JP2000237529A - Odorous component treatment apparatus and treatment method - Google Patents
Odorous component treatment apparatus and treatment methodInfo
- Publication number
- JP2000237529A JP2000237529A JP11037158A JP3715899A JP2000237529A JP 2000237529 A JP2000237529 A JP 2000237529A JP 11037158 A JP11037158 A JP 11037158A JP 3715899 A JP3715899 A JP 3715899A JP 2000237529 A JP2000237529 A JP 2000237529A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- treated
- odor component
- ozone
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、硫化水素、メチル
メルカプタン等の臭気成分を含有する被処理ガスが通過
するガス流通部に、被処理ガスに対し放電を行う放電部
を設けた臭気成分処理装置あるいは被処理ガスの臭気成
分濃度を低減させる臭気成分処理方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for treating odor components in which a discharge portion for discharging a gas to be processed is provided in a gas flow section through which a gas containing odor components such as hydrogen sulfide and methyl mercaptan passes. The present invention relates to an odor component treatment method for reducing the odor component concentration of an apparatus or a gas to be treated.
【0002】[0002]
【従来の技術】従来、被処理ガス中における硫化水素等
の臭気成分の処理は、放電により発生したオゾンを用い
て臭気成分の酸化処理を促進することで行われていた。
大容量の臭気成分を含有したガスを、オゾンを用いて酸
化処理する場合は、被処理ガスを処理する被処理ガス処
理部とは別個の場所で酸素含有気体中放電を行いオゾン
を発生させ、その発生オゾンを被処理ガス処理部中の被
処理ガスに混入させ臭気成分を酸化処理していた。この
ような処理方法を行うには、一対の電極間に誘電体を配
置して無声放電を可能に構成したオゾナイザーを臭気成
分処理装置として用い、乾燥空気などの酸素含有ガスを
前記一対の電極間に供給してオゾンを発生させ、そのオ
ゾンを臭気成分を含有した被処理ガスに供給し、臭気成
分を酸化処理可能に構成していた。また、小容量の臭気
成分を含有したガスを、オゾンを用いて酸化処理する場
合は、被処理ガス処理部中の被処理ガスに直接放電を行
い、被処理ガスにて直接オゾンを発生させ、被処理ガス
における臭気成分とオゾンの反応を行うことで、臭気成
分の酸化処理を行っていた。このような方法を行う装置
としては高純度アルミナセラミックの裏面に面状の誘導
電極を、表面に線状の放電電極を設け、この誘導電極と
放電電極の間に電圧を印加させ、放電電極よりセラミッ
ク表面にグロー放電を発生させるオゾナイザーを用い、
誘導電極と放電電極の間に臭気成分を含有する被処理ガ
スを通過させ、被処理ガス中で直接オゾンを発生させ、
臭気成分を酸化処理可能に構成していた。2. Description of the Related Art Conventionally, the treatment of odor components such as hydrogen sulfide in a gas to be treated has been carried out by promoting the oxidation treatment of odor components using ozone generated by electric discharge.
When oxidizing a gas containing a large amount of odorous component using ozone, ozone is generated by discharging in an oxygen-containing gas at a location separate from the gas processing section that processes the gas to be processed. The generated ozone is mixed with the gas to be treated in the gas to be treated section to oxidize odor components. To perform such a processing method, an ozonizer configured to enable silent discharge by disposing a dielectric between a pair of electrodes is used as an odor component processing device, and an oxygen-containing gas such as dry air is applied between the pair of electrodes. To generate ozone, and the ozone is supplied to the gas to be treated containing the odor component, so that the odor component can be oxidized. In the case of oxidizing a gas containing a small amount of odor component using ozone, the gas to be processed in the gas processing section is directly discharged to directly generate ozone in the gas to be processed. Oxidation of the odor component has been performed by reacting the odor component and ozone in the gas to be treated. As an apparatus for performing such a method, a planar induction electrode is provided on the back surface of a high-purity alumina ceramic, and a linear discharge electrode is provided on the surface, and a voltage is applied between the induction electrode and the discharge electrode. Using an ozonizer that generates glow discharge on the ceramic surface,
Pass the gas to be treated containing an odor component between the induction electrode and the discharge electrode to directly generate ozone in the gas to be treated,
The odor component was configured to be oxidizable.
