JP2000290757A - Alloy for joining cemented carbide and composite material thereof - Google Patents
Alloy for joining cemented carbide and composite material thereofInfo
- Publication number
- JP2000290757A JP2000290757A JP10007599A JP10007599A JP2000290757A JP 2000290757 A JP2000290757 A JP 2000290757A JP 10007599 A JP10007599 A JP 10007599A JP 10007599 A JP10007599 A JP 10007599A JP 2000290757 A JP2000290757 A JP 2000290757A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- cemented carbide
- joining
- mass
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐摩耗工具や切削
工具として有用な超硬合金と接合して用いる合金および
その複合材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy used as a cemented carbide useful as a wear-resistant tool or a cutting tool and a composite material thereof.
【0002】[0002]
【従来の技術】炭化物、窒化物等の硬質粒子を柔軟な結
合相で結合した超硬合金は優れた硬さ、耐摩耗性を有す
るので、切削工具をはじめロール、パンチなどの塑性加
工用工具として、また、土木、鉱山用の掘削工具として
有用である。しかし、超硬合金は加工が困難で高価なう
え、靱性が低く折損しやすいために用途に制約があっ
た。この制約を乗越える方法として、安価で加工性に優
れる鋼などの基材と超硬合金とをろう付け接合したり、
ねじ止め、焼ばめ、クランプなどの機械的固定法によっ
て複合材として用いることが行われている。2. Description of the Related Art Cemented carbides, in which hard particles such as carbides and nitrides are combined with a soft binder phase, have excellent hardness and wear resistance, and are used for plastic working tools such as cutting tools, rolls, and punches. It is also useful as a drilling tool for civil engineering and mining. However, hardmetals are difficult and expensive to process, and have low toughness and are easily broken. As a method to overcome this limitation, brazing and joining a base material such as steel, which is inexpensive and excellent in workability, to a cemented carbide,
It is used as a composite material by a mechanical fixing method such as screwing, shrink fitting, and clamping.
【0003】ねじ止め、焼ばめ、クランプなどの機械的
固定法による場合には、加工が困難な超硬合金に対して
固定のための加工を施す必要があり、形状や加工法の点
から用途に制約が生じることを免れない。また、上記ろ
う付け接合材では、ろう材、超硬合金および基材の間の
熱膨張係数の差異にもとづく内部応力のために、ろう材
あるいは超硬合金に割れが生じることがある。また、ろ
う材として、超硬合金および基材のいずれよりも融点が
低い材料を用いるので耐熱温度が低く、複合材全体とし
て強度が低くなってしまうという問題がある。[0003] In the case of using a mechanical fixing method such as screwing, shrink-fitting, clamping, etc., it is necessary to perform processing for fixing hard metal which is difficult to process. It is inevitable that there will be restrictions on applications. Further, in the brazing material, cracks may occur in the brazing material or the cemented carbide due to internal stress based on the difference in thermal expansion coefficient between the brazing material, the cemented carbide and the base material. Further, since a material having a lower melting point than either the cemented carbide or the base material is used as the brazing material, there is a problem that the heat resistance is low and the strength of the entire composite material is reduced.
【0004】ろう材を用いることによる上述のような問
題を回避するには、超硬合金と基材とを拡散接合によっ
て直接に接合することが考えられる。しかしこの場合、
例えば、最も代表的な超硬合金であるWC−Co系超硬
合金と鋼とを拡散接合するときは、前記ろう付けと同様
に大きな熱膨張差による熱応力が発生し、また、拡散層
中に脆化相が生成するため健全な接合部を得ることがで
きないという問題がある。また、WC−Ni系超硬合金
と鋼との接合の場合についても前記同様に、拡散接合に
よっては健全な接合部は得難い。[0004] In order to avoid the above-mentioned problems caused by using the brazing material, it is conceivable that the cemented carbide and the base material are directly bonded by diffusion bonding. But in this case,
For example, when a WC-Co cemented carbide, which is the most typical cemented carbide, and a steel are diffusion-bonded, a thermal stress due to a large difference in thermal expansion is generated as in the case of the brazing, and a diffusion layer is formed. However, there is a problem that a sound joining portion cannot be obtained because a brittle phase is generated. Also in the case of joining a WC-Ni-based cemented carbide and steel, it is difficult to obtain a sound joint by diffusion bonding, as described above.
【0005】上記の問題を解決するために、本発明者
は、先に、特願平10−3969号として、主にC:
1.0〜2.3質量%、W15.5〜34.7質量%を
含み、残部CoおよびNiのうちいずれか1種以上から
なる超硬合金接合合金およびその複合材を提案した。In order to solve the above-mentioned problem, the present inventor has previously described, as Japanese Patent Application No. 10-3969, mainly C:
A cemented carbide alloy containing 1.0 to 2.3% by mass, W15.5 to 34.7% by mass, and the balance being at least one of Co and Ni and a composite material thereof have been proposed.
