JP2000326105A - Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesion - Google Patents
Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesionInfo
- Publication number
- JP2000326105A JP2000326105A JP13291099A JP13291099A JP2000326105A JP 2000326105 A JP2000326105 A JP 2000326105A JP 13291099 A JP13291099 A JP 13291099A JP 13291099 A JP13291099 A JP 13291099A JP 2000326105 A JP2000326105 A JP 2000326105A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- diamond coating
- cemented carbide
- substrate
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、炭化タングステ
ン基超硬合金で構成された基体(以下、超硬基体と云
う)の表面に気相合成法により形成された人工ダイヤモ
ンド被覆層または人工ダイヤモンド状炭素被覆層(以
下、これらを総称してダイヤ被覆層と云う)がすぐれた
密着性を有する表面被覆超硬合金製切削工具(以下、被
覆超硬工具と云う)に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an artificial diamond coating layer or an artificial diamond-like layer formed on a surface of a substrate made of a tungsten carbide-based cemented carbide (hereinafter referred to as a cemented carbide substrate) by a vapor phase synthesis method. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter, referred to as a coated cemented carbide tool) having a carbon coating layer (hereinafter, collectively referred to as a diamond coating layer) having excellent adhesion.
【0002】[0002]
【従来の技術】従来、一般に、結合相形成成分としてC
o:1〜20重量%を含有し、残りが分散相形成成分と
しての炭化タングステン(以下、WCで示す)と不可避
不純物からなる組成、並びに縦断面組織観察で図2に模
写図で示される組織(倍率:3000倍)を有する焼結
ままの超硬基体の表面に、(a)例えばダイヤモンド砥
石を用いて、寸法出しのための表面研削加工処理、
(b)例えば1×10―5〜-3Torrの真空雰囲気
中、1300〜1500℃の範囲内の所定温度に1〜3
時間の範囲内の所定時間保持の条件で上記基体表面に露
出するWC粒を粗大化して、ダイヤ被覆層の密着性を向
上させるための熱処理(この場合、同じく図3に縦断面
組織が模式図で示されるように、上記(a)工程で発生
して表面に付着する微細なWC粒が相対的に粗粒のWC
粒に取り込まれて成長するが、内部のWCも粒成長して
粗大化する)、以上(a)および(b)の処理を施した
状態で、例えば特開昭58−91100号公報などに記
載される熱電子放射法や、特開昭58−110494号
公報などに記載されるマイクロ波法、さらに特開昭58
−135117号公報などに記載される高周波プラズマ
法などの気相合成法を用いてダイヤ被覆層を4〜30μ
mの平均層厚で形成してなる被覆超硬工具が知られてお
り、またこの被覆超硬工具が、例えば純AlやAl−S
i合金などのAl合金、さらにCu合金などの非鉄金属
材料、および炭素材などの非金属材料の連続切削や断続
切削に用いられていることも良く知られるところであ
る。2. Description of the Related Art Conventionally, C is generally used as a binder phase forming component.
o: A composition containing 1 to 20% by weight, the balance being composed of tungsten carbide (hereinafter referred to as WC) as a disperse phase forming component and unavoidable impurities, and a structure shown in a schematic diagram in FIG. (A) Surface grinding processing for dimensioning using, for example, a diamond grindstone on the surface of the as-sintered cemented carbide substrate having (magnification: 3000 times)
(B) for example in a vacuum atmosphere of 1 × 10- 5 ~ -3 Torr, 1~3 to a predetermined temperature in the range of 1300 to 1500 ° C.
A heat treatment for coarsening the WC grains exposed on the substrate surface under the condition of holding for a predetermined time within the time range to improve the adhesion of the diamond coating layer (in this case, the vertical cross-sectional structure is also schematically shown in FIG. 3). As shown in the above, fine WC particles generated in the step (a) and adhering to the surface are relatively coarse WC particles.
It grows by being incorporated into grains, but the WC inside also grows and coarsens). In the state where the treatments (a) and (b) are performed, for example, it is described in JP-A-58-91100. Thermionic emission method, the microwave method described in JP-A-58-110494, and the like.
