[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000133267A - Negative active material for lithium secondary battery and lithium secondary battery using this - Google Patents

Negative active material for lithium secondary battery and lithium secondary battery using this

Info

Publication number
JP2000133267A
JP2000133267A JP10307557A JP30755798A JP2000133267A JP 2000133267 A JP2000133267 A JP 2000133267A JP 10307557 A JP10307557 A JP 10307557A JP 30755798 A JP30755798 A JP 30755798A JP 2000133267 A JP2000133267 A JP 2000133267A
Authority
JP
Japan
Prior art keywords
negative electrode
fibrous carbon
graphite
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10307557A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakano
秀之 中野
Naruaki Okuda
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10307557A priority Critical patent/JP2000133267A/en
Publication of JP2000133267A publication Critical patent/JP2000133267A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material capable of suppressing volume change attendant on charge/discharge cycles without increasing electrical resistance of a negative electrode by including at least one graphite material of flake graphite and globular graphite, and fibrous carbon forming secondary particles having specified particle size. SOLUTION: Secondary particles having a particle size of 10 μm or more but 30 μm or less are formed. Preferably, when the total amount of graphite material and fibrous carbon is 100 pts.wt. in a negative electrode material, ratio of the fibrous carbon is made 0.5 pts.wt. or more but 22.5 pts.wt. or less. By positioning secondary particles of fibrous carbon between flake or globular graphite particles, volume change attendant on adsorbing/releasing cycles of lithium ions is suppressed, disruption of the negative electrode structure caused by charge/discharge cycles is prevented. As the material for reinforcing the negative electrode structure, fibrous carbon is used, and electric conductivity of the negative electrode is ensured and at the same time, cycle characteristics of a lithium secondary battery are enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンの
吸蔵・放出を利用したリチウム二次電池に用いる負極活
物質材料、特にサイクル特性の良好なリチウム二次電池
を構成することのできる負極活物質材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode active material for use in a lithium secondary battery utilizing occlusion and release of lithium ions, and more particularly to a negative electrode active material capable of forming a lithium secondary battery having good cycle characteristics. About the material.

【0002】[0002]

【従来の技術】リチウム二次電池は、高エネルギ密度で
あることから、パソコン、携帯電話等の小型化に伴い、
情報関連機器、通信機器等の分野で実用化され広く普及
するに至っている。二次電池に要求される特性の1つと
してサイクル寿命が長いことが挙げられ、二次電池の1
つであるリチウム二次電池にも、当然のことながら、繰
り返しの充放電によって電池容量が著しく劣化しないこ
とが要求される。
2. Description of the Related Art Lithium secondary batteries have a high energy density.
It has been put into practical use in the fields of information-related equipment, communication equipment and the like, and has been widely spread. One of the characteristics required for a secondary battery is that the cycle life is long.
As a matter of course, the lithium secondary battery is also required to have a battery capacity that does not significantly deteriorate due to repeated charging and discharging.

【0003】リチウム二次電池は、正極および負極のそ
れぞれに、リチウムイオンを吸蔵・放出可能な活物質を
有し、この活物質間をリチウムイオンが行き来して充放
電がなされる。したがって、充放電に伴い、正極および
負極活物質にリチウムイオンが吸蔵・放出されることに
よって、活物質によって構成されている正極および負極
が膨張・収縮する。その結果、正極および負極に厚みの
変化が生じ、これによって電池構造が徐々に破壊され、
二次電池は著しく性能を劣化させることとなる。
In a lithium secondary battery, each of a positive electrode and a negative electrode has an active material capable of inserting and extracting lithium ions, and the lithium ions flow between the active materials to perform charging and discharging. Therefore, the lithium ions are inserted into and released from the positive and negative electrode active materials during charge and discharge, whereby the positive and negative electrodes formed of the active material expand and contract. As a result, the thickness of the positive electrode and the negative electrode changes, which gradually destroys the battery structure,
The performance of the secondary battery is significantly deteriorated.

【0004】リチウム二次電池の正極は、リチウム遷移
金属複合酸化物を正極活物質として構成されることが多
く、この複合酸化物は導電性が低いことから、上記電極
構造の破壊は深刻な影響を及ぼす。そこで、この正極の
構造変化を防止する手段として、特開平9−02734
4号公報に示すように、従来から正極導電材として用い
られている鱗片状黒鉛に対して繊維状炭素を添加すると
いう技術が考えられた。この技術は、添加した繊維状炭
素の作用により、重負荷充放電においても正極の膨張・
収縮を抑制し、正極の導電性を確保して二次電池の長サ
イクル寿命化を図ったものである。
[0004] The positive electrode of a lithium secondary battery is often composed of a lithium transition metal composite oxide as a positive electrode active material, and since the composite oxide has low conductivity, the destruction of the electrode structure has a serious effect. Effect. Therefore, as means for preventing the structural change of the positive electrode, JP-A-9-02734 has
As disclosed in Japanese Patent Publication No. 4 (1993) -104, there has been proposed a technique of adding fibrous carbon to flaky graphite conventionally used as a positive electrode conductive material. This technology uses the action of added fibrous carbon to expand and expand the positive electrode even during heavy load charging and discharging.
This is intended to suppress the shrinkage and secure the conductivity of the positive electrode to extend the cycle life of the secondary battery.

【0005】ところが、この電極の充放電に伴う電極の
膨張・収縮の問題は負極にも付きまとう。リチウム二次
電池を電気自動車用電源に用いるべく、正極活物質の低
コスト化を図るため、現在主流となっているLiCoO
2、LiNiO2に代え、マンガン系のリチウム複合酸化
物を正極活物質に用いることも検討されている。このリ
チウムマンガン複合酸化物を正極活物質に用いた場合
は、正極の体積変化は比較的少なく、電極の膨張・収縮
によるサイクル寿命への影響はむしろ負極のほうが大き
くなる。炭素物質を負極活物質として用いた場合、負極
の体積変化は、その厚み方向で最大10%程度にもな
り、そしてこの結果、電極同士の圧迫によるショート、
負極の集電体からの剥離等の現象を引き起こすこととな
る。
[0005] However, the problem of expansion and contraction of the electrode due to charging and discharging of the electrode also accompanies the negative electrode. LiCoO, which is currently the mainstream, has been used to reduce the cost of the positive electrode active material in order to use lithium secondary batteries as power sources for electric vehicles.
2. The use of a manganese-based lithium composite oxide as a positive electrode active material instead of LiNiO 2 is also being studied. When this lithium manganese composite oxide is used as the positive electrode active material, the change in volume of the positive electrode is relatively small, and the influence of the expansion and contraction of the electrode on the cycle life is rather large in the negative electrode. When a carbon material is used as the negative electrode active material, the change in volume of the negative electrode can be up to about 10% in the thickness direction, and as a result, short-circuiting due to pressure between the electrodes can cause
A phenomenon such as peeling of the negative electrode from the current collector is caused.

【0006】このように負極の体積変化の抑制はリチウ
ム二次電池の性能向上にとって非常に重要な技術であ
り、従来は、負極中の結着材の増量あるいは負極への剛
性の付与といった手段によって行われてきた。しかし、
これらの手段では、電極の通電抵抗の増加をもたらし、
高電流密度での充放電サイクル特性を悪化させる原因と
なっていた。
As described above, suppression of the change in volume of the negative electrode is a very important technique for improving the performance of the lithium secondary battery. Conventionally, it is necessary to increase the amount of the binder in the negative electrode or to impart rigidity to the negative electrode. Has been done. But,
These measures result in an increase in the current-carrying resistance of the electrodes,
This is a cause of deteriorating the charge / discharge cycle characteristics at a high current density.

