JP2760926B2 - High-strength cemented carbide composite material combining low carbon steel and method for producing the same - Google Patents
High-strength cemented carbide composite material combining low carbon steel and method for producing the sameInfo
- Publication number
- JP2760926B2 JP2760926B2 JP4275270A JP27527092A JP2760926B2 JP 2760926 B2 JP2760926 B2 JP 2760926B2 JP 4275270 A JP4275270 A JP 4275270A JP 27527092 A JP27527092 A JP 27527092A JP 2760926 B2 JP2760926 B2 JP 2760926B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- cemented
- steel
- joining
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐摩工具や大型工具と
して有用な高強度の超硬合金または超硬合金と鋼の接合
体およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength cemented carbide or cemented carbide-steel alloy useful as a wear-resistant tool or a large-sized tool, and a method for producing the same.
【0002】[0002]
【従来の技術】WC−Co系に代表される超硬合金は、
耐摩耗性、耐熱・耐食性に優れ、また靱性もセラミック
スに比べて高いことなどから、切削用工具をはじめ、ロ
ール、ノズル、土木建設用工具など多くの産業分野に応
用されている。しかしながら、超硬合金はセラミックス
と同様に難加工、難溶接材で、しかも高価なため、応用
分野が制限されている場合も多い。この改善策の1つと
して、安価で加工性に優れた鋼など他材料とのろう付接
合による複合化が実施されている。このろう付接合にお
いても、基材、ろう材および超硬合金間の熱膨張係数の
違いに起因する高い応力の発生でろう材部あるいは超硬
合金部に割れの生じることがある。また、ろう材の濡れ
性が悪い場合には接合不良となり、また例え完全に接合
されたとしても、剪断力で10〜20kg/mm2程度
の強度しか期待できない。2. Description of the Related Art Cemented carbides represented by the WC-Co system are:
Due to its excellent wear resistance, heat and corrosion resistance, and higher toughness than ceramics, it has been applied to many industrial fields such as cutting tools, rolls, nozzles, and civil engineering tools. However, cemented carbides are difficult-to-process and hard-to-weld materials, like ceramics, and are expensive, so their application fields are often limited. As one of the remedies, compounding by brazing with another material such as steel, which is inexpensive and excellent in workability, has been implemented. Also in this brazing, a high stress is generated due to a difference in the coefficient of thermal expansion between the base material, the brazing material and the cemented carbide, so that a crack may be generated in the brazing material or the cemented carbide. In addition, when the wettability of the brazing material is poor, the joining is poor, and even if the joining is complete, only a strength of about 10 to 20 kg / mm 2 can be expected by the shearing force.
【0003】特公昭57−57525号公報には、既に
焼結された超硬合金の外周に、この超硬合金とほぼ同組
成でこの超硬合金の外形より大きく、近似形状の内側形
状を有する環状の超硬合金原料粉末成型体又はこの予備
焼結体を超硬合金との間に間隙を介し同軸的に配置し、
超硬合金原料粉末成型体又はこの予備焼結体を焼結し焼
結の際の収縮により内側の超硬合金と一体化する技術が
開示されている。しかしながら、この技術は超硬合金の
ロール等、超硬合金製の円筒、円柱などの柱体に適用可
能な技術であって、一般的な形状の製品には適用できな
いという欠点がある。また、この技術は超硬合金と鋼と
の複合体を得るものではない。[0003] Japanese Patent Publication No. 57-57525 discloses that the outer periphery of an already sintered cemented carbide is substantially the same in composition as the cemented carbide and larger than the outer shape of the cemented carbide, and has an approximate inner shape. An annular cemented carbide raw material powder compact or this pre-sintered body is coaxially arranged with a gap between the cemented carbide,
There is disclosed a technique in which a cemented carbide raw material powder compact or this pre-sintered body is sintered and integrated with the inner cemented carbide by shrinkage during sintering. However, this technique is a technique applicable to a cylinder such as a cemented carbide roll, such as a cemented carbide roll, and cannot be applied to products having a general shape. This technique does not provide a composite of cemented carbide and steel.
【0004】特公平2−28428号公報には、1種ま
たは2種以上の超硬合金の接合において、超硬合金同志
の当接面にFe系金属の薄板を挿入し、当接面の一部ま
たは全面に高エネルギ−ビームを照射してスリット状に
Fe系薄板や超硬合金を溶融凝固させて超硬合金同志を
接合する技術が記載されている。ここで用いられる高エ
ネルギ−ビームは電子ビームやレーザービームである
が、ビーム径を小さく絞ることによってエネルギ−密度
を高めるので、広範囲にわたる接合には時間がかかるこ
と、また、高エネルギ−ビームは外部から照射するもの
である点からして、比較的小型の製品への適用に限られ
ていた。またこの技術は超硬合金と鋼の接合に関しても
効果があるが、上記と同様の欠点を有するものである。[0004] Japanese Patent Publication No. 2-28428 discloses that in joining one or more cemented carbides, a thin sheet of Fe-based metal is inserted into the contact surfaces of the cemented carbides, and one of the contact surfaces is contacted. A technique is described in which a high energy beam is applied to a part or the entire surface to melt and solidify an Fe-based thin plate or cemented carbide in a slit shape to join cemented carbides together. The high-energy beam used here is an electron beam or a laser beam. However, since the energy density is increased by narrowing the beam diameter, it takes a long time to join over a wide area. In view of the fact that the irradiation is performed from a distance, application to relatively small products has been limited. This technique is also effective for joining cemented carbide and steel, but has the same disadvantages as described above.