【0003】[0003]
【発明が解決しようとする課題】しかし、オゾンにより
被処理空気中の臭気成分の処理を行う場合、オゾンの酸
化能力は比較的高いとはいえ、臭気成分とオゾンの反応
性は低く、被処理ガス中のオゾン濃度はその臭気成分の
反応当量の数倍必要であった。特に比較的高濃度の臭気
成分を処理する場合、該高濃度臭気成分の数倍のオゾン
量が必要となり、高濃度のオゾンを発生させるためのオ
ゾナイザに使用される放電電気量は、オゾナイザによる
オゾンの発生効率の低さとあいまって、巨大なものであ
り経済的に問題が指摘される場合があった。However, when odor components in the air to be treated are treated with ozone, although the oxidizing ability of ozone is relatively high, the reactivity between the odor components and ozone is low, and The ozone concentration in the gas required several times the reaction equivalent of the odor component. In particular, when a relatively high-concentration odor component is treated, an amount of ozone several times that of the high-concentration odor component is required. Due to the low generation efficiency, it was huge and economic problems were sometimes pointed out.
【0004】また、大容量の臭気成分を含有したガスを
処理する場合、被処理ガス中の臭気成分とオゾンの反応
の促進を図るため、被処理ガスとオゾンの混合攪拌や、
水噴霧等の酸化分解反応を促進するための手段を別途設
けるが必要があった。また、小容量の臭気成分を含有し
たガスを処理する場合では、放電により発生可能なオゾ
ン量にはある程度限界があるため、被処理ガス中の臭気
成分量が多いと、臭気成分に対する反応当量の数倍のオ
ゾンを発生させることは困難な場合があり、そのため被
処理ガス処理部に導入される被処理ガスの処理量を制限
し、被処理ガスに対するオゾン量を上昇させることで臭
気成分を処理する場合があった。また、オゾンにより被
処理空気中の臭気成分の処理を行う場合、反応当量以上
のオゾンを供給するので、多量の余剰未反応オゾンを処
理する必要があり、オゾン処理剤の経費も別途必要な場
合があった。そこで、本発明の課題は、被処理空気中の
臭気成分の処理を経済的かつ効率的に行うことにある。When a gas containing a large amount of odorous component is treated, the reaction between the odorous component and the ozone in the gas to be treated is promoted to mix and agitate the gas to be treated and ozone.
It was necessary to separately provide a means for promoting the oxidative decomposition reaction such as water spray. In the case of treating a gas containing a small amount of odorous component, the amount of ozone that can be generated by electric discharge is limited to some extent. It is sometimes difficult to generate several times as much ozone, so the odor component is treated by limiting the amount of gas to be treated introduced into the treated gas treatment section and increasing the amount of ozone to the gas to be treated. There was a case. Also, when the odor component in the air to be treated is treated with ozone, a large amount of excess unreacted ozone needs to be treated because ozone is supplied at a reaction equivalent or more, and the cost of the ozone treatment agent is also required separately. was there. Therefore, an object of the present invention is to economically and efficiently treat odor components in air to be treated.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上述した
オゾンを用いた被処理ガス中の臭気成分処理の問題に鑑
み、新たな被処理ガス中の臭気成分の処理を考え鋭意研
究したところ、臭気成分を含有した被処理ガスを特定の
流速に保ち、係る被処理ガスに放電を行うことで、前記
臭気成分の酸化分解処理を極めて効率的かつ経済的に行
えることを実験的に知見し、この知見に基づいて本発明
を完成させた。即ち、この目的を達成するための本発明
臭気成分処理装置の特徴構成は、臭気成分を含有した被
処理ガスが通過するガス流通部に、その被処理ガスに対
して放電を行う放電部を設けた臭気成分処理装置であっ
て、前記放電部を通過する被処理ガスの流速を7m/s
以上30m/s以下の範囲に保つ流速調整機構を有する
ことにある。また、前記放電部の下流側に、臭気成分と
酸素の反応を行う気相反応槽を有し、前記気相反応槽内
での前記被処理空気の流速が1m/s以下となるように
前記気相反応槽を形成してある構成を採用しても良い。
また、この目的を達成するための本発明臭気成分処理方
法の特徴構成は、流速が7m/s以上30m/s以下の
範囲に保たれている臭気成分を含有した被処理ガスに放
電を行うことで、前記臭気成分を酸化分解処理すること
にある。In view of the above-mentioned problem of the treatment of the odor component in the gas to be treated using ozone, the present inventors have made intensive studies on a new treatment of the odor component in the gas to be treated. However, it has been experimentally found that by maintaining the gas to be treated containing the odor component at a specific flow rate and discharging the gas to be treated, the oxidative decomposition treatment of the odor component can be performed extremely efficiently and economically. Then, based on this finding, the present invention was completed. That is, the characteristic configuration of the odor component treatment apparatus of the present invention for achieving this object is as follows. In the gas circulation section through which the gas containing the odor component passes, a discharge section for discharging the gas to be treated is provided. Odor component processing apparatus, wherein the flow rate of the gas to be processed passing through the discharge section is 7 m / s.