【0007】[0007]

【発明が解決しようとする課題】本発明は、リチウム二
次電池において、負極の通電抵抗を増加させることなく
充放電に伴う体積変化を抑制することのできる負極活物
質材料を提供し、そしてこの負極活物質材料を負極活物
質として用いることにより、リチウム二次電池のサイク
ル特性を向上させることを課題としている。
SUMMARY OF THE INVENTION The present invention provides a negative electrode active material capable of suppressing a change in volume due to charging and discharging without increasing the current-carrying resistance of the negative electrode in a lithium secondary battery. An object is to improve the cycle characteristics of a lithium secondary battery by using a negative electrode active material as a negative electrode active material.

【0008】[0008]

【課題を解決するための手段】本発明者は、鋭意努力の
末、従来から負極活物質として用いられている黒鉛材料
に繊維状の炭素を混合添加させることによって、充放電
に伴う負極の体積変化が抑制されることに着目し、以下
の発明に想到する至った。本発明は、鱗片状黒鉛または
球状黒鉛の少なくともいずれか1つの黒鉛材料と、粒子
径が10μm以上30μm以下の二次粒子を形成する繊
維状炭素とを含有することを特徴とするリチウム二次電
池用負極活物質材料である。
Means for Solving the Problems The present inventor has made intensive efforts to mix and add fibrous carbon to a graphite material which has been conventionally used as a negative electrode active material so that the volume of the negative electrode accompanying charge and discharge is reduced. Focusing on the fact that the change is suppressed, the following invention has been reached. The present invention provides a lithium secondary battery comprising: at least one graphite material of flaky graphite or spheroidal graphite; and fibrous carbon forming secondary particles having a particle diameter of 10 μm or more and 30 μm or less. Negative electrode active material.

【0009】つまり本発明は、鱗片状のまたは球状の黒
鉛粒子の隙間に繊維状炭素の二次粒子を位置させること
で、この負極活物質材料を負極活物質として用いた負極
のリチウムイオンの吸蔵・放出に伴う体積変化を抑制さ
せ、繰り返される充放電による負極構造の崩壊を防止す
ることを可能にするものである。負極構造を強化する材
料として繊維状炭素を用いたことにより、負極の電気伝
導性を確保しつつ、リチウム二次電池のサイクル特性の
向上が図られることになる。また混合添加する繊維状炭
素の二次粒子を、平均粒径10μm以上30μm以下と
いう適切な大きさのものとすることにより、より優れた
サイクル特性を維持させることを可能にしている。
That is, according to the present invention, the secondary particles of fibrous carbon are located in the gaps between the flaky or spherical graphite particles, so that the negative electrode of the negative electrode using the negative electrode active material as the negative electrode active material can absorb the lithium ions. -It is possible to suppress a change in volume due to release, and to prevent collapse of the negative electrode structure due to repeated charging and discharging. By using fibrous carbon as a material for reinforcing the negative electrode structure, it is possible to improve the cycle characteristics of the lithium secondary battery while securing the electrical conductivity of the negative electrode. Further, by setting the secondary particles of the fibrous carbon to be mixed and added to have an appropriate size having an average particle diameter of 10 μm or more and 30 μm or less, it is possible to maintain more excellent cycle characteristics.

【0010】また本発明では、前記負極活物質材料にお
いて、混合添加する繊維状炭素の割合を、前記黒鉛材料
と前記繊維状炭素の総量を100重量部とした場合の
0.5重量部以上22.5重量部以下とする手段をも採
用する。混合添加する繊維状炭素の量も電池のサイクル
特性に大きく影響するため、適当な範囲の混合添加量と
することによって、より大きな電池容量が維持できる負
極活物質材料とすることができる。そしてリチウム二次
電池を、前記負極活物質材料を負極活物質として用いて
構成することで、このリチウム二次電池は、繰り返され
る充放電によっても電池容量の劣化の少ない、サイクル
特性の良好な二次電池となる。
In the present invention, in the negative electrode active material, the proportion of the fibrous carbon to be added and mixed is 0.5 parts by weight or more when the total amount of the graphite material and the fibrous carbon is 100 parts by weight. Means for reducing the content to 0.5 parts by weight or less is also employed. Since the amount of fibrous carbon to be added and mixed greatly affects the cycle characteristics of the battery, by setting the amount of mixed and added in an appropriate range, a negative electrode active material capable of maintaining a larger battery capacity can be obtained. By configuring the lithium secondary battery using the negative electrode active material as the negative electrode active material, the lithium secondary battery has a low cycle capacity and a good cycle characteristic even after repeated charging and discharging. Next battery.

【0011】[0011]

【発明の実施の形態】以下に実施形態に基づき、本発明
を詳しく説明する。説明は、負極活物質材料を構成する
黒鉛材料および繊維状炭素について行い、次いでこの負
極活物質材料を負極活物質に用いた負極の構成および作
製、この負極を用いたリチウム二次電池の構成について
行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. The description will be made on the graphite material and fibrous carbon constituting the negative electrode active material, then the configuration and fabrication of the negative electrode using the negative electrode active material as the negative electrode active material, and the configuration of the lithium secondary battery using the negative electrode Do.

【0012】〈黒鉛材料〉本発明の負極活物質材料で
は、主材料として黒鉛質の材料を用いる。黒鉛材料は、
一般的に高い放電容量を達成できることから、リチウム
二次電池の負極活物質材料として好適な材料である。黒
鉛材料はその粒子形状から鱗片状黒鉛と球状黒鉛とに分
類でき、本負極活物質材料には、それらに含まれるいず
れのものをも用いることができる。
<Graphite Material> In the negative electrode active material of the present invention, a graphite material is used as a main material. Graphite material is
In general, it is a material suitable as a negative electrode active material of a lithium secondary battery because a high discharge capacity can be achieved. Graphite materials can be classified into flaky graphite and spherical graphite according to their particle shapes, and any of the materials contained therein can be used as the negative electrode active material.

【0013】鱗片状黒鉛は、例えば、天然黒鉛または人
造黒鉛を粉砕、分級して得られる。鱗片状黒鉛の原料と
なる天然黒鉛は主としてスリランカ、マダガスカル、中
国等から産出される。不純物の存在程度、粒度のバラツ
キにより電極性能に差が生じるため、天然黒鉛を負極活
物質材料として用いる場合は、純度を高め、適切な粒度
とすることが必要となる。放電容量が約370mAh/
gと、黒鉛質の材料の中で最大容量が得られることか
ら、この点で優秀な活物質材料となる。
The flaky graphite is obtained, for example, by pulverizing and classifying natural graphite or artificial graphite. Natural graphite as a raw material of flaky graphite is mainly produced from Sri Lanka, Madagascar, China and the like. Since the electrode performance varies depending on the degree of the presence of impurities and the variation of the particle size, when natural graphite is used as the negative electrode active material, it is necessary to increase the purity and make the particle size appropriate. The discharge capacity is about 370 mAh /
g and the highest capacity among the graphitic materials, it is an excellent active material in this respect.

【0014】人造黒鉛は、通常、石油コークス等を出発
原料とし、ピッチを結合剤として製造する。粉砕コーク
スに結合剤を混入させて押出または圧延成形し、これ
を、揮発分除去後、2600℃〜3000℃の温度で加
熱して黒鉛化させる。人造黒鉛は、天然黒鉛と比較して
黒鉛化が進んでいないため、放電容量が350〜360
mAh/gと天然黒鉛に比較して若干劣るが、不純物が
少ないという利点がある。球状黒鉛には、人造黒鉛を用
いればよい。本負極活物質材料として使用できる代表的
なものとして、黒鉛化メソカーボンマイクロビーズ(M
CMB)が挙げられる。この黒鉛化MCMBは、ピッチ
類を400℃前後で加熱する過程で得られる光学異方性
の小球体を、2000℃以上の高温で加熱し黒鉛化させ
て製造する。放電容量は、290mAh/gと上記鱗片
状黒鉛に劣るものの、球状形態であることから、比表面
積を最小にし、充填密度の向上に寄与できるという利点
がある。またMCMBの内部構造は結晶子がラメラ状に
配列していることから、結晶子端面が粒子表面に露出し
ており、リチウムイオンの吸蔵・放出がスムーズに行わ
れ、大電流密度における充放電に適した負極活物質材料
となる。なお、球状黒鉛には、天然黒鉛を粒状化したも
のを用いてもよい。
[0014] Artificial graphite is usually produced using petroleum coke or the like as a starting material and pitch as a binder. Extrusion or rolling is performed by mixing a binder into the ground coke, and after removing volatile components, the coke is heated at a temperature of 2600 ° C. to 3000 ° C. to be graphitized. Since artificial graphite is less graphitized than natural graphite, it has a discharge capacity of 350 to 360.
mAh / g is slightly inferior to natural graphite, but has the advantage of less impurities. Artificial graphite may be used as the spheroidal graphite. As a typical material that can be used as the negative electrode active material, graphitized mesocarbon microbeads (M
CMB). This graphitized MCMB is produced by heating optically anisotropic small spheres obtained in the process of heating pitches at around 400 ° C. at a high temperature of 2000 ° C. or higher to graphitize. Although the discharge capacity is 290 mAh / g, which is inferior to the above-mentioned flaky graphite, since it has a spherical shape, there is an advantage that the specific surface area can be minimized and the packing density can be improved. In addition, the internal structure of MCMB is such that crystallites are arranged in a lamellar shape, so that crystallite end faces are exposed on the particle surface, and lithium ions can be absorbed and released smoothly, making charging and discharging at large current densities possible. It becomes a suitable negative electrode active material. In addition, what made the natural graphite granulated may be used for spherical graphite.

【0015】本発明の負極活物質材料には、二次電池の
用途等に応じて、上記鱗片状黒鉛、球状黒鉛のいずれか
1つを選択的に用いることができ、また、2以上のもの
を混合して用いることもできる。なお、いずれの黒鉛材
料を用いる場合であってもその粒子径は二次電池の性能
を左右するため、後に説明する繊維状炭素の粒径をも考
慮して、この黒鉛材料は、平均粒子径が3μm以上40
μm以下程度の粉末状ものとするのがよい。平均粒子径
が3μm未満の場合は、ペーストの粘度が高く電極の充
てん率が上がらず、活物質密度の低い電極となり、平均
粒子径が40μmを超える場合は、片面50μm程度の
厚さの薄膜電極を作製する場合、塗布面が不均一となる
からである。
As the negative electrode active material of the present invention, any one of the above-mentioned flaky graphite and spherical graphite can be selectively used in accordance with the use of the secondary battery or the like. Can also be used as a mixture. Regardless of the type of graphite material used, the particle size of the graphite material affects the performance of the secondary battery. Therefore, the graphite material has an average particle size in consideration of the particle size of fibrous carbon described later. Is 3 μm or more and 40
It is preferable to use a powder having a size of about μm or less. When the average particle diameter is less than 3 μm, the paste has a high viscosity and the filling rate of the electrode does not increase, resulting in an electrode having a low active material density. When the average particle diameter exceeds 40 μm, a thin film electrode having a thickness of about 50 μm on one side is provided. This is because, in the case of manufacturing a non-uniform, the coated surface becomes non-uniform.

【0016】〈繊維状炭素〉本発明の負極活物質材料で
は、上記黒鉛材料に添加する材料として繊維状の炭素材
料を用いる。繊維状炭素には種々のものがありいずれの
ものをも使用できる。例えば、繊維状に溶融紡糸された
ポリアクリロニトリル等の高分子あるいはコールタール
等のピッチを熱処理することにより得られる炭素繊維、
光学異方性を有するメソフェーズピッチを熱処理して得
られるメソフェーズピッチ系炭素繊維、ベンゼン等の有
機物を気化させた蒸気を高温度基盤上に流し触媒によっ
て炭素結晶を成長させた気相成長炭素繊維等である。ま
た、これらを熱処理することによって黒鉛化したもので
あっても構わない。さらにこれらを単独で用いること
も、これらのうち2種以上のものを混合して用いること
も可能である。
<Fibrous Carbon> In the negative electrode active material of the present invention, a fibrous carbon material is used as a material to be added to the graphite material. There are various types of fibrous carbon, and any of them can be used. For example, carbon fibers obtained by heat-treating a pitch such as a polymer or coal tar such as polyacrylonitrile melt-spun into fibrous,
Mesophase pitch-based carbon fiber obtained by heat treatment of mesophase pitch having optical anisotropy, vapor-grown carbon fiber grown by vaporizing organic substances such as benzene on a high-temperature substrate, and growing carbon crystals with a catalyst It is. In addition, these may be graphitized by heat treatment. Further, these can be used alone, or two or more of them can be used as a mixture.

【0017】上記いずれの繊維状炭素を用いる場合であ
っても、繊維を適切に粉砕する必要がある。繊維形状の
利点を活かすためには繊維形状を保った粉末を製造する
ことが重要であり、強度面からは繊維長が長く二次粒子
が大きいほうが有利である。一方、リチウムイオンの吸
蔵・放出は、繊維断面において大きくなることから、繊
維長を短くして繊維断面を多く存在させるほうが放電容
量が大きく、この点からは二次粒子が小さいほうがよ
い。これらの点を総合的に考慮し、また後に示す実験の
結果をも併せて考慮すれば、繊維状炭素は、二次粒子の
平均粒子径が10μm以上30μm以下となる粉末状の
ものを用いるのが望ましい。
In the case of using any of the above fibrous carbons, it is necessary to appropriately pulverize the fibers. In order to take advantage of the fiber shape, it is important to produce a powder that retains the fiber shape. From the viewpoint of strength, it is advantageous that the fiber length is long and the secondary particles are large. On the other hand, since the occlusion / release of lithium ions increases in the cross section of the fiber, it is better to shorten the fiber length and increase the cross section of the fiber, so that the discharge capacity is larger. From this point, the smaller secondary particles are better. Considering these points comprehensively, and also considering the results of experiments described later, fibrous carbon is used in the form of powder in which the average particle diameter of the secondary particles is 10 μm or more and 30 μm or less. Is desirable.

【0018】また、繊維が太いかあるいは短い場合に
は、10μm以上30μm以下の二次粒子を形成するこ
とが困難なため、繊維状炭素の繊維径が0.05μm以
上0.5μ以下であり、かつ、繊維長が5μm以上50
μm以下であることが望ましい。 〈負極の構成および
作製〉本発明の負極活物質材料では上記黒鉛材料と繊維
状炭素とを混合させるわけであるが、この混合比も電池
の容量維持性能を左右する要素となる。繊維状炭素の負
極内での機能は、黒鉛材料粒子の隙間に位置し負極の膨
張・収縮を抑制するものである。したがってこの機能を
考慮すれば、繰返しの充放電によっても電池容量を良好
な範囲に維持するための適切な混合比が存在する。後に
示す実験の結果をも鑑み、繊維状炭素の割合は、黒鉛材
料と繊維状炭素の総量を100重量部とした場合に、
0.5重量部以上22.5重量部以下とするのが望まし
い。
When the fibers are thick or short, it is difficult to form secondary particles of 10 μm or more and 30 μm or less. Therefore, the fiber diameter of the fibrous carbon is 0.05 μm or more and 0.5 μm or less. And the fiber length is 5 μm or more and 50
It is desirable that it is not more than μm. <Structure and Fabrication of Negative Electrode> In the negative electrode active material of the present invention, the above graphite material and fibrous carbon are mixed, and this mixing ratio is also a factor that affects the capacity maintenance performance of the battery. The function of the fibrous carbon in the negative electrode is that it is located in the gap between the graphite material particles and suppresses expansion and contraction of the negative electrode. Therefore, considering this function, there is an appropriate mixing ratio for maintaining the battery capacity in a good range even after repeated charging and discharging. In view of the results of the experiments shown below, the proportion of fibrous carbon, when the total amount of graphite material and fibrous carbon is 100 parts by weight,
It is desirable that the amount be 0.5 part by weight or more and 22.5 parts by weight or less.

【0019】この負極活物質材料を負極活物質として用
い負極を作製する。負極は負極活物質材料に結着材を混
合し、適当な溶剤を加えてペースト状の負極合材とした
ものを、金属箔集電体の表面に塗布乾燥して形成する。
結着材は、活物質材料である上記黒鉛材料および繊維状
炭素の粒子を繋ぎ止める役割を果たすもので、通常負極
活物質材料を結着するのに用いられるものであれば、い
ずれのものをも使用できる。例えば、ポリテトラフルオ
ロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含
フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑
性樹脂等を用いることができる。これら粒子および結着
材を分散させる溶剤としてはN−メチル−2−ピロリド
ン等の有機溶剤を用いることができる。
Using this negative electrode active material as a negative electrode active material, a negative electrode is manufactured. The negative electrode is formed by mixing a binder with a negative electrode active material and adding a suitable solvent to form a paste-like negative electrode mixture on the surface of a metal foil current collector and drying.
The binder plays a role of binding the particles of the graphite material and the fibrous carbon, which are the active material, and any material that is generally used to bind the negative electrode active material is used. Can also be used. For example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. As a solvent for dispersing the particles and the binder, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0020】また、これらの材料に代えて、負極結着材
としてメチルセルロース、カルボキシメチルセルロース
等のグループから選ばれる1種又は2種以上のセルロー
スエーテル系物質とスチレンブタジエンゴムラテック
ス、カルボキシ変性スチレンブタジエンゴムラテックス
等の合成ゴム系ラテックス型接着剤との複合バインダを
用い、溶剤として水を用いることもできる。そして負極
集電体としては、銅箔等を用いることができる。
Instead of these materials, one or more cellulose ether-based substances selected from the group consisting of methylcellulose, carboxymethylcellulose and the like, and a styrene-butadiene rubber latex and a carboxy-modified styrene-butadiene rubber latex are used as a negative electrode binder. It is also possible to use a composite binder with a synthetic rubber-based latex-type adhesive such as, for example, and use water as a solvent. As the negative electrode current collector, a copper foil or the like can be used.

【0021】本負極活物質材料を用いた場合は、従来に
比較して、結着材の混合量を半分程度とすることができ
る。これは、黒鉛材料を繊維状炭素で保持した構造をと
るため、繊維状炭素が構成する二次粒子の突起部に結着
材が少量付くだけで、活物質は電極に容易に付着すると
考えられるからである。負極合材は、良好な電池性能を
担保するため、上記黒鉛材料、繊維状炭素、および結着
材が充分にかつ均一に、混練、分散されている必要があ
る。したがって混練分散工程は、回転する羽根を有する
攪拌機、ボールミル、媒体攪拌ミル等を用いて行うのが
望ましい。
When the negative electrode active material is used, the mixing amount of the binder can be reduced to about half as compared with the conventional case. This is considered to be because the graphite material is held by fibrous carbon, so that only a small amount of the binder is attached to the protrusions of the secondary particles formed by the fibrous carbon, and the active material easily adheres to the electrode. Because. In order to ensure good battery performance, the negative electrode mixture needs to have the graphite material, fibrous carbon, and the binder kneaded and dispersed sufficiently and uniformly. Therefore, the kneading and dispersing step is desirably performed using a stirrer having rotating blades, a ball mill, a medium stirring mill, or the like.

【0022】負極合材の集電体表面への塗工方法は、特
に限定されるものではないが、帯状の集電体に連続して
負極合材を塗布乾燥できるコーター方式の塗工機を用い
るのが便利である。塗工機の塗布部には、負極合材が比
較的高粘度であることから、コンマコート、スクィーズ
コート、リップコート等の塗布方式を採用するのが好ま
しい。中でも塗布ロール、バックアップロール、コンマ
ロールの3つロールを用いたリバースコンマロール方式
は、均一な塗布厚が得られ、また粘度変化に容易に対応
できる点で優れている。負極合材の塗布厚は、電池用途
等に応じ、70μm〜200μmの間で任意のものとで
きる。
The method of applying the negative electrode mixture to the surface of the current collector is not particularly limited, but a coater-type coating machine capable of continuously applying and drying the negative electrode mixture on the belt-shaped current collector is used. Convenient to use. Since the negative electrode mixture has a relatively high viscosity, it is preferable to employ a coating method such as a comma coat, a squeeze coat, and a lip coat in the coating section of the coating machine. Above all, the reverse comma roll system using three rolls of a coating roll, a backup roll, and a comma roll is excellent in that a uniform coating thickness can be obtained and the viscosity can be easily changed. The coating thickness of the negative electrode mixture can be arbitrarily set in a range of 70 μm to 200 μm depending on the use of the battery.

【0023】負極合材を塗布乾燥して負極を形成した
後、この負極の密度を高めるため、乾燥後にプレスを行
うことが、電池のエネルギ密度を高めるのに効果的であ
る。ところが、繰り返される充放電によって電池容量が
維持される程度は負極密度にも密接な関係があり、満足
できる容量維持率とするためには負極密度を1.0g/
cm3以上1.5g/cm3以下とするのが望ましい。こ
れは、負極密度が1.0g/cm3未満の場合には、電
極のシート抵抗が増加し、その結果、レート特性が低下
するためであり、1.5g/cm3を超える場合には、
電極内部の活物質の活性が低下し、電池容量が低下する
ためだからである。
After forming the negative electrode by coating and drying the negative electrode mixture, pressing after drying to increase the density of the negative electrode is effective to increase the energy density of the battery. However, the degree to which the battery capacity is maintained by repeated charging and discharging is closely related to the negative electrode density.
It is desirable that the concentration be not less than cm 3 and not more than 1.5 g / cm 3 . This is because when the negative electrode density is less than 1.0 g / cm 3 , the sheet resistance of the electrode increases, and as a result, the rate characteristics decrease. When the negative electrode density exceeds 1.5 g / cm 3 ,
This is because the activity of the active material inside the electrode decreases, and the battery capacity decreases.

【0024】〈リチウム二次電池の構成〉リチウム二次
電池は、主に、正極および負極と、セパレータと、非水
電解液とを有することにより構成される。負極について
は上述したものを用いればよいため、ここでは負極を除
いた他の構成要素について説明する。なお負極を除いた
構成要素については、一般に公知のものを用いることが
でき、以下に掲げるものは1例であってこれに限定され
るものではない。
<Structure of Lithium Secondary Battery> A lithium secondary battery mainly includes a positive electrode and a negative electrode, a separator, and a non-aqueous electrolyte. Since the above-described element may be used for the negative electrode, other components except the negative electrode will be described here. In addition, about a component except a negative electrode, a well-known thing can be used in general, The following is an example and is not limited to this.

【0025】リチウム電池に用いる正極は、リチウムイ
オンを吸蔵・放出できる正極活物質に導電材および結着
材を混合し、負極同様、適当な溶媒を加えてペースト状
の正極合材としたものを、金属箔製の集電体表面に塗布
乾燥して形成する。正極活物質にはLiCoO2、Li
NiO2、LiMn24等のリチウム複合酸化物粉状体
の1種以上のものを用いることができるが、リチウムイ
オンの吸蔵・放出が可能のものであればよくこれらに限
定されるものではない。
The positive electrode used in the lithium battery is obtained by mixing a conductive material and a binder with a positive electrode active material capable of inserting and extracting lithium ions, and adding an appropriate solvent to form a paste-like positive electrode mixture as in the case of the negative electrode. Then, it is formed by coating and drying on the surface of a current collector made of metal foil. LiCoO 2 , Li
One or more kinds of lithium composite oxide powders such as NiO 2 and LiMn 2 O 4 can be used, provided that they can occlude and release lithium ions. Absent.

【0026】正極に用いる導電材は、正極の電気伝導性
を確保するためのものであり、カーボンブラック、アセ
チレンブラック、黒鉛等の炭素物質粉状体の1種又は2
種以上を混合したものを用いることができる。結着材に
は、負極同様、ポリテトラフルオロエチレン、ポリフッ
化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロ
ピレン、ポリエチレン等の熱可塑性樹脂を用いることが
できる。これら活物質、導電材、結着材を分散させる溶
剤としては、N−メチル−2−ピロリドン等の有機溶媒
を用いることができる。そして正極集電体には、アルミ
ニウム箔等を用いることができる。正極の作製方法は、
負極と同様のものとすることができる。
The conductive material used for the positive electrode is for ensuring the electrical conductivity of the positive electrode, and may be one or more of carbon material powders such as carbon black, acetylene black, and graphite.
A mixture of more than one species can be used. Like the negative electrode, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used as the binder. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing the active material, the conductive material, and the binder. An aluminum foil or the like can be used for the positive electrode current collector. The method of manufacturing the positive electrode
It can be similar to the negative electrode.

【0027】正極と負極の間に挟装されるセパレータ
は、正極と負極とを分離し電解液を保持するものであ
り、ポリエチレン、ポリプロピレン等の微多孔質膜を用
いることができる。また、非水電解液は、有機溶媒に電
解質を溶解させたもので、有機溶媒としては、非プロト
ン性有機溶媒、例えばエチレンカーボネート、プロピレ
ンカーボネート、ジメチルカーボネート、ジエチルカー
ボネート、γブチロラクトン、アセトニトリル、ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、塩化
メチレン等の1種またはこれらの2種以上の混合液を用
いることができる。また、溶解させる電解質としては、
LiI、LiClO4、LiAsF6、LiBF4、Li
PF6等のリチウム塩を用いることができる。
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode from the negative electrode and holds the electrolyte, and a microporous membrane such as polyethylene or polypropylene can be used. The non-aqueous electrolyte is a solution in which an electrolyte is dissolved in an organic solvent.Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, and dimethoxyethane. , Tetrahydrofuran, dioxolan, methylene chloride, or a mixture of two or more thereof. Also, as the electrolyte to be dissolved,
LiI, LiClO 4 , LiAsF 6 , LiBF 4 , Li
Lithium salts such as PF 6 can be used.

【0028】以上のものから構成されるリチウム二次電
池であるが、その形状は円筒型、積層型、コイン型等の
種々の形状とすることができる。いずれの形状を採る場
合であっても、正極および負極にセパレータを挟装させ
電極体とし、正極集電体および負極集電体から外部に通
ずる正極端子および負極端子までの間を集電用リード等
を用いて接続し、非水電解液とともに電池ケースに密閉
して形成する。
The lithium secondary battery constituted as described above can be formed in various shapes such as a cylindrical type, a stacked type and a coin type. Regardless of the shape used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and a current collecting lead extends from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that lead to the outside. And the like, and sealed in a battery case together with the non-aqueous electrolyte.

【0029】[0029]

【実施例】実際に種々のリチウム二次電池を作製し、こ
れらのリチウム二次電池に対して各種の実験を行い、本
発明の負極活物質材料を用いたリチウム二次電池が、繰
り返される充放電によっても大きな放電容量を維持でき
るサイクル特性の良好な二次電池であることを確認し
た。以下に、行った実験およびその結果を記載する。実
験は、繊維状炭素の混合添加割合と容量維持率との関
係、負極密度と容量維持率との関係、繊維状炭素の平均
二次粒子径と容量維持率との関係について行った。
EXAMPLES Various lithium secondary batteries were actually manufactured, and various experiments were conducted on these lithium secondary batteries. The lithium secondary batteries using the negative electrode active material of the present invention were repeatedly charged. It was confirmed that the secondary battery had good cycle characteristics that could maintain a large discharge capacity even by discharging. The experiments performed and the results are described below. The experiment was performed on the relationship between the mixed addition ratio of fibrous carbon and the capacity retention, the relationship between the negative electrode density and the capacity retention, and the relationship between the average secondary particle diameter of the fibrous carbon and the capacity retention.

【0030】〈実験1:繊維状炭素の混合添加割合と容
量維持率の関係〉まず、本実験に使用したリチウム二次
電池について説明する。本電池の負極活物質材料には、
黒鉛材料として球状黒鉛である黒鉛化メソカーボンマイ
クロビーズ(大阪ガスケミカル製:MCMB25−2
8:平均粒径25μm)を、繊維状炭素として気相成長
炭素繊維(昭和電工製:VGCF)を用いた。
<Experiment 1: Relationship between Mixed Addition Ratio of Fibrous Carbon and Capacity Retention Ratio> First, the lithium secondary battery used in this experiment will be described. The negative electrode active material of this battery includes
Graphitized mesocarbon microbeads which are spheroidal graphite as a graphite material (manufactured by Osaka Gas Chemical: MCMB25-2)
8: average particle size of 25 μm) and vapor-grown carbon fiber (VGCF, manufactured by Showa Denko KK) was used as the fibrous carbon.

【0031】負極合材の作製は、まず繊維状炭素の二次
粒子の粒径の調整を行なうための予備混練から行った。
予備混練は、結着材であるポリフッ化ビニリデン(PV
DF)を溶剤であるN−メチル−2−ピロリドン(NM
P)に12wt%の濃度で溶解させた溶液を作製し、こ
の溶液に繊維状炭素を繊維状炭素とPVDFが重量比で
1:1となるように混合し、二軸混練機(特殊機化工業
製)にて10分間混練するようにして行った。
The preparation of the negative electrode mixture was first performed by preliminary kneading for adjusting the particle size of the secondary particles of fibrous carbon.
The preliminary kneading is performed using polyvinylidene fluoride (PV) as a binder.
DF) with N-methyl-2-pyrrolidone (NM
P) was prepared at a concentration of 12 wt%, and fibrous carbon was mixed with this solution so that the weight ratio of fibrous carbon and PVDF was 1: 1. (Manufactured by Kogyo Co., Ltd.) for 10 minutes.

【0032】予備混練の後、球状黒鉛を球状黒鉛と繊維
状炭素とが下記の割合となるように加え、さらに30分
間混練を続けて、ペースト状の負極合材を作製した。作
製した負極合材は、球状黒鉛と繊維状炭素の重量比にお
いて、それぞれ99:1、95:1、80:20、7
5:25、50:50のものである。さらに、比較のた
め繊維状炭素を混合添加していない負極活物質が球状黒
鉛のみの負極合材をも作製した。なお、これら一連の混
練の結果、繊維状炭素の二次粒子の平均粒径は18μm
となっていた。
After the preliminary kneading, spheroidal graphite was added so that the spheroidal graphite and fibrous carbon had the following ratio, and kneading was continued for further 30 minutes to prepare a paste-like negative electrode mixture. The prepared negative electrode mixture was 99: 1, 95: 1, 80:20, 7:99 by weight ratio of spherical graphite to fibrous carbon.
5:25, 50:50. Further, for comparison, a negative electrode mixture in which fibrous carbon was not mixed and added and the negative electrode active material was only spherical graphite was also prepared. As a result of these series of kneading, the average particle size of the secondary particles of fibrous carbon was 18 μm.
Had become.

【0033】こうして得られたそれぞれの負極合材をN
MPにて粘度調整を行った後、厚さ10μmの銅箔集電
体の両面に、コータを用いて、片面あたり塗布厚170
μmで塗布し、乾燥した。その後ロールプレスにて圧縮
成形行って、片面あたり厚さが110μmの層状の負極
を有するシート状の負極電極を作製した。得られたそれ
ぞれの負極の密度は、1.2g/cm3〜1.4g/c
3の範囲にあった。
Each negative electrode mixture thus obtained was
After adjusting the viscosity by MP, a coating thickness of 170 μm per side was applied to both sides of the copper foil current collector having a thickness of 10 μm using a coater.
Coated at μm and dried. Thereafter, compression molding was performed by a roll press to produce a sheet-shaped negative electrode having a layered negative electrode having a thickness of 110 μm per side. The density of each of the obtained negative electrodes is 1.2 g / cm 3 to 1.4 g / c.
m 3 .

【0034】負極に対向させる正極は、活物質としてL
iMn24の粉末を、導電材として球状黒鉛(東海カー
ボン製:TB5500)を、結着材としてPVDFを用
いて作製した。LiMn2490重量部に対して、球状
黒鉛を5重量部、PVDFを5重量部混合し、溶剤とし
てNMPを加えて混練し、得られたペースト状の正極合
材を厚さ20μmのアルミニウム箔集電体の両面に塗布
乾燥し、ロールプレスを行うことによって正極を作製し
た。
The positive electrode facing the negative electrode has L as an active material.
A powder of iMn 2 O 4 was prepared using spherical graphite (TB5500 manufactured by Tokai Carbon) as a conductive material and PVDF as a binder. 5 parts by weight of spheroidal graphite and 5 parts by weight of PVDF are mixed with 90 parts by weight of LiMn 2 O 4 , NMP is added as a solvent and kneaded, and the obtained paste-like positive electrode mixture is mixed with aluminum having a thickness of 20 μm. A positive electrode was prepared by applying and drying both sides of the foil current collector and performing roll pressing.

【0035】作製された負極と正極を、セパレータを介
して捲回しロール状の電極体を形成させた。この電極体
を、直径18mmφ、長さ65mmの18650型電池
缶に挿入し、非水電解液を含浸させて密閉し電池を完成
させた。セパレータには厚さ20μmの微多孔性ポリプ
ロピレンフィルムを、非水電解液にはエチレンカーボネ
ートとジエチルカーボネートとを体積比1:1に混合し
た混合溶媒にLiPF 6を電解質として1Mの濃度で溶
解させた溶液を用いた。
The produced negative electrode and positive electrode are interposed via a separator.
Then, a rolled electrode body was formed. This electrode body
A 18650 type battery with a diameter of 18 mmφ and a length of 65 mm
Insert into a can, impregnate with non-aqueous electrolyte and seal to complete battery
I let it. A 20μm thick microporous polyp is used for the separator.
The propylene film is used for the non-aqueous electrolyte
And diethyl carbonate in a volume ratio of 1: 1
LiPF in mixed solvent 6At a concentration of 1M as an electrolyte
The dissolved solution was used.

【0036】このように作製したそれぞれの電池、つま
り負極において球状黒鉛と繊維状炭素の混合割合の異な
るそれぞれの電池に対して、充放電サイクル試験を行っ
た。充放電サイクル試験は、20℃の温度の下、1.0
mA/cm2の電流密度で充電終止電圧4.2Vまで定
電流充電を行い、4.2Vに達した後は定電圧で2時間
充電を行い、充電終了後1.0mA/cm2の電流密度
で放電終止電圧3.0Vまで定電流放電を行うものを1
サイクルとした。そして500サイクルまで繰り返し、
各サイクルにおける放電容量を測定した。
A charge / discharge cycle test was performed on each of the batteries thus produced, that is, each battery having a different mixing ratio of spherical graphite and fibrous carbon in the negative electrode. The charge / discharge cycle test was performed at a temperature of 20 ° C. for 1.0
At a current density of mA / cm 2 , constant current charging was performed up to a charging end voltage of 4.2 V. After reaching 4.2 V, charging was performed at a constant voltage for 2 hours. After the charging was completed, a current density of 1.0 mA / cm 2 was obtained. The one that performs constant current discharge up to the discharge end voltage of 3.0 V
Cycle. And repeat up to 500 cycles,
The discharge capacity in each cycle was measured.

【0037】試験に先立ち0.25mA/cm2の定電
流で充放電を行って測定した初期放電容量に対する各サ
イクルにおける放電容量を、その百分率をとって容量維
持率とした。各サイクルでのこの容量維持率を比較する
ことによって電池のサイクル特性を評価する。下記表1
に球状黒鉛と繊維状炭素との混合割合に対する100サ
イクル後の容量維持率を、また、図1に球状黒鉛と繊維
状炭素との混合割合に対する500サイクルまでの各サ
イクルの容量維持率の関係を示す。
Prior to the test, the discharge capacity in each cycle with respect to the initial discharge capacity measured by charging and discharging at a constant current of 0.25 mA / cm 2 was taken as a percentage to obtain a capacity retention rate. The cycle characteristics of the battery are evaluated by comparing the capacity retention ratio in each cycle. Table 1 below
Fig. 1 shows the capacity retention ratio after 100 cycles with respect to the mixing ratio of spheroidal graphite and fibrous carbon, and Fig. 1 shows the relationship of the capacity retention ratio of each cycle up to 500 cycles with respect to the mixing ratio of spheroidal graphite and fibrous carbon. Show.

【0038】[0038]

【表1】 図1から判るように、負極活物質材料として繊維状炭素
を添加していない電池では、150サイクル付近から急
激に容量維持率が低下している。これに対して、繊維状
炭素を混合添加した負極活物質材料を用いた電池では、
500サイクルまで急激な容量維持率の低下は見られな
かった。したがって負極活物質材料として黒鉛材料に繊
維状炭素を混合添加することが、リチウム二次電池のサ
イクル耐久性を向上させるのに有利であることが確認で
きた。
[Table 1] As can be seen from FIG. 1, in the battery in which fibrous carbon was not added as the negative electrode active material, the capacity retention rate sharply decreased from around 150 cycles. On the other hand, in a battery using a negative electrode active material mixed with fibrous carbon,
No rapid decrease in capacity retention rate was observed up to 500 cycles. Therefore, it was confirmed that mixing and adding fibrous carbon to a graphite material as the negative electrode active material is advantageous for improving the cycle durability of the lithium secondary battery.

【0039】また、図1および表1から判るように、黒
鉛材料と繊維状炭素の総量を100重量部とした場合の
繊維状炭素の割合が25重量部を超えると、サイクル経
過につれて容量維持率の低下する度合が大きくなった。
したがって、負極活物質材料における繊維状炭素の混合
割合は、黒鉛材料と繊維状炭素の総量を100重量部と
した場合の0.5重量部以上22.5重量部以下とする
のが望ましいことが確認できた。
Further, as can be seen from FIG. 1 and Table 1, when the ratio of the fibrous carbon exceeds 25 parts by weight when the total amount of the graphite material and the fibrous carbon is 100 parts by weight, the capacity retention ratio increases as the cycle progresses. The degree of decrease became large.
Therefore, it is desirable that the mixing ratio of the fibrous carbon in the negative electrode active material be 0.5 to 22.5 parts by weight when the total amount of the graphite material and the fibrous carbon is 100 parts by weight. It could be confirmed.

【0040】〈実験2:負極密度と容量維持率との関
係〉上記実験1と同様な作製方法を用い、球状黒鉛と、
繊維状炭素と、PVDFとの混合比が95重量部:5重
量部:5重量部となる負極合材を作製した。この負極合
材を、負極集電体の両表面に片面あたり厚さがそれぞれ
110μm、140μm、180μm、220μm、2
50μmとなるように塗布し、乾燥後ロールプレスによ
り圧縮成形を行い、片面あたり110μmの負極厚さと
なるようなシート状の負極電極を作製した。それぞれの
負極密度は、0.75g/cm3、1.00g/cm3
1.25g/cm3、1.50g/cm3、1.75g/
cm3であった。
<Experiment 2: Relationship between negative electrode density and capacity retention ratio> Using the same manufacturing method as in Experiment 1, spherical graphite was used.
A negative electrode mixture was prepared in which the mixing ratio of fibrous carbon and PVDF was 95 parts by weight: 5 parts by weight: 5 parts by weight. The negative electrode mixture was applied to both surfaces of the negative electrode current collector with a thickness of 110 μm, 140 μm, 180 μm, 220 μm,
The coating was applied to a thickness of 50 μm, dried, and compression-molded by a roll press to prepare a sheet-shaped negative electrode having a negative electrode thickness of 110 μm per side. The respective negative electrode densities were 0.75 g / cm 3 , 1.00 g / cm 3 ,
1.25 g / cm 3 , 1.50 g / cm 3 , 1.75 g / cm 3
cm 3 .

【0041】この負極を用い、正極、セパレータ、非水
電解液、電池缶等の電池構成を実験1のものと同様にし
て二次電池を作製した。そして、それぞれの電池に対し
て、実験1と同条件で充放電サイクル試験を行い、負極
単位重量当たりの2サイクル目の放電容量を求め、この
2サイクル目の放電容量に対する100サイクル目の放
電容量の百分率を容量維持率として、この容量維持率を
比較し、負極密度と容量維持率との関係について調べ
た。この結果を表2および図2に示す。
Using this negative electrode, a secondary battery was manufactured in the same manner as in Experiment 1 except that the positive electrode, the separator, the nonaqueous electrolyte, the battery can, and the like were used. A charge / discharge cycle test was performed on each battery under the same conditions as in Experiment 1 to determine the discharge capacity at the second cycle per unit weight of the negative electrode. The discharge capacity at the 100th cycle relative to the discharge capacity at the second cycle was obtained. The capacity retention rate was compared with the percentage of the capacity retention rate, and the relationship between the negative electrode density and the capacity retention rate was examined. The results are shown in Table 2 and FIG.

【0042】[0042]

【表2】 この結果から判るように、容量維持率は、負極密度に依
存した。負極密度が1.0g/cm3を下回ったり、逆
に1.5g/cm3を超えるものである場合は、充分な
容量維持率が得られないことから、黒鉛材料に繊維状炭
素を混合した負極活物質材料を用いてサイクル特性のよ
り良好な二次電池を得ようとする場合には、負極密度を
1.25g/cm3以上1.5g/cm3以下とするのが
望ましいことが確認できた。
[Table 2] As can be seen from the results, the capacity retention rate was dependent on the negative electrode density. If the negative electrode density is less than 1.0 g / cm 3 or more than 1.5 g / cm 3 , a sufficient capacity retention cannot be obtained, so that fibrous carbon was mixed with the graphite material. When a secondary battery having better cycle characteristics is to be obtained using a negative electrode active material, it is confirmed that the negative electrode density is desirably 1.25 g / cm 3 or more and 1.5 g / cm 3 or less. did it.

【0043】〈実験3:繊維状炭素の平均二次粒子径と
容量維持率との関係〉繊維状炭素と結着材との予備混練
において、混練時間を変化させることにより繊維状炭素
の二次粒子の粒径が変化することが判っている。実験1
と同様に、予備混練は、PVDFをNMPに12wt%
の濃度で溶解させた溶液を作製し、この溶液に繊維状炭
素を繊維状炭素とPVDFが重量比で1:1となるよう
に混合して行った。混練時間は、それぞれ5分、10
分、30分、60分、120分とした。
<Experiment 3: Relationship between Average Secondary Particle Diameter of Fibrous Carbon and Capacity Retention Ratio> In the preliminary kneading of the fibrous carbon and the binder, the secondary time of the fibrous carbon was changed by changing the kneading time. It has been found that the size of the particles changes. Experiment 1
In the same manner as in the above, the preliminary kneading is performed by adding 12% by weight of PVDF to NMP.
Was prepared, and fibrous carbon was mixed with this solution so that the weight ratio of fibrous carbon and PVDF was 1: 1. The kneading time is 5 minutes, 10 minutes respectively.
Minutes, 30 minutes, 60 minutes, and 120 minutes.

【0044】予備混練の後、球状黒鉛を球状黒鉛と繊維
状炭素とが95重量部:5重量部の割合となるように加
え、さらに30分間混練を続けて、ペースト状の負極合
材を作製した。また予備混練を行わずに直接球状黒鉛と
繊維状炭素を混合した負極合材をも作製した。そしてこ
れらの負極合材を用いて、実験1と同様の、負極が形成
されたシート状の負極電極を作製した。形成されたそれ
ぞれの負極に対して走査型電子顕微鏡(SEM)による
観察を行い繊維状炭素の二次粒子の平均粒径を求めた。
After the preliminary kneading, spherical graphite was added so that the ratio of spherical graphite and fibrous carbon was 95 parts by weight: 5 parts by weight, and kneading was further continued for 30 minutes to produce a paste-like negative electrode mixture. did. Further, a negative electrode mixture in which spherical graphite and fibrous carbon were directly mixed without performing preliminary kneading was also produced. Then, a sheet-shaped negative electrode on which a negative electrode was formed was produced in the same manner as in Experiment 1 using these negative electrode mixtures. Each of the formed negative electrodes was observed by a scanning electron microscope (SEM) to determine an average particle diameter of secondary particles of fibrous carbon.

【0045】次に、実験1と同様の構成の二次電池を作
製し、これらの電池について実験1の場合と同様の条件
で充放電サイクル試験を行い、初期容量に対する100
サイクル目の放電容量の百分率を容量維持率として、繊
維状炭素の平均二次粒子径と容量維持率との関係につい
て調べた。この結果を下記表3に示す。
Next, a secondary battery having the same configuration as in Experiment 1 was manufactured, and a charge / discharge cycle test was performed on these batteries under the same conditions as in Experiment 1 to obtain a battery with 100% of the initial capacity.
The relationship between the average secondary particle diameter of the fibrous carbon and the capacity retention rate was examined with the percentage of the discharge capacity at the cycle as the capacity retention rate. The results are shown in Table 3 below.

【0046】[0046]

【表3】 表3から判るように、予備混練を行っていない繊維状炭
素の二次粒子の平均粒径は51μmであるのに対して、
予備混練を行った場合は、混練初期において平均粒径は
12μmにまで小さくなり、その後混練時間が経過する
にしたがって二次粒子の成長が起こることが確認でき
た。そして、繊維状炭素の二次粒子の平均粒径に対する
容量維持率は、平均粒径が10μm以上30μm以下の
範囲において高い容量維持率が得られることが確認でき
た。したがって、黒鉛材料に繊維状炭素を混合した負極
材料を用いた二次電池において、サイクル特性をより良
好なものとするためには、繊維状炭素の平均二次粒子径
を10μm以上30μm以下とするのが望ましいことが
確認できた。
[Table 3] As can be seen from Table 3, the average particle size of the secondary particles of the fibrous carbon that has not been pre-kneaded is 51 μm,
When the preliminary kneading was performed, it was confirmed that the average particle diameter was reduced to 12 μm in the initial stage of kneading, and that secondary particles grew as the kneading time elapses thereafter. Then, it was confirmed that a high capacity retention ratio was obtained when the average particle size of the secondary particles of the fibrous carbon was in the range of 10 μm to 30 μm. Therefore, in a secondary battery using a negative electrode material obtained by mixing fibrous carbon with a graphite material, the average secondary particle diameter of the fibrous carbon is set to 10 μm or more and 30 μm or less in order to improve cycle characteristics. It was confirmed that it was desirable.

【0047】また、これら負極についてX線回折分析を
行ったところ、いずれもものについても、繊維状炭素特
有の(110)面のピークが観察されたことから、負極
内において繊維状炭素が無配向状態で位置していること
も確認できた。さらに、SEM観察によれば、繊維状炭
素が混合されている負極は、負極内に空孔が多く存在す
ることが確認でき、リチウムイオンの出入りが良好にな
るものと考えられ、電池の負荷特性の向上をも期待でき
るものとなっている。
When an X-ray diffraction analysis was performed on these negative electrodes, a peak of the (110) plane characteristic of fibrous carbon was observed in each case. It was confirmed that it was located in the state. Further, according to SEM observation, it was confirmed that the negative electrode in which the fibrous carbon was mixed had many vacancies in the negative electrode, and it was considered that lithium ions could enter and exit well. Can be expected to improve.