【0006】該提案によれば、WC−Co系超硬合金、
WC−Ni系超硬合金と接合しても接合部に脆化相を生
成することがなく優れた接合強度を保証することができ
る接合用合金を提供することができる。また、該接合用
合金を超硬合金と接合することにより、優れた接合強度
を有する複合材を提供することができる。この複合材の
接合合金部分は、公知の機械加工、熱処理、放電加工、
溶接加工が可能であり、超硬合金部材の有用性を増す。
さらに、該接合用合金を中間層として用いて超硬合金と
強靱な鋼とを接合することにより、優れた接合強度を有
する安価で信頼性の高い超硬合金−鋼複合材を提供する
ことができる。According to the proposal, a WC-Co based cemented carbide,
It is possible to provide a joining alloy capable of guaranteeing excellent joining strength without generating an embrittlement phase in a joined portion even when joined with a WC-Ni-based cemented carbide. Further, by joining the joining alloy to the cemented carbide, a composite material having excellent joining strength can be provided. The joining alloy portion of this composite material is formed by known machining, heat treatment, electric discharge machining,
Welding is possible, increasing the usefulness of cemented carbide members.
Further, by joining the cemented carbide and the tough steel using the joining alloy as an intermediate layer, it is possible to provide an inexpensive and highly reliable cemented carbide-steel composite having excellent joining strength. it can.
【0007】しかし、前記提案合金は、塑性加工性に乏
しく、熱間加工が困難であるため、鋳造材あるいは粉末
焼結材として供給することができるのみであり、供給形
態に制限があった。However, since the proposed alloy has poor plastic workability and is difficult to hot work, it can only be supplied as a cast material or a powder sintered material, and the supply form is limited.
【0008】[0008]
【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、WC−Co系超硬合金、WC−Ni
系超硬合金と接合しても優れた接合強度を保証すること
ができ、かつ、熱間鍛造などの塑性加工に耐える展延性
を有するので供給形態の自由度が大きく、安価な接合用
合金を提供することである。また、該接合用合金と超硬
合金との信頼性の高い複合体あるいは、優れた強度と機
能を有し、安価で信頼性の高い超硬合金−該接合用合金
−鋼の超硬合金複合材を提供することにある。The problem to be solved by the present invention is to provide a WC-Co based cemented carbide, WC-Ni
Excellent joining strength can be guaranteed even when joining with a series cemented carbide, and it has ductility that can withstand plastic working such as hot forging, so it has a large degree of freedom in supply form, and an inexpensive joining alloy can be used. To provide. In addition, a highly reliable composite of the joining alloy and the cemented carbide, or a cemented carbide of an inexpensive and highly reliable cemented carbide having excellent strength and function-the joining alloy-steel To provide materials.
【0009】[0009]
【課題を解決するための手段】上記の課題を解決するた
め、本発明の超硬合金接合用合金は、 (1)合金成分として、C:0.6〜2.3質量%、
W:9.3〜34.7質量%、Fe:30質量%を超え
80質量%以下、CoおよびNiのうちいずれか1種ま
たは2種を1.0質量%以上含み残部不可避的不純物か
らなることを特徴とする。 (2)上記合金成分に加えて、さらに、Si:3質量%
以下およびMn:3質量%以下を含むことを特徴とす
る。 (3)上記(1)または(2)の合金成分に加えて、さ
らに、Cr、Mo、V、Nb、Ti、Zr、Taのうち
何れか1種または2種以上を10質量%以下含むことを
特徴とする。In order to solve the above-mentioned problems, the cemented carbide alloy according to the present invention comprises: (1) C: 0.6 to 2.3% by mass as an alloy component;
W: 9.3 to 34.7% by mass, Fe: More than 30% by mass and 80% by mass or less, containing 1.0% by mass or more of one or two of Co and Ni and the balance consisting of unavoidable impurities. It is characterized by the following. (2) In addition to the above alloy components, Si: 3% by mass
And Mn: 3% by mass or less. (3) In addition to the above-mentioned alloy component (1) or (2), further contains any one or more of Cr, Mo, V, Nb, Ti, Zr, and Ta in an amount of 10% by mass or less. It is characterized by.
【0010】また、本発明の複合材は、 (4)超硬合金と接合用合金とが接合されて一体構造を
なす複合材において、前記接合用合金が上記(1)〜
(3)のうちいずれか一項記載の超硬合金接合用合金で
あることを特徴とする。 (5)超硬合金と接合用合金、および該接合用合金と鋼
とが接合されて一体構造をなす複合材において、前記接
合用合金が上記(1)〜(3)のうちいずれか一項記載
の超硬合金接合用合金であることを特徴とする。Further, the composite material of the present invention is: (4) a composite material in which a cemented carbide and a joining alloy are joined to form an integral structure, wherein the joining alloy is as described in (1) to (1) above;
(3) The cemented carbide according to any one of (3). (5) In a cemented carbide and a joining alloy, and a composite material in which the joining alloy and steel are joined to form an integral structure, the joining alloy is any one of the above (1) to (3). It is the alloy for cemented carbide described.