【0005】特開昭63−125602号公報には、被
加工物を加工する部分を含んだ使用部と、それ以外の非
使用部とに分割されていて、非使用部の材質として使用
部と熱膨張係数の異なる材質を用い、使用部と非使用部
を互いに拡散接合することにより、使用部に残留応力を
与える技術が記載されている。ここで、非使用部は相対
的に熱膨張係数の高い材質とする場合には、たとえば結
合相の量を多くしたり、あるいはTiC等の熱膨張係数
の大きな成分を多くするとよいことが開示されている。
このような技術は非使用部と使用部の接触面積が大き
く、非使用部の熱膨張係数の差異が直接使用部に影響を
与えるような構造とすることが必要である。従って、応
用分野に一定の制限を受けざるを得ないことになる。特
公平2−43579号公報は、超硬合金と焼結鋼の接合
部材の製造方法が開示されている。そして特定のろう材
を用い還元性雰囲気中で、焼結鋼の焼結とろう付接合を
同時に行う方式のものである。Japanese Patent Application Laid-Open No. 63-125602 discloses that a used part including a part to be processed and a non-used part other than the used part are divided into a used part and a non-used part. There is described a technique in which a used part and a non-used part are diffused and bonded to each other by using materials having different thermal expansion coefficients to give a residual stress to the used part. Here, when the unused portion is made of a material having a relatively high coefficient of thermal expansion, it is disclosed that, for example, the amount of the binder phase should be increased, or a component having a large coefficient of thermal expansion such as TiC should be increased. ing.
Such a technique requires a structure in which the contact area between the unused portion and the used portion is large, and the difference in thermal expansion coefficient between the unused portions directly affects the used portion. Thus, certain restrictions must be imposed on the field of application. Japanese Patent Publication No. 43579/1990 discloses a method for manufacturing a joining member made of cemented carbide and sintered steel. In this method, sintering of the sintered steel and brazing are performed simultaneously in a reducing atmosphere using a specific brazing material.
【0006】[0006]
【発明が解決しようとする課題】前記したように従来の
技術では、それぞれの特徴を有しているものの、例えば
ろう付け法の場合には、熱膨張係数の差による残留歪み
が大きく、またろう材の耐熱温度が低い為、接合体全体
の強度が低い。したがって、接合強度が高く、しかも応
力を緩和できるろう材の開発が望まれるが、これ以外に
も接合性に優れ、また接合時に割れの発生しない高靱延
性を有した超硬合金が存在すれば、これを用いることに
より鋼との複合化が極めて容易に行えることが予想され
る。さらに超硬合金と通常の溶製材との接合が可能とな
れば、産業上の超硬合金の利用範囲が大幅に拡大され、
低コスト化および長寿命化などが図れる。As described above, the conventional techniques have the respective features, but in the case of the brazing method, for example, the residual strain due to the difference in the coefficient of thermal expansion is large, and Since the heat resistant temperature of the material is low, the strength of the entire joined body is low. Therefore, it is desired to develop a brazing material having high joining strength and capable of relieving stress.However, if there is a cemented carbide having excellent toughness and high toughness and ductility that does not cause cracking at the time of joining, It is expected that the compounding with steel can be performed very easily by using this. Furthermore, if the cemented carbide can be joined with ordinary ingots, the range of industrial use of cemented carbide will be greatly expanded,
Cost reduction and long life can be achieved.
【0007】なお、高硬度の超硬合金と、鋼とを直接接
合することが考えられるが、高硬度の超硬合金の焼結温
度では、鋼が溶ける問題がある。また、あらかじめ焼結
した高硬度の超硬合金と鋼を接合するために固相拡散接
合法等により低温で直接接合することも考えられるが、
接合面の平滑度、清浄度などを厳密にしなければなら
ず、しかも長時間加圧状態を保つ必要がある。さらに鋼
と超硬合金の反応により接合体の界面に強度の低い層が
形成され、さらに両者の熱膨張差に基づく応力により接
合体全体の強度が低下し、場合によっては割れが発生す
る。以上のような状況で鋼と高硬度の超硬合金を直接接
合することは極めて困難であった。[0007] It is conceivable to directly join a high-hardness cemented carbide with steel, but there is a problem that the steel melts at the sintering temperature of the high-hardness cemented carbide. It is also conceivable to directly join at a low temperature by solid-phase diffusion bonding or the like in order to join a hardened cemented carbide with high hardness in advance and steel.
It is necessary to strictly control the smoothness and cleanliness of the joint surface, and it is necessary to maintain the pressurized state for a long time. Further, a low-strength layer is formed at the interface of the joined body due to the reaction between the steel and the cemented carbide, and the strength of the entire joined body is reduced due to stress based on the difference in thermal expansion between the two, and in some cases, cracks occur. In such a situation, it was extremely difficult to directly join steel and a high-hardness cemented carbide.
