[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4971646B2 - Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same - Google Patents

Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same Download PDF

Info

Publication number
JP4971646B2
JP4971646B2 JP2006040350A JP2006040350A JP4971646B2 JP 4971646 B2 JP4971646 B2 JP 4971646B2 JP 2006040350 A JP2006040350 A JP 2006040350A JP 2006040350 A JP2006040350 A JP 2006040350A JP 4971646 B2 JP4971646 B2 JP 4971646B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
active material
containing composition
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006040350A
Other languages
Japanese (ja)
Other versions
JP2007220510A (en
Inventor
岸泰 山岡
一平 宗岡
勇人 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASADA IRON WORKS CO., LTD.
Hitachi Maxell Energy Ltd
Original Assignee
ASADA IRON WORKS CO., LTD.
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASADA IRON WORKS CO., LTD., Hitachi Maxell Energy Ltd filed Critical ASADA IRON WORKS CO., LTD.
Priority to JP2006040350A priority Critical patent/JP4971646B2/en
Publication of JP2007220510A publication Critical patent/JP2007220510A/en
Application granted granted Critical
Publication of JP4971646B2 publication Critical patent/JP4971646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極合剤含有組成物の製造方法、負極合剤含有組成物の製造方法、電池用正極の製造方法、電池用負極の製造方法、非水二次電池およびその製造方法に関するものである。   The present invention relates to a method for producing a positive electrode mixture-containing composition, a method for producing a negative electrode mixture-containing composition, a method for producing a positive electrode for a battery, a method for producing a negative electrode for a battery, a non-aqueous secondary battery, and a method for producing the same. is there.

近年、携帯電話などの携帯機器の加速度的な普及に伴い、その電源として、高エネルギー密度を有する非水二次電池の需要が急速に拡大している。こうした非水二次電池では、電極については、例えば、正極活物質を含有する正極合剤層を集電体表面に形成してなる正極と、負極活物質を含有する負極合剤層を集電体表面に形成してなる負極とを、セパレータを介して積層してなる電極体と、非水電解液とを、電池外装体内に装填してなる構造を有するものが一般的である。   In recent years, with the rapid spread of mobile devices such as mobile phones, the demand for non-aqueous secondary batteries having high energy density as the power source is rapidly expanding. In such a non-aqueous secondary battery, for the electrode, for example, a positive electrode formed by forming a positive electrode mixture layer containing a positive electrode active material on the current collector surface and a negative electrode mixture layer containing a negative electrode active material are collected. In general, an electrode body formed by laminating a negative electrode formed on the body surface via a separator and a nonaqueous electrolyte solution are loaded in a battery outer package.

そして、それぞれの電極の合剤層の形成に当たっては、活物質、導電助剤、結着剤などを含有し、これを溶剤に分散させてなる正負極電極合剤含有組成物(ペースト、スラリーなど)を調製し、これを集電体表面に塗布し、乾燥して溶剤を除去する方法が採用されている。   And in forming the mixture layer of each electrode, it contains an active material, a conductive additive, a binder, etc., and a positive and negative electrode mixture containing composition (paste, slurry, etc.) formed by dispersing this in a solvent. ) Is applied to the surface of the current collector and dried to remove the solvent.

電極合剤含有組成物の調製方法も種々提案されている。例えば、特許文献1には、活物質と導電助剤と結着剤とをプラネタリーミキサーで混合し、その後、この混合物を押出機で混練した後、この混練物と溶剤とを混合する方法が提案されている。   Various methods for preparing an electrode mixture-containing composition have also been proposed. For example, Patent Document 1 discloses a method in which an active material, a conductive additive, and a binder are mixed with a planetary mixer, and then the mixture is kneaded with an extruder and then the kneaded product and a solvent are mixed. Proposed.

また、特許文献2には、導電助剤と結着剤と溶剤とを二軸押出機で混練して得られた導電助剤含有分散液と活物質とを、二軸押出機でさらに混練する方法や、正極活物質と導電助剤と結着剤と溶剤とを、二軸押出機で一度に混練する方法が提案されている。   In Patent Document 2, a conductive auxiliary agent-containing dispersion obtained by kneading a conductive additive, a binder and a solvent with a twin screw extruder and an active material are further kneaded with a twin screw extruder. A method and a method of kneading a positive electrode active material, a conductive additive, a binder, and a solvent at once with a twin screw extruder have been proposed.

さらに、特許文献3に記されるように、活物質材料と導電性材料との混合物に、主に圧縮力および摩砕力よりなる機械的エネルギーを作用させて、メカノケミカル反応により活物質粒子の表面に導電性材料を圧延し、被覆することにより活物質粒子と導電剤との接触を維持することが提案されている。また、特許文献4にはずりせん断を作用させ、有機質高分子粒子の表面に無機質微細粒子を表面修飾させることが提案されている。   Furthermore, as described in Patent Document 3, mechanical energy mainly composed of compressive force and grinding force is applied to the mixture of the active material and the conductive material, and the active material particles are subjected to mechanochemical reaction. It has been proposed to maintain contact between the active material particles and the conductive agent by rolling and coating a conductive material on the surface. Further, it has been proposed in Patent Document 4 that shear shearing acts to modify the surface of organic polymer particles with inorganic fine particles.

特開2000−123879号(特許請求の範囲など)JP 2000-123879 (Claims etc.) 特開2004−14206号(特許請求の範囲など)JP 2004-14206 (Claims etc.) 特開2001−68096号(発明の実施の形態など)Japanese Patent Laid-Open No. 2001-68096 (Embodiments of the Invention, etc.) 特開平10−202653号(特許請求の範囲など)JP-A-10-202653 (Claims etc.)

ところで、最近では、非水二次電池の更なる高容量化を達成すべく、電極合剤層を高密度化して、活物質の充填量を向上させる試みがなされている。電極合剤層を高密度化するには、例えば、電極合剤含有組成物を集電体表面に塗布した後、カレンダー成形などのプレス処理により圧縮する方法が採用できる。ところが、プレス処理における圧縮力をあまり大きくすると、集電体の破れが生じることがあり、電極の生産性が損なわれてしまう。よって、高密度の電極合剤層を有する電極を生産性よく製造するには、プレス処理での圧縮力に大きく依存しない高密度の電極合剤含有組成物を調製することが好ましい。そのためには、予め充填性が高くなるような組成物の選択が必要になる。   By the way, recently, in order to achieve further increase in capacity of the non-aqueous secondary battery, attempts have been made to increase the density of the electrode mixture layer and improve the filling amount of the active material. In order to increase the density of the electrode mixture layer, for example, a method in which the electrode mixture-containing composition is applied to the surface of the current collector and then compressed by a press treatment such as calendar molding can be employed. However, if the compressive force in the pressing process is too large, the current collector may be broken, and the productivity of the electrode is impaired. Therefore, in order to produce an electrode having a high-density electrode mixture layer with high productivity, it is preferable to prepare a high-density electrode mixture-containing composition that does not largely depend on the compression force in the press treatment. For this purpose, it is necessary to select a composition having high filling properties in advance.

電極合剤含有組成物の充填性を高くするには、次に示す課題を解決しなければならない。電極合剤含有組成物には導電助剤が含まれる場合があるが、その導電助剤は一般的に活物質の良好な電子伝導パスを確保するために、活物質に比べて重量あたりの比表面積が大きく、かさ比重が小さい傾向にある。そのため、導電助剤含有量が多いと、電池性能は向上するが高密度化はできず、導電助剤含有量が少ないと、高密度化は可能だが電池性能は低下するという問題がある。   In order to increase the filling property of the electrode mixture-containing composition, the following problems must be solved. The electrode mixture-containing composition may contain a conductive assistant, but the conductive assistant generally has a ratio per weight compared to the active material in order to ensure a good electron conduction path of the active material. The surface area tends to be large and the bulk specific gravity tends to be small. Therefore, if the content of the conductive auxiliary agent is large, the battery performance is improved, but the density cannot be increased. If the content of the conductive auxiliary agent is small, the density can be increased but the battery performance is lowered.