Another object of the present invention is to provide a flow velocity adjusting mechanism for maintaining the flow velocity in the range of 30 m / s or less. Further, a downstream side of the discharge unit is provided with a gas phase reaction tank for performing a reaction between an odor component and oxygen, and the flow rate of the air to be treated in the gas phase reaction tank is 1 m / s or less. A configuration in which a gas phase reaction tank is formed may be employed.
In order to achieve this object, a characteristic configuration of the odor component treatment method of the present invention is to discharge a gas to be treated containing an odor component whose flow velocity is maintained in a range of 7 m / s or more and 30 m / s or less. And subjecting the odor component to an oxidative decomposition treatment.
【0006】[作用]本発明者らは、臭気成分を含有した
被処理ガスが通過するガス流通部に、その被処理ガスに
対して放電を行う放電部を設けた臭気成分処理装置を用
い、前記放電部を通過する被処理ガスの流速を7m/s
以上30m/s以下の範囲に保たれた状態にて、その被
処理ガスに放電を行った場合、被処理ガス中の臭気成分
が酸化され分解処理が促進される事実に基づいて本発明
を完成させた。即ち、理論に拘泥するつもりはないが、
かかる現象は、流速が7m/s以上30m/s以下の範
囲に保たれている臭気成分を含有した被処理ガスに放電
を行った場合、放電により放出された電子が臭気成分分
子及び被処理ガス中の酸素分子にエネルギを与え、臭気
成分分子及び酸素分子が活性状態にされた後、順次高速
で放電部から離脱するため、電子と基底状態の分子との
衝突確率が上昇する事により、効率よく活性分子が生成
されるため、被処理ガス中の臭気成分が効率よく反応し
酸化分解が促進されるものと考えられる。更には、臭気
成分中には窒素が存在するが、放電により与えられた電
子が窒素分子にエネルギを与え、窒素分子を活性状態に
し、活性状態の窒素分子が、基底状態の酸素分子や臭気
成分分子と衝突することで、酸素分子や臭気成分分子に
エネルギを与え、それらの分子を活性状態にし、臭気成
分と酸素の反応を促進することがあるものと考えられ
る。[0006] The present inventors have used an odor component treatment apparatus provided with a discharge unit for discharging the gas to be treated in a gas flow section through which the gas to be treated containing the odor component passes. The flow rate of the gas to be processed passing through the discharge section is 7 m / s
The present invention has been completed based on the fact that, when the gas to be treated is discharged in a state where the gas is kept within the range of 30 m / s or less, the odor component in the gas to be treated is oxidized and the decomposition treatment is accelerated. I let it. In other words, I'm not going to be bound by theory,
This phenomenon is caused by the fact that when a gas to be treated containing an odor component whose flow velocity is maintained in the range of 7 m / s or more and 30 m / s or less is discharged, electrons emitted by the discharge are converted into molecules of the odor component and the gas to be treated. The energy is given to the oxygen molecules inside, the odor component molecules and the oxygen molecules are activated, and then sequentially depart from the discharge part at high speed, so that the probability of collision between the electrons and the molecules in the ground state increases, and the efficiency increases. It is considered that since active molecules are generated well, the odor components in the gas to be treated react efficiently and oxidative decomposition is promoted. Furthermore, although nitrogen exists in the odor component, the electrons given by the discharge give energy to the nitrogen molecule to activate the nitrogen molecule, and the nitrogen molecule in the active state is changed to the oxygen molecule and the odor component in the ground state. It is thought that by colliding with molecules, energy is given to oxygen molecules and odor component molecules, and these molecules are activated to promote the reaction between odor components and oxygen.