The diamond coating layer is formed to a thickness of 4 to 30 μm by using a gas phase synthesis method such as a high-frequency plasma method described in JP-A-135117.
A coated carbide tool formed with an average layer thickness of m is known, and this coated carbide tool is, for example, pure Al or Al-S
It is also well known that it is used for continuous cutting or intermittent cutting of non-metallic materials such as Al alloys such as i-alloys, non-ferrous metal materials such as Cu alloys, and carbon materials.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の切削装置
のFA化はめざましく、かつ切削加工の省力化に対する
要求も強く、これに伴い、被覆超硬工具おけるダイヤ被
覆層は厚膜化し、切削加工は高速化する傾向にあるが、
上記の従来被覆超硬工具においては、これを高速切削に
用いたり、通常の切削条件でもダイヤ被覆層が平均層厚
で50μmを越えて厚膜化した場合、超硬基体表面に対
するダイヤ被覆層の密着性が不十分であるために、前記
ダイヤ被覆層に剥離が発生し易く、比較的短時間で使用
寿命に至るのが現状である。On the other hand, in recent years, the use of FA in cutting equipment has been remarkable, and there has been a strong demand for labor saving in cutting work. Accordingly, the diamond coating layer of coated carbide tools has been increased in thickness, and cutting has been required. Processing tends to be faster,
In the above-mentioned conventional coated carbide tool, when this is used for high-speed cutting or when the diamond coating layer is thickened with an average layer thickness exceeding 50 μm even under ordinary cutting conditions, the diamond coating layer is At present, the diamond coating layer is apt to peel off due to insufficient adhesion, and the service life is reached in a relatively short time.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ダイヤ被覆層の超硬基体表面に
対する密着性向上を図るべく研究を行った結果、上記の
焼結ままの超硬基体の表面に施される上記の(a)およ
び(b)の処理のうちの(b)処理に代って、超硬基体
を、例えばマイクロ波プラズマ発生装置に装入し、 反応雰囲気:水素、 反応雰囲気圧力:5〜100Torr、 超硬基体表面温度:1100〜1300℃、 出力:100〜8000W, 処理時間:5〜30時間、 の条件でプラズマ処理を施すと、この結果の超硬基体
は、図1に同じく縦断面組織(倍率:3000倍)が模
写図で示されるように、その最表面部が実質的にWC粒
のみからなり、かつこのWC粒は基体表面に対して縦方
向に厚さに変化のない状態で(100)結晶面が成長し
た板状形状を呈し、一方その内部のWC粒に実質的粒成
長はなく、焼結ままの塊状形状を保持する組織を有する
ようになり、これの表面に、通常の気相合成法によりダ
イヤ被覆層を形成すると、この結果の被覆超硬工具は、
前記ダイヤ被覆層が前記超硬基体の表面に著しく強固に
付着するようになることから、これを高速切削に用いて
も、さらに前記ダイヤ被覆層の厚さを平均50μmを越
えて厚膜化してもダイヤ被覆層に剥離の発生なく、すぐ
れた切削性能を長期に亘って発揮するという研究結果を
得たのである。Means for Solving the Problems Accordingly, the present inventors have
From the above viewpoints, a study was conducted to improve the adhesion of the diamond coating layer to the surface of the cemented carbide substrate, and as a result, the above (a) and ( Instead of the treatment (b) of the treatment (b), the super-hard substrate is charged into, for example, a microwave plasma generator, and the reaction atmosphere is hydrogen, the reaction atmosphere pressure is 5 to 100 Torr, and the surface temperature of the super-hard substrate : 1100 to 1300 ° C, output: 100 to 8000 W, processing time: 5 to 30 hours. When the plasma treatment is performed under the following conditions, the resulting cemented carbide substrate has the same longitudinal sectional structure (magnification: 3000 times) as in FIG. As shown in the mimetic diagram, the outermost surface portion is substantially composed of only WC grains, and the WC grains have a (100) crystal plane with no change in thickness in the longitudinal direction with respect to the substrate surface. It has a grown plate-like shape. The inner WC grains have substantially no grain growth and have a structure that retains a bulk shape as sintered, and a diamond coating layer is formed on the surface of the WC grains by a normal gas phase synthesis method. Coated carbide tools