【0011】[0011]
【発明の実施の形態】本発明は、硬質粒子として主にW
Cを含み、これをFe、Co、Niおよびそれらの合金
からなる結合相によって結合した超硬合金において、合
金を脆化するη相または自由炭素を含まない健全な組織
を得るためにはCをはじめとする各構成元素含有率の厳
密な制御が必要であり、さらに、合金の熱間加工性を向
上するためにFeの含有が効果的であるという知見に基
づいてなされたものである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention mainly uses W as hard particles.
In order to obtain a sound structure free of η phase or free carbon which makes the alloy embrittled in a cemented carbide containing C and a bonding phase composed of Fe, Co, Ni and their alloys, It is based on the finding that the strict control of the content of each constituent element, including the first, is necessary, and that the content of Fe is effective for improving the hot workability of the alloy.
【0012】すなわち、健全な超硬合金は、硬質粒子と
延性に富んだCo、Niなどの結合相(γ)とからな
る。硬質粒子がWCの場合、結合炭素量は6.13質量
%であり、例えば、WC−16質量%Co系超硬合金に
おいて、結合炭素量6.06〜6.3質量%ではWC+
γの2相である。しかし、結合炭素量が6.06質量%
を下回るとη相を生成して合金は脆化する。また、結合
炭素量が6.3質量%を超えると自由炭素を生成してや
はり超硬合金は脆化する。That is, a sound cemented carbide is composed of hard particles and a highly ductile binder phase (γ) such as Co or Ni. When the hard particles are WC, the amount of bound carbon is 6.13% by mass. For example, in a WC-16% by mass Co-based cemented carbide, when the amount of bound carbon is 6.06 to 6.3% by mass, WC + is used.
γ is two phases. However, the amount of bound carbon is 6.06% by mass.
If it is less than η, an η phase is formed and the alloy is embrittled. On the other hand, if the amount of bonded carbon exceeds 6.3% by mass, free carbon is generated and the cemented carbide is also embrittled.
【0013】超硬合金と他の金属とを接合するとき、そ
の接合温度において、超硬合金と接合する金属(接合金
属という)のCポテンシャルが超硬合金の結合相(γ)
のそれより低ければ、超硬合金から接合金属へとCの拡
散を生じ、超硬合金の結合相中のC含有率が低下する。
これにより前記結合相中にはη相が形成され、超硬合金
の接合界面は脆化する。同様に、超硬合金の結合相中に
おけるCo含有率の低下もη相の生成を助長する。接合
金属のCポテンシャルが超硬合金のそれより高ければ、
超硬合金の接合界面には自由炭素を生成し前記接合界面
の脆化をもたらす。When a cemented carbide and another metal are joined together, at the joining temperature, the C potential of the metal joined to the cemented carbide (referred to as a joining metal) is changed to the bonding phase (γ) of the cemented carbide.
If it is lower than that of C, diffusion of C from the cemented carbide into the joining metal occurs, and the C content in the binder phase of the cemented carbide decreases.
As a result, an η phase is formed in the binder phase, and the bonding interface of the cemented carbide becomes brittle. Similarly, a decrease in the Co content in the binder phase of the cemented carbide also promotes the formation of the η phase. If the C potential of the joining metal is higher than that of cemented carbide,
Free carbon is generated at the joining interface of the cemented carbide, causing the joining interface to become brittle.
【0014】本発明は、接合時における前記接合界面の
CおよびCoまたはNi含有率の変化を極力低減するこ
とによって健全な接合部を得ようとするものである。本
発明が対象とする超硬合金は、硬質粒子として主にWC
を含むものとする。前記WCの一部はCr、Mo、N
b、Ti、ZrおよびTaの炭化物または窒化物の1種
以上と置換していてもよい。また、超硬合金中の結合相
は、主にCoおよびNiのいずれか1種およびそれらの
合金からなり、前記超硬合金中の硬質粒子構成元素をこ
れと平衡する量だけ含有するものとする。The present invention seeks to obtain a sound joint by minimizing a change in the content of C and Co or Ni at the joint interface during joining. Cemented carbides targeted by the present invention are mainly WC as hard particles.
Shall be included. Part of the WC is Cr, Mo, N
It may be substituted with one or more of carbides or nitrides of b, Ti, Zr and Ta. Also, the binder phase in the cemented carbide is mainly composed of one of Co and Ni and their alloys, and contains the hard particle constituent elements in the cemented carbide in an amount equilibrium therewith. .
【0015】次に、本発明の超硬合金接合用合金の化学
組成を限定した理由について説明する。本発明の接合用
合金と超硬合金とは拡散によって接合する。このとき接
合温度が1000℃未満では接合不能であるか、または
接合のために長い加熱時間と大きな圧力が必要となるの
で好ましくない。また、1300℃を超えると超硬合金
に液相が生成し、合金の変形が大きくなるので好ましく
ない。Next, the reason why the chemical composition of the alloy for cemented carbide according to the present invention is limited will be described. The joining alloy of the present invention and the cemented carbide are joined by diffusion. At this time, if the bonding temperature is lower than 1000 ° C., bonding cannot be performed, or a long heating time and a large pressure are required for bonding, which is not preferable. On the other hand, when the temperature exceeds 1300 ° C., a liquid phase is formed in the cemented carbide, and the deformation of the alloy is increased, which is not preferable.