【0007】また、本件発明者は、放電部を流れる被処
理空気の流速がある範囲では、活性状態分子の発生量と
流速に相関関係が存在することを見出した。即ち、被処
理空気の流速を上昇させ、放電部を流れる被処理空気の
流速が7m/s以上となると、放電により与えられた電
子と、被処理ガス中における基底状態の酸素分子や臭気
成分等との衝突効率が上昇し、活性状態分子の生成効率
が良くなる傾向が存在する。一方、放電部を流れる被処
理空気の流速が25m/s以上では、被処理空気中の活
性状態分子の生成効率に飽和傾向がある場合があるた
め、被処理空気の流速を上昇させることに使用する臭気
成分処理装置の装置電力の供給増加にもかかわらず、被
処理空気中の活性状態分子の発生、即ち、被処理空気中
の臭気成分の酸化分解処理効率の上昇は微量であり、結
果として臭気成分処理装置全体としてみれば経済的な臭
気成分の分解処理がなされていないことになる。更に、
放電部を流れる被処理空気の流速が30m/s以上で
は、高速で流れる空気によって放電が阻害され却って分
解効率が悪くなる。これらの現象は電源差の性能によっ
て若干変化するが、いずれの場合も分解効率のピークは
7m/s〜30m/sの中にある。従って、被処理ガス
中の臭気成分を経済的かつ効率的に酸化分解処理するた
めには、放電を行う放電部を流れる被処理ガスの流速を
7m/s以上30m/s以下の範囲に保つことが好適と
考えられる。Further, the present inventor has found that there is a correlation between the generation amount of active state molecules and the flow rate in a certain range of the flow rate of the air to be processed flowing through the discharge part. That is, when the flow rate of the air to be processed is increased and the flow rate of the air to be processed flowing through the discharge portion becomes 7 m / s or more, electrons given by the discharge and oxygen molecules and odor components in the ground state in the gas to be processed There is a tendency that the efficiency of collision with the active state increases and the efficiency of generating active state molecules increases. On the other hand, if the flow rate of the air to be processed flowing through the discharge unit is 25 m / s or more, the generation efficiency of the active state molecules in the air to be processed may tend to be saturated. Despite the increase in the power supply of the odor component treatment device, the generation of active state molecules in the air to be treated, that is, the increase in the efficiency of the oxidative decomposition treatment of the odor component in the air to be treated is very small, and as a result, As a whole, the odor component treatment apparatus has not been economically decomposed. Furthermore,
If the flow velocity of the air to be processed flowing through the discharge unit is 30 m / s or more, the discharge is hindered by the air flowing at high speed, and the decomposition efficiency is rather deteriorated. These phenomena slightly change depending on the performance of the power supply difference, but in any case, the peak of the decomposition efficiency is in the range of 7 m / s to 30 m / s. Therefore, in order to economically and efficiently oxidatively decompose the odor component in the gas to be treated, the flow rate of the gas to be treated flowing through the discharge part for performing the discharge should be kept in a range of 7 m / s or more and 30 m / s or less. Is considered suitable.
【0008】尚、臭気成分となる被酸化物質が存在しな
い清浄空気の場合は放電による副生成物としてオゾンが
発生する場合があるが、被処理空気中に一定濃度以上の
被酸化物質である臭気成分が存在する場合はオゾンは発
生しないか、発生したとしても発生量は極わずかとな
る。これは、被処理空気中に一定濃度以上の臭気成分が
存在する場合は、放電により与えられた電子が被処理空
気中の酸素及び臭気成分を活性状態にさせ、活性状態の
酸素同士が反応することでオゾンを生成するよりも早
く、活性状態の酸素と活性状態の臭気成分が反応する傾
向が強いからと考えられている。[0008] In the case of clean air containing no oxidizing substance as an odor component, ozone may be generated as a by-product of the discharge, but the odor of the oxidizing substance having a certain concentration or more in the air to be treated. When a component is present, no ozone is generated, or even if it is, the amount of ozone generated is extremely small. This is because, when the odor component having a certain concentration or more is present in the air to be treated, the electrons given by the discharge activate the oxygen and the odor component in the air to be treated, and the oxygen in the active state reacts with each other. Therefore, it is considered that active oxygen and active odor components tend to react more quickly than ozone is generated.
【発明の効果】従って、被処理空気中の酸素と臭気成分
を直接反応させて、被処理空気中の臭気成分を酸化分解
処理することが可能となり、後述の実施の形態で示すよ
うに、本願発明臭気成分処理装置は、オゾンを用いた臭
気成分処理装置と比較し、臭気成分処理装置全体に使用
する電力エネルギに対する臭気成分の分解効率は非常に
上昇したものとなった。また、本願発明では、活性状態
の酸素がオゾンに変化するよりも臭気成分と反応し酸化
分解処理する反応がより進行するため、副反応生成物と
してのオゾン発生量を非常に少く抑制することが可能と
なった。Accordingly, it is possible to directly react oxygen and odor components in the air to be treated to oxidatively decompose the odor components in the air to be treated. Compared with the odor component treatment device using ozone, the odor component treatment device of the present invention has greatly improved the odor component decomposition efficiency with respect to the electric energy used for the entire odor component treatment device. Further, in the present invention, since the reaction of oxidative decomposition treatment proceeds by reacting with the odor component more than the oxygen in the active state changes to ozone, the amount of ozone generated as a by-product can be suppressed to a very small extent. It has become possible.