上記の問題を解決する方法としては、例えば、予め組成物が高充填されるように粒子サイズなどを調整しておく方法がある。一般的には、大きな粒子サイズと小さな粒子サイズを適した比率で混合することで、高充填化を図ることができる。しかしこの方法は、粒子サイズの不均一化により、電気化学反応の不均一化を生じ、電池性能劣化に影響を及ぼしてしまう問題がある。   As a method for solving the above problem, for example, there is a method of adjusting the particle size or the like so that the composition is highly filled in advance. In general, high filling can be achieved by mixing large and small particle sizes in an appropriate ratio. However, this method has a problem that nonuniformity of the particle size causes nonuniformity of the electrochemical reaction and affects battery performance deterioration.

特許文献1に開示の方法では、特に正極合剤含有組成物に対して、二次凝集した活物質が一次粒子に分散されることで高密度化が図れることを特長としているが、正極合剤含有組成量として、正極活物質としてのコバルト酸リチウム100重量部に対して、導電助剤としてのグラファイトが26重量部と大きく、前述したように、導電助剤として含有しているかさ比重の小さいグラファイトの二次凝集体が、一次粒子に分散されることによる効果が主体と考えられる。   The method disclosed in Patent Document 1 is characterized in that, particularly with respect to the positive electrode mixture-containing composition, it is possible to increase the density by dispersing the secondary agglomerated active material into the primary particles. As a contained composition amount, graphite as a conductive aid is as large as 26 parts by weight with respect to 100 parts by weight of lithium cobalt oxide as a positive electrode active material, and as described above, the bulk specific gravity is small as a conductive aid. The main effect is considered to be due to the secondary aggregate of graphite being dispersed in the primary particles.

また、特許文献2に開示の方法では、正極合剤含有組成量として、導電助剤量が0.1質量%から10質量%と少量ながらも、充分に分散させることで高密度化と電池性能維持を図ることを特長としており、これも特許文献1の技術と同様に、かさ比重の小さい導電助剤の分散を狙った効果が主体と考えられる。   Moreover, in the method disclosed in Patent Document 2, the density of the positive electrode mixture-containing composition is increased by increasing the density and battery performance by sufficiently dispersing the conductive auxiliary agent in a small amount of 0.1 to 10% by mass. As in the technique of Patent Document 1, this is considered to be mainly due to the effect of dispersing the conductive auxiliary agent having a small bulk specific gravity.

本発明は上記事情に鑑みてなされたものであり、その目的は、高容量でかつ電池性能の劣化が抑えられている非水二次電池とその製造方法、該非水二次電池を構成し得る電池用正極および電池用負極の各製造方法、並びに該電池用正極を形成するための正極合剤含有組成物の製造方法および該電池用負極を形成するための負極合剤含有組成物の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous secondary battery having a high capacity and suppressed deterioration of battery performance, a method for manufacturing the same, and the non-aqueous secondary battery. Methods for producing positive electrode for battery and negative electrode for battery, method for producing positive electrode mixture-containing composition for forming positive electrode for battery, and method for producing negative electrode mixture-containing composition for forming negative electrode for battery Is to provide.

本発明者らは、電池性能を維持したまま、電極合剤層の高密度化を達成する手法について鋭意検討した結果、不規則に混合された被処理物にせん断、圧縮および摩擦エネルギーなどを作用させることにより、微粒子を一次粒子に分散し、制御された均質性を持った状態とする精密混合機能と、被処理物にメカノケミカル反応を生じさせて、中心粒子の表面に微粒子が付着・点在した複合素材粒子となるように表面改質を行う機能を有する連続せん断装置を用いて電極合剤含有組成物を調製することにより、高充填性の組成物が得られ、この高充填性組成物を用いることにより、高密度の電極合剤層を有する電極を生産性よく製造できるとの知見に至った。なお、このような精密混合とメカノケミカル反応とを同時に行う処理を、本機能を有する機械設備に関する本願発明者取得済みの商標(登録第4674392号)に基づき「メカノユニオン処理」と呼ぶ。   As a result of intensive studies on a technique for achieving a higher density of the electrode mixture layer while maintaining battery performance, the present inventors have applied shear, compression, friction energy, and the like to an irregularly mixed workpiece. This allows fine particles to disperse into primary particles and has a precise mixing function that maintains a controlled homogeneity, and causes a mechanochemical reaction to occur on the object to be processed. By preparing an electrode mixture-containing composition using a continuous shearing device having a function of modifying the surface so that the composite material particles are present, a highly filling composition is obtained, and this highly filling composition By using the product, the inventors have found that an electrode having a high-density electrode mixture layer can be produced with high productivity. In addition, the process which performs such precision mixing and mechanochemical reaction simultaneously is called "mechano union process" based on the trademark (registration No. 4673392) which the present inventor acquired about the mechanical equipment which has this function.

すなわち、本発明の非水二次電池は、正極と負極とをセパレータを介して積層してなる集電体と非水電解液を備えた非水二次電池であって、正極および負極の少なくとも一方が、下記の正極(a)または負極(b)であることを特徴とするものである。   That is, the non-aqueous secondary battery of the present invention is a non-aqueous secondary battery comprising a current collector formed by laminating a positive electrode and a negative electrode via a separator and a non-aqueous electrolyte, and at least of the positive electrode and the negative electrode One is the following positive electrode (a) or negative electrode (b).

正極(a):
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を用いて形成されてなる正極合剤層を有する正極。
Positive electrode (a):
Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. A positive electrode having a positive electrode mixture layer formed using a prepared positive electrode mixture-containing composition containing a positive electrode active material, a conductive additive and a binder.

負極(b):
少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、負極活物質および結着剤を含有する負極合剤含有組成物を用いて形成されてなる負極合剤層を有する負極。
Negative electrode (b):
At least the negative electrode active material and the negative electrode active material prepared by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction, A negative electrode having a negative electrode mixture layer formed using a negative electrode mixture-containing composition containing an adhesive.

また、本発明の非水二次電池の製造方法は、下記の正極製造工程(A)および/または負極製造工程(B)を有することを特徴とする。   Moreover, the manufacturing method of the non-aqueous secondary battery of this invention has the following positive electrode manufacturing process (A) and / or negative electrode manufacturing process (B), It is characterized by the above-mentioned.

正極製造工程(A):
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を調製する工程と、上記正極合剤含有組成物を用いて正極合剤層を有する正極を製造する工程を有する。
Positive electrode manufacturing process (A):
Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. And a step of preparing a positive electrode mixture-containing composition containing a positive electrode active material, a conductive additive and a binder, and a step of producing a positive electrode having a positive electrode mixture layer using the positive electrode mixture-containing composition. .

負極製造工程(B):
少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て、負極活物質および結着剤を含有する負極合剤含有組成物を調製する工程と、上記負極合剤含有組成物を用いて負極合剤層を有する負極を製造する工程を有する。
Negative electrode manufacturing process (B):
The negative electrode active material and the binder are processed through a continuous shearing device that can mix at least the negative electrode active material by passing through a gap between the fixed disk and the rotating disk in multiple stages and can cause a mechanochemical reaction. It has the process of preparing the negative electrode mixture containing composition to contain, and the process of manufacturing the negative electrode which has a negative electrode mixture layer using the said negative electrode mixture containing composition.

更に、以下の各発明も本発明に包含される。   Further, the following inventions are also included in the present invention.