【0016】そこで、実質的に拡散接合可能な温度10
00〜1300℃における超硬合金中の結合相と平衡し
て、該結合層中にCを析出したり、あるいは結合層金属
の欠乏によってη相を生じることがないように、本発明
の接合用合金は、合金成分として、C:0.6〜2.3
質量%、W:9.3〜34.7質量%、Fe:30質量
%を超え80以下、CoおよびNiのうちいずれか1種
または2種を1.0質量%以上を含む合金とした。Therefore, the temperature at which diffusion bonding can be substantially performed is 10
Equilibrium with the binder phase in the cemented carbide at 00 to 1300 ° C. so that C is not deposited in the binder layer or η phase is not generated due to lack of the binder layer metal. The alloy contains C: 0.6 to 2.3 as an alloy component.
% By mass, W: 9.3 to 34.7% by mass, Fe: Over 30% by mass and 80 or less, and an alloy containing 1.0% by mass or more of one or two of Co and Ni.
【0017】C含有率が0.6質量%未満あるいはW含
有率が34.7質量%を超えると超硬合金の接合界面に
η相を生成して接合部を脆弱とする。また、C含有率が
2.3質量%を超えるか、あるいはW含有率が9.3質
量%未満では、超硬合金の接合界面に自由炭素を生成し
て接合部を脆弱とする。CとWの含有率は、WCの当量
としておよそ1:15.3〜16.5とすることが好ま
しい。またWCとしての含有率は10〜37質量%とす
ることが好ましい。If the C content is less than 0.6% by mass or the W content exceeds 34.7% by mass, an η phase is formed at the joint interface of the cemented carbide, and the joint is weakened. On the other hand, if the C content exceeds 2.3% by mass or the W content is less than 9.3% by mass, free carbon is generated at the joining interface of the cemented carbide to make the joint weak. It is preferable that the content ratio of C and W is approximately 1: 15.3 to 16.5 as an equivalent of WC. Further, the content as WC is preferably from 10 to 37% by mass.
【0018】Feは、合金の強度を高め、また、熱間お
よび冷間における加工性を向上するために添加する。し
かしFeは超硬合金の接合界面におけるη相の形成傾向
を強める元素であり、Fe含有率が80質量%を超える
と超硬合金の接合界面が脆弱となるのでFe含有率の上
限を80質量%とする。CoおよびNiは、Feによる
η相の生成を抑止するために添加する。そのためには、
CoおよびNiのいずれか1種または2種をあわせて
1.0質量%以上含有する必要がある。Fe is added in order to increase the strength of the alloy and to improve the hot and cold workability. However, Fe is an element that strengthens the tendency of the η phase to form at the bonding interface of the cemented carbide, and if the Fe content exceeds 80% by mass, the bonding interface of the cemented carbide becomes brittle, so the upper limit of the Fe content is 80%. %. Co and Ni are added to suppress generation of the η phase by Fe. for that purpose,
It is necessary to contain 1.0% by mass or more of any one or two of Co and Ni.
【0019】SiおよびMnは、合金溶湯の脱酸のため
に添加する。本発明の超硬合金接合用合金は、鋳造品、
熱間加工品として提供されるほか、合金粉末としても提
供される。特に、溶湯から直接合金粉末を製造するとき
にしばしば発生する注湯ノズルの閉塞事故を防止するた
めに、SiおよびMnの添加は極めて効果的である。本
発明の本旨を損なうことなく上記の効果を発揮するため
に3質量%以下のSiおよび3質量%以下のMnを添加
することができる。Si and Mn are added for deoxidizing the molten alloy. The cemented carbide alloy of the present invention is a cast product,
It is offered as a hot-worked product and also as an alloy powder. In particular, the addition of Si and Mn is extremely effective in preventing a pouring nozzle from being clogged, which often occurs when an alloy powder is produced directly from a molten metal. In order to exhibit the above effects without impairing the spirit of the present invention, 3% by mass or less of Si and 3% by mass or less of Mn can be added.
【0020】接合すべき超硬合金中のWCの一部がC
r、Mo、V、Nb、Ti、ZrおよびTaの炭化物ま
たは窒化物の1種以上と置換している場合には、本発明
の接合用合金は、Cr、Mo、V、Nb、Ti、Zrお
よびTaのうち何れか1種または2種以上を、あわせて
10質量%以下において含有することができる。これら
の元素は、10質量%を超えて多量に含有すると、合金
が脆化し健全な接合ができなくなるので、10質量%を
含有率の上限とした。Part of WC in the cemented carbide to be joined is C
When one or more of carbides or nitrides of r, Mo, V, Nb, Ti, Zr, and Ta are substituted, the joining alloy of the present invention is made of Cr, Mo, V, Nb, Ti, Zr. Any one or more of Ta and Ta may be contained in a total amount of 10% by mass or less. When these elements are contained in a large amount exceeding 10% by mass, the alloy becomes brittle and a sound joining cannot be performed. Therefore, the upper limit of the content is set to 10% by mass.