【0009】[0009]
【発明の実施の形態】本願発明臭気成分処理装置は、被
処理ガスを装置内部に導入する被処理ガス導入口2、臭
気成分を含有した被処理ガスが通過するガス流通部A、
被処理ガスを装置外部に排出する被処理ガス排気口5で
基本構成されている。ガス流通部Aには、複数の放電部
3と、ガス流通部Aのうち放電部3近傍の被処理ガス流
路である放電ガス流通部7、複数設けられた放電部3に
均等に被処理ガスを分配導入させるために設けられてい
る分配ダクト1と、放電部3を通過した被処理ガス中の
活性状態の酸素と活性状態の臭気成分の充分な反応を行
うための気相反応槽8と、被処理ガスに放電を行うこと
で発生する微量のオゾンを分解処理するための触媒槽6
と、ガス流通部Aにおける被処理ガスの流れを一定に形
成するための誘引ファン4が含有されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The odor component treatment apparatus of the present invention comprises a gas inlet 2 for introducing a gas to be treated into the apparatus, a gas flow section A through which a gas containing an odor component passes,
It is basically composed of a gas exhaust port 5 for discharging a gas to be processed to the outside of the apparatus. The gas circulation part A includes a plurality of discharge parts 3, a discharge gas circulation part 7, which is a gas passage to be processed in the vicinity of the discharge part 3 in the gas circulation part A, and a plurality of discharge parts 3 to be processed uniformly. A distribution duct 1 provided for distributing and introducing a gas; and a gas phase reaction tank 8 for performing a sufficient reaction between active oxygen and active odor components in the gas to be treated that has passed through the discharge unit 3. And a catalyst tank 6 for decomposing a trace amount of ozone generated by discharging the gas to be treated.
And an inducing fan 4 for forming a constant flow of the gas to be treated in the gas circulation section A.
【0010】臭気成分の一例としての硫化水素(H
2S)を含有した被処理ガスは、被処理ガス導入口 2よ
り装置内部に導入され、分配ダクト1に導入される。被
処理ガスは、分配ダクト1により複数設けられた放電部
3に均等に分配導入される。被処理ガスの処理風量が比
較的多い場合であっても、経済的に被処理空気に放電を
行うことができるように、放電部3は複数設けられてい
る。即ち、多量の被処理空気を処理するためには、放電
ガス流通部7の断面積を大きくする方が望ましいが、放
電ガス流通部7の断面積の拡大と同じく、放電部3の電
極間距離を拡大した場合、放電部3に一定の電場を供給
するために、放電部3に印可する電圧を上昇させる必要
が生じ、結果として装置全体に供給する電力が増大す
る。そのため、放電部3に印可する電圧を上昇させず
に、放電部3に一定の電場を供給するため、放電部3は
複数設けられているのである。被処理空気の処理風量が
4000m3/hの時は、0.1m×0. 25mの開口
面積の放電部3を4個設置するのが好適である。このよ
うに、放電部3を複数にしてそれぞれの場所で放電を行
い被処理ガスにほぼ均一に電子の放射を行うことができ
るため、効率よく酸素及び硫化水素を活性状態にでき
る。As an example of an odor component, hydrogen sulfide (H
The gas to be treated containing 2 S) is introduced into the apparatus from the gas introduction port 2 to be treated, and is introduced into the distribution duct 1. The gas to be treated is evenly distributed and introduced into a plurality of discharge units 3 provided by the distribution duct 1. A plurality of discharge units 3 are provided so that even when the processing air volume of the gas to be processed is relatively large, the processing air can be discharged economically. That is, in order to process a large amount of air to be treated, it is desirable to increase the cross-sectional area of the discharge gas flow section 7. Is increased, the voltage applied to the discharge unit 3 needs to be increased in order to supply a constant electric field to the discharge unit 3, and as a result, the power supplied to the entire apparatus increases. Therefore, in order to supply a constant electric field to the discharge unit 3 without increasing the voltage applied to the discharge unit 3, a plurality of discharge units 3 are provided. When the processing air volume of the air to be processed is 4000 m 3 / h, 0.1 mx 0. It is preferable to provide four discharge units 3 each having an opening area of 25 m. As described above, since a plurality of discharge units 3 are used to perform discharge at each location and emit electrons almost uniformly to the gas to be treated, oxygen and hydrogen sulfide can be efficiently activated.
【0011】放電部3にはそれぞれ放電電極が設置され
ており、被処理ガスはそこで放電電極からの電子の照射
を受ける。放電により与えられた電子が被処理ガス中の
硫化水素および酸素にエネルギを与えることにより、硫
化水素と酸素が活性状態となる。また、放電により与え
られた電子が被処理ガス中の窒素にエネルギを与え、活
性状態の窒素分子は基底状態の酸素分子や硫化水素と衝
突することによりエネルギを与え、それらを活性状態に
させる。Each of the discharge sections 3 is provided with a discharge electrode, and the gas to be treated receives irradiation of electrons from the discharge electrode there. The electrons given by the discharge give energy to hydrogen sulfide and oxygen in the gas to be processed, so that hydrogen sulfide and oxygen are activated. Electrons given by the discharge give energy to nitrogen in the gas to be treated, and nitrogen molecules in an active state give energy by colliding with oxygen molecules and hydrogen sulfide in a ground state to make them active.