Since the diamond coating layer becomes extremely firmly adhered to the surface of the cemented carbide substrate, even if it is used for high-speed cutting, the thickness of the diamond coating layer is further increased to an average thickness exceeding 50 μm. In addition, they have obtained a research result that the diamond coating layer exhibits excellent cutting performance for a long period of time without peeling.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、結合相形成成分としてCo:1
〜20重量%を含有し、残りが分散相形成成分としての
WCと不可避不純物からなる組成、並びに縦断面組織観
察で、内部のWC粒に実質的粒成長はなく、焼結のまま
塊状形状を保持し、一方最表面部は実質的にWC粒のみ
からなり、かつこのWC粒は基体表面に対して縦方向に
厚さに変化のない状態で(100)結晶面が成長した板
状形状を呈する組織を有する超硬基体の表面に、ダイヤ
被覆層を4〜500μmの平均層厚で形成してなる、ダ
イヤ被覆層がすぐれた密着性を有する被覆超硬工具に特
徴を有するものである。The present invention has been made based on the results of the above-mentioned research, and has Co: 1 as a binder phase forming component.
-20% by weight, with the balance consisting of WC as an indispensable phase-forming component and unavoidable impurities, and observation of the longitudinal cross-sectional structure. On the other hand, the outermost surface portion is substantially composed of only WC grains, and the WC grains have a plate-like shape in which a (100) crystal plane has grown in a state in which the thickness does not change in the longitudinal direction with respect to the substrate surface. The present invention is characterized by a coated carbide tool having a diamond coating layer having excellent adhesion, wherein a diamond coating layer is formed with an average layer thickness of 4 to 500 μm on the surface of a cemented carbide substrate having the structure presented.
【0006】なお、この発明の被覆超硬工具において、
超硬基体のCo含有量を1〜20重量%としたのは、そ
の含有量が1重量%未満では、焼結性が低下し、所望の
強度を確保することができず、一方その含有量が20重
量%を越えると、耐熱塑性変形性が急激に低下し、高熱
発生を伴う高速切削では基体変形が著しく、ダイヤ被覆
層剥離の原因となるという理由によるものであり、また
ダイヤ被覆層の平均層厚を4〜500μmとしたのは、
その平均層厚が4μm未満では、所望の耐摩耗性を確保
することができず、一方その平均層厚が500μmを越
えると、ダイヤ被覆層自体に欠けやチッピングが発生し
易くなるという理由によるものである。[0006] In the coated carbide tool of the present invention,
The reason why the Co content of the cemented carbide substrate is set to 1 to 20% by weight is that if the content is less than 1% by weight, the sinterability deteriorates and the desired strength cannot be ensured. If it exceeds 20% by weight, the heat-resistant plastic deformation property is sharply reduced, and the substrate is significantly deformed in high-speed cutting accompanied by high heat generation, which causes peeling of the diamond coating layer. The reason for setting the average layer thickness to 4 to 500 μm is that
If the average layer thickness is less than 4 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 500 μm, the diamond coating layer itself tends to chip or chip. It is.