【0021】本発明の超硬合金接合用合金は、通常の合
金の溶解法によって溶解し、鋳造した鋳片として供給さ
れるほか、前記鋳片に熱間鍛造、熱間押出し等の塑性加
工を施して所要の形状として供給される。また、アトマ
イズや機械的粉砕によって製造した粉末および該粉末の
焼結体としても供給される。その他、Fe、Co、N
i、W、C等の混合粉を圧粉体としたものや該混合粉の
焼結体としても供給される。さらに、接合中間層の形成
方法としては、メッキ、スパッタ、蒸着法によることが
できる。The cemented carbide alloy of the present invention is supplied as a cast slab melted and cast by a usual alloy melting method, and the cast slab is subjected to plastic working such as hot forging and hot extrusion. And supplied in the required shape. It is also supplied as powder produced by atomization or mechanical pulverization and a sintered body of the powder. Other, Fe, Co, N
The mixed powder of i, W, C, etc. is also supplied as a green compact or a sintered body of the mixed powder. Further, the bonding intermediate layer can be formed by plating, sputtering, or vapor deposition.
【0022】本発明の接合用合金に、必要に応じて機械
加工を加えて所要の形状としたのち、超硬合金と接合面
を接して配置し、接合面に垂直方向に圧力を加えつつ1
000〜1300℃の温度で加熱して、または加熱後に
加圧して拡散接合することにより超硬合金と接合用合金
の複合材を得ることができる。また、超硬合金、接合用
合金、鋼の順に積層して組立て、上記と同様に加圧、加
熱することにより超硬合金と鋼とを連結した複合材を得
ることができる。The joining alloy of the present invention is machined as required to obtain a required shape, and then the cemented carbide and the joining surface are arranged in contact with each other.
A composite material of a cemented carbide and a bonding alloy can be obtained by heating at a temperature of 000 to 1300 ° C. or by performing diffusion bonding by applying pressure after heating. Also, a composite material in which the cemented carbide and the steel are connected can be obtained by laminating and assembling the cemented carbide, the joining alloy, and the steel in this order, and pressing and heating in the same manner as described above.
【0023】上記の一軸加圧、加熱に替えて、超硬合金
と本発明の接合用合金の積層組立て体、または超硬合
金、本発明の接合用合金および鋼の積層組立て体をカプ
セルに挿入・封止してHIP装置により高温静水圧処理
することにより一層強固な複合材を得ることができる。Instead of the above uniaxial pressing and heating, a laminated assembly of a cemented carbide and a joining alloy of the present invention or a laminated assembly of a cemented carbide, a joining alloy of the present invention and steel is inserted into a capsule. -A stronger composite material can be obtained by sealing and performing high-temperature hydrostatic pressure treatment with a HIP device.
【0024】さらに、超硬合金と本発明の接合用合金と
を上記の方法で接合し、ついで該接合用合金と鋼とを溶
接、圧接、拡散接合など公知の接合方法によって接合す
ることにより複合材とすることもできる。Further, the cemented carbide and the joining alloy of the present invention are joined by the above-mentioned method, and then the joining alloy and steel are joined by a known joining method such as welding, pressure welding, diffusion joining, etc. It can also be a material.
【0025】本発明の接合用合金が粉末として供給され
た場合は、上記高温静水圧処理を行うことにより超硬合
金と接合用合金、または超硬合金、接合用合金および鋼
の複合体を得ることができる。さらに、超硬合金粉末の
プレス成形時またはプレス成形後に、該超硬合金粉末成
形体に積層して本発明の接合用合金粉末成形体を形成
し、焼結することによって超硬合金−接合用合金の複合
材を形成することもできる。When the joining alloy of the present invention is supplied as a powder, a cemented carbide and a joining alloy, or a composite of a cemented carbide, a joining alloy and steel is obtained by performing the high-temperature hydrostatic pressure treatment described above. be able to. Further, during or after press forming of the cemented carbide powder, the cemented carbide powder compact is laminated on the cemented carbide powder compact to form a joint alloy powder compact of the present invention, and then sintered to form a cemented carbide-joint. Alloy composites can also be formed.
【0026】[0026]
【実施例】誘導炉を用いて表1に示す各合金を溶製し、
5kgの鋳塊とした。EXAMPLE Each alloy shown in Table 1 was melted using an induction furnace.
It was a 5 kg ingot.