【0012】放電部3の下流には気相反応槽8が設けら
れており、気相反応槽8は放電部3の容積と比較し十分
に大きな箱状となっている。即ち、気相反応槽8内での
前記被処理空気の流速が1m/s以下となるように前記
気相反応槽8が形成されている。狭小な高圧放電部を通
過した被処理空気は気相反応槽8で一挙に膨張拡張さ
れ、活性分子と臭気成分が混合される。また、被処理ガ
ス中の活性状態の酸素、硫化水素並びに窒素等が前記気
相反応槽周壁に到達し難い構造となっており、生成した
活性状態の酸素、硫化水素並びに窒素等が気相反応槽周
壁に衝突することによるエネルギの喪失を防ぎやすい構
造となっている。A gas-phase reaction tank 8 is provided downstream of the discharge unit 3, and the gas-phase reaction tank 8 has a box shape sufficiently larger than the capacity of the discharge unit 3. That is, the gas-phase reaction vessel 8 is formed such that the flow rate of the air to be treated in the gas-phase reaction vessel 8 is 1 m / s or less. The air to be processed, which has passed through the narrow high-pressure discharge section, is expanded and expanded at a stroke in the gas-phase reaction tank 8, and active molecules and odor components are mixed. Further, the structure is such that oxygen, hydrogen sulfide, nitrogen and the like in the active state in the gas to be treated hardly reach the peripheral wall of the gas-phase reaction vessel. The structure is easy to prevent energy loss due to collision with the tank peripheral wall.
【0013】被処理ガスが気相反応槽8に導入される
と、活性状態の酸素、硫化水素等が気相反応槽8内で拡
散混合され、硫化水素と酸素の反応が充分に促進され、
水と硫黄に酸化分解される。When the gas to be treated is introduced into the gas phase reaction vessel 8, active oxygen, hydrogen sulfide and the like are diffused and mixed in the gas phase reaction vessel 8, and the reaction between hydrogen sulfide and oxygen is sufficiently promoted.
Oxidized by water and sulfur.
【0014】気相反応槽8の下流側には、被処理ガスに
放電を行うことで副生成物として発生する微量のオゾン
を吸着処理するための触媒槽6が設けられている。触媒
槽6に用いられている触媒は、吸着剤であるアルミナシ
リカゲルを主体に活性炭を配合、成形したもので、オゾ
ンが活性炭と反応することで、二酸化炭素と酸素に分解
処理される。Downstream of the gas-phase reaction tank 8, a catalyst tank 6 for adsorbing a small amount of ozone generated as a by-product by discharging the gas to be treated is provided. The catalyst used in the catalyst tank 6 is formed by mixing and molding activated carbon with alumina silica gel as an adsorbent as a main component, and is decomposed into carbon dioxide and oxygen by reaction of ozone with activated carbon.
【0015】前記放電部3を通過する被処理ガスの流れ
を一定に形成するための誘引ファン4が触媒槽6の下流
側に設けられている。誘引ファン4は、被処理ガスの流
速の調節を行う流速調整機構としての役割を果たし、放
電部2を通過する被処理ガスの流速を7m/s以上30
m/s以下の範囲に保つように、誘引ファン4のファン
回転数を調整することができる。An induction fan 4 for forming a constant flow of the gas to be processed passing through the discharge section 3 is provided downstream of the catalyst tank 6. The induction fan 4 serves as a flow rate adjusting mechanism for adjusting the flow rate of the gas to be processed, and controls the flow rate of the gas to be processed passing through the discharge unit 2 by at least 7 m / s.
The fan rotation speed of the induction fan 4 can be adjusted so as to keep the range of m / s or less.