正極活物質、導電助剤および結着剤を含有し、電池用正極の作製に用いられる正極合剤含有組成物を製造するに当たり、少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を有することを特徴とする正極合剤含有組成物の製造方法。   At least positive electrode active material or positive electrode active material and conductive auxiliary agent are fixed in producing a positive electrode mixture-containing composition used for the production of a positive electrode for a battery, which contains a positive electrode active material, a conductive auxiliary agent and a binder. A method for producing a composition containing a positive electrode mixture, comprising a step of carrying out precision mixing by passing through a gap between a disk and a rotating disk in multiple stages and treating with a continuous shearing device capable of causing a mechanochemical reaction.

負極活物質および結着剤を含有し、電池用負極の作製に用いられる負極合剤含有組成物を製造するに当たり、少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を有することを特徴とする負極合剤含有組成物の製造方法。   In producing a negative electrode mixture-containing composition that contains a negative electrode active material and a binder and is used for the production of a negative electrode for a battery, at least the negative electrode active material is passed through the gap between the fixed disk and the rotating disk in multiple stages. A method for producing a composition containing a negative electrode mixture, which comprises a step of processing with a continuous shearing apparatus capable of producing a mechanochemical reaction with precision mixing.

少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を用いて、正極合剤層を形成する工程を有することを特徴とする電池用正極の製造方法。   Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. The manufacturing method of the positive electrode for batteries characterized by having the process of forming a positive mix layer using the prepared positive mix containing composition containing a positive electrode active material, a conductive support agent, and a binder.

少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、負極活物質および結着剤を含有する負極合剤含有組成物を用いて、負極合剤層を形成する工程を有することを特徴とする電池用負極の製造方法。   At least the negative electrode active material and the negative electrode active material prepared by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction, The manufacturing method of the negative electrode for batteries characterized by having the process of forming a negative mix layer using the negative mix containing composition containing an adhesive agent.

なお、本明細書でいうメカノケミカル反応とは、複数の異なる素材粒子に、例えばせん断、圧縮および摩擦などの機械的エネルギーを作用させ、素材粒子の表面改質を行うことを意味し、これにより新しい機能を持った複合素材を創造するものである。得られる複合素材はカプセル型(コアー粒子の表面が付着粒子に完全に覆われた状態)、表面スポット型(コアー粒子の表面に付着粒子が点在した状態)、分散型(コアー粒子と付着粒子が混練された形状)などに分類される。   The mechanochemical reaction referred to in this specification means that the surface of the material particles is modified by applying mechanical energy such as shear, compression and friction to a plurality of different material particles. Creating composite materials with new functions. The resulting composite material is a capsule type (the state where the surface of the core particle is completely covered with the adhering particles), a surface spot type (a state where the adhering particles are scattered on the surface of the core particle), and a dispersion type (the core particles and adhering particles Are kneaded shapes).

本発明の非水二次電池は、高容量で良好な電池性能を有するものである。また、本発明の非水二次電池の製造方法、電池用正極の製造方法、電池用負極の製造方法、正極合剤含有組成物の製造方法、および負極合剤含有組成物の製造方法によれば、高容量で良好な電池特性を有する本発明の非水二次電池を提供できる。   The non-aqueous secondary battery of the present invention has a high capacity and good battery performance. Further, according to the method for producing a non-aqueous secondary battery of the present invention, the method for producing a positive electrode for a battery, the method for producing a negative electrode for a battery, the method for producing a positive electrode mixture-containing composition, and the method for producing a negative electrode mixture-containing composition Thus, the non-aqueous secondary battery of the present invention having a high capacity and good battery characteristics can be provided.

本発明で用いる連続せん断装置、すなわち、被処理物を精密混合し、かつ被処理物にメカノケミカル反応を生じさせる機能を有する連続せん断装置の構造を図1に、該連続せん断装置に係る回転円盤と固定円盤の平面図を図2に示す。図1の装置1では、その混練部3が、固定円盤9と回転円盤10とが同軸上で多段に組み合わされて構成されており、これら固定円盤9と回転円盤10の両面には凹部溝(キャビティー)が形成される。   FIG. 1 shows the structure of a continuous shearing device used in the present invention, that is, a continuous shearing device having a function of precisely mixing the object to be processed and causing a mechanochemical reaction in the object to be processed. A plan view of the fixed disk is shown in FIG. In the apparatus 1 of FIG. 1, the kneading part 3 is composed of a fixed disk 9 and a rotating disk 10 which are coaxially combined in multiple stages, and a concave groove (on both surfaces of the fixed disk 9 and the rotating disk 10. Cavity) is formed.

被処理物である電極合剤含有組成物(正極合剤含有組成物または負極合剤含有組成物)の原材料(後述する)が定量フィーダー5から装置1内に供給され、駆動軸6を回転させると、この原材料は、フィードスクリュー7によってフィード部2を通過し混練部3に供給される。そして、混練部3では、回転円盤9が回転することによって、固定円盤10のキャビティーと、回転円盤9のキャビティーに導入された原材料が、フィードスクリュー7の移送圧力、中間スクリュー8の移送圧力、および各円盤のキャビティーを形成する凸部山のフライトのリード角度で生ずる移送圧力によって加圧される。これらの圧力により、キャビティー相互の間で、電極合剤含有組成物の原材料に、圧縮とキャビティーせん断と分割置換の作用を強力に発生させる。   A raw material (described later) of an electrode mixture-containing composition (a positive electrode mixture-containing composition or a negative electrode mixture-containing composition), which is an object to be processed, is supplied into the apparatus 1 from the quantitative feeder 5 and rotates the drive shaft 6. The raw material passes through the feed unit 2 by the feed screw 7 and is supplied to the kneading unit 3. In the kneading unit 3, when the rotating disk 9 rotates, the raw material introduced into the cavity of the fixed disk 10 and the cavity of the rotating disk 9 becomes the transfer pressure of the feed screw 7 and the transfer pressure of the intermediate screw 8. And the transfer pressure generated at the lead angle of the flight of the ridges forming the cavities of each disk. By these pressures, the action of compression, cavity shearing and split substitution is strongly generated between the cavities in the raw material of the electrode mixture-containing composition.

上記連続せん断装置1では、上記の作用によって、他のメカニカル発生装置に比べて、始めの2組の円盤ゾーンでは精密混合を、その後の組合せ円盤ゾーンではメカノケミカル反応をより効果的に行うことができる。その結果、混練処理が進行するに従って順次材料の圧縮圧力が作用する構造が、せん断応力を高める作用となって、効果的に機械的エネルギーを作用させることができる。   In the continuous shearing device 1, by the above action, compared with other mechanical generators, precise mixing is performed in the first two disk zones, and mechanochemical reaction is performed more effectively in the subsequent combined disk zones. it can. As a result, the structure in which the compression pressure of the material sequentially acts as the kneading process progresses acts to increase the shear stress, and mechanical energy can be effectively applied.

なお、図1中の4は排出部、12はジャケットである。そして、13は扇型組合円盤で、この扇型組合円盤を構成している各円盤の平面図が図2中の(a)(固定円盤)および(b)(回転円盤)である。また、14は菊型組合円盤で、この菊型組合円盤を構成している各円盤の平面図が図2中の(c)(固定円盤)および(d)(回転円盤)である。さらに、15は臼型組合円盤で、この臼型組合円盤を構成している各円盤の平面図が図2中の(e)(固定円盤)および(f)(回転円盤)である。   In addition, 4 in FIG. 1 is a discharge part, 12 is a jacket. Reference numeral 13 denotes a fan-shaped combined disk. The plan views of the disks constituting the fan-shaped combined disk are (a) (fixed disk) and (b) (rotary disk) in FIG. Reference numeral 14 denotes a chrysanthemum-shaped combination disk. The plan views of the disks constituting the chrysanthemum-shaped combination disk are (c) (fixed disk) and (d) (rotary disk) in FIG. Furthermore, 15 is a mortar type combination disk, and the plan views of the disks constituting the mortar type combination disk are (e) (fixed disk) and (f) (rotary disk) in FIG.