【0008】[0008]
【課題を解決すめための手段】本発明者等は、前記した
従来技術の課題を解決すめために種々の検討を加えてき
た。そして、以下に記載するような高強度超硬合金複合
材料を得ることができた。この発明では、高硬度の超硬
合金と、接合用超硬合金および接合用超硬合金と鋼がそ
れぞれ拡散接合されてなり、該接合用超硬合金中の結合
相の割合が、前記高硬度の超硬合金中の結合相より10
〜45重量%多いことを1つの特徴とする。また別の特
徴は、接合用超硬合金と、高硬度の超硬合金とを合わせ
た体積が前記鋼の体積より小さくかつ接合用超硬合金と
鋼の間のη相の厚さを制御した点に特徴がある。超硬合
金は硬質相と結合相からなり硬質相としては、WCと周
期律表の第4a,5a,6a族の遷移金属の炭化物,窒
化物,炭窒化物等公知の化合物からなり、また、結合相
の成分としては鉄族金属を主成分とするが、Cr等の公
知の物質を加えることもできる。本発明で用いる接合用
超硬合金は、発明の目的からして鋼の物性と高硬度の超
硬合金との中間的な物性をもつことが望ましく、結合相
量が焼結体中で35〜50重量%の範囲の超硬合金を用
いるとよい。Means for Solving the Problems The present inventors have made various studies to solve the above-mentioned problems of the prior art. Then, a high-strength cemented carbide composite material as described below was obtained. In this invention, the cemented carbide of high hardness, the cemented carbide for joining and the cemented carbide and steel are each diffusion-bonded, and the ratio of the bonding phase in the cemented carbide for joining is determined by the high hardness. From the binder phase in cemented carbide
One feature is that it is larger by 45% by weight. Still another feature is that the combined volume of the cemented carbide and the high-hardness cemented carbide is smaller than the volume of the steel and the thickness of the η phase between the cemented carbide and the steel is controlled. There is a feature in the point. The cemented carbide comprises a hard phase and a binder phase, and the hard phase is composed of known compounds such as carbides, nitrides, carbonitrides of WC and transition metals of groups 4a, 5a and 6a of the periodic table. As a component of the binder phase, the main component is an iron group metal, but a known substance such as Cr can also be added. The cemented carbide for joining used in the present invention desirably has intermediate properties between the properties of steel and the cemented carbide of high hardness for the purpose of the invention, and the amount of the binder phase in the sintered body is 35 to 50%. It is preferable to use a cemented carbide in the range of 50% by weight.
【0009】ここで結合相としては、通常Coが用いら
れるが、使用の条件によって種々の組成のものが用いら
れる。耐蝕性が要求される条件で使用する場合には、C
o−Niの結合相が、また機械的強度,耐蝕性,耐酸化
性が要求される場合にはCo−Ni−Cr系の結合相
が、また耐蝕性、耐酸化性が要求される場合にはNi−
Cr系の結合相がそれぞれ用いられる。例えば、土木用
の工具の場合、岩盤に穴をあける場合は強度の高い、C
o系やCo−Ni−Cr系などが使用され、粘土質の地
盤に穴をあける場合等には粘土の性質によって、結合相
が決定される。またロールなどのように高温でしかも種
々の潤滑剤が使用される場合にはCo−Ni−Cr系の
結合相が使用される。Here, Co is usually used as the binder phase, but various compositions may be used depending on the conditions of use. When used under conditions requiring corrosion resistance, C
An o-Ni binder phase is required. If mechanical strength, corrosion resistance and oxidation resistance are required, a Co-Ni-Cr based binder phase is required, and if corrosion resistance and oxidation resistance are required. Is Ni-
A Cr-based binder phase is used. For example, in the case of tools for civil engineering, when drilling holes in rock, the strength is high.
An o-based or Co-Ni-Cr-based material is used. When a hole is made in a clay ground, the binder phase is determined by the properties of the clay. When various lubricants are used at a high temperature such as a roll, a Co-Ni-Cr-based binder phase is used.
【0010】本発明は、超硬合金中の結合相量と焼結温
度が密接に関係していることから、接合用超硬合金中の
結合相量を従来では考えられない程多くの量を添加する
ことによって達成できたものである。すなわち通常用い
られる超硬合金は、本発明の高硬度の超硬合金に用いら
れる5〜20重量%の結合相量と同じ量であって、この
発明においても、5〜20重量%の結合相量は高硬度の
超硬合金として望ましい量である。接合用超硬合金中の
結合相量が35重量%未満であれば、高硬度超硬合金の
焼結温度に近付くために焼結温度を極めて精密に制御す
る必要がある。一方、結合相量が50重量%を越える場
合には、高硬度超硬合金との焼結または接合時に結合相
が液相となるために形状の変形が大きくなり、望ましく
ない。According to the present invention, since the amount of the binder phase in the cemented carbide is closely related to the sintering temperature, the amount of the binder phase in the cemented carbide for joining is set to an unusually large amount. This has been achieved by the addition. That is, the cemented carbide generally used has the same amount as the 5 to 20% by weight binder phase used in the high-hardness cemented carbide of the present invention. The amount is a desirable amount for a high-hardness cemented carbide. If the amount of the binder phase in the cemented cemented carbide is less than 35 % by weight, it is necessary to control the sintering temperature extremely precisely in order to approach the sintering temperature of the hardened cemented carbide. On the other hand, if the amount of the binder phase exceeds 50% by weight, the binder phase becomes a liquid phase at the time of sintering or joining with a high-hardness cemented carbide.