【0048】[0048]

【発明の効果】本発明は、リチウム二次電池用負極活物
質材料として、黒鉛材料と繊維状炭素の混合物を用いる
ことを特徴とするものである。適切な二次粒子径の繊維
状炭素を混合添加した負極は、負極の通電抵抗を増加さ
せることなく充放電に伴う体積変化が抑制され、この負
極を用いたリチウム二次電池は、高電流密度で繰り返さ
れる充放電によっても大きな放電容量を維持することが
可能となり、サイクル特性の良好なものとなる。
The present invention is characterized in that a mixture of a graphite material and fibrous carbon is used as a negative electrode active material for a lithium secondary battery. The negative electrode mixed and added with fibrous carbon having an appropriate secondary particle size suppresses the volume change due to charge and discharge without increasing the current-carrying resistance of the negative electrode.The lithium secondary battery using this negative electrode has a high current density. , A large discharge capacity can be maintained even by repeated charge and discharge, and good cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 繊維状炭素の混合添加割合と容量維持率の関
係について示す図
FIG. 1 is a diagram showing a relationship between a mixed addition ratio of fibrous carbon and a capacity retention ratio.

【図2】 負極密度と容量維持率との関係について示す
FIG. 2 is a diagram showing a relationship between a negative electrode density and a capacity retention ratio.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AK03 AL07 AM02 AM07 BJ02 BJ03 BJ04 DJ15 DJ16 HJ01 HJ05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AK03 AL07 AM02 AM07 BJ02 BJ03 BJ04 DJ15 DJ16 HJ01 HJ05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鱗片状黒鉛または球状黒鉛の少なくとも
いずれか1つの黒鉛材料と、平均粒子径が10μm以上
30μm以下の二次粒子を形成する繊維状炭素とを含有
することを特徴とするリチウム二次電池用負極活物質材
料。
1. A lithium secondary battery comprising: at least one graphite material of flaky graphite or spherical graphite; and fibrous carbon forming secondary particles having an average particle diameter of 10 μm or more and 30 μm or less. Negative electrode active material for secondary batteries.
【請求項2】 前記黒鉛材料と前記繊維状炭素の総量を
100重量部とした場合、該繊維状炭素の割合は0.5
重量部以上22.5重量部以下である請求項1に記載の
リチウム二次電池用負極活物質材料。
2. When the total amount of the graphite material and the fibrous carbon is 100 parts by weight, the ratio of the fibrous carbon is 0.5.
The negative electrode active material for a lithium secondary battery according to claim 1, which is not less than 2 parts by weight and not more than 22.5 parts by weight.
【請求項3】 請求項1に記載のリチウム二次電池用負
極活物質材料を負極活物質に用いたリチウム二次電池。
3. A lithium secondary battery using the negative electrode active material for a lithium secondary battery according to claim 1 as a negative electrode active material.
JP10307557A 1998-10-28 1998-10-28 Negative active material for lithium secondary battery and lithium secondary battery using this Pending JP2000133267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10307557A JP2000133267A (en) 1998-10-28 1998-10-28 Negative active material for lithium secondary battery and lithium secondary battery using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10307557A JP2000133267A (en) 1998-10-28 1998-10-28 Negative active material for lithium secondary battery and lithium secondary battery using this

Publications (1)

Publication Number Publication Date
JP2000133267A true JP2000133267A (en) 2000-05-12

Family

ID=17970530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10307557A Pending JP2000133267A (en) 1998-10-28 1998-10-28 Negative active material for lithium secondary battery and lithium secondary battery using this

Country Status (1)

Country Link
JP (1) JP2000133267A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089366A1 (en) * 1999-09-30 2001-04-04 Sony Corporation Nonaqueous electrolyte secondary battery
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
JP2002164052A (en) * 2000-11-27 2002-06-07 Sony Corp Non-aqueous electrolytic battery
JP2006008462A (en) * 2004-06-28 2006-01-12 Jfe Chemical Corp Granular composite carbon material and its manufacturing method, and negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
JP2009209035A (en) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp Carbonaceous material having multilayer structure, method for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material
US8003257B2 (en) 2005-07-04 2011-08-23 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
WO2014115852A1 (en) 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
CN106537668A (en) * 2016-04-04 2017-03-22 太克万株式会社 Carbon fiber, carbon fiber material manufacturing method, electrical equipment, secondary battery and product
WO2018076098A1 (en) * 2016-10-28 2018-05-03 Adven Industries, Inc. Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing
JP2018534224A (en) * 2015-09-23 2018-11-22 ナノテク インスツルメンツ インク Integrated monolithic film of highly oriented graphene halide

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498101B2 (en) 1999-09-30 2009-03-03 Sony Corporation Non-aqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
US6806003B1 (en) 1999-09-30 2004-10-19 Sony Corporation Nonaqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
US7172837B2 (en) 1999-09-30 2007-02-06 Sony Corporation Nonaqueous electrolyte secondary battery having a negative electrode containing carbon fibers and carbon flakes
EP1089366A1 (en) * 1999-09-30 2001-04-04 Sony Corporation Nonaqueous electrolyte secondary battery
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
JP2002164052A (en) * 2000-11-27 2002-06-07 Sony Corp Non-aqueous electrolytic battery
JP4734707B2 (en) * 2000-11-27 2011-07-27 ソニー株式会社 Non-aqueous electrolyte battery
JP2006008462A (en) * 2004-06-28 2006-01-12 Jfe Chemical Corp Granular composite carbon material and its manufacturing method, and negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
JP4495531B2 (en) * 2004-06-28 2010-07-07 Jfeケミカル株式会社 Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9276257B2 (en) 2005-07-04 2016-03-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8003257B2 (en) 2005-07-04 2011-08-23 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
US8685362B2 (en) 2005-07-04 2014-04-01 Showa Denko K.K. Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
JP2009209035A (en) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp Carbonaceous material having multilayer structure, method for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material
WO2014115852A1 (en) 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
KR20150109377A (en) 2013-01-25 2015-10-01 데이진 가부시키가이샤 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
US10541417B2 (en) 2013-01-25 2020-01-21 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
EP3629406A1 (en) 2013-01-25 2020-04-01 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
US11545669B2 (en) 2013-01-25 2023-01-03 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
JP2018534224A (en) * 2015-09-23 2018-11-22 ナノテク インスツルメンツ インク Integrated monolithic film of highly oriented graphene halide
JP7050667B2 (en) 2015-09-23 2022-04-08 ナノテク インスツルメンツ インク Monolith membrane of integrated highly oriented halogenated graphene
CN106537668A (en) * 2016-04-04 2017-03-22 太克万株式会社 Carbon fiber, carbon fiber material manufacturing method, electrical equipment, secondary battery and product
CN106537668B (en) * 2016-04-04 2018-07-10 太克万株式会社 Carbon fiber, carbon fibre material manufacturing method, electrical equipment, secondary cell and product
WO2018076098A1 (en) * 2016-10-28 2018-05-03 Adven Industries, Inc. Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing
US11165053B2 (en) 2016-10-28 2021-11-02 Adven Industries Inc. Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing

Similar Documents

Publication Publication Date Title
KR100377993B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
KR101606647B1 (en) Carbon-silicon composite and manufacturing mehtod of the same
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
US20020168574A1 (en) Lithium ion secondary battery and manufacturing method of the same
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
CN111799470B (en) Positive pole piece and sodium ion battery
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP4113593B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2000133267A (en) Negative active material for lithium secondary battery and lithium secondary battery using this
JP4354723B2 (en) Method for producing graphite particles
JP2002042786A (en) Nonaqueous electrolyte secondary battery
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JP3289098B2 (en) Non-aqueous secondary battery
JP2017069039A (en) Negative electrode for power storage device, and power storage device
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JPH11329439A (en) Non-aqueous electrolyte secondary battery
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
CN105405669A (en) Power type battery capacitor
JP2002134115A (en) Conductive binder liquid for lithium ion secondary battery, method of preparing binder liquid and electrode material for lithium ion secondary battery using binder liquid
JP2002158038A (en) Lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP2002237302A (en) Lithium ion secondary battery wherein natural product- originated carbon is used as negative electrode