp | Testing device and its control method of vehicle |
WO2016143492A1 (en) * | 2015-03-06 | 2016-09-15 | 株式会社堀場製作所 | Vehicle testing device, vehicle testing method, and program for vehicle testing device |
CN106461507A (en) * | 2015-03-06 | 2017-02-22 | 株式会社堀场制作所 | Vehicle testing device, vehicle testing method, and program for vehicle testing device |
JPWO2016143492A1 (en) * | 2015-03-06 | 2017-12-14 | 株式会社堀場製作所 | Vehicle test apparatus, vehicle test method, and program for vehicle test apparatus |
EP3267174A4 (en) * | 2015-03-06 | 2018-10-17 | Horiba, Ltd.g | Vehicle testing device, vehicle testing method, and program for vehicle testing device |
US11385135B2 (en) | 2015-03-06 | 2022-07-12 | Horiba, Ltd. | Vehicle test device, vehicle test method and program for vehicle test device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3019478B2 (en) | Chassis dynamometer controller for four-wheel drive vehicle | |
JP7045946B2 (en) | Chassis dynamometer device, its control method, and program for chassis dynamometer device | |
EP1394527B1 (en) | Method of measuring lateral displacement amount of a vehicle | |
JP2001091411A (en) | Front-rear axle load controlling method in four-wheel drive vehicle bench test | |
JP6525076B1 (en) | Controller of dynamometer system | |
JP3279898B2 (en) | Running resistance measuring method and device | |
JP5245679B2 (en) | Chassis dynamometer for 4WD vehicles | |
JP2777944B2 (en) | Inspection method of various control functions of automobile | |
JPH06258193A (en) | Running load resistance setter | |
JP5217830B2 (en) | Chassis dynamometer and synchronous control method for 4WD vehicle | |
JP3333598B2 (en) | Chassis dynamometer verification device | |
JP2959314B2 (en) | Method for measuring mechanical loss of chassis dynamometer | |
JPH06265441A (en) | Setting method of running resistant load | |
JP2901810B2 (en) | Automotive test equipment | |
JP2777945B2 (en) | Inspection method of steering interlocking control function of automobile | |
JPH07181110A (en) | Tester for 4 wheel-driven car | |
JPH0454436Y2 (en) | ||
JPH037895B2 (en) | ||
JP2587357B2 (en) | Inspection device for anti-lock brake | |
GB2284271A (en) | Inspecting steering-interrelated control functions of a motor vehicle | |
JP5391761B2 (en) | Vehicle testing apparatus and control method thereof | |
JPH0362215B2 (en) | ||
JPS62151737A (en) | Chassis dynamometer | |
JP5428388B2 (en) | Complete vehicle inspection system | |
RU2185302C2 (en) | Method of checking front end alignment angles and air pressure in car wheel tyres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070327 |