【0027】[0027]
【表1】 [Table 1]
【0028】該鋳塊の直径の1/4部分から直径6m
m、長さ110mmの熱間引張り試験片を切り出して、
熱間引張り試験に供した。熱間引張り試験は、試験片の
グリップ間隔90mmとし、1150℃において引張り
速度50mm/secで行い、破断時の前記グリップ間
の距離を測定して破断までの伸び率を算定し、表2に熱
間伸びとして示した。この結果から、Feを多く含む試
料ほど熱間伸びが大きいことが判る。[0028] From a quarter of the diameter of the ingot to a diameter of 6 m
m, cut out a 110 mm long hot tensile test piece,
It was subjected to a hot tensile test. The hot tensile test was conducted at a grip interval of the test piece of 90 mm, a tensile speed of 50 mm / sec at 1150 ° C., the distance between the grips at the time of breaking was measured, and the elongation until breaking was calculated. It is shown as elongation. From this result, it can be seen that the hotter elongation is larger in the sample containing more Fe.
【0029】[0029]
【表2】 [Table 2]
【0030】また、前記鋳塊(平均外径 mm)を1
150℃に加熱し、10ヒートで直径45mmの丸棒に
鍛伸した。その結果を表2に鍛造結果として示した。比
較例4〜6では、割れを生じて鍛造不能(比較例4、
5)となるか、ザク割れを生じて疵取り不能(比較例
6)となり、いずれも目標寸法まで鍛伸はできなかっ
た。Feを含む比較例1〜3ではやや鍛造性は改善され
ているが、度々疵取りを繰り返す必要があり、鍛造は極
めて困難であった。これに対して、実施例では、何ら支
障なく強加工によって目標寸法まで鍛伸することができ
た。The ingot (average outer diameter mm) is 1
It was heated to 150 ° C. and forged by heat into a round bar having a diameter of 45 mm with 10 heats. Table 2 shows the results as forging results. In Comparative Examples 4 to 6, cracks occurred and forging was impossible (Comparative Example 4,
5) or Zack cracking occurred, making it impossible to remove flaws (Comparative Example 6), and none of them could be forged to the target dimensions. In Comparative Examples 1 to 3 containing Fe, the forgeability was slightly improved, but it was necessary to repeatedly remove flaws, and forging was extremely difficult. On the other hand, in the example, the forging could be performed to the target size by the strong working without any trouble.
【0031】前記鍛伸した試料から直径10mm、長さ
60mmの試料を切り出し、平行部20mm、標点距離
10mmの引張り試験片を製作し、常温において引張り
試験を行った。その結果を表3に示す。また、前記鋳塊
の直径の1/4部分から上記同様の引張り試験片を製作
し、常温における引張り試験を行った結果を表3に示
す。表3によれば、Fe含有率の増加に伴って耐力およ
び引張り強さが上昇するとともに、伸び、絞り等の延性
も向上することが判る。そして、実施例は、いずれも優
れた0.2%耐力と引張り強さとを有し、伸びおよび絞
りの値も高い。A sample having a diameter of 10 mm and a length of 60 mm was cut out from the forged sample, and a tensile test piece having a parallel portion of 20 mm and a gauge length of 10 mm was manufactured and subjected to a tensile test at room temperature. Table 3 shows the results. Table 3 shows the results of producing a tensile test piece similar to the above from a quarter of the diameter of the ingot and conducting a tensile test at room temperature. According to Table 3, it is found that the proof stress and the tensile strength increase with an increase in the Fe content, and the ductility such as elongation and drawing also improves. Each of the examples has excellent 0.2% proof stress and tensile strength, and also has high values of elongation and drawing.
【0032】[0032]
【表3】 [Table 3]
【0033】直径25mmに鍛伸した試料および鋳塊か
ら直径20mm、長さ15mmの接合合金丸棒を切り出
した。また、直径20mm、長さ15mmのWC−13
質量%Co超硬合金丸棒を準備した。前記接合合金丸棒
と前記WC−13質量%Co超硬合金丸棒とを、両者の
端面を互いに接して軟鋼製カプセルに挿入し、脱気・密
封した後、HIP装置により温度1150℃、圧力12
00kgf/cm2、保持時間3hrの熱間静水圧処理
を施した。熱間静水圧処理によって、前記接合合金丸棒
と前記WC−13質量%Co超硬合金丸棒とは、接触端
面で緊密に接合し、健全な複合材を形成しているものと
認められた。A round bar of a joining alloy having a diameter of 20 mm and a length of 15 mm was cut out from a sample and an ingot forged to a diameter of 25 mm. In addition, WC-13 with a diameter of 20 mm and a length of 15 mm
A mass% Co cemented carbide round bar was prepared. The joined alloy round bar and the WC-13 mass% Co cemented carbide round bar were inserted into a mild steel capsule with their end faces in contact with each other, degassed and sealed, and then heated at a temperature of 1150 ° C. and pressure by a HIP device. 12
A hot isostatic pressure treatment of 00 kgf / cm 2 and a holding time of 3 hr was performed. By the hot isostatic pressure treatment, it was recognized that the joined alloy round bar and the WC-13 mass% Co cemented carbide round bar were tightly joined at the contact end face to form a sound composite material. .