【0007】[0007]
【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、平
均粒径:1.3μmのWC粉末、および同1.5μmの
Co粉末を用い、これら原料粉末のうちのCo粉末の配
合割合を表1,2に示される割合にそれぞれ配合し、ボ
ールミルで72時間湿式混合し、乾燥した後、1.5t
on/cm2 の圧力で圧粉体にプレス成形し、これら圧
粉体を圧力:1×10-2Torrの真空雰囲気中、13
00〜1500℃の範囲内の所定温度に1時間保持の条
件で焼結し、これに研削加工を施してISO規格SPG
N120408のチップ形状をもった超硬基体をそれぞ
れ製造し、ついで、これら超硬基体を通常のマイクロ波
プラズマ法発生装置に装入し、 反応雰囲気:水素、 反応雰囲気圧力:40Torr、 超硬基体表面温度:1250℃、 出力:5KW、 処理時間:5〜30時間の範囲内の所定時間、 の条件でプラズマ処理を施して、超硬基体が図1に縦断
面組織で示されるように、内部のWC粒に実質的粒成長
はなく、焼結ままの塊状形状を保持し、一方最表面部は
実質的にWC粒のみからなり、かつこのWC粒は基体表
面に対して縦方向に厚さに変化のない状態で(100)
結晶面が成長した板状形状を呈する組織を有するものと
し、ついで、気相合成法の1種であるマイクロ波プラズ
マ法を用い、 雰囲気圧力:20torr、 超硬基体表面温度:850℃、 反応ガス組成:CH4/H2=1.5/100(容量比) 処理時間:2〜250時間の範囲内の所定時間、 の条件で表1に示される目標層厚のダイヤ被覆層を形成
することにより本発明被覆超硬工具1〜10をそれぞれ
製造した。なお、図1および図2は本発明被覆超硬工具
4を構成する超硬基体の焼結後(図2)およびプラズマ
処理後(図1)の縦断面組織をそれぞれ模式図で示した
ものである。また、比較の目的で、上記の超硬基体に施
されるプラズマ処理に代って、1×10-4Torrの真
空雰囲気中、1400℃に1〜3時間の範囲内の所定時
間保持の条件で上記基体表面に露出するWC粒を粗大化
させる熱処理を施す以外は同一の条件で従来被覆超硬工
具1〜10をそれぞれ製造した。また、図3に従来被覆
超硬工具4を構成する超硬基体のWC粒粗大化熱処理後
の縦断面組織を模式図で示した。さらに、上記の各種被
覆超硬工具について、その縦断面組織からダイヤ被覆層
の平均層厚を測定したところ、目標層厚と実質的に同じ
値を示した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. WC powder having an average particle diameter of 1.3 μm and Co powder having an average particle diameter of 1.5 μm were used as the raw material powders. , Wet mixing in a ball mill for 72 hours, drying and
The green compact was press-molded at a pressure of on / cm 2 , and the green compact was pressed in a vacuum atmosphere of 1 × 10 −2 Torr,
Sintered at a predetermined temperature in the range of 00 to 1500 ° C. for one hour, subjected to grinding, and subjected to ISO standard SPG
Each of the super-hard substrates having a chip shape of N120408 was manufactured, and then these super-hard substrates were charged into a usual microwave plasma generator, and the reaction atmosphere was hydrogen, the reaction atmosphere pressure was 40 Torr, and the surface of the super-hard substrate was obtained. Temperature: 1250 ° C., Output: 5 KW, Processing time: Predetermined time within the range of 5 to 30 hours. Plasma treatment is performed under the following conditions. As shown in FIG. There is no substantial grain growth in the WC grains and the sintered body retains a bulk shape as it is sintered, while the outermost surface portion is substantially composed of only WC grains, and the WC grains have a thickness in the longitudinal direction with respect to the substrate surface. With no change (100)
It has a structure having a plate-like shape in which the crystal plane has grown. Then, using a microwave plasma method, which is a kind of a gas phase synthesis method, an atmospheric pressure: 20 torr, a super hard substrate surface temperature: 850 ° C., and a reaction gas Composition: CH 4 / H 2 = 1.5 / 100 (capacity ratio) Treatment time: predetermined time within the range of 2 to 250 hours To form a diamond coating layer having the target layer thickness shown in Table 1 under the following conditions: In this way, coated carbide tools 1 to 10 of the present invention were produced. FIGS. 1 and 2 are schematic views respectively showing the longitudinal sectional structures of the cemented carbide substrate constituting the coated carbide tool 4 of the present invention after sintering (FIG. 2) and after plasma treatment (FIG. 1). is there. For the purpose of comparison, instead of the plasma treatment performed on the above-mentioned super-hard substrate, the conditions of holding for 1 to 3 hours at 1400 ° C. in a vacuum atmosphere of 1 × 10 −4 Torr were used. The conventional coated carbide tools 1 to 10 were respectively manufactured under the same conditions except that a heat treatment for coarsening the WC grains exposed on the substrate surface was performed. FIG. 3 is a schematic view showing a longitudinal section structure of the cemented carbide substrate constituting the conventional coated cemented carbide tool 4 after the WC grain coarsening heat treatment. Furthermore, when the average layer thickness of the diamond coating layer was measured from the longitudinal cross-sectional structure of each of the above coated coated carbide tools, the average thickness was substantially the same as the target layer thickness.