【0011】本願のような構成とすることにより、鋼
と、高硬度超硬合金および接合用超硬合金を1つの工程
で拡散接合できることに大きな特徴がある。このとき用
いられる鋼としては、0.4重量%以下の炭素を含有す
ることが望ましい。0.4%未満であれば、接合用超硬
合金と鋼の接合時に、接合用超硬合金中の炭素が鋼の方
へ移動し、接合用超硬合金の中に炭素量の不足部分が発
生し、そこには硬度の高いWxCoyCzなる化合物
(いわゆるη相)が形成される。η相には例えばW3C
o3Cのような化合物が存在する。本願発明の特徴は、
炭素含有量の少い鋼と、接合用超硬合金の界面に図1お
よび図2に示すように生じるη相を制御して、接合界面
の強度低下を防止することに最大の特徴がある。η相の
硬度は、図1に示すように接合用超硬合金より高い。一
般にη相は脆いとされているが、その厚みが50μmを
越えると複合材料全体の強度が低下する。1.5μm未
満だとη相の発生を確認することが困難となるが、本願
発明では鋼の炭素含有量と、接合用超硬合金の焼結温度
の組合わせによりη相の厚みを1.5μm〜50μmに
制御できる。The configuration as described in the present application is characterized in that steel, a high-hardness cemented carbide and a cemented carbide for joining can be diffusion-bonded in one step. The steel used at this time desirably contains 0.4% by weight or less of carbon. If it is less than 0.4%, at the time of joining the cemented cemented carbide and steel, the carbon in the cemented cemented carbide moves toward the steel, and there is a shortage of carbon in the cemented cemented carbide. Occurs, and a compound of high hardness WxCoyCz (a so-called η phase) is formed therein. For example, W3C
Compounds such as o3C exist. The features of the present invention are:
The greatest feature is that the η phase generated at the interface between the steel having a low carbon content and the cemented carbide for joining as shown in FIGS. 1 and 2 is controlled to prevent the strength of the joining interface from decreasing. The hardness of the η phase is higher than that of the cemented carbide as shown in FIG. Generally, the η phase is considered to be brittle, but its thickness is 50 μm.
If it exceeds, the strength of the entire composite material decreases. 1.5 μm or less
When it is full, it is difficult to confirm the generation of the η phase, but in the present invention, the carbon content of the steel and the sintering temperature of the cemented carbide for joining are
Can control the thickness of the η phase to 1.5 μm to 50 μm.
【0012】このような高強度超硬合金複合材料は、以
下のようにして製造される。即ち、5〜20重量%の結
合相とWCを主成分とする高強度の超硬合金をあらかじ
め1360〜1550℃の温度で焼結しておき、これに
接して、35〜50重量%の結合相とWCとからなる接
合用超硬合金の粉末またはあらかじめプレスした型押体
または焼結体を配置し、さらに鋼を配置して1200〜
1360℃で拡散接合または拡散接合と同時に焼結する
ことによって得ることができる。1200℃未満の温度
では接合強度が低下し、1360℃を越えると鋼の硬度
が低下する。このとき鋼としては、空冷でも焼入可能な
鋼を用いると、拡散接合、焼結、焼入を同時に処理する
ことができ、さらにη相の厚さを減少させることができ
る。前記した拡散接合および焼結は、ホットプレス法で
は焼結温度が低くても密度が高く焼結でき、しかも接合
強度を高く保つことができる。一方量産性等のような経
済性の面からは圧力を負荷しない常圧焼結の方が望まし
い。この場合、高硬度超硬合金を最下層として、その上
に接合用超硬合金さらに、鋼の順に積み重ねるのがより
望ましい。この場合要すれば、さらにこの上に重量物を
積んで、所望の荷重を負荷することも可能である。この
ようにして、5〜100Kg/cm2の圧力を前記した
接合界面に負荷することができる。[0012] Such a high-strength cemented carbide composite material is manufactured as follows. That is, a high-strength cemented carbide mainly composed of 5 to 20% by weight of a binder phase and WC is sintered at a temperature of 1360 to 1550 ° C. in advance, and 35 to 50% by weight of a binder is brought into contact therewith. A cemented carbide powder for joining consisting of a phase and WC or a pre-pressed or pressed body or sintered body is arranged, and steel is further arranged to 1200-200.
It can be obtained by sintering at 1360 ° C. at the same time as diffusion bonding or diffusion bonding. Temperature below 1200 ° C
In this case, the bonding strength decreases, and if it exceeds 1360 ° C, the hardness of steel
Decrease. At this time, if steel that can be quenched by air cooling is used, diffusion bonding, sintering, and quenching can be performed simultaneously, and the thickness of the η phase can be further reduced. In the above-described diffusion bonding and sintering, the hot press method enables sintering with a high density even at a low sintering temperature, and also keeps the bonding strength high. On the other hand, from the viewpoint of economy such as mass production, normal pressure sintering without applying pressure is more desirable. In this case, it is more preferable that the hardened cemented carbide is used as the lowermost layer, and the cemented cemented carbide is further stacked thereon in this order. In this case, if necessary, it is possible to further load a heavy object thereon and apply a desired load. In this way, a pressure of 5 to 100 kg / cm 2 can be applied to the above-mentioned bonding interface.
【0013】[0013]
【作用】本発明は、比較的低温で焼結できる接合用超硬
合金粉末を、予め焼結した高硬度の超硬合金に積層し、
前者の最適焼結温度に加熱することにより、その焼結と
相手材である高硬度の超硬合金との接合を同時に行うも
のである。さらに接合用超硬合金は、鋼が溶融しない温
度でも焼結が可能であることから、高硬度の超硬合金と
鋼との間に接合用超硬合金粉末の層を介在させて、前記
の焼結温度まで加熱することにより、順次硬さが低下し
た組成傾斜体を作製することができる。According to the present invention, a cemented carbide powder for joining that can be sintered at a relatively low temperature is laminated on a pre-sintered high-hardness cemented carbide,
By heating to the former optimum sintering temperature, the sintering and the joining with a high-hardness cemented carbide as a counterpart material are simultaneously performed. Furthermore, since the cemented carbide for joining can be sintered even at a temperature at which the steel does not melt, a cemented carbide powder layer is interposed between the cemented carbide of high hardness and steel, and By heating to the sintering temperature, a composition gradient body having a sequentially reduced hardness can be produced.