【0034】該複合材から、長さの中央に接合面を有す
る厚さ3.0mm、幅5.0mm、長さ30mmの抗折
試験片を作成し、支点間距離20mmとし、接合部に厚
さ方向の集中荷重を加えて3点曲げ試験を行った。その
結果は、表4に示すように実施例1〜6ではいずれも接
合部で破断することがなく、また、抗折力においても実
用上問題のない強度を示し、健全な接合が行われている
ことを示した。From the composite material, a flexural test piece having a thickness of 3.0 mm, a width of 5.0 mm, and a length of 30 mm having a joint surface at the center of the length was prepared. A three-point bending test was performed by applying a concentrated load in the vertical direction. As a result, as shown in Table 4, in Examples 1 to 6, none of the joints broke at the joints, and also showed a strength with no practical problem in the transverse rupture strength, and a sound joint was performed. Showed that.
【0035】[0035]
【表4】 [Table 4]
【0036】表1に示す実施例1の鋳塊および鍛造材か
ら直径12mm、厚さ3mmの接合合金円盤を切出し
た。また、直径12mm、長さ50mmのWC−13質
量%Co超硬合金丸棒と直径12mm、長さ50mmの
JIS SKD11相当の鋼丸棒とを準備した。超硬合
金丸棒、接合合金円盤、鋼丸棒の順に積層し、各端面を
密着して組立て、該組立て体を軟鋼製カプセルに挿入
し、減圧・封止してHIP装置により1200kgf/
cm2で1200℃×3hrの高温静水圧処理を施し
た。旋削によって直径8mm×長さ100mmの抗折試
験片を得た。該抗折試験片の接合部はいずれも緊密に接
合し、健全な複合材を形成しているものと認められた。From the ingot and the forged material of Example 1 shown in Table 1, a joining alloy disk having a diameter of 12 mm and a thickness of 3 mm was cut out. Also, a WC-13 mass% Co cemented carbide round bar having a diameter of 12 mm and a length of 50 mm and a steel round bar having a diameter of 12 mm and a length of 50 mm corresponding to JIS SKD11 were prepared. A cemented carbide round bar, a bonding alloy disk, and a steel round bar are laminated in this order, and the respective end faces are closely assembled and assembled. The assembled body is inserted into a mild steel capsule, decompressed and sealed, and 1200 kgf / h by a HIP device.
A high-temperature hydrostatic pressure treatment of 1200 ° C. × 3 hr was performed in cm 2 . By turning, a bending test piece having a diameter of 8 mm and a length of 100 mm was obtained. It was recognized that all the joints of the bending test pieces were tightly joined to form a sound composite material.
【0037】前記抗折試験片について、支点間距離80
mmとし、接合部に集中荷重を加えて3点曲げ試験を行
った。その結果は、抗折試験片は接合部で破断すること
がなく、また、破断応力 698MPa以上を示し、健
全な接合が行われていることを示した。For the bending test piece, the distance between supporting points was 80.
mm, and a concentrated load was applied to the joint to perform a three-point bending test. The results showed that the bending test piece did not break at the joint and showed a breaking stress of 698 MPa or more, indicating that sound joining was performed.
【0038】以上の実験結果から明らかなように、本発
明の超硬合金接合用合金を用いて接合した超硬合金と本
接合合金との複合材および超硬合金と鋼との複合材は実
用上十分な接合強度を示す。As is clear from the above experimental results, the composite material of the cemented carbide and the cemented alloy and the composite material of the cemented carbide and the steel joined by using the cemented carbide alloy of the present invention are practical. Shows sufficient bonding strength.
【0039】[0039]
【発明の効果】以上に説明したように、本発明によれ
ば、WC−Co系超硬合金、WC−Ni系超硬合金と接
合しても接合部に脆化相を生成することがなく優れた接
合強度を保証することができ、また、熱間加工性、機械
的性質に優れた接合用合金を提供することができる。さ
らに、該接合用合金を超硬合金と接合することにより、
優れた接合強度と機械的強度を有する複合材を提供する
ことができる。この複合材の接合合金部分は、公知の熱
間塑性加工、機械加工、熱処理、放電加工、溶接加工が
可能であり、超硬合金部材の有用性を増す。本発明の接
合用合金を中間層として用いて超硬合金と強靱な鋼とを
接合することにより、優れた接合強度を有する安価で信
頼性の高い超硬合金−鋼複合材を提供することができ
る。As described above, according to the present invention, even when joined with a WC-Co-based cemented carbide or a WC-Ni-based cemented carbide, an embrittlement phase is not generated at the joint. Excellent joining strength can be guaranteed, and a joining alloy excellent in hot workability and mechanical properties can be provided. Further, by joining the joining alloy with a cemented carbide,
A composite material having excellent joining strength and mechanical strength can be provided. The joining alloy portion of this composite material can be subjected to known hot plastic working, machining, heat treatment, electric discharge machining, and welding, thereby increasing the usefulness of the cemented carbide member. By joining a cemented carbide and tough steel using the joining alloy of the present invention as an intermediate layer, it is possible to provide an inexpensive and highly reliable cemented carbide-steel composite having excellent joining strength. it can.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/56 C22C 38/56 // B23K 101:20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/56 C22C 38/56 // B23K 101: 20
Claims (5)
量%、W:9.3〜34.7質量%、Fe:30質量%
を超え80質量%下、CoおよびNiのうちいずれか1
種または2種を1.0質量%以上含み残部不可避的不純
物からなることを特徴とする超硬合金接合用合金。1. As alloy components, C: 0.6 to 2.3% by mass, W: 9.3 to 34.7% by mass, Fe: 30% by mass.