【0016】本発明に係る臭気成分を活性状態にするこ
とで臭気成分を処理する臭気成分処理装置と、従来のオ
ゾンを用いる臭気成分処理装置の臭気成分を処理するに
当たる放電エネルギの利用効率を比較した。臭気成分と
して単位体積あたり硫化水素を0.14ppm、メチル
メルカプタンを0.23ppm、硫化メチルを5.3p
pm含有した処理風量2000m3/hの被処理空気
を、 オゾンを用いる臭気成分処理装置で処理を行う場
合、反応に必要なオゾンの理論上の値は通常約11.2
ppmである。オゾンを用いる臭気成分処理装置で、臭
気成分を処理する場合、上記必要な理論オゾン量の5倍
必要とすると、240g/hのオゾン発生能力が必要と
なる。尚、理論オゾン量の数倍程度のオゾン量が必要と
されるのは、自己分解による消失や臭気成分と未反応の
まま排泄されてしまうからである。オゾンナイザのオゾ
ン発生能力を40g/KWとした場合、その時の消費電
力量は6KWとなる。一方、同一成分濃度、同一処理風
量の被処理空気を、臭気成分を活性状態にすることで臭
気成分を処理する臭気成分処理装置で処理を行う場合、
その時の消費電力量は1KWに過ぎない。更には、オゾ
ンを用いる臭気成分処理装置で臭気成分の処理を行う場
合、理論オゾン量の数倍程度投入した過剰のオゾンを処
理する必要があり、過剰のオゾンを処理するための触媒
を設けるためのコストが必要となるばかりでなく、過剰
のオゾンが触媒により処理されずに、装置外部に排出さ
れ場合は人体に有害である。従って、本発明に係る臭気
成分を活性状態にすることで臭気成分を処理する臭気成
分処理装置は、従来のオゾンを用いる臭気成分処理装置
と比較して、放電エネルギの利用効率が優れているとい
える。A comparison is made between the odor component treatment apparatus for treating odor components by activating the odor components according to the present invention and the efficiency of using the discharge energy for treating the odor components of the conventional odor component treatment device using ozone. did. 0.14 ppm of hydrogen sulfide, 0.23 ppm of methyl mercaptan, and 5.3 p of methyl sulfide per unit volume as odor components
When the processing air having a processing air flow of 2000 m 3 / h containing pm is processed by an odor component processing apparatus using ozone, the theoretical value of ozone required for the reaction is usually about 11.2.
ppm. When an odor component is treated by an odor component treatment device using ozone, an ozone generation capacity of 240 g / h is required if the required odor amount is five times the required theoretical ozone amount. The reason why the amount of ozone is required to be about several times the theoretical amount of ozone is that the ozone disappears due to self-decomposition and is excreted without reacting with odor components. If the ozone generating capability of the ozonizer is 40 g / KW, the power consumption at that time is 6 KW. On the other hand, when the air to be processed having the same component concentration and the same processing air volume is processed by the odor component processing device that processes the odor component by activating the odor component,
The power consumption at that time is only 1 KW. Furthermore, when the odor component is treated by the odor component treatment device using ozone, it is necessary to treat the excess ozone which is about several times the theoretical amount of ozone, and to provide a catalyst for treating the excess ozone. Not only is the cost required, but if excess ozone is discharged outside the apparatus without being treated by the catalyst, it is harmful to the human body. Therefore, the odor component treatment device that treats the odor component by activating the odor component according to the present invention has a higher use efficiency of the discharge energy than the conventional odor component treatment device using ozone. I can say.
【0017】[別実施の形態]上記発明の実施の形態で
は、被処理ガス中の臭気成分として硫化水素を例示した
が、メチルメルカプタン、トリメチルアミン、アセトア
ルデヒド等も除去可能である。[Other Embodiments] In the embodiment of the present invention, hydrogen sulfide is exemplified as the odor component in the gas to be treated. However, methyl mercaptan, trimethylamine, acetaldehyde and the like can also be removed.
【図1】本願発明に係る臭気成分処理装置を表す図FIG. 1 is a diagram showing an odor component treatment device according to the present invention.
1 分配ダクト 2 被処理空気導入口 3 放電部 4 誘引ファン 5 被処理排気口 6 触媒槽 7 放電ガス流通部 8 気相反応槽 A ガス流通部 DESCRIPTION OF SYMBOLS 1 Distribution duct 2 Air inlet to be processed 3 Discharge part 4 Induction fan 5 Exhaust port to be processed 6 Catalyst tank 7 Discharge gas circulation part 8 Gas phase reaction tank A Gas circulation part
Claims (3)
るガス流通部に、その被処理ガスに対して放電を行う放
電部を設けた臭気成分処理装置であって、 前記放電部を通過する被処理ガスの流速を7m/s以上
30m/s以下の範囲に保つ流速調整機構を有する臭気
成分処理装置。1. An odor component treatment apparatus comprising: a gas circulation section through which a gas to be treated containing an odor component passes; and a discharge section for discharging the gas to be treated, wherein the gas passes through the discharge section. An odor component processing apparatus having a flow rate adjusting mechanism for maintaining a flow rate of a gas to be processed in a range of 7 m / s or more and 30 m / s or less.
の反応を行う気相反応槽を有し、前記気相反応槽内での
前記被処理空気の流速が1m/s以下となるように前記
気相反応槽を形成してある請求項1記載の臭気成分処理
装置。2. A gas-phase reactor for reacting an odor component with oxygen on the downstream side of the discharge unit, wherein the flow rate of the air to be treated in the gas-phase reactor is 1 m / s or less. The odor component treatment device according to claim 1, wherein the gas phase reaction tank is formed as described above.