【0014】これらの方法によると、高硬度の超硬合金
および低硬度の超硬合金がそれぞれ最適焼結温度で焼結
されるため、ポア等欠陥のない良好な組織となる。また
鋼との接合においては超硬合金と鋼との界面に炭素が欠
乏したη相が形成されるが厚さが小さいために、接合界
面の強度低下はほとんどない。このためには、0.4w
t%以下の炭素を含有する鋼と焼結温度の低い超硬合金
を用いると達成できる。これらの複合体は接合用超硬合
金が高靱性、高延性を有するために応力緩和の働きを
し、また接合用超硬合金は高硬度の超硬合金に比べ熱膨
張係数が大きく鋼の熱膨張係数に近いため接合の際の熱
応力が小さくなり、鋼との接合性が極めて良好となる。
特に低炭素鋼を組み合わせたものでは融接が極めて容易
となることから、適用範囲が著しく広くなることが明ら
かとなった。According to these methods, a high-hardness cemented carbide and a low-hardness cemented carbide are sintered at the optimum sintering temperature, respectively, so that a good structure free from defects such as pores is obtained. Further, in bonding with steel, an η phase deficient in carbon is formed at the interface between the cemented carbide and steel, but the thickness is small, so that there is almost no decrease in the strength of the bonding interface. For this, 0.4w
This can be achieved by using a steel containing t% or less of carbon and a cemented carbide having a low sintering temperature. These composites act to relieve stress because the cemented carbide for joining has high toughness and high ductility, and the cemented carbide for joining has a larger coefficient of thermal expansion than that of high-hardness cemented carbide. Since the thermal expansion coefficient is close to the expansion coefficient, the thermal stress at the time of joining becomes small, and the joining property with steel becomes extremely good.
In particular, it has been clarified that the range of application is remarkably wide because fusion welding is extremely easy with a combination of low carbon steels.
【0015】このような本願発明の目的を達成するため
には、応力緩和層としての働きを持つ接合用超硬合金
は、高硬度超硬合金より体積が大きい方が望ましい。こ
のような複合材料は、鋼等との接合において、より強度
の高い接合が必要であり、例えば、鋼と接合用超硬合金
を接合する場合には、接合用超硬合金中に液相が出現す
る温度に近い温度で接合されることが多い。従って、高
硬度の超硬合金と接合用超硬合金の接する面が、接合用
超硬合金と鋼の接合面との間が離れている方が安定した
接合が行われる。従って、接合用超硬合金は高硬度超硬
合金より体積が大きい方が望ましい。また、接合用超硬
合金と、高硬度超硬合金とを合わせた大きさが、鋼の大
きさより小さい方が望ましいのは、価格面が主たる理由
である。しかしながら、熱効率的な面を考慮すると、溶
接のように極部加熱で処理される場合は大きな問題とは
ならないが、本願のように、高硬度超硬合金、接合用超
硬合金および鋼からなる組み合わせ体全体を加熱する場
合には、炉室内の大きさに制限があるため、むやみに大
きな組み合わせ体を加熱することは経済性が悪い。従っ
て鋼の大きさは主として経済性によって最適な大きさが
定まるのである。In order to achieve the object of the present invention, it is preferable that the cemented cemented carbide functioning as a stress relaxation layer has a larger volume than a high-hardness cemented carbide. Such a composite material requires higher strength bonding when bonding with steel or the like.For example, when bonding steel and a cemented carbide for joining, a liquid phase is contained in the cemented carbide for joining. In many cases, bonding is performed at a temperature close to the temperature at which it appears. Therefore, stable joining is performed when the surface where the cemented cemented carbide and the cemented cemented carbide are in contact with each other is farther from the joint surface between the cemented cemented carbide and steel. Therefore, it is desirable that the cemented carbide for joining has a larger volume than the hardened cemented carbide. The reason why the combined size of the cemented cemented carbide and the high-hardness cemented carbide is preferably smaller than the size of the steel is mainly due to the price. However, in consideration of the thermal efficiency, if the treatment is performed by extreme heating such as welding, this does not cause a serious problem. However, as in the present application, it is made of a high-hardness cemented carbide, a cemented cemented carbide and steel. In the case where the entire combination is heated, the size of the inside of the furnace chamber is limited. Therefore, it is not economical to heat a large combination unnecessarily. Therefore, the optimum size of the steel is determined mainly by economic efficiency.
【0016】また、接合用超硬合金中の結合相の割合が
10〜45重量%高硬度の超硬合金中の結合相の割合よ
り多いのは、10重量%未満の差では、両者の焼結温度
が近付きすぎて、工業的に温度制御することが困難だか
らである。また45重量%を超えた場合には、少なくと
も接合用超硬合金中の結合相の割合が50重量%を超え
るために接合用超硬合金の焼結時に形状を維持すること
が大変困難になるためである。また接合面の少なくとも
1つの面が主として平面であることが望ましい。この理
由は、平面は単純な形状であり工業的に望ましい形状だ
からである。当然のことではあるが、前記平面の一部が
曲面等を含むこともある。If the ratio of the binder phase in the cemented cemented carbide is greater than 10 to 45% by weight of the binder phase in the high-hardness cemented carbide, if the difference is less than 10% by weight, the sintering of the two is hardened. This is because the sintering temperature is too close to control the temperature industrially. If it exceeds 45% by weight, at least the proportion of the binder phase in the cemented carbide for joining exceeds 50% by weight, so that it becomes very difficult to maintain the shape during sintering of the cemented carbide for joining. That's why. Further, it is desirable that at least one of the joining surfaces is mainly flat. The reason for this is that the plane is a simple shape and an industrially desirable shape. As a matter of course, a part of the plane may include a curved surface or the like.
