[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000135727A - Injection molding method and injection molding die - Google Patents

Injection molding method and injection molding die

Info

Publication number
JP2000135727A
JP2000135727A JP10311544A JP31154498A JP2000135727A JP 2000135727 A JP2000135727 A JP 2000135727A JP 10311544 A JP10311544 A JP 10311544A JP 31154498 A JP31154498 A JP 31154498A JP 2000135727 A JP2000135727 A JP 2000135727A
Authority
JP
Japan
Prior art keywords
temperature
cavity
mold
heating medium
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311544A
Other languages
Japanese (ja)
Inventor
Hidenobu Kishi
秀信 岸
Yasuo Yamanaka
康生 山中
Toshiharu Hatakeyama
寿治 畠山
Jun Watabe
順 渡部
Kiyotaka Sawada
清孝 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10311544A priority Critical patent/JP2000135727A/en
Publication of JP2000135727A publication Critical patent/JP2000135727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold and its heating method for heating and cooling quickly without complicating the composition of a mold in a precision plastic molding method. SOLUTION: A heating medium such as a heater 4 is disposed in the vicinity of a cavity, and heat insulation layers 3 are disposed mainly in the direction of not disposing the heating medium in the vicinity of the cavity, and the heat conduction from a cavity section being molded to the direction of not disposing the heating medium is restricted, and mold main bodies X and Y are controlled at a given temperature by a separate heating medium 4 (A temperature control medium is supplied in pipelines or a heater is used.), and the temperature in the vicinity of the cavity is controlled directly by a heating medium 1 nearby, and the temperature is set higher than those of the mold main bodies X and Y at all times throughout the whole molding process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】プラスチックレンズ等の精密成形
品の射出成形に関するものであり、複写機、ファックス
等の、高精度光学機器における、プラスチック製光学素
子の射出成形に利用して有効なものであり、成形型の加
熱、冷却サイクルを無理無く短縮して、上記射出成形機
による精密なプラスチック製光学素子の生産性を顕著に
向上させることができるものである。
The present invention relates to the injection molding of precision molded products such as plastic lenses, and is effective for injection molding of plastic optical elements in high-precision optical equipment such as copiers and fax machines. In addition, the heating and cooling cycle of the mold can be shortened without difficulty, and the productivity of precision plastic optical elements by the injection molding machine can be significantly improved.

【0002】[0002]

【従来の技術】射出成形における成形品の成形精度を向
上させ、内部歪みを低減するための従来技術は種々ある
が、キャビティ鏡面駒内に発熱体を装填し、射出直後に
加熱することで射出直後のキャビティ内樹脂の温度差を
低減するものとして特開平9−183146号公報に記
載されたもの(「射出成形方法および射出成形用金
型」)があり、また、キャビティ型壁面に熱容量の小さ
い薄膜電気抵抗体を形成することで、成形時間の延長を
最小限に抑えつつ、キャビティ部の昇温を可能にするも
のとして特開平7−329068号公報に記載されたも
の(「プラスチック射出成形およびその成形型を用いた
プラスチック射出成形法」)があり、さらに、主型とキ
ャビティー構成部を別部品とし、かつ両者間に断熱層を
設け、さらにキャビティ構成入れ駒内には温調管路を設
けた金型構造とし、温調管路に熱水及び冷水を供給して
ハイサイクル成形を行うものとして特開平9−3146
11号公報に記載されたもの(「温度制御容易な金型構
造」)がある。
2. Description of the Related Art There are various conventional techniques for improving the molding accuracy of a molded product in injection molding and reducing internal distortion. However, a heating element is loaded in a cavity mirror piece and heated by injection immediately after injection. Japanese Patent Application Laid-Open No. 9-183146 ("Injection Molding Method and Injection Mold") is known to reduce the temperature difference between the resin in the cavity immediately after. By forming a thin-film electric resistor, it is possible to raise the temperature of the cavity while minimizing the extension of the molding time, as described in JP-A-7-329068 (“Plastic injection molding and Plastic injection molding method using the mold ”), the main mold and the cavity component are separate parts, and a heat insulating layer is provided between the two. Patent as to the configuration put the piece and the mold structure in which a temperature control conduit, performs high-cycle molding by supplying hot water and cold water temperature control pipe 9-3146
No. 11 (“a mold structure with easy temperature control”).

【0003】ところで、温調媒体、ヒーターなどで金型
本体を一定温度に管理する通常金型の場合は、射出直後
の樹脂からの放熱によりキャビティ近傍の温度が金型全
体の設定温度よりも大きく上昇し、元の温度に戻るまで
の時間が長くなる。このために成形サイクルを短縮でき
ない。また、射出直後の樹脂からの放熱は厚肉部あるい
は大面積部でより多くなるため、特に射出直後において
キャビティ近傍の温度分布が不均一となり、さらに、型
開、型締などでPL面近傍のキャビティ部の温度が変動
しやすく、さらに、急速加熱・冷却を含むサイクル制御
がほとんど不可能であるという問題がある。このような
ことから、ヒーターなどで金型本体を一定温度に管理す
る通常金型では、安定した温度制御、均一温度分布の維
持あるいはキャビティ形状に合わせた温度分布制御が必
要な精密成形を行うことは困難である。また、キャビテ
ィ近傍に加熱媒体を配置した金型(ヒーター、温調媒体
を管路に供給するもの。例えば特開平9−183146
号公報)の場合は、加熱したときに金型全体に熱が逃げ
るため、急速加熱、急速冷却は難しく、また、キャビテ
ィ近傍の温度は比較的安定し、温度分布も加熱媒体の配
置次第である程度改善されるが、温度分布改善のために
部分加熱するとその分だけ成形サイクルが長くなるとい
う問題が生じる。
In the case of a normal mold in which the mold body is maintained at a constant temperature using a temperature control medium, a heater, or the like, the temperature near the cavity is higher than the set temperature of the entire mold due to heat radiation from the resin immediately after injection. It takes a long time to rise and return to the original temperature. Therefore, the molding cycle cannot be shortened. Further, since the heat radiation from the resin immediately after the injection becomes larger in the thick portion or the large area portion, the temperature distribution near the cavity becomes non-uniform, especially immediately after the injection, and further, in the vicinity of the PL surface due to mold opening, mold clamping, and the like. There is a problem that the temperature of the cavity is easily fluctuated, and that cycle control including rapid heating and cooling is almost impossible. For this reason, precision molding that requires stable temperature control, maintenance of a uniform temperature distribution, or temperature distribution control according to the cavity shape is required for ordinary molds that maintain the mold body at a constant temperature with a heater or the like. It is difficult. Also, a mold in which a heating medium is arranged in the vicinity of the cavity (a heater and a heater for supplying a temperature control medium to a pipeline.
In the case of Japanese Patent Application Laid-Open No. H11-270, heat is released to the entire mold when heated, so that rapid heating and rapid cooling are difficult, and the temperature near the cavity is relatively stable, and the temperature distribution depends to some extent on the arrangement of the heating medium. However, if the partial heating is performed to improve the temperature distribution, there is a problem that the molding cycle becomes longer by that amount.

【0004】他方、キャビティ表面に薄膜ヒーターを配
置した金型(例えば、特開平7−329068号公報)
の場合は、キャビティ表面のみの加熱のため、加熱する
範囲の熱容量が小さく、急速加熱が可能であり、また型
温との差が大きくなるので、加熱後の急速冷却も可能で
ある。しかし、型構造が複雑であり、薄膜ヒーターの寿
命が短く、その交換に多大なコストがかかる。さらに、
キャビティ部近傍で加熱媒体と冷却媒体を併用する(冷
却媒体を管路に供給する)金型の場合は、ある程度急速
加熱及び急速冷却が可能であるが、型構造が複雑でコス
ト高い。さらに、キャビティ近傍部の周囲を断熱層で囲
んだ金型(例えば、特開平9−314611号公報)の
場合は、キャビティ近傍を加熱するときの加熱影響範囲
の熱容量が小さいので急速加熱は容易であるが、加熱媒
体のみの場合は放熱しにくい構造のため、冷却に長時間
を要する。他方、冷却媒体を併用すれば急速冷却も可能
となるが、そうすると金型構造が複雑でコスト高とな
り、また、断熱板の形状の公差が大きいので、キャビテ
ィ全周囲を断熱層で囲んだ形で精度の良い型にするの
は、構造が非常に複雑となって、コストがかかるという
問題がある。
On the other hand, a mold in which a thin film heater is disposed on the surface of a cavity (for example, Japanese Patent Application Laid-Open No. 7-329068).
In the case of (1), since only the cavity surface is heated, the heat capacity in the heating range is small, rapid heating is possible, and the difference from the mold temperature is large, so rapid cooling after heating is also possible. However, the mold structure is complicated, the life of the thin film heater is short, and the replacement thereof is very expensive. further,
In the case of a mold that uses both a heating medium and a cooling medium in the vicinity of the cavity (supply the cooling medium to the pipeline), rapid heating and cooling can be performed to some extent, but the mold structure is complicated and costly. Furthermore, in the case of a mold in which the vicinity of the cavity is surrounded by a heat insulating layer (for example, Japanese Patent Application Laid-Open No. 9-314611), rapid heating is easy because the heat capacity of the area affected by heating when heating the vicinity of the cavity is small. However, in the case of using only a heating medium, it takes a long time to cool because of a structure in which heat is hardly radiated. On the other hand, rapid cooling is also possible if a cooling medium is used in combination, but this makes the mold structure complicated and expensive, and because the tolerance of the shape of the heat insulating plate is large, the entire cavity is surrounded by a heat insulating layer. The use of a high-precision mold has a problem in that the structure becomes very complicated and costs increase.

【0005】[0005]

【解決しようとする課題】本発明は上記問題の解消を目
的とし、金型の構図を複雑にすることなしに加熱、冷却
を速やかにすることができるように、金型及びその加熱
法を工夫することをその課題とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to devise a mold and a heating method thereof so that heating and cooling can be performed quickly without complicating the composition of the mold. The task is to do so.

【0006】[0006]

【課題解決のために講じた手段】上記課題解決のために
講じた手段は次の要素(イ)乃至(ニ)によって構成さ
れるものである。 (イ)キャビティ近傍にヒーター等の加熱媒体を配置
し、かつキャビティ近傍の主に加熱媒体のない方向に断
熱層を配置して、成形中のキャビティ部から加熱媒体の
ない方向への熱伝導を制限すること。 (ロ)金型本体を別の加熱媒体(管路に温調媒体供給ま
たはヒーター使用)で一定温度に制御すること。 (ニ)キャビティ近傍の温度を近傍の加熱媒体で直接制
御し、成形全過程で常に金型本体よりも高くすること。
Means taken to solve the problem The means taken to solve the above problem are constituted by the following elements (a) to (d). (A) A heating medium such as a heater is arranged near the cavity, and a heat insulating layer is arranged mainly in the direction without the heating medium near the cavity to transfer heat from the cavity being formed to the direction without the heating medium. Restrict. (B) To control the mold body to a constant temperature with another heating medium (supplying a temperature control medium to a pipe or using a heater). (D) The temperature in the vicinity of the cavity is directly controlled by the heating medium in the vicinity, so that the temperature is always higher than the mold body in the entire molding process.

【0007】[0007]

【作用】急速加熱した場合もその熱の影響範囲が上記の
断熱層によって制限されるので、その分だけ成形サイク
ルが長くなることが回避され、また、キャビティ部から
の放熱方向を制限することで型本体への放熱が低減され
るので、キャビティ部の昇温に必要な熱量が低減され、
またそのために配置する加熱媒体の数または大きさ及び
電力定格(ワット数)も低減される。また、特に冷却媒
体も使用しないので、さらに構造が単純になり、キャビ
ティ構成部自体を小さくでき、金型製作及び維持コスト
も低減される。また、安価なカートリッジヒーターを使
用できるため、型製作及びメンテナンスも容易で低コス
トで済み、金型本体部をキャビティ近傍よりも低い温度
に設定することで急速冷却が可能であり、その結果、成
形サイルが短縮され、また、成形サイクルを犠牲にする
ことなしに、昇温を含む温度サイクル制御を行うことが
できるようになる。さらに、キャビティ近傍で直接温度
制御を行うので型開時などもキャビティ近傍の温度が安
定し、キャビティ近傍の温度の不安定性に起因する上記
問題が効果的に回避される。
In the case of rapid heating, the range of influence of the heat is limited by the heat insulating layer, so that the molding cycle is prevented from being prolonged by that much, and the direction of heat radiation from the cavity is restricted. Since the heat radiation to the mold body is reduced, the amount of heat required to raise the temperature of the cavity is reduced,
In addition, the number or size of the heating medium to be arranged and the power rating (wattage) are also reduced. In addition, since no cooling medium is used, the structure is further simplified, the cavity constituting part itself can be made smaller, and the cost for manufacturing and maintaining the mold is reduced. In addition, since an inexpensive cartridge heater can be used, mold production and maintenance are easy and at low cost, and rapid cooling is possible by setting the mold body to a temperature lower than the vicinity of the cavity. The sylle is shortened, and temperature cycle control including temperature rise can be performed without sacrificing the molding cycle. Further, since the temperature is directly controlled in the vicinity of the cavity, the temperature in the vicinity of the cavity is stabilized even when the mold is opened, and the above-mentioned problem caused by the instability of the temperature in the vicinity of the cavity is effectively avoided.

【0008】[0008]

【実施例】次いで、図面を参照しつつ実施例を説明す
る。
Next, an embodiment will be described with reference to the drawings.

【実施例1】 〔構成〕図1に実施例の金型はSUS製
で、プラスチック透過板(PC製、8×20×100)
の射出成形金型であり、キャビティ側面を構成する駒に
計4本のキャビティ部温度制御用のカ一トリッジヒータ
ー1を、キャビティ壁面から15mmのところに設置して
あり、キャビティ部温度制御用カートリッジヒーター1
とキャビティ2の間に制御用熱電対Sを設置し、キャビ
ティ近傍の上記カートリッジヒーター1のない方向であ
って鏡面形成駒の外側にセラミック系材料の断熱板3
を、キャビテイ壁面から25mmのところに設置している
(固定側金型X、可動側金型Y共)。また、固定側金型
X、可動側金型Yともに、その外側にそれぞれ3本ずつ
金型本体温度制御用のカートリッジヒーター4を設置し
ており、温度比較用の熱電対を熱電対A,B,Cを設置
している。固定側のキャビティ部温度制御用ヒーター
1、可動側キャビティ部温度制御用ヒーター1、固定側
の金型本体温度制御用ヒーター4、可動側の金型本体温
度制御用ヒーター4はそれぞれ異なるプログラムコント
ローラーに接続され、個別に制御される。金型本体温度
制御用ヒーター4はともに一定温度(110℃)に制御
され、キャビティ部温度制御ヒーター1はすべて一定温
度(130℃)に制御される。
Embodiment 1 [Configuration] In FIG. 1, the mold of the embodiment is made of SUS, and a plastic transmission plate (manufactured by PC, 8 × 20 × 100).
In this case, a total of four cartridge heaters 1 for controlling the temperature of the cavity are installed on a piece constituting the side surface of the cavity at a position 15 mm from the wall surface of the cavity, and a cartridge for controlling the temperature of the cavity is provided. Heater 1
A control thermocouple S is provided between the cavity and the cavity 2, and a heat insulating plate 3 made of a ceramic material is provided in the direction near the cavity without the cartridge heater 1 and outside the mirror surface forming piece.
Is set 25 mm from the cavity wall surface (both the fixed mold X and the movable mold Y). In addition, each of the fixed mold X and the movable mold Y is provided with three cartridge heaters 4 for controlling the temperature of the mold body outside thereof, and thermocouples for temperature comparison are thermocouples A and B. , C are installed. The heater 1 for controlling the temperature of the cavity on the fixed side, the heater 1 for controlling the temperature of the cavity on the movable side, the heater 4 for controlling the temperature of the mold body on the fixed side, and the heater 4 for controlling the temperature of the mold body on the movable side are respectively different program controllers. Connected and controlled individually. The mold body temperature control heaters 4 are both controlled at a constant temperature (110 ° C.), and the cavity temperature control heaters 1 are all controlled at a constant temperature (130 ° C.).

【0009】〔動作・効果〕図2にキャビティ近傍にヒ
ーター及び断熱層を設置した本金型で温度制御した場合
と同金型の断熱板をSUS板に交換した金型で温度制御
した場合の熱電対A,B,Cの検知温度を示している。
なお、断熱板がない場合はキャビテイ部制御用ヒーター
1からの放熱の影響で、金型本体部はキャビティ部2と
15℃しか差がつかず、実際には115℃であった。し
かし、断熱板がある場合は安定して110℃で制御され
た(さらに40℃差まで安定して温度差をつけることが
可能であった)。グラフを見ると、断熱板がないと外側
の熱電対Cとキャビティ近傍の熱電対A,Bであまり温
度差がつかないにも関わらず、金型本体への放熱の影響
でキャビティ鏡面近傍の熱電対Bは側面近傍の熱電対A
よりも温度が低く、キャビテイ近傍の温度分布が不均一
になっていることがわかる。これに対して、断熱板3を
配置した本発明による金型では外側の熱電対Cとキャビ
ティ近傍の熱電対A,Bで大きく温度差が付いているに
も関わらず、断熱板3がない場合に比べ、キャビティ近
傍で均一な温度分布が実現できていることがわかる。こ
のように断熱板を配置して加熱媒体がない方向への熱伝
導を制限することにより、キャビテイ近傍の均一温度分
布を保ったまま、金型本体部とキャビティ部2に温度差
をつけられることがわかる。
[Operation / Effect] FIG. 2 shows a case where the temperature is controlled by a main mold having a heater and a heat insulating layer in the vicinity of the cavity and a case where the temperature is controlled by a mold in which the heat insulating plate of the same mold is replaced with a SUS plate. The detection temperatures of the thermocouples A, B, and C are shown.
In the case where there was no heat insulating plate, the mold main body was only 15 ° C. different from the cavity 2 due to the heat radiation from the cavity control heater 1, and was actually 115 ° C. However, when there was a heat insulating plate, the temperature was stably controlled at 110 ° C. (furthermore, it was possible to stably provide a temperature difference of up to 40 ° C.). As can be seen from the graph, without a heat insulating plate, the thermocouple near the cavity mirror surface is affected by the heat radiation to the mold body, although the temperature difference between the outer thermocouple C and the thermocouples A and B near the cavity is not so large. The pair B is a thermocouple A near the side
It can be seen that the temperature is lower than the temperature and the temperature distribution near the cavity is not uniform. On the other hand, in the mold according to the present invention in which the heat insulating plate 3 is disposed, there is no large temperature difference between the outer thermocouple C and the thermocouples A and B near the cavity. It can be seen that a uniform temperature distribution can be realized near the cavity as compared with the case of FIG. In this way, by disposing the heat insulating plate to restrict the heat conduction in the direction without the heating medium, a temperature difference can be provided between the mold body and the cavity 2 while maintaining a uniform temperature distribution near the cavity. I understand.

【0010】次にキャビティ近傍2にヒーター及び断熱
層を配置した本金型と、断熱層を配置しない通常の金型
の場合とについて、キャビティ近傍の壁面から5mmのと
ころで測定した温度の時間変化を図3に示している。通
常は樹脂からの放熱によりなかなか温度が下がらず、ま
た型開時には急激な温度低下がみられる。一方、キャビ
ティ近傍にヒーターと断熱板を設置し、金型本体部温度
制御用ヒーター4と20℃差をつけて制御した場合につ
いては、金型本体部とキャビティ近傍の温度差により冷
却が速くなるため成形サイクルが短縮され、またキャビ
ティ近傍で直接温度制御しているため型開時等も温度が
安定していることがわかる。金型本体の温度設定をより
低くすることにより、冷却を速め、成形サイクルを一層
短縮することができる。従って特に冷却媒体を使用する
ことなく冷却速度を上げることができ、その分だけ金型
構造を簡易、コンパクトにすることができる。安価なカ
一トリッジヒーターの利用により、熱応答性が良く、メ
ンテナンスが容易で低コストという利点があり、また、
急速加熱及び冷却が可能なので、例えばキャビティ部を
図4に示すような昇温過程を含むサイクルで温度制御す
ることも、成形時間を犠牲にすることなしに可能であ
り、成形品の形状に対応させて適切にヒーターを配置す
れば、成形各過程で自在に最適温度及び温度分布を実現
することができる。
Next, the time change of the temperature measured at 5 mm from the wall near the cavity is compared between the main mold having the heater and the heat insulating layer in the vicinity 2 of the cavity and the normal mold having no heat insulating layer. It is shown in FIG. Normally, the temperature does not drop easily due to heat radiation from the resin, and a sharp drop in temperature is observed when the mold is opened. On the other hand, in the case where a heater and a heat insulating plate are installed near the cavity and the temperature is controlled with a difference of 20 ° C. from the mold body temperature control heater 4, the cooling speed is increased due to the temperature difference between the mold body and the vicinity of the cavity. This indicates that the molding cycle is shortened, and that the temperature is stable even when the mold is opened, because the temperature is directly controlled near the cavity. By lowering the temperature setting of the mold body, cooling can be accelerated and the molding cycle can be further shortened. Therefore, the cooling rate can be increased without using a cooling medium, and the mold structure can be made simpler and more compact. The use of inexpensive cartridge heaters has the advantage of good thermal responsiveness, easy maintenance and low cost.
Since rapid heating and cooling are possible, for example, it is possible to control the temperature of the cavity portion in a cycle including a heating process as shown in FIG. 4 without sacrificing the molding time, and it is possible to correspond to the shape of the molded product. By appropriately arranging the heaters, the optimum temperature and temperature distribution can be freely realized in each molding process.

【0011】[0011]

【実施例2】 〔構成〕実施例2は図5に示す構成を有
するものであり、実施例1の金型構造に対し、さらにキ
ャビティ近傍長手方向に沿って、断熱層13をキャビテ
ィ壁から距離15mmのところに配置しており、また、温
度比較用として熱電対D,E,Fをキャビティ近傍長手
方向に沿って配置している。金型本体温度制御用ヒータ
ーはともに一定温度(110℃)で制御され、キャビテ
ィ部の両側の温度制御ヒーター1、11はともに一定温
度(130℃)で制御される。
Embodiment 2 [Structure] The embodiment 2 has the structure shown in FIG. 5, and is different from the mold structure of the embodiment 1 in that the heat insulating layer 13 is further extended from the cavity wall along the longitudinal direction near the cavity. The thermocouples D, E, and F are arranged along the longitudinal direction near the cavity for temperature comparison. The mold body temperature control heaters are both controlled at a constant temperature (110 ° C.), and the temperature control heaters 1 and 11 on both sides of the cavity are both controlled at a constant temperature (130 ° C.).

【0012】〔動作・効果〕キャビティ近傍長手方向に
沿って断熱板を設置した本実施例の金型を温度制御した
場合と、同じ位置にSUS板を配置した金型を温度制御
した場合の熱電対D,E,Fの検知温度の比較を図6に
示している。断熱板を配置してキャビティ端部から金型
本体への熱伝導を制限した場合の方が、キャビティ長手
方向で均一な温度分布を実現できていることが明らかで
ある。すなわち、キャビティ端部から金型本体への熱伝
導を制限するように断熱板を配置することにより、キャ
ビティ端部近傍の温度低下を防ぐことができ、その分だ
け一段と小さいヒーター、あるいは電力定格(ワット
数)の小さいヒーターを使用したり、使用するヒーター
本数を減らすことができ、一層コンパクトで簡易な構造
の金型になる。
[Operation / Effect] The thermoelectric power generated when the temperature of the mold of this embodiment in which the heat insulating plate is installed along the longitudinal direction near the cavity is controlled, and the temperature of the metal mold in which the SUS plate is disposed at the same position is controlled. FIG. 6 shows a comparison between the detected temperatures of the pairs D, E, and F. It is clear that a uniform temperature distribution can be realized in the longitudinal direction of the cavity when the heat conduction from the end of the cavity to the mold body is limited by disposing the heat insulating plate. That is, by arranging the heat insulating plate so as to limit the heat conduction from the cavity end to the mold body, it is possible to prevent a temperature drop near the cavity end, and to further reduce the heater or power rating ( It is possible to use a heater with a small wattage or reduce the number of heaters to be used, so that a mold having a more compact and simple structure can be obtained.

【0013】[0013]

【その他】上記実施例1、実施例2における断熱板3,
13に替えて、低熱伝導材料(断熱板よりも熱伝導率が
幾分高い材料)を使用しても良いし、駒の組み合わせな
どで空隙を設けて、この空隙によって上記断熱材と同様
の断熱機能を持たせても同様の効果を得ることもでき
る。また、金型本体部の温度制御はヒーターではなく
て、管路を設け、この管路に温調媒体を供給して、一定
に温度制御するようにしても同等の効果が得られる。さ
らに、樹脂材料、金型材料、断熱層材料は上記の実施例
で使用したものに限らず、必要な特性を満たすものであ
れば良く、また、上記の金型本体温度制御用ヒーターの
数、及びその制御手段の数は、所望の温度分布を実現す
るのに必要なように適宜選択し、その配置も適宜選択す
ればよい。さらに、キャビティ近傍に設置する断熱層及
び加熱媒体については、金型構造やキャビティの形状や
大きさ、さらに加熱媒体の形状や数等により設置できる
位置が限定されるが、できるだけキャビティに近いとこ
ろに配置する方が望ましい。また、温度設定について
は、成形品の種類により求められる品質のレベルに応じ
て適切な温度に設定すれば良く、キャビティ温度制御用
加熱媒体を用いる場合は、その加熱媒体の温度を金型本
体温度制御用加熱媒体の温度設定よりも常に2℃以上高
くすることが望ましい。この温度差が2℃未満であると
金型本体によるキャビティ部の冷却効果が小さいため、
キャビティ部の温度安定効果及び成形サイクル短縮効果
が発揮されにくい。また、この温度差は大きいほど、金
型本体によるキャビティ部の冷却効果が大きく、成形サ
イクルを大幅に短縮できるという利点があるが、あまり
温度差が大きすぎると成形中キャビティ近傍に温度のむ
らが生じやすく、このことが成形品の品質を低下させる
原因になり易い。したがって、所要の成形品の品質を確
保できる範囲で温度差を大きくすると良いが、その値は
成形品形状及び求められる品質や金型構造などにより異
なるから、最適温度差は試験の繰り返しによって見出だ
すほかはない。なお、上記実施例の場合は、5℃〜30
℃の温度差を設定することで本発明の効果が特に有効に
発揮され、40℃以上の温度差を設けた場合は逆に温度
のむらによる成形品品質の低下、劣化が見られた。
[Others] The heat insulating plates 3 and 3 in the first and second embodiments.
13, a low heat conductive material (a material having a slightly higher thermal conductivity than the heat insulating plate) may be used, or a gap may be provided by a combination of pieces or the like, and the gap may be used for the same heat insulating function as the above-described heat insulating material. A similar effect can also be obtained by providing. Also, the same effect can be obtained by controlling the temperature of the mold body by providing a conduit instead of a heater and supplying a temperature control medium to the conduit to control the temperature to a constant value. Further, the resin material, the mold material, and the heat-insulating layer material are not limited to those used in the above-described embodiments, and may be any material that satisfies the required characteristics. The number of the control means and the number of the control means may be appropriately selected as required to achieve a desired temperature distribution, and the arrangement may be appropriately selected. Furthermore, as for the heat insulating layer and the heating medium to be installed near the cavity, the positions at which the heat insulating layer and the heating medium can be installed are limited by the shape and size of the mold structure and the cavity, and the shape and number of the heating medium. It is more desirable to arrange. In addition, the temperature may be set to an appropriate temperature according to the quality level required for the type of molded article. When using a heating medium for controlling the cavity temperature, the temperature of the heating medium is set to the mold body temperature. It is desirable that the temperature is always higher than the temperature setting of the control heating medium by 2 ° C. or more. If this temperature difference is less than 2 ° C., the effect of cooling the cavity by the mold body is small.
The effect of stabilizing the temperature of the cavity and the effect of shortening the molding cycle are hardly exhibited. Also, the greater the temperature difference, the greater the cooling effect of the cavity by the mold body, which has the advantage that the molding cycle can be greatly reduced.However, if the temperature difference is too large, uneven temperature will occur near the cavity during molding. This is liable to cause deterioration of the quality of the molded article. Therefore, it is advisable to increase the temperature difference as long as the required quality of the molded product can be ensured. However, the value differs depending on the shape of the molded product, the required quality and the mold structure, etc. There is no other choice. In addition, in the case of the said Example, 5 degreeC-30
By setting the temperature difference of ° C., the effect of the present invention was particularly effectively exhibited, and when a temperature difference of 40 ° C. or more was provided, conversely, deterioration and deterioration of molded article quality due to uneven temperature were observed.

【0014】[0014]

【発明の効果】1.請求項1に係る発明の効果 固定側金型及び可動側金型から構成されるキャビティに
樹脂を射出充填し、さらに冷却した後、成形品を取り出
すプラスチック製品の射出成形方法において、金型キャ
ビティ近傍に配置したキャビティ部温度制御用の加熱媒
体と該加熱媒体に比ベ、キャビティから離れた位置に配
置した金型本体温度制御用の加熱媒体を成形過程におい
てそれぞれ個別に温度制御し、かつ、キャビティ近傍の
少なくとも一部に断熱材料あるいは低熱伝導率材料ある
いは空隙を配置することによりキャビティ部から該キャ
ビティ部温度制御用加熱媒体が存在しない方向への熱伝
導を制限することにより、キャビティ部の急速加熱ある
いは急速冷却が可能となるので、成形サイクルを短縮
し、また成形サイクルを犠牲にすることなしに昇温過程
を含む温度サイクル制御を実施することができ、また型
開などの外乱の影響による温度変動が低減され、かつ安
定する。
Advantages of the Invention Advantageous Effects of the Invention According to the first aspect of the present invention, in a method of injection-molding a plastic product in which a cavity formed by a fixed-side mold and a movable-side mold is injected and filled with a resin, and further cooled, a molded product is taken out. The heating medium for controlling the temperature of the cavity disposed in the cavity and the heating medium for controlling the temperature of the mold body disposed in a position away from the cavity are individually controlled in the molding process, compared with the heating medium. Rapid heating of the cavity by restricting heat conduction from the cavity to the direction in which the heating medium for controlling the temperature of the cavity does not exist by disposing a heat insulating material, a low thermal conductivity material, or a void in at least a part of the vicinity. Alternatively, rapid cooling is possible, shortening the molding cycle and increasing the temperature without sacrificing the molding cycle. Temperature cycle control including a temperature process can be performed, and temperature fluctuation due to the influence of disturbance such as mold opening is reduced and stabilized.

【0015】2.請求項2に係る発明の効果 請求項1の射出成形方法において、前記キャビティ部温
度制御用加熱媒体と金型本体温度制御用加熱媒体を異な
る温度設定で制御することにより、金型本体の温度をキ
ャビティ近傍よりも低く設定し、その結果、特に冷却媒
体を使用することなく急速に冷却し、また、キャビティ
部の温度を自在に制御することができる。
2. According to the injection molding method of claim 1, the temperature of the mold body is controlled by controlling the heating medium for controlling the cavity portion temperature and the heating medium for controlling the mold body temperature at different temperature settings. It is set lower than the vicinity of the cavity. As a result, it is possible to rapidly cool without using a cooling medium, and to control the temperature of the cavity freely.

【0016】3.請求項3に係る発明の効果 請求項1または請求項2の射出成形方法において、金型
本体温度制御用加熱媒体の温度設定を成形中の全過程に
おいて一定にすることにより、成形を繰り返す中で温度
分布を常時安定させることができる。
3. In the injection molding method according to claim 1 or 2, the temperature of the heating medium for controlling the temperature of the mold main body is set to be constant in all processes during the molding, so that the molding is repeated. The temperature distribution can be constantly stabilized.

【0017】4.請求項4に係る発明の効果 請求項1乃至請求項3の射出成形方法において、キャビ
ティ部温度制御用の温度検知体が検知する温度が、金型
本体温度制御用の温度検知体が検知する温度よりも成形
中常に高く保たれるように温度制御を行うことにより、
特に冷却媒体を使用することなくキャビティ部の冷却を
速くすることができる。
4. In the injection molding method according to any one of claims 1 to 3, the temperature detected by the temperature detector for controlling the cavity temperature is the temperature detected by the temperature detector for controlling the mold body temperature. By controlling the temperature so that it is always kept higher during molding,
Particularly, cooling of the cavity can be accelerated without using a cooling medium.

【0018】5.請求項5に係る発明の効果 請求項1乃至請求項4の射出成形方法において、キャビ
ティ部温度制御用加熱媒体の温度設定を成形過程におい
て変化させることにより、キャビティ部の温度を自在に
かつ最適に制御することができる。
5. Effect of the Invention According to Claim 5 In the injection molding method according to any one of Claims 1 to 4, the temperature of the cavity is controlled freely and optimally by changing the temperature setting of the heating medium for controlling the temperature of the cavity during the molding process. Can be controlled.

【0019】6.請求項6に係る発明の効果 固定側金型及び可動側金型で形成されるキャビティの近
傍にキャビティ部温度制御用の加熱媒体を少なくとも1
つ配置し、かつ該加熱媒体を制御するための温度検知体
を該加熱媒体とキャビティの間に配置し、さらに該加熱
媒体に比ベキャビティから離れた位置に金型本体の温度
を制御するための加熱媒体を少なくとも1つ配置した金
型において、キャビティ部から該キャビティ部温度制御
用加熱媒体が存在しない方向への熱伝導を制限するため
に、キャビティ近傍の少なくとも一部に断熱材料あるい
は低熱伝導率材料あるいは空隙の、少なくともいずれか
一つを配置することにより、キャビテイ部の急速加熱あ
るいは急速冷却が可能となるので、成形サイクルを短縮
し、あるいは成形サイクルを犠牲にすることなしに昇温
過程を含む温度サイクル制御を実施することができ、ま
た型開などの外乱の影響による温度変動を低減、かつ安
定させることができる。
6. Advantageous Effects of the Invention According to Claim 6, at least one heating medium for controlling the temperature of the cavity is provided near the cavity formed by the fixed mold and the movable mold.
And a temperature detector for controlling the heating medium is disposed between the heating medium and the cavity, and further for controlling the temperature of the mold body at a position farther from the cavity than the heating medium. In a mold in which at least one heating medium is disposed, at least a part of the vicinity of the cavity is provided with a heat insulating material or a low thermal conductivity in order to limit heat conduction from the cavity to the direction in which the cavity temperature control heating medium does not exist. By arranging at least one of the material and the void, it is possible to rapidly heat or cool the cavity part, so that the molding cycle can be shortened or the heating process can be performed without sacrificing the molding cycle. Temperature cycle control, and can reduce and stabilize temperature fluctuations due to disturbances such as mold opening. That.

【0020】7.請求項7に係る発明の効果 請求項6の射出成形用金型において、前記キャビティ部
温度制御用加熱媒体と金型本体温度制御用加熱媒体を別
の制御手段に接続することにより、金型本体の温度をキ
ャビティ近傍よりも低く設定でき、その結果、冷却媒体
を使用することなく、キャビティ部を急速冷却すること
が可能になる。
[7] FIG. According to the seventh aspect of the present invention, in the injection mold according to the sixth aspect, the heating medium for controlling the cavity portion temperature and the heating medium for controlling the temperature of the mold body are connected to different control means, so that the mold body is formed. Can be set lower than the vicinity of the cavity, and as a result, the cavity can be rapidly cooled without using a cooling medium.

【0021】8.請求項8に係る発明の効果 請求項1乃至請求項7の加熱媒体に通電加熱を行うヒー
ターを使用することにより、メンテナンスも容易で低コ
ストで単純な構造の金型を実現でき、応答性がよいので
キャビティ部を急速加熱することが可能になる。
8. Effect of the Invention According to Claim 8 By using a heater that conducts electric current to the heating medium according to any one of claims 1 to 7, it is possible to realize a mold having a simple structure at low cost with easy maintenance, and high responsiveness. Since it is good, the cavity can be rapidly heated.

【0022】9.請求項9に係る発明の効果 請求項1乃至請求項7の金型本体温度制御用加熱媒体に
管路に供給される水または油の温調媒体を使用すること
により、金型本体の温度を安定的に一定に保つことがで
きる。
9. Advantageous Effects of the Invention According to Claim 9 By using a temperature control medium of water or oil supplied to the pipeline as the heating medium for controlling the temperature of the mold body according to Claims 1 to 7, the temperature of the mold body can be reduced. It can be kept stable and constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は実施例1の金型断面図である。FIG. 1 is a sectional view of a mold according to a first embodiment.

【図2】は実施例1の温度分布の比較図である。FIG. 2 is a comparison diagram of a temperature distribution in Example 1.

【図3】(a)は通常金型のキャビティ近傍の1サイク
ルにおける温度変化図であり、(b)は実施例1のキャ
ビティ近傍の1サイクルにおける温度変化図である。
3A is a temperature change diagram in one cycle near a cavity of a normal mold, and FIG. 3B is a temperature change diagram in one cycle near a cavity in Example 1. FIG.

【図4】は実施例1における、昇温過程を含むサイクル
での温度制御例である。
FIG. 4 is an example of temperature control in a cycle including a temperature increasing process in the first embodiment.

【図5】は実施例2の金型断面図である。FIG. 5 is a sectional view of a mold according to a second embodiment.

【図6】は実施例2の温度分布の比較図である。FIG. 6 is a comparison diagram of the temperature distribution in Example 2.

【符号の説明】[Explanation of symbols]

1,11:キャビティ部温度制御用ヒーター 3,13:断熱板 4:金型本体温度制御用ヒーター A乃至F:比較用熱電対 S:温度制御用熱電対 X:固定側金型 Y:可動側金型 1,11: Cavity temperature control heater 3,13: Insulating plate 4: Mold body temperature control heater A to F: Comparative thermocouple S: Temperature control thermocouple X: Fixed side mold Y: Movable side Mold

フロントページの続き (72)発明者 畠山 寿治 東京都大田区中馬込1丁目3番6号株式会 社リコー内 (72)発明者 渡部 順 東京都大田区中馬込1丁目3番6号株式会 社リコー内 (72)発明者 沢田 清孝 東京都大田区中馬込1丁目3番6号株式会 社リコー内 Fターム(参考) 4F202 AH74 AJ13 AK09 AK14 AP05 AR06 CA11 CB01 CN01 CN18 CN21 4F206 AH74 AJ13 AK09 AK14 AP054 AR064 JA07 JL02 JN43 JN44 JP11 JQ81 Continued on the front page (72) Inventor Suji Hatakeyama 1-3-6 Nakamagome, Ota-ku, Tokyo Co., Ltd. Ricoh (72) Inventor Jun Jun Watanabe 1-3-6 Nakamagome, Ota-ku, Tokyo Co., Ltd. Ricoh (72) Inventor Kiyotaka Sawada 1-3-6 Nakamagome, Ota-ku, Tokyo F-term in Ricoh Co., Ltd. 4F202 AH74 AJ13 AK09 AK14 AP05 AR06 CA11 CB01 CN01 CN18 CN21 4F206 AH74 AJ13 AK09 AK14 AP054 AR064 JA07 JL02 JN43 JN44 JP11 JQ81

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】固定側金型及び可動側金型により構成され
るキャビティに樹脂を射出充填し、さらに冷却した後成
形品を取り出すプラスチック製品の射出成形方法におい
て、金型キャビテイ近傍に配置したキャビテイ部温度制
御用の加熱媒体と該加熱媒体に比べてキャビティから離
れた位置に配置した金型本体温度制御用の加熱媒体を成
形過程においてそれぞれ個別に温度制御し、かつ、キャ
ビティ近傍の少なくとも一部に断熱材料あるいは低熱伝
導率材料あるいは空隙を配置することによりキャビティ
部から該キャビティ部温度制御用加熱媒体が存在しない
方向への熱伝導を制限することを特徴とする射出成形方
法。
In a method for injection molding a plastic product, a cavity formed by a fixed mold and a movable mold is injected with a resin, and after cooling, a molded product is taken out, a cavity disposed near a mold cavity. The temperature of the heating medium for controlling the temperature of the part and the heating medium for controlling the temperature of the mold body disposed at a position farther from the cavity than the heating medium are individually controlled in the molding process, and at least a portion near the cavity. An injection molding method characterized in that a heat insulating material, a low thermal conductivity material, or a void is disposed in the cavity to restrict heat conduction from the cavity to a direction in which the cavity temperature controlling heating medium does not exist.
【請求項2】請求項1の射出成形方法において、前記キ
ャビテイ部温度制御用加熱煤体と金型本体温度制御用加
熱媒体を異なる温度設定にて制御することを特徴とする
射出成形方法。
2. The injection molding method according to claim 1, wherein the heating soot body for controlling the temperature of the cavity and the heating medium for controlling the temperature of the mold body are controlled at different temperature settings.
【請求項3】請求項1又は請求項2の射出成形方法にお
いて、金型本体温度制御用加熱媒体の温度設定を、成形
中の全過程において一定とすることを特徴とする射出成
形方法。
3. The injection molding method according to claim 1, wherein the temperature of the heating medium for controlling the temperature of the mold body is set constant throughout the entire molding process.
【請求項4】請求項1乃至請求項3の射出成形方法にお
いて、キャビティ部温度制御用の温度検知体の検知温度
が金型本体温度制御用の温度検知体の検知温度よりも、
成形中常に高く保たれるように温度制御することを特徴
とする射出成形方法。
4. The injection molding method according to claim 1, wherein the temperature detected by the temperature detector for controlling the cavity temperature is higher than the temperature detected by the temperature detector for controlling the temperature of the mold body.
An injection molding method, wherein the temperature is controlled so that the temperature is always kept high during molding.
【請求項5】請求項1乃至請求項4の射出成形方法にお
いて、キャビティ部温度制御用加熱媒体の温度設定を成
形過程において変化させることを特徴とする射出成形方
法。
5. The injection molding method according to claim 1, wherein the temperature setting of the heating medium for controlling the cavity temperature is changed during the molding process.
【請求項6】固定側金型及び可動側金型により構成され
るキャビティ近傍にキャビティ部温度制御用の加熱媒体
を少なくとも1つ配置し、かつ該加熱媒体を制御するた
めの温度検知体を上記加熱媒体とキャビティの間に配置
し、さらに該加熱媒体に比ベてキャビティから離れた位
置に金型本体の温度を制御するための加熱媒体を少なく
とも1つ配置した金型において、キャビティ部から該キ
ャビティ部温度制御用加熱媒体が存在しない方向への熱
伝導を制限するために、キャビティ近傍の少なくとも一
部に断熱材料あるいは低熱伝導率材料あるいは空隙の、
少なくともいずれか一つを配置したことを特徴とする射
出成形用金型。
6. At least one heating medium for controlling the temperature of the cavity is disposed in the vicinity of the cavity formed by the fixed mold and the movable mold, and a temperature detector for controlling the heating medium is provided. A mold provided with at least one heating medium for controlling the temperature of the mold body at a position farther from the cavity than the heating medium and arranged between the heating medium and the cavity; In order to limit heat conduction in the direction in which the heating medium for cavity temperature control does not exist, at least a part of the vicinity of the cavity has a heat insulating material or a low thermal conductivity material or a void,
A mold for injection molding, wherein at least one of the molds is arranged.
【請求項7】請求項6の射出成形用金型において、前記
キャビティ部温度制御用加熱媒体と金型本体温度制御用
加熱媒体は別の制御手段に接続されていることを特徴と
する射出成形用金型。
7. The injection mold according to claim 6, wherein the heating medium for controlling the cavity temperature and the heating medium for controlling the temperature of the mold body are connected to different control means. Mold.
【請求項8】請求項1乃至請求項7の加熱媒体が電通加
熱を行うヒーターであることを特徴とする射出成形方法
または射出成形用金型。
8. The injection molding method or the injection mold according to claim 1, wherein the heating medium according to claim 1 is a heater for conducting electric heating.
【請求項9】請求項1乃至請求項7の金型本体温度制御
用加熱媒体が管路に供給される水または油の温調媒体で
あることを特徴とする射出成形方法または射出成形用金
型。
9. The injection molding method or the injection molding metal according to claim 1, wherein the heating medium for controlling the temperature of the mold body is a medium for controlling the temperature of water or oil supplied to the pipeline. Type.
JP10311544A 1998-11-02 1998-11-02 Injection molding method and injection molding die Pending JP2000135727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311544A JP2000135727A (en) 1998-11-02 1998-11-02 Injection molding method and injection molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311544A JP2000135727A (en) 1998-11-02 1998-11-02 Injection molding method and injection molding die

Publications (1)

Publication Number Publication Date
JP2000135727A true JP2000135727A (en) 2000-05-16

Family

ID=18018521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311544A Pending JP2000135727A (en) 1998-11-02 1998-11-02 Injection molding method and injection molding die

Country Status (1)

Country Link
JP (1) JP2000135727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105666780A (en) * 2016-03-11 2016-06-15 滁州市博康模具塑料有限公司 High-glossiness injection molding process
KR101796455B1 (en) * 2015-05-29 2017-11-10 한국에너지기술연구원 Method for manufacturing injection molded products using injection mold having preheatable ejector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101796455B1 (en) * 2015-05-29 2017-11-10 한국에너지기술연구원 Method for manufacturing injection molded products using injection mold having preheatable ejector
US10464233B2 (en) 2015-05-29 2019-11-05 Korea Institute Of Energy Research Ejector capable of being preheated, injection mold having the ejector, and method of manufacturing molded part using the injection mold
CN105666780A (en) * 2016-03-11 2016-06-15 滁州市博康模具塑料有限公司 High-glossiness injection molding process

Similar Documents

Publication Publication Date Title
JPH0137252B2 (en)
EP1753597B1 (en) Heated blow mould for thermostabilizing treatment
US20090246305A1 (en) Molding apparatus
JP2000135727A (en) Injection molding method and injection molding die
KR101848759B1 (en) Mold apparatus for manufacturing of optical lens with temperature control member
US5645867A (en) Heated distribution manifold
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
KR101996342B1 (en) Temperature adjusting apparatus for plastic injection mold
JP4809071B2 (en) Mold temperature controller
JPS6260608A (en) Screw device
JP3984498B2 (en) Mold for molding and plastic molding method using the same
JPH05104595A (en) Spacer block for mold
JPH1177780A (en) Plastic molding method and apparatus therefor
JP2622326B2 (en) Method and apparatus for controlling mold temperature distribution in injection molding
JPH07164538A (en) Plastic molding device
JPH0712635B2 (en) Injection molding method for cylindrical molded products
JP2002127220A (en) Method for controlling heating of gate for multi-cavity mold
JPH11170323A (en) Method and apparatus for controlling temperature of mold
KR101239958B1 (en) Mold Apparatus
JPH054262A (en) Mold
JP2006150749A (en) Lens molding method and mold
JPH10109344A (en) Nozzle temperature control for injection molding machine
JPH11179764A (en) Method for molding plastic molded product and mold therefor
JP2002248625A (en) Apparatus for molding resin molded article and molding method using the same
JP3406239B2 (en) Cylinder heating method and apparatus for metal injection molding machine