囲に保たれている臭気成分を含有した被処理ガスに放電
を行うことで、前記臭気成分を酸化分解する臭気成分処
理方法。3. An odor component treatment method in which the odor component is oxidized and decomposed by discharging a gas to be treated containing an odor component maintained at a flow rate of 7 m / s or more and 30 m / s or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11037158A JP2000237529A (en) | 1999-02-16 | 1999-02-16 | Odorous component treatment apparatus and treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11037158A JP2000237529A (en) | 1999-02-16 | 1999-02-16 | Odorous component treatment apparatus and treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000237529A true JP2000237529A (en) | 2000-09-05 |
Family
ID=12489802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11037158A Pending JP2000237529A (en) | 1999-02-16 | 1999-02-16 | Odorous component treatment apparatus and treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000237529A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006003382A1 (en) * | 2004-06-30 | 2006-01-12 | Tri-Air Developments Limited | Air decontamination device and method |
JP2013111558A (en) * | 2011-11-30 | 2013-06-10 | Panasonic Corp | Radical generator and nitrogen oxide generator |
RU2725325C1 (en) * | 2020-01-27 | 2020-07-02 | Общество с ограниченной ответственностью "ОЗОН МАСТЕР" | Ventilation system with air cleaning and disinfection |
RU2771857C1 (en) * | 2020-01-27 | 2022-05-13 | Общество с ограниченной ответственностью "ОЗОН МАСТЕР" | Ventilation system with air cleaning and disinfection |
-
1999
- 1999-02-16 JP JP11037158A patent/JP2000237529A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006003382A1 (en) * | 2004-06-30 | 2006-01-12 | Tri-Air Developments Limited | Air decontamination device and method |
EA010640B1 (en) * | 2004-06-30 | 2008-10-30 | Три-Эр Дивелопментс Лимитед | Air decontamination device and method |
US7763206B2 (en) | 2004-06-30 | 2010-07-27 | Tri-Air Developments Limited | Air decontamination method |
US20100221153A1 (en) * | 2004-06-30 | 2010-09-02 | Tri-Air Developments Limited | Air decontamination device and method |
AU2005259000B2 (en) * | 2004-06-30 | 2010-10-28 | Tri-Air Developments Limited | Air decontamination device and method |
US8398923B2 (en) * | 2004-06-30 | 2013-03-19 | Tri-Air Developments Limited | Air decontamination device |
JP2013111558A (en) * | 2011-11-30 | 2013-06-10 | Panasonic Corp | Radical generator and nitrogen oxide generator |
RU2725325C1 (en) * | 2020-01-27 | 2020-07-02 | Общество с ограниченной ответственностью "ОЗОН МАСТЕР" | Ventilation system with air cleaning and disinfection |
RU2771857C1 (en) * | 2020-01-27 | 2022-05-13 | Общество с ограниченной ответственностью "ОЗОН МАСТЕР" | Ventilation system with air cleaning and disinfection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6391272B1 (en) | Method for exhaust gas decontamination | |
CN108970348B (en) | Low-temperature plasma generator, method for treating pollutants by using low-temperature plasma and application of low-temperature plasma | |
EP0997439A2 (en) | Method for decomposing bromic acid by photocatalyst and apparatus therefor | |
KR102227464B1 (en) | Method and Apparatus for Controlling NOx and Method for Preparing NOx-Containing Water | |
JPH1133567A (en) | Ozone decomposing method and apparatus | |
JP5153748B2 (en) | Nitrous oxide reduction method and reduction apparatus | |
JPH07328425A (en) | Plasma chemical reaction device | |
JP2000237529A (en) | Odorous component treatment apparatus and treatment method | |
KR20010104911A (en) | Method for treating toxic compounds using non-thermal plasma | |
Zheng et al. | Simultaneous treatment of various malodorous substances in gas by non-thermal plasma | |
He et al. | Dielectric barrier discharge for hydrogen sulphide waste gas decomposition | |
JP2003266088A (en) | Ozone accelerated oxidation water treatment system together using ultraviolet rays | |
CN108325360B (en) | Interval type low-temperature plasma generator | |
JPH0130532B2 (en) | ||
JPH0229365B2 (en) | ||
JP2000279977A (en) | Fluid treatment and fluid treatment apparatus | |
JP3732795B2 (en) | Exhaust gas denitration equipment | |
JP2000024494A (en) | Ultrasonic treating device | |
CN209968113U (en) | Heterogeneous discharge system for removing VOCs with different solubilities through catalysis and synergy | |
JP2001247485A (en) | Method for decomposition process of gas and apparatus for treating exhaust gas with atmospheric pressure plasma | |
JPH11221581A (en) | Oxidation decomposition treatment apparatus | |
JP2000051653A (en) | Method and apparatus for purifying nitrogen oxide | |
JPH06100301A (en) | Ozonizer | |
JP2007038110A (en) | Free radical treatment apparatus | |
JPH11267669A (en) | Treating device using photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050929 |