【0008】この結果得られた各種の被覆超硬工具につ
いて、 被削材:Al−18%Si合金の長さ方向等間隔4本縦
溝入り丸棒、 切削速度:600m/min、 切込み:0.5mm、 送り:0.1mm/rev、 切削時間:30分、 の条件での高Si含有Al合金の湿式高速断続切削試
験、並びに、 被削材:Al−18%Si合金の100mm×100m
m×400mmの寸法をもった丸棒、 切削速度:1500m/min、 切込み:2mm、 送り:0.15mm/刃、 切削時間:30分、 の条件での高Si含有Al合金の湿式高速フライス切削
試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅
を測定した。これらの測定結果を表1、2に示した。[0008] With respect to the various coated carbide tools obtained as a result, a work material: a round bar having four longitudinal grooves at regular intervals in the longitudinal direction of an Al-18% Si alloy, a cutting speed: 600 m / min, a cutting depth: 0 0.5 mm, feed: 0.1 mm / rev, cutting time: 30 minutes, wet high-speed intermittent cutting test of Al alloy containing high Si, and work material: 100 mm × 100 m of Al-18% Si alloy
Round bar with dimensions of mx 400 mm, cutting speed: 1500 m / min, depth of cut: 2 mm, feed: 0.15 mm / tooth, cutting time: 30 min. Tests were performed, and the flank wear width of the cutting edge was measured in each cutting test. Tables 1 and 2 show the measurement results.
【0009】[0009]
【表1】 [Table 1]
【0010】[0010]
【表2】 [Table 2]
【0011】[0011]
【発明の効果】表1,2に示される結果から、本発明被
覆超硬工具1〜10は、いずれも超硬基体表面部におけ
る実質的にWC粒のみからなり、かつこのWC粒が基体
表面に対して縦方向に厚さに変化のない状態で(10
0)結晶面が成長した板状形状を呈する組織によって超
硬基体表面に対するダイヤ被覆層の密着性が著しく向上
したものになっているので、高速切削を行っても、さら
にダイヤ被覆層の厚さを平均層厚で50μmを超えて厚
膜化した状態で切削を行っても前記ダイヤ被覆層に剥離
の発生なく、すぐれた耐摩耗性を長期に亘って発揮し、
かつ基体内部のWC粒に実質的粒成長なく、焼結ままの
塊状形状を保持するので、強度低下も避けられるのに対
して、超硬基体表面部が研削加工で発生した微細なWC
粒を取り込んで成長して粗大化したWC粒からなる従来
被覆超硬工具1〜10においては、ダイヤ被覆層の密着
性が十分でないために、いずれの場合にも剥離が発生
し、比較的短時間で使用寿命に至り、しかも基体内部の
WC粒成長による強度低下が避けられないことが明らか
である。上述のように、この発明の被覆超硬工具は、高
速切削に用いた場合にも、さらにダイヤ被覆層を平均層
厚で50μmを超えて厚膜化した状態で用いた場合に
も、これを構成するダイヤ被覆層に剥離の発生なく、す
ぐれた切削性能を発揮するので、切削装置のFA化およ
び切削加工の省力化にも十分満足に対応することができ
るのである。From the results shown in Tables 1 and 2, all of the coated carbide tools 1 to 10 of the present invention consist essentially of only WC grains on the surface of the cemented carbide substrate, and the WC grains are formed on the surface of the substrate. With no change in thickness in the vertical direction (10
0) Since the adhesion of the diamond coating layer to the surface of the superhard substrate is remarkably improved due to the structure having a plate-like shape in which the crystal plane has grown, the thickness of the diamond coating layer is further increased even when high-speed cutting is performed. Even if cutting is performed in a state where the film is thickened exceeding 50 μm in average layer thickness, the diamond coating layer does not peel, and exhibits excellent wear resistance over a long period of time,
In addition, since the WC grains inside the substrate have substantially no grain growth and maintain a bulk shape as sintered, a decrease in strength can be avoided, while the fine WC generated by grinding the surface of the super-hard substrate.
In the conventional coated carbide tools 1 to 10 made of coarse WC grains grown by taking in grains, peeling occurs in any case due to insufficient adhesion of the diamond coating layer. It is apparent that the service life is reached in time, and that the strength is reduced due to the growth of WC grains inside the substrate. As described above, the coated cemented carbide tool of the present invention can be used in high-speed cutting, and even when used in a state where the diamond coating layer is thickened with an average layer thickness exceeding 50 μm. Since the diamond coating layer that is formed exhibits excellent cutting performance without occurrence of peeling, it is possible to satisfactorily cope with FA of the cutting device and labor saving of the cutting process.
【図1】この発明の被覆超硬工具4の超硬基体のプラズ
マ処理後の縦断面組織を示す模写図である(倍率:30
00倍)である。FIG. 1 is a schematic diagram showing a longitudinal sectional structure of a cemented carbide substrate of a coated cemented carbide tool 4 of the present invention after a plasma treatment (magnification: 30).
00 times).
【図2】被覆超硬工具4の超硬基体の焼結ままの状態の
縦断面組織を示す模写図(倍率:3000倍)である。FIG. 2 is a simulated view (magnification: 3000 times) showing a longitudinal cross-sectional structure of a super hard substrate of a coated super hard tool 4 in an as-sintered state.
【図3】従来被覆超硬工具4の超硬基体のWC粒粗大化
熱処理後の縦断面組織を示す模写図(倍率:3000
倍)である。FIG. 3 is a schematic view showing a longitudinal sectional structure of a cemented carbide substrate of a conventional coated cemented carbide tool 4 after a WC grain coarsening heat treatment (magnification: 3000);
Times).
Claims (1)
〜20重量%を含有し、残りが分散相形成成分としての
炭化タングステンと不可避不純物からなる組成、並びに
縦断面組織観察で、内部の炭化タングステン粒に実質的
粒成長はなく、焼結ままの塊状形状を保持し、一方最表
面部は実質的に炭化タングステン粒のみからなり、かつ
この炭化タングステン粒は基体表面に対して縦方向に厚
さに変化のない状態で(100)結晶面が成長した板状
形状を呈する組織を有する炭化タングステン基超硬合金
基体の表面に、人工ダイヤモンド被覆層または人工ダイ
ヤモンド状炭素被覆層を4〜500μmの平均層厚で形
成してなる、人工ダイヤモンド被覆層がすぐれた密着性
を有する表面被覆超硬合金製切削工具。1. A substrate comprising Co: 1 as a binder phase forming component.
-20% by weight, the balance consisting of tungsten carbide as a disperse phase-forming component and unavoidable impurities, and observation of the longitudinal cross-sectional structure. The shape is maintained, while the outermost surface portion is substantially composed of only tungsten carbide grains, and the (100) crystal plane has grown on the tungsten carbide grains in a state in which the thickness does not change in the longitudinal direction with respect to the substrate surface. An artificial diamond coating layer formed by forming an artificial diamond coating layer or an artificial diamond-like carbon coating layer with an average thickness of 4 to 500 μm on the surface of a tungsten carbide-based cemented carbide substrate having a plate-like structure is excellent. Surface coated cemented carbide cutting tool with excellent adhesion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13291099A JP2000326105A (en) | 1999-05-13 | 1999-05-13 | Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13291099A JP2000326105A (en) | 1999-05-13 | 1999-05-13 | Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesion |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000326105A true JP2000326105A (en) | 2000-11-28 |
Family
ID=15092395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13291099A Withdrawn JP2000326105A (en) | 1999-05-13 | 1999-05-13 | Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000326105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291450A2 (en) * | 2001-09-05 | 2003-03-12 | Kennametal Inc. | Diamond coated cutting tool and method for making the same |
JP2013252591A (en) * | 2012-06-07 | 2013-12-19 | Union Tool Co | Diamond film for cutting tool |
-
1999
- 1999-05-13 JP JP13291099A patent/JP2000326105A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1291450A2 (en) * | 2001-09-05 | 2003-03-12 | Kennametal Inc. | Diamond coated cutting tool and method for making the same |
EP1291450A3 (en) * | 2001-09-05 | 2004-04-14 | Kennametal Inc. | Diamond coated cutting tool and method for making the same |
US6890655B2 (en) | 2001-09-05 | 2005-05-10 | Kennametal Inc. | Diamond coated cutting tool and method for making the same |
JP2013252591A (en) * | 2012-06-07 | 2013-12-19 | Union Tool Co | Diamond film for cutting tool |
CN103480878A (en) * | 2012-06-07 | 2014-01-01 | 佑能工具株式会社 | Diamond film for cutting-tools |
US9061397B2 (en) | 2012-06-07 | 2015-06-23 | Union Tool Co. | Diamond film for cutting-tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201713606A (en) | Cubic boron nitride sintered body, method for producing cubic boron nitride sintered body, tool, and cutting tool | |
JPH07315989A (en) | Production of diamond coated member | |
JP2004076049A (en) | Hard metal of ultra-fine particles | |
JPH09316587A (en) | High strength fine-grained diamond sintered compact and tool using the same | |
JPH11302767A (en) | Cemented carbide excellent in mechanical characteristic and its production | |
JPS63100182A (en) | Cutting tool tip made of diamond-coated tungsten carbide-based sintered hard alloy | |
JP2003080412A (en) | Surface covered cemented carbide made miniature drill with tip cutting blade surface to display excellent chipping resistance in high speed drilling work | |
JP2000326105A (en) | Surface coated cemented carbide cutting tool with artifical diamond coating layer having excellent adhesion | |
JP3605740B2 (en) | Carbide alloy for end mill | |
JPH10337602A (en) | Cutting tool made of surface covering cemented carbide and having thick artificial diamond covering layer having superior peeling resistance | |
JP3451949B2 (en) | Surface-coated cemented carbide end mill with high toughness of substrate | |
JP2003236710A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JP4058761B2 (en) | Surface-coated cemented carbide end mill with excellent torsional deformation resistance when cutting under high feed conditions | |
JP2003080413A (en) | Surface covered cemented carbide made miniature drill with tip cutting blade surface to display excellent chipping resistance in high speed drilling work | |
JPH11216602A (en) | Surface coated cemented carbide cutting tool with artificial diamond coated layer having superior adhesion | |
JP4058758B2 (en) | Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting | |
JP2796011B2 (en) | Whisker reinforced cemented carbide | |
JP2004174616A (en) | Method of manufacturing end mill made of surface covering cemented carbide exhibiting excellent chipping resistance in cutting under high feed condition | |
JP4019366B2 (en) | Surface-coated cemented carbide miniature drill with low deflection deformation during high-speed drilling | |
JPH09174306A (en) | Cermet for cutting tool | |
JP2004162080A (en) | Tough microparticulate cemented carbide | |
JPH05269617A (en) | Physical vapor depopsition hard-layer coated drill and manufacture thereof | |
JPH1043911A (en) | Diamond-coated tungsten carbide cemented cutting tool whose artificial diamond coating film has high bond strength | |
JP2653172B2 (en) | Artificial diamond coated tungsten carbide based cemented carbide cutting inserts | |
JP2970016B2 (en) | Hard layer coated cemented carbide cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060801 |