【0017】[0017]
(実施例1) WCの平均粒度が5.0μのWC粉末と
Co粉末をWC85%−Co15重量%になるように混
合した後、直径20mm,厚さ10mmの型押体を作製
し、次に、この型押体を真空焼結炉中1400℃で1時
間焼結し高硬度の超硬合金とした。一方、平均粒度5.
0μのWC粉末と、Co粉末をWC55%−Co45重
量%とした混合粉末を準備し、接合用超硬合金粉末とし
た。前記の高硬度の超硬合金より若干径の大きい超硬合
金金型の中に、高硬度の超硬合金を挿入し、その上に接
合用超硬合金粉末を厚さ15mmとなるように積層し、
約1ton/cm2の圧力をかけて加圧した。(Example 1) WC powder having an average WC particle size of 5.0 µm and Co powder were mixed so as to be 85% WC-15% Co by weight, and then an embossed body having a diameter of 20 mm and a thickness of 10 mm was produced. The embossed body was sintered in a vacuum sintering furnace at 1400 ° C. for 1 hour to obtain a high-hardness cemented carbide. On the other hand, average particle size5.
A mixed powder of 0 μC WC powder and Co powder of WC 55% -Co 45% by weight was prepared and used as cemented cemented carbide powder. Insert the high-hardness cemented carbide into a cemented carbide mold slightly larger in diameter than the high-hardness cemented carbide described above, and laminate the cemented carbide powder for bonding to a thickness of 15 mm thereon. And
Pressure was applied by applying a pressure of about 1 ton / cm 2 .
【0018】高硬度の超硬合金上に接合用超硬合金が型
押された組み合わせ体を、超硬合金金型よりとり出し、
その上にさらに厚さ30mmのS45Cの鋼を積層して
真空雰囲気下、1250℃,1時間,圧力50kg/c
m2でホットプレス焼結した。接合体の断面を研磨ラッ
ピングした後顕微鏡観察したところ接合用超硬合金と高
硬度の超硬合金の接合界面は通常の超硬合金の組成を有
しており、また、鋼と接合用超硬合金の界面には約30
μmの厚さのη相が形成されていたが、ポア等の欠陥は
なかった。同様の大きさの組合わせ体を、無加圧の状態
で1250℃および1290℃で焼結した。1250℃
で焼結したものは若干のポアーが接合用超硬合金中に見
られたが1290℃で焼結したものはポアーが発見でき
なかった。いずれも接合用超硬合金と鋼との界面にはη
相が形成されていた。A combined body in which a cemented carbide for bonding is stamped on a cemented carbide of high hardness is taken out of a cemented carbide mold,
Further, S45C steel having a thickness of 30 mm is further laminated thereon, and under a vacuum atmosphere, 1250 ° C., 1 hour, pressure 50 kg / c.
Hot press sintering at m 2 . After polishing and lapping the cross section of the joined body and observing with a microscope, the joining interface between the cemented cemented carbide and the high-hardness cemented carbide has the composition of a normal cemented carbide. About 30 at the alloy interface
Although an η phase having a thickness of μm was formed, there were no defects such as pores. Combinations of similar size were sintered at 1250 ° C. and 1290 ° C. without pressure. 1250 ° C
Some pores were found in the cemented cemented carbide for those sintered at 1290, but no pores were found for the one sintered at 1290 ° C. In any case, the interface between the cemented carbide and steel is η
A phase had formed.
【0019】(実施例2) WCの平均粒度が4μのW
C粉末とCo粉末を、WC90%−Co10重量%とな
るように混合した後、直径100mm,厚さ20mmの
型押体を作製し、高硬度の超硬合金とした。次に、この
型押体を真空焼結炉中1440℃で焼結した。一方、平
均粒度4μのWC粉末とCo粉末をWC65%−Co3
5重量%とした混合粉末を準備し、接合用超硬合金粉末
とした。前記の高硬度の超硬合金より若干径の大きい超
硬合金金型の中に、高硬度の超硬合金を挿入し、その上
に接合用超硬合金を厚さ30mmとなるように積層し、
さらにその上に直径100mm,厚さ50mmの溶製材
であるS25Cの鋼板を積層し、約10kg/cm2の
圧力で1270℃で加圧焼結した。この組み合わせ体を
超硬合金金型より取り出し、真空雰囲気のもとで1時間
焼結した。得られた焼結体の強度を測定したところ接合
用超硬合金とほぼ同等であった。同様の大きさの組合わ
せ体を無加圧の状態で1270℃および1300℃で焼
結した。1270℃で焼結したものには接合用超硬合金
中にポアーがあったが、1300℃で焼結したものには
ポアーがなかった。鋼と接合用超硬合金の界面にはいず
れもη相が形成されていた。Example 2 W having an average particle size of WC of 4 μm
After the C powder and the Co powder were mixed so that WC was 90% -Co 10% by weight, an embossed body having a diameter of 100 mm and a thickness of 20 mm was produced, and a high-hardness cemented carbide was obtained. Next, the embossed body was sintered at 1440 ° C. in a vacuum sintering furnace. On the other hand, WC powder and Co powder having an average particle size of 4 μm
A mixed powder of 5% by weight was prepared and used as a cemented carbide powder for joining. A high-hardness cemented carbide is inserted into a cemented carbide mold having a slightly larger diameter than the high-hardness cemented carbide, and a cemented carbide for bonding is laminated thereon to a thickness of 30 mm. ,
Further, a steel plate of S25C, which is an ingot having a diameter of 100 mm and a thickness of 50 mm, was laminated thereon, and pressure-sintered at 1270 ° C. under a pressure of about 10 kg / cm 2 . The combined body was taken out of the cemented carbide mold and sintered for 1 hour under a vacuum atmosphere. When the strength of the obtained sintered body was measured, it was almost the same as that of the cemented carbide for joining. Combinations of similar size were sintered at 1270 ° C. and 1300 ° C. without pressure. Those sintered at 1270 ° C. had pores in the cemented carbide, but those sintered at 1300 ° C. did not have pores. An η phase was formed at the interface between the steel and the cemented carbide for joining.