なお、連続せん断装置では、被処理物を、固定円盤と回転円盤の隙間を多段に通過させるものであり、固定円盤と回転円盤の組み合わせが多数存在するが、これら固定円盤と回転円盤の組み合わせの数は、メカノケミカル反応および精密混合の効果を十分に発揮させるためには4組以上が好ましく、また、多すぎると、装置の大型化、および被処理物の温度上昇や粉体の破砕の虞があることから、14組以下が好ましく、6組以上、12組以下であることが更に好ましい。   In the continuous shearing device, the workpiece is passed through the gap between the fixed disk and the rotating disk in multiple stages, and there are many combinations of the fixed disk and the rotating disk. The number is preferably 4 or more in order to sufficiently exhibit the effects of mechanochemical reaction and precision mixing. If the number is too large, the size of the apparatus may increase, the temperature of the workpiece may increase, and the powder may be crushed. Therefore, 14 sets or less are preferable, and 6 sets or more and 12 sets or less are more preferable.

例えば、正極合剤含有組成物を調製するときに、該組成物の原材料である正極活物質と導電助剤を上記の装置に投入することで、導電助剤が正極活物質表面に擦りつけられるように分散されるため、少量の導電助剤でも非常に分散性の高い状態を構築することができる。また、導電助剤が活物質表面に擦り付けられているために、その後、基材に塗布するために必要なペースト(スラリー)とする際(後述する)に溶剤を加えて希釈混合しても、導電助剤が再凝集し難いことから、安定した高密度の正極合剤含有組成物を調製することができる。なお、上記のように、正極活物質と導電助剤との乾式混合の他、湿式混合も可能である。   For example, when preparing a positive electrode mixture-containing composition, the positive electrode active material and the conductive auxiliary agent, which are the raw materials of the composition, are put into the above-described apparatus, whereby the conductive auxiliary agent is rubbed against the positive electrode active material surface. Therefore, even with a small amount of a conductive aid, a highly dispersible state can be constructed. In addition, since the conductive auxiliary agent is rubbed against the surface of the active material, a solvent is added to the paste (slurry) necessary for application to the substrate (described later) and diluted and mixed. Since the conductive auxiliary agent is difficult to re-aggregate, a stable high-density positive electrode mixture-containing composition can be prepared. As described above, in addition to the dry mixing of the positive electrode active material and the conductive additive, wet mixing is also possible.

また、例えば、正極合剤含有組成物を調製するときに、該組成物の原材料である正極活物質粉末そのものを物理的に融合させて、高充填が可能な高密度凝集粒子にすることができる。活物質そのものを高充填化させるには、前述したように、大きな粒子サイズと小さな粒子サイズを適した比率で混合することが一般的であるが、粒子サイズの不均一化により、電気化学反応の不均一化を生じ、電池性能劣化に影響を及ぼしてしまう問題がある。これに対し、上記の連続せん断装置を用いて正極活物質を処理することで、精密混合とメカノケミカル反応の作用により、ほぼ同粒子サイズの活物質が物理的に融合されるため、高密度の凝集粒子とすることができ、その結果、高密度の正極合剤層を形成することができる。   In addition, for example, when preparing a positive electrode mixture-containing composition, the positive electrode active material powder itself that is a raw material of the composition can be physically fused to obtain high-density agglomerated particles that can be highly filled. . As described above, in order to make the active material itself highly packed, it is common to mix large particles and small particles in an appropriate ratio. There is a problem in that it causes non-uniformity and affects battery performance degradation. On the other hand, by processing the positive electrode active material using the above continuous shearing device, the active material of almost the same particle size is physically fused by the action of precision mixing and mechanochemical reaction, so that the high density Aggregated particles can be formed, and as a result, a high-density positive electrode mixture layer can be formed.

なお、負極合剤含有組成物の調製の際に、該組成物の原材料である負極活物質を、上記連続せん断装置を用いて処理することで、正極合剤含有組成物の調製時に、上記連続せん断装置を用いて正極活物質を処理することによる上記効果と同様の結果を得ることができる。   In preparing the negative electrode mixture-containing composition, the negative electrode active material, which is a raw material of the composition, is treated using the continuous shearing device, so that the above-mentioned continuous mixture is prepared during the preparation of the positive electrode mixture-containing composition. The same result as the above effect by processing the positive electrode active material using a shearing device can be obtained.

正極合剤含有組成物に係る正極活物質としては、特に限定されないが、例えば、LiMOまたはLiMで表されるリチウム含有金属酸化物であって、元素MがCo、Ni、Mn、Fe、Cuなどの金属元素の少なくとも1種であるもの、より具体的には、LiCoOなどのリチウムコバルト酸化物、LiMnOなどのリチウムマンガン酸化物、LiNiOなどのリチウムニッケル酸化物などのリチウム含有金属酸化物、またはこれらを基本構造とする複合酸化物(例えば、異種金属添加品);二酸化マンガン、五酸化バナジウム、クロム酸化物などの金属酸化物、またはこれらを基本構造とする複合酸化物;二硫化チタン、二硫化モリブデンなどの金属硫化物;などが挙げられる。これらの正極活物質は、1種単独で用いてもよく、例えば、混合物や固溶体として2種以上を併用しても構わない。特に、LiCoO、LiMnO、LiNiOなどの、充電時の開路電圧がLi基準で4V以上を示すリチウム含有複合酸化物を正極活物質として用いた場合には、より高エネルギー密度の電池を構成できることから好ましい。 The positive electrode active material according to the positive electrode mixture-containing composition is not particularly limited. For example, a lithium-containing metal oxide represented by LiMO 2 or LiM 2 O 4 , and the element M is Co, Ni, Mn, What is at least one of metal elements such as Fe and Cu, more specifically, lithium such as lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMnO 4, and lithium nickel oxide such as LiNiO 2 -Containing metal oxides, or composite oxides having these as a basic structure (for example, different metal additives); metal oxides such as manganese dioxide, vanadium pentoxide, chromium oxide, or composite oxides having these as basic structures Metal sulfides such as titanium disulfide and molybdenum disulfide; These positive electrode active materials may be used individually by 1 type, for example, may use 2 or more types together as a mixture or a solid solution. In particular, when a lithium-containing composite oxide, such as LiCoO 2 , LiMnO 4 , or LiNiO 2 , whose open circuit voltage during charging is 4 V or more on the basis of Li is used as the positive electrode active material, a battery having a higher energy density is formed. It is preferable because it is possible.

負極合剤含有組成物に係る負極活物質としては、リチウムイオンをドープ、脱ドープできるものであれば、特に限定されないが、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料;Si、Sn、Inなどの合金またはLiに近い低電圧で充放電できるSi、Sn、Inなどの酸化物;などを用いることができる。これらの負極活物質は、1種単独で用いてもよく、2種以上を併用しても構わない。   The negative electrode active material according to the negative electrode mixture-containing composition is not particularly limited as long as it can dope and dedope lithium ions, but graphite, pyrolytic carbons, cokes, glassy carbons, organic polymers Carbon materials such as compound fired bodies, mesocarbon microbeads, carbon fibers, activated carbon, etc .; alloys such as Si, Sn, In, or oxides such as Si, Sn, In that can be charged and discharged at a low voltage close to Li; be able to. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

導電助剤としては、例えば、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系導電助剤;アセチレンブラック;鱗片状黒鉛;繊維状炭素;活性炭;などが挙げられる。例えば、アセチレンブラックやカーボンブラック系導電助剤であれば、比表面積が50〜2000m/gであるものが好ましい。また、鱗片状黒鉛のような黒鉛系の導電助剤の場合には、比表面積が50〜500m/gであるものが好ましい。比表面積が小さすぎる導電助剤を用いると、活物質との接触面積が減少するため、導電性が低下して内部抵抗が上昇することがある。また、比表面積が大きすぎる導電助剤を用いると、電極合剤含有組成物における溶剤の必要量が増大することがあり、ペーストの調製することが困難となることがある。 Examples of the conductive assistant include carbon black-based conductive assistants such as furnace black and ketjen black; acetylene black; flaky graphite; fibrous carbon; activated carbon; For example, if it is acetylene black and a carbon black type conductive support agent, that whose specific surface area is 50-2000 m < 2 > / g is preferable. In the case of a graphite-based conductive additive such as scaly graphite, those having a specific surface area of 50 to 500 m 2 / g are preferable. If a conductive auxiliary agent having a specific surface area that is too small is used, the contact area with the active material is reduced, so that the electrical conductivity may decrease and the internal resistance may increase. Moreover, when the conductive auxiliary agent whose specific surface area is too large is used, the required amount of the solvent in the electrode mixture-containing composition may increase, and it may be difficult to prepare a paste.

なお、導電助剤は、正極合剤含有組成物の調製には必須の原材料であるが、負極合剤含有組成物の調製においても、必要に応じて使用することができる。導電助剤を負極合剤含有組成物に用いる場合には、負極活物質と導電助剤とを、上記連続せん断装置を用いて処理することが好ましい。   In addition, although a conductive support agent is an essential raw material for preparation of a positive electrode mixture containing composition, it can be used as needed also in preparation of a negative electrode mixture containing composition. When using a conductive support agent for a negative electrode mixture containing composition, it is preferable to process a negative electrode active material and a conductive support agent using the said continuous shearing apparatus.

電極合剤含有組成物に係る結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂などの樹脂系結着剤;エチレン−プロピレン−ジエン共重合樹脂、スチレンブタジ
エンゴム(SBR)、ポリブタジエン、フッ素ゴムなどのゴム系結着剤;ヒドロキシプロピルセルロース、カルボキシメチルセルロース(CMC)などのセルロース樹脂などの多糖類;などが挙げられる。これらの結着剤は1種単独で用いてもよく、2種以上を併用しても構わない。中でも、PVDFが特に好ましい。なお、電極合剤含有組成物の調製に当たっては、結着剤は、予め溶剤に溶解させた溶液として用いることもできる。
Examples of the binder related to the electrode mixture-containing composition include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polyethylene oxide, polyvinyl pyrrolidone, polyester resin, acrylic resin, phenol resin, epoxy resin, and the like. Resin-based binders; rubber-based binders such as ethylene-propylene-diene copolymer resins, styrene butadiene rubber (SBR), polybutadiene, and fluororubber; cellulose resins such as hydroxypropyl cellulose and carboxymethyl cellulose (CMC) Polysaccharides; and the like. These binders may be used alone or in combination of two or more. Among these, PVDF is particularly preferable. In preparing the electrode mixture-containing composition, the binder can also be used as a solution previously dissolved in a solvent.

電極合剤含有組成物に係る溶剤としては、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド、ジメチルホルムアミドなどの非プロトン性有機溶媒を1種単独で用いてもよく、2種以上を併用してもよい。   As the solvent for the electrode mixture-containing composition, for example, an aprotic organic solvent such as N-methyl-2-pyrrolidone (NMP), dimethylacetamide, dimethylformamide or the like may be used alone, or two or more kinds thereof may be used. May be used in combination.

正極合剤含有組成物の調製においては、少なくとも正極活物質、または正極活物質と導電助剤とを、上記連続せん断装置によって処理する工程を経ていればよく、その他の工程については特に制限はないが、例えば、以下の各種方法が採用できる。   In preparing the positive electrode mixture-containing composition, it is sufficient that at least the positive electrode active material, or the positive electrode active material and the conductive additive are processed by the continuous shearing device, and the other steps are not particularly limited. However, for example, the following various methods can be employed.

(1)上記連続せん断装置を用いて処理した正極活物質を、導電助剤、結着剤および溶剤と、通常の混合方法(例えば、プラネタリーミキサーなどの混合装置や、上記連続せん断装置などの押出機などを用いた混合方法)で混合して正極合剤含有組成物を調製する方法。
(2)上記連続せん断装置を用いて正極活物質と導電助剤を処理して得られた混合物を、結着剤および溶剤と、通常の混合方法(例えば、上記例示の方法)で混合して正極合剤含有組成物を調製する方法。
(3)上記連続せん断装置を用いて、正極活物質、導電助剤、結着剤および溶剤を混練して正極合剤含有組成物を調製する方法。
(4)上記連続せん断装置を用いて、溶剤を用いずに、正極活物質、導電助剤、結着剤を混合して正極合剤含有組成物を調製する方法。
(1) The positive electrode active material treated using the continuous shearing device is mixed with a conductive auxiliary agent, a binder and a solvent in a normal mixing method (for example, a mixing device such as a planetary mixer, the continuous shearing device, etc. A mixing method using an extruder or the like) to prepare a positive electrode mixture-containing composition.
(2) A mixture obtained by treating the positive electrode active material and the conductive additive using the continuous shearing device is mixed with a binder and a solvent by an ordinary mixing method (for example, the method exemplified above). A method for preparing a positive electrode mixture-containing composition.
(3) A method for preparing a positive electrode mixture-containing composition by kneading a positive electrode active material, a conductive additive, a binder and a solvent using the continuous shearing device.
(4) A method for preparing a positive electrode mixture-containing composition by mixing a positive electrode active material, a conductive additive, and a binder without using a solvent, using the continuous shear device.

なお、正極合剤含有組成物の調製に当たっては、結着剤は、上記の通り、溶剤に予め溶解(または分散)させておいてもよい。また、上記(1)の方法においては、導電助剤、結着剤および溶剤は、一度に添加・混合してもよく、それぞれ別工程で添加・混合してもよい。更に上記(2)の方法においても、結着剤および溶剤は、一度に添加・混合してもよく、それぞれ別工程で添加・混合してもよい。   In preparing the positive electrode mixture-containing composition, the binder may be dissolved (or dispersed) in a solvent in advance as described above. In the method (1), the conductive additive, the binder and the solvent may be added and mixed at a time, or may be added and mixed in separate steps. Further, in the method (2), the binder and the solvent may be added and mixed at a time, or may be added and mixed in separate steps.

また、負極合剤含有組成物の調製においては、少なくとも負極活物質を上記連続せん断装置により処理する工程を経ていればよく、その他の工程については特に制限はないが、例えば、以下の各種方法が採用できる。   Moreover, in the preparation of the negative electrode mixture-containing composition, it is sufficient that at least the step of treating the negative electrode active material with the above-described continuous shearing device is passed, and the other steps are not particularly limited. Can be adopted.

(1)上記連続せん断装置を用いて処理した負極活物質を、結着剤および溶剤(更に、必要に応じて導電助剤)と、通常の混合方法[例えば、正極合剤含有組成物の調製方法の例(1)で例示した各種方法]で混合して負極合剤含有組成物を調製する方法。
(2)導電助剤を用いる場合では、上記連続せん断装置を用いて負極活物質と導電助剤を処理して得られた混合物を、結着剤および溶剤と、通常の混合方法(例えば、上記例示の方法)で混合して負極合剤含有組成物を調製する方法。
(3)上記連続せん断装置を用いて、負極活物質、結着剤および溶剤(更に、必要に応じて導電助剤)を混練して負極合剤含有組成物を調製する方法。
(4)上記連続せん断装置を用いて、溶剤を用いずに、負極活物質、結着剤(更に、必要に応じて導電助剤)を混合して負極合剤含有組成物を調製する方法。
(1) The negative electrode active material treated using the above continuous shearing device is mixed with a binder and a solvent (further, if necessary, a conductive aid) and a normal mixing method [for example, preparation of a positive electrode mixture-containing composition] Various methods exemplified in Method Example (1)] to prepare a negative electrode mixture-containing composition by mixing.
(2) In the case of using a conductive additive, the mixture obtained by treating the negative electrode active material and the conductive additive using the continuous shearing device is mixed with a binder and a solvent and a normal mixing method (for example, the above-mentioned A method of preparing a negative electrode mixture-containing composition by mixing in an exemplified method).
(3) A method of preparing a negative electrode mixture-containing composition by kneading a negative electrode active material, a binder, and a solvent (and optionally a conductive auxiliary agent) using the continuous shearing device.
(4) A method in which a negative electrode mixture-containing composition is prepared by mixing the negative electrode active material and a binder (and further a conductive aid as required) without using a solvent, using the continuous shear device.

なお、負極合剤含有組成物の調製に当たっては、結着剤は、上記の通り、溶剤に予め溶解(または分散)させておいてもよい。また、上記(1)の方法においては、導電助剤、結着剤および溶剤は、一度に添加・混合してもよく、それぞれ別工程で添加・混合してもよい。更に上記(2)の方法においても、結着剤および溶剤は、一度に添加・混合してもよく、それぞれ別工程で添加・混合してもよい。   In preparing the negative electrode mixture-containing composition, the binder may be dissolved (or dispersed) in a solvent in advance as described above. In the method (1), the conductive additive, the binder and the solvent may be added and mixed at a time, or may be added and mixed in separate steps. Further, in the method (2), the binder and the solvent may be added and mixed at a time, or may be added and mixed in separate steps.

上記正極合剤含有組成物の固形分濃度(正極合剤含有組成物全量に対する溶剤以外の成分の含有量)は、例えば、50〜85質量%とすることが好ましい。なお、正極合剤含有組成物中における正極活物質、導電助剤および結着剤の好適含有比率については、後述する。   The solid content concentration of the positive electrode mixture-containing composition (content of components other than the solvent with respect to the total amount of the positive electrode mixture-containing composition) is preferably, for example, 50 to 85 mass%. In addition, the suitable content ratio of the positive electrode active material, the conductive additive, and the binder in the positive electrode mixture-containing composition will be described later.

また、上記負極合剤含有組成物の固形分濃度(負極合剤含有組成物全量に対する溶剤以外の成分の含有量)は、例えば、35〜70質量%とすることが好ましい。なお、負極合剤含有組成物中における負極活物質および結着剤(更には、導電助剤)の好適含有比率については、後述する。   Moreover, it is preferable that solid content concentration (content of components other than the solvent with respect to the negative electrode mixture containing composition whole quantity) of the said negative electrode mixture containing composition shall be 35-70 mass%, for example. In addition, the suitable content rate of the negative electrode active material and binder (further a conductive support agent) in a negative electrode mixture containing composition is mentioned later.

本発明に係る正極および負極の作製に当たっては、例えば、集電体の片面または両面に、上記正極合剤含有組成物または上記負極合剤含有組成物を塗布し、乾燥して溶剤を除去した後、プレス処理により圧縮して正極合剤層または負極合剤層の厚みと密度を調整する。正極合剤含有組成物または負極合剤含有組成物の塗布方法としては、例えば、押出コーター、リバースコーター、ドクターブレードなどの公知の各種塗布方法が採用できる。また、溶剤を用いずに作製した上記正極合剤含有組成物または上記負極合剤含有組成物をエキスパンドメタルや網などとともにプレス成形することにより電極を作製することもできる。   In preparing the positive electrode and the negative electrode according to the present invention, for example, after applying the positive electrode mixture-containing composition or the negative electrode mixture-containing composition to one or both sides of the current collector and drying to remove the solvent The thickness and density of the positive electrode mixture layer or the negative electrode mixture layer are adjusted by compressing by pressing. As a method for applying the positive electrode mixture-containing composition or the negative electrode mixture-containing composition, various known application methods such as an extrusion coater, a reverse coater, and a doctor blade can be employed. Moreover, an electrode can also be produced by press-molding the positive electrode mixture-containing composition or the negative electrode mixture-containing composition produced without using a solvent together with an expanded metal or a net.

なお、正極および負極に用いる集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼などの箔、エキスパンドメタル、網などを用い得るが、例えば、正極集電体としてはアルミニウム箔が、負極集電体としては銅箔が特に好ましい。集電体の厚みは、例えば、5μm以上、より好ましくは8μm以上であって、60μm以下、より好ましくは40μm以下であることが望ましい。   As the current collector used for the positive electrode and the negative electrode, for example, foils such as aluminum, copper, nickel, and stainless steel, expanded metal, and nets can be used. For example, as the positive electrode current collector, an aluminum foil is used as the negative electrode. A copper foil is particularly preferred as the current collector. The thickness of the current collector is, for example, 5 μm or more, more preferably 8 μm or more, and preferably 60 μm or less, more preferably 40 μm or less.

また、正極集電体および負極集電体には、電池の外部端子(正極端子および負極端子)と接続するためのリード体を、公知の手法により取り付けることが好ましい。   Moreover, it is preferable to attach the lead body for connecting with the external terminal (a positive electrode terminal and a negative electrode terminal) of a battery to a positive electrode collector and a negative electrode collector by a well-known method.

正極合剤層における活物質含有量は、90質量%以上、より好ましくは95質量%以上であって、99質量%以下、より好ましくは98質量%以下であることが望ましい。活物質含有量が少なすぎると、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがあり、活物質含有量が多すぎると、正極合剤層の導電性が低下し、電池の負荷特性が悪くなることがある。   The active material content in the positive electrode mixture layer is 90% by mass or more, more preferably 95% by mass or more, and is 99% by mass or less, more preferably 98% by mass or less. If the active material content is too low, the capacity per unit volume of the positive electrode mixture layer and the capacity per unit volume will be reduced, so it may be difficult to increase the capacity of the battery, and if the active material content is too high, The conductivity of the positive electrode mixture layer may decrease, and the load characteristics of the battery may deteriorate.

また、正極合剤層における導電助剤含有量は、0.1質量%以上、より好ましくは0.5質量%以上であって、8質量%以下、より好ましくは5質量%以下とすることが望ましい。導電助剤含有量が少なすぎると、正極合剤層における導電性の確保が困難となる場合があり、導電助剤含有量が多すぎると、正極合剤層における正極活物質含有量が減少するため、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがある。   Further, the content of the conductive assistant in the positive electrode mixture layer is 0.1% by mass or more, more preferably 0.5% by mass or more, and 8% by mass or less, more preferably 5% by mass or less. desirable. If the conductive auxiliary agent content is too small, it may be difficult to ensure the conductivity in the positive electrode mixture layer. If the conductive auxiliary agent content is too high, the positive electrode active material content in the positive electrode mixture layer decreases. Therefore, since the unit mass of the positive electrode mixture layer and the capacity per unit volume are reduced, it may be difficult to increase the capacity of the battery.

更に、正極合剤層における結着剤含有量は、0.5質量%以上、より好ましくは1.0質量%以上であって、3.0質量%以下、より好ましくは2.0質量%以下であることが望ましい。結着剤含有量が少なすぎると、正極合剤層における正極活物質および導電助剤の結着性や、正極合剤層と集電体との接着性が不十分となることがあり、結着剤含有量が多すぎると、正極合剤層における正極活物質含有量が減少するため、正極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすことから、電池の高容量化が困難となることがある。   Furthermore, the binder content in the positive electrode mixture layer is 0.5% by mass or more, more preferably 1.0% by mass or more, and 3.0% by mass or less, more preferably 2.0% by mass or less. It is desirable that If the binder content is too small, the binding properties of the positive electrode active material and the conductive additive in the positive electrode mixture layer and the adhesion between the positive electrode mixture layer and the current collector may be insufficient. If the content of the adsorbent is too large, the content of the positive electrode active material in the positive electrode mixture layer decreases, causing a decrease in the unit mass of the positive electrode mixture layer and the capacity per unit volume. It can be difficult.

従って、上記正極合剤含有組成物では、正極活物質、導電助剤および結着剤の各添加率を、形成後の正極合剤層における上記の好適含有比率に合わせて調製すればよい。   Therefore, what is necessary is just to adjust each addition rate of a positive electrode active material, a conductive support agent, and a binder in the said positive mix mixture containing composition according to said suitable content ratio in the positive mix layer after formation.

負極合剤層における活物質含有量は、90質量%以上、より好ましくは95質量%以上であって、99質量%以下、より好ましくは98.5質量%以下であることが望ましい。活物質含有量が少なすぎると、負極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすため、電池の高容量化が困難となることがあり、活物質含有量が多すぎると、例えば負極合剤層における結着剤含有量が減少するため、負極合剤層における負極活物質などの結着性や、負極合剤層と集電体との接着性が不十分となることがある。   The active material content in the negative electrode mixture layer is 90% by mass or more, more preferably 95% by mass or more, and is 99% by mass or less, more preferably 98.5% by mass or less. If the active material content is too small, the capacity per unit volume and unit volume of the negative electrode mixture layer will be reduced, so that it may be difficult to increase the capacity of the battery, and if the active material content is too large, For example, since the binder content in the negative electrode mixture layer decreases, the binding property of the negative electrode active material and the like in the negative electrode mixture layer and the adhesion between the negative electrode mixture layer and the current collector may be insufficient. is there.

また、負極合剤層における結着剤含有量は、1.5質量%以上、より好ましくは1.8質量%以上であって、5質量%以下、より好ましくは3質量%以下であることが望ましい。結着剤含有量が少なすぎると、負極合剤層における負極活物質などの結着性や、負極合剤層と集電体との接着性が不十分となることがあり、結着剤含有量が多すぎると、負極合剤層における負極活物質含有量が減少するため、負極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすことから、電池の高容量化が困難となることがある。   The binder content in the negative electrode mixture layer is 1.5% by mass or more, more preferably 1.8% by mass or more, and 5% by mass or less, more preferably 3% by mass or less. desirable. If the binder content is too small, the binding properties of the negative electrode active material in the negative electrode mixture layer and the adhesion between the negative electrode mixture layer and the current collector may be insufficient, If the amount is too large, the content of the negative electrode active material in the negative electrode mixture layer decreases, causing a decrease in the unit mass of the negative electrode mixture layer and the capacity per unit volume, which makes it difficult to increase the capacity of the battery. Sometimes.

更に、負極合剤層に導電助剤を含有させる場合には、導電助剤含有量は、0.1質量%以上、より好ましくは0.5質量%以上であって、3質量%以下、より好ましくは2質量%以下であることが望ましい。導電助剤含有量が少なすぎると、導電助剤を使用することによる効果が十分に得られないことがあり、導電助剤含有量が多すぎると、例えば負極活物質含有量が減少するため、負極合剤層の単位質量および単位体積当たりの容量の低下を引き起こすことから、電池の高容量化が困難となることがある。   Furthermore, when the negative electrode mixture layer contains a conductive additive, the conductive auxiliary agent content is 0.1% by mass or more, more preferably 0.5% by mass or more, and 3% by mass or less. Preferably it is 2 mass% or less. If the conductive auxiliary agent content is too low, the effect of using the conductive auxiliary agent may not be sufficiently obtained. If the conductive auxiliary agent content is too high, for example, the negative electrode active material content decreases. Since the unit mass of the negative electrode mixture layer and the capacity per unit volume are reduced, it may be difficult to increase the capacity of the battery.

従って、上記負極合剤含有組成物では、正極活物質および結着剤(更には、導電助剤)の各添加率を、形成後の負極合剤層における上記の好適含有比率に合わせて調製すればよい。   Therefore, in the above negative electrode mixture-containing composition, the respective addition rates of the positive electrode active material and the binder (further, the conductive auxiliary agent) are adjusted in accordance with the above-mentioned preferable content ratio in the negative electrode mixture layer after formation. That's fine.

次に、本発明の非水二次電池の構成を詳細に説明する。本発明の非水二次電池は、上記正極(本発明に係る電池用正極)および上記負極(本発明に係る電池用負極)を有していればよく、その他の構成については特に限定されず、従来公知の非水二次電池における各種構成が採用できる。   Next, the configuration of the non-aqueous secondary battery of the present invention will be described in detail. The non-aqueous secondary battery of the present invention only needs to have the positive electrode (the positive electrode for a battery according to the present invention) and the negative electrode (the negative electrode for a battery according to the present invention), and other configurations are not particularly limited. Various configurations of conventionally known non-aqueous secondary batteries can be employed.

本発明の非水二次電池は、例えば、上記のようにして作製される正極(シート状正極)と負極(シート状負極)との間に、セパレータを介在させて渦巻状に巻回した渦巻状電極体、または積層した積層電極体を、ニッケルメッキを施した鉄やステンレス鋼製の電池ケース、若しくは金属ラミネートフィルム内に挿入し、非水電解質(以下、単に「電解質」という)を注入した後、封口する工程を経て作製される。また、上記電池には、通常、電池内部で発生したガスによって所定圧力まで内圧が上昇した段階で、該ガスを電池外部に排出して電池の破裂を防止するための公知の防爆構造が取り入れられる。   The nonaqueous secondary battery of the present invention is, for example, a spiral wound in a spiral shape with a separator interposed between a positive electrode (sheet positive electrode) and a negative electrode (sheet negative electrode) produced as described above. The electrode assembly or the laminated electrode assembly was inserted into a nickel-plated iron or stainless steel battery case or metal laminate film, and a non-aqueous electrolyte (hereinafter simply referred to as “electrolyte”) was injected. Then, it is produced through a sealing step. In addition, the battery generally incorporates a known explosion-proof structure for discharging the gas to the outside of the battery to prevent the battery from bursting when the internal pressure is increased to a predetermined pressure by the gas generated inside the battery. .

正極と負極との間に介在させるセパレータとしては、強度があり、しかも電解液を多く保持できるものが好ましく、そのような観点から、例えば、厚みが10〜50μmで、開孔率が30〜70%の微孔性フィルムや不織布などが好適である。また、セパレータの素材としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリ
オレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;などが挙げられる。
As the separator interposed between the positive electrode and the negative electrode, those having strength and capable of holding a large amount of electrolyte are preferable. From such a viewpoint, for example, the thickness is 10 to 50 μm and the porosity is 30 to 70. % Of microporous film and nonwoven fabric are suitable. Examples of the material for the separator include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; polyesters such as polyethylene terephthalate and polybutylene terephthalate;

本発明の電池に係る電解質としては、通常、液状電解質(以下、「電解液」という)が用いられる。電解液としては、有機溶媒に溶質を溶解させた有機溶媒系の非水電解液が用いられる。電解液の溶媒は、特に制限は無いが、例えば、鎖状エステルを主溶媒して用いることが好ましい。電解液溶媒として好適な鎖状エステルとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、酢酸エチル(EA)、プロピオン酸メチル(MP)などの鎖状のCOO−結合を有するものが挙げられる。なお、これらの鎖状エステルが電解液の主溶媒である、ということは、これらの鎖状エステルが、全電解液溶媒中の50体積%より多い体積を占めることを意味しており、特に鎖状エステルが、全電解液溶媒中の、65体積%以上を占めていることが好ましく、70体積%以上を占めていることがより好ましく、75体積%以上を占めていることが更に好ましい。   As the electrolyte according to the battery of the present invention, a liquid electrolyte (hereinafter referred to as “electrolytic solution”) is usually used. As the electrolytic solution, an organic solvent-based nonaqueous electrolytic solution in which a solute is dissolved in an organic solvent is used. The solvent of the electrolytic solution is not particularly limited. For example, it is preferable to use a chain ester as a main solvent. Examples of chain esters suitable as the electrolyte solvent include chain esters such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl acetate (EA), and methyl propionate (MP). Those having a COO-bond are mentioned. The fact that these chain esters are the main solvent of the electrolytic solution means that these chain esters occupy more than 50% by volume in the total electrolyte solvent, The ester-like ester preferably accounts for 65% by volume or more, more preferably 70% by volume or more, and still more preferably 75% by volume or more in the total electrolyte solvent.

ただし、電池容量の向上を図る観点から、電解液溶媒としては、上記鎖状エステルのみで構成したものよりも、上記鎖状エステルに誘電率の高いエステル(例えば、誘電率が30以上のエステル)を混合した混合溶媒であることが好ましい。このような誘電率の高いエステルの全電解液溶媒中に占める量としては、例えば、10体積%以上であることが好ましく、20体積%以上であることが更に好ましい。   However, from the viewpoint of improving the battery capacity, the electrolyte solvent is an ester having a higher dielectric constant than the chain ester alone (for example, an ester having a dielectric constant of 30 or more). The mixed solvent is preferably mixed. The amount of the ester having such a high dielectric constant in the total electrolyte solvent is, for example, preferably 10% by volume or more, and more preferably 20% by volume or more.

上記の誘電率の高いエステルとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γ−BL)、エチレングリコールサルファイト(EGS)などが挙げられる。中でも、EC、PCなどの環状構造を有するものが好ましく、環状カーボネートが更に好ましく、ECが特に好ましい。   Examples of the ester having a high dielectric constant include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), ethylene glycol sulfite (EGS), and the like. . Among these, those having a cyclic structure such as EC and PC are preferred, cyclic carbonates are more preferred, and EC is particularly preferred.

また、上記の鎖状エステルおよび上記の誘電率の高いエステル以外に併用可能な溶媒としては、例えば、1,2−ジメトキシエタン(1,2−DME)、1,3−ジオキソラン(1,3−DO)、テトラヒドロフラン(THF)、2−メチル−テトラヒドロフラン(2−Me−THF)、ジエチルエーテル(DEE)などが挙げられる。その他、アミン系またはイミド系有機溶媒や、含イオウ系または含フッ素系有機溶媒なども用いることができる。   Examples of the solvent that can be used in addition to the chain ester and the ester having a high dielectric constant include 1,2-dimethoxyethane (1,2-DME), 1,3-dioxolane (1,3- DO), tetrahydrofuran (THF), 2-methyl-tetrahydrofuran (2-Me-THF), diethyl ether (DEE) and the like. In addition, amine-based or imide-based organic solvents, sulfur-containing or fluorine-containing organic solvents, and the like can also be used.

電解液の溶質としては、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO)、LiN(CFSO、LiC(CFSO、LiC
2n+1SO(n≧2)などが挙げられ、これらを1種単独で、または2種以上を併用することができる。特にLiPFやLiCSOなどが、電池の充放電特性をより良好にできることから好ましい。電解液中における溶質の濃度は、特に制限は無いが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下とすることが望ましい。
The solute of the electrolyte solution, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC
n F 2n + 1 SO 3 ( n ≧ 2) , and the like, can be used in combination these singly or two or more. In particular, LiPF 6 and LiC 4 F 9 SO 3 are preferable because they can improve the charge / discharge characteristics of the battery. The concentration of the solute in the electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less, more preferably 1.5 mol. / L or less is desirable.

また、上記電解液には、添加剤としてベンゼン環にアルキル基が結合した化合物を含有させておくことが好ましい。ベンゼン環にアルキル基が結合した化合物は、過充電時における電池の安全性の向上に寄与し得るものである。これは、非水二次電池が過充電状態になると、ベンゼン環にアルキル基が結合した化合物が、正極側で酸化されて重合し、二量体異常のオリゴマーまたはポリマーを正極表面に生成し、このオリゴマーまたはポリマーにより正極表面に皮膜が形成されることで、過充電に対する安全性が向上するものと考えられる。   The electrolyte solution preferably contains a compound having an alkyl group bonded to a benzene ring as an additive. A compound in which an alkyl group is bonded to a benzene ring can contribute to improvement of battery safety during overcharge. This is because when a non-aqueous secondary battery is overcharged, a compound in which an alkyl group is bonded to a benzene ring is oxidized and polymerized on the positive electrode side to generate a dimer abnormal oligomer or polymer on the positive electrode surface, It is considered that the safety against overcharging is improved by forming a film on the surface of the positive electrode with the oligomer or polymer.

ベンゼン環にアルキル基が結合した化合物としては、例えば、シクロヘキシルベンゼン、イソプロピルベンゼン、n−ブチルベンゼン、オクチルベンゼン、トルエン、キシレンなどが挙げられる。特に、ベンゼン環に結合しているアルキル基において、ベンゼン環と直接結合している炭素原子が少なくとも1個の水素原子と結合していることが、過充電時における電池の安全性向上の観点から、より好ましい。また、上記アルキル基は、炭素数が4以上であるなど、ある程度長いことが好ましく、更に、分岐構造を有するなどにより立体的に嵩張る構造のものであることが好ましい。このような理由から、ベンゼン環にアルキル基が結合した化合物としては、シクロヘキシルベンゼンが特に好ましい。   Examples of the compound having an alkyl group bonded to the benzene ring include cyclohexylbenzene, isopropylbenzene, n-butylbenzene, octylbenzene, toluene, xylene and the like. In particular, in the alkyl group bonded to the benzene ring, the carbon atom directly bonded to the benzene ring is bonded to at least one hydrogen atom from the viewpoint of improving battery safety during overcharge. More preferable. The alkyl group preferably has a certain length such as 4 or more carbon atoms, and preferably has a structure that is three-dimensionally bulky due to having a branched structure. For these reasons, cyclohexylbenzene is particularly preferred as the compound having an alkyl group bonded to the benzene ring.

ベンゼン環にアルキル基が結合した化合物の電解液中の含有量は、多いほど効果が大きくなるが、多すぎると電解液のイオン伝導性を低下させる傾向にある。そのため、ベンゼン環にアルキル基が結合した化合物の電解液中の含有量は、例えば、1質量%以上であって、10質量%以下、より好ましくは5質量%以下とすることが望ましい。   The larger the content of the compound having an alkyl group bonded to the benzene ring in the electrolytic solution, the greater the effect. However, when the content is too large, the ionic conductivity of the electrolytic solution tends to be lowered. Therefore, the content of the compound in which the alkyl group is bonded to the benzene ring in the electrolytic solution is, for example, 1% by mass or more, 10% by mass or less, and more preferably 5% by mass or less.

また、上記電解液には、ベンゼン環にアルキル基を結合した化合物と共に、ビニレンカーボネートなどの、充放電サイクル特性の向上に寄与し得る添加剤を含有させてもよい。このビニレンカーボネートなどの電解液中の含有量は、例えば、0.1質量%以上であって、5質量%以下、より好ましくは2質量%以下とすることが望ましい。   Moreover, you may make the said electrolyte solution contain the additive which can contribute to the improvement of charging / discharging cycling characteristics, such as vinylene carbonate, with the compound which couple | bonded the alkyl group with the benzene ring. The content of the vinylene carbonate or the like in the electrolytic solution is, for example, 0.1% by mass or more, 5% by mass or less, and more preferably 2% by mass or less.

本発明の電池では、電解質としては、上記の電解液以外にも、固体状またはゲル状の電