Over 80% by mass, one of Co and Ni
An alloy for cemented cemented carbide, characterized in that the alloy contains at least 1.0% by mass of one or more kinds and the balance consists of unavoidable impurities.
3質量%以下およびMn:3質量%以下を含むことを特
徴とする請求項1記載の超硬合金接合用合金。2. In addition to the above alloy components, Si:
2. The cemented carbide according to claim 1, wherein the alloy contains 3% by mass or less and Mn: 3% by mass or less.
Mo、V、Nb、Ti、Zr、Taのうち何れか1種ま
たは2種以上を10質量%以下含むことを特徴とする請
求項1および2のいずれか一項記載の超硬合金接合用合
金。3. In addition to the above alloy components, Cr,
The alloy for cemented cemented carbide according to any one of claims 1 and 2, wherein one or more of Mo, V, Nb, Ti, Zr, and Ta are contained in an amount of 10 mass% or less. .
体構造をなす複合材において、前記接合用合金が請求項
1〜3のうちいずれか一項記載の超硬合金接合用合金で
あることを特徴とする複合材。4. The cemented carbide according to claim 1, wherein the cemented carbide and the joining alloy are joined together to form an integral structure. A composite material comprising:
合金と鋼とが接合されて一体構造をなす複合材におい
て、前記接合用合金が請求項1〜3のうちいずれか一項
記載の超硬合金接合用合金であることを特徴とする複合
材。5. A cemented carbide and a joining alloy, and a composite material in which the joining alloy and steel are joined to form an integral structure, wherein the joining alloy is any one of claims 1 to 3. A composite material characterized in that it is a cemented carbide alloy of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10007599A JP2000290757A (en) | 1999-04-07 | 1999-04-07 | Alloy for joining cemented carbide and composite material thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10007599A JP2000290757A (en) | 1999-04-07 | 1999-04-07 | Alloy for joining cemented carbide and composite material thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000290757A true JP2000290757A (en) | 2000-10-17 |
Family
ID=14264341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10007599A Pending JP2000290757A (en) | 1999-04-07 | 1999-04-07 | Alloy for joining cemented carbide and composite material thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000290757A (en) |
-
1999
- 1999-04-07 JP JP10007599A patent/JP2000290757A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0899051B1 (en) | Alloy used for joining to cemented carbide, and composite materials made thereof | |
US5400946A (en) | Method for soldering hard substances onto steels | |
US4340650A (en) | Multi-layer composite brazing alloy | |
KR102253406B1 (en) | Bonding material for dissimilar metal and brazing method using the same | |
EP2591874B1 (en) | Friction stir welding tool made of cemented tungsten carbid with Nickel and with a Al2O3 surface coating | |
WO2005059191A2 (en) | Tungsten alloy high temperature tool materials | |
CN100441363C (en) | High-temperature brazing alloy welding flux for ceramic and steel welding and its preparing method | |
JPH1029075A (en) | Alloy foil for liquid phase diffusion joining joinable in oxidation atmosphere | |
JPH01224182A (en) | Manufacture of oxide dispersed reinforced platinum article | |
CN111085796B (en) | Fe-based multielement active high-temperature brazing filler metal for carbon fiber reinforced ceramic matrix composite | |
JPH073306A (en) | High-strength sintered hard alloy composite material and production thereof | |
JPH105823A (en) | Composite roll made of sintered hard alloy | |
JP2000290757A (en) | Alloy for joining cemented carbide and composite material thereof | |
JP4218239B2 (en) | Method of manufacturing tool steel by lamination and tool steel | |
JP2001107166A (en) | Alloy for joining cemented carbide and its composite material | |
JP3690618B2 (en) | Cemented carbide composite roll | |
JP2562445B2 (en) | Abrasion resistant composite roll | |
JPH09248633A (en) | Composite punch for fine perforation and its manufacture | |
JPH0798964B2 (en) | Cubic boron nitride cemented carbide composite sintered body | |
JP2005074450A (en) | Titanium-clad steel plate, and its production method | |
JP2760926B2 (en) | High-strength cemented carbide composite material combining low carbon steel and method for producing the same | |
JPH1034311A (en) | Member for molten metal and manufacture thereof | |
JP2883055B2 (en) | Insertion bonding method between hard alloy and cast iron material and heat treatment method thereof | |
JP2002013377A (en) | Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength | |
JP2893887B2 (en) | Composite hard alloy material |