【0020】[0020]
【発明の効果】現在、高硬度超硬合金のみを工具あるい
は、機械部品に適用されている例が多い。しかしなが
ら、鋼等に比較すると超硬合金は延性及び靱性に乏しい
ために、衝撃負荷の大きな分野へは使用されていなかっ
た。本発明による複合超硬合金は、使用時の衝撃負荷な
どに対して、Coの含有量が多い超硬合金が緩和層とな
るため、延靱性が著しく向上した複合超硬合金とするこ
とができる。また高硬度超硬合金と鋼との接合にはCu
あるいはAgなどの軟質ろう材を用いたろう接が多く利
用されているが、本発明による超硬合金複合体は接合面
が低炭素鋼であるために、ろう接におけるろう材の選択
巾が広がり、接合密度の向上を図れる。さらには、鋼を
加えた複合体であるため従来の超硬合金ではほとんど不
可能であった融接法が適用でき、超硬合金の利用範囲が
大幅に拡大される。At present, there are many examples in which only high-hardness cemented carbide is applied to tools or mechanical parts. However, compared to steel and the like, cemented carbides have poor ductility and toughness, and thus have not been used in fields with large impact loads. The composite cemented carbide according to the present invention can be a composite cemented carbide with significantly improved ductility because the cemented carbide having a high Co content becomes a relaxation layer against impact load during use. . In addition, for joining the hardened cemented carbide and steel, Cu
Alternatively, brazing using a soft brazing material such as Ag is often used, but the cemented carbide composite according to the present invention has a low joining surface of low carbon steel, so that the range of choice of brazing material in brazing is widened, The joining density can be improved. Furthermore, since it is a composite including steel, a fusion welding method, which was almost impossible with conventional cemented carbide, can be applied, and the range of use of cemented carbide can be greatly expanded.
【図1】本願発明で得られた複合材料の硬度分布を示
す。FIG. 1 shows a hardness distribution of a composite material obtained by the present invention.
【図2】本願発明で得られた複合材料の組織写真を示
す。FIG. 2 shows a structure photograph of the composite material obtained by the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 昌宏 北海道札幌郡広島町松葉町1丁目1番地 8 (72)発明者 宮腰 康樹 北海道札幌市手稲区手稲前田505番地27 (72)発明者 牧野 功 北海道札幌市白石区南郷通9丁目北2番 地19 (72)発明者 金山 達也 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 (72)発明者 山口 和浩 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 (72)発明者 丸山 正男 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 (72)発明者 柴田 功 北海道空知郡奈井江町字奈井江776番地 北海道住電精密株式会社内 (72)発明者 湊 嘉洋 兵庫県伊丹市昆陽北一丁目1番1号 住 友電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭52−50906(JP,A) 特開 昭53−1609(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiro Sakai 1-1-1 Matsuba-cho, Hiroshima-cho, Sapporo-gun, Hokkaido 8 (72) Inventor Yasugi Miyakoshi 505-27 Teinemaeda, Teine-ku, Sapporo-city, Hokkaido 27 (72) Inventor Isao Makino (2) Inventor Tatsuya Kanayama 776, Naie-cho, Naie-cho, Sorachi-gun, Hokkaido Inside the Hokkaido Sumiden Precision Co., Ltd. (72) Inventor Kazuhiro Yamaguchi, Naie-cho, Hokkaido Sorachi-gun, Sapporo City, Hokkaido 776 Naie, Hokkaido Inside Sumitomo Precision Co., Ltd. (72) Inventor Masao Maruyama, 776 Naie, Naie-cho, Sorachi-gun, Hokkaido In-house Hokkaido Sumiden Precision Co., Ltd. (72) Isao Shibata, 776 Naie, Naie-cho, Sorachi-gun, Hokkaido Hokkaido Sumitomo Precision Co., Ltd. (72) Inventor Yoshihiro Minato 1-1-1, Kunyokita, Itami-shi, Hyogo Prefecture Sumitomo Electric The Corporation Itami Works (56) Reference Patent Sho 52-50906 (JP, A) JP Akira 53-1609 (JP, A)
Claims (4)
び接合用超硬合金と鋼が拡散接合されてなり、該接合用
超硬合金中の結合相が鉄族金属であり、かつ結合相の焼
結体中に占める割合が35〜50重量%で、かつ、接合
用超硬合金と鋼の間のη相の厚みが50μ以下1.5μ
以上で、かつ、接合用超硬合金は高硬度の超硬合金より
体積が大きく拡散接合面のうち、少なくとも1つの面が
平面であることを特徴とする低炭素鋼を組合わせた高強
度超硬合金複合材料。1. A cemented carbide having a high hardness and a cemented carbide for joining, and a cemented cemented carbide and a steel are diffusion-joined, and a binder phase in the cemented carbide for joining is an iron group metal; And the proportion of the binder phase in the sintered body is 35 to 50% by weight, and the thickness of the η phase between the cemented cemented carbide and the steel is 50 μm or less and 1.5 μm or less.
As described above, the cemented carbide for joining has a larger volume than the cemented carbide of high hardness, and at least one of the diffusion joining surfaces is a flat surface. Hard alloy composite material.
とを特徴とする請求項1記載の低炭素鋼を組合わせた高
強度超硬合金複合材料。2. The high-strength cemented carbide composite material according to claim 1, wherein the carbon content in the steel is 0.4% by weight or less.
る高硬度の超硬合金を1360〜1550℃の温度で焼
結し、高硬度の超硬合金に接して、35〜50重量%の
結合相と硬質相とからなる接合用超硬合金の粉末、また
はあらかじめプレスした型押体または焼結体を配置し、
さらに該接合用超硬合金に接して鋼を配置して焼結およ
び/または拡散接合し、該接合用超硬合金と鋼の間のη
相の厚みが50μ以下1.5μ以上で焼結後の接合用超
硬合金の体積は高硬度超硬合金の体積より大きいことを
特徴とする低炭素鋼を組合わせた高強度超硬合金複合材
料。3. A cemented carbide of high hardness comprising 5 to 20% by weight of a binder phase and a hard phase is sintered at a temperature of 1360 to 1550.degree. A cemented carbide powder for bonding consisting of a binder phase and a hard phase by weight%, or a pressed body or sintered body that has been pressed in advance is arranged.
Further, the steel is disposed in contact with the cemented cemented carbide and sintered and / or diffusion-bonded, and η between the cemented cemented carbide and the steel is determined.
A high-strength cemented carbide composite combining low carbon steel, characterized in that the thickness of the cemented cemented carbide after sintering has a phase thickness of 50μ or less and 1.5μ or more and is larger than the volume of the high-hardness cemented carbide. material.
接合および/または焼結することを特徴とする請求項3
項記載の低炭素鋼を組合わせた高強度超硬合金複合材料
の製造方法。4. Diffusion bonding and / or sintering under a pressure of 5 to 150 kg / cm 2.
A method for producing a high-strength cemented carbide composite material comprising a combination of the low-carbon steel according to the above item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4275270A JP2760926B2 (en) | 1992-09-17 | 1992-09-17 | High-strength cemented carbide composite material combining low carbon steel and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4275270A JP2760926B2 (en) | 1992-09-17 | 1992-09-17 | High-strength cemented carbide composite material combining low carbon steel and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06108118A JPH06108118A (en) | 1994-04-19 |
JP2760926B2 true JP2760926B2 (en) | 1998-06-04 |
Family
ID=17553092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4275270A Expired - Fee Related JP2760926B2 (en) | 1992-09-17 | 1992-09-17 | High-strength cemented carbide composite material combining low carbon steel and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2760926B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100422092B1 (en) * | 1998-03-25 | 2004-06-11 | 대우종합기계 주식회사 | Sliding parts and manufacturing method thereof |
KR20030052618A (en) * | 2001-12-21 | 2003-06-27 | 대우종합기계 주식회사 | Method for joining cemented carbide to base metal |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5250906A (en) * | 1975-10-23 | 1977-04-23 | Masahide Funai | Tool attached with super hard alloy and process for producing the tool |
JPS531609A (en) * | 1976-06-29 | 1978-01-09 | Chiaki Tamura | Method of uniting sintered alloy pieces |
-
1992
- 1992-09-17 JP JP4275270A patent/JP2760926B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06108118A (en) | 1994-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10272497B2 (en) | Cladded articles and methods of making the same | |
US4145213A (en) | Wear resistant alloy | |
US4340650A (en) | Multi-layer composite brazing alloy | |
CA1322437C (en) | Method of bonding a tool material to a holder and tools made by the method | |
US4703884A (en) | Steel bonded dense silicon nitride compositions and method for their fabrication | |
CN110465669B (en) | Gradient composite cubic boron nitride material and preparation process and application thereof | |
US4628178A (en) | Tool for warm and hot forgings and process for manufacturing the same | |
US3819364A (en) | Welding hard metal composition | |
JPH073306A (en) | High-strength sintered hard alloy composite material and production thereof | |
JP2760926B2 (en) | High-strength cemented carbide composite material combining low carbon steel and method for producing the same | |
JP3743793B2 (en) | Composite roll for hot rolling, method for producing the same, and hot rolling method using the same | |
Ellis et al. | Cermets | |
AU2020101497A4 (en) | Molybdenum-based alloy coating and substrate having the alloy coating | |
JP4039725B2 (en) | Bonding material of cemented carbide and steel and manufacturing method thereof | |
JP2835709B2 (en) | Manufacturing method of composite tool material in which steel and cemented carbide are joined | |
JP4221703B2 (en) | Cemented carbide roll composite roll manufacturing method and roll | |
RU2747054C1 (en) | Multilayer carbide plate and method for its production (options) | |
JPS63203705A (en) | Composite sintered body of cubic boron nitride and cemented carbide | |
JP3690618B2 (en) | Cemented carbide composite roll | |
JP2005262321A (en) | Composite roll made of cemented carbide | |
EP3318655A1 (en) | Laminated tube and manufacturing method therefor | |
Hasan | Sustainable design of machine components: a critical review of carbide/steel laminate composite | |
JPH0712566B2 (en) | Method for manufacturing high hardness material joining type tool | |
JPH05202402A (en) | High strength and corrosion and wear resistant member and production tereof | |
JP4320699B2 (en) | Composite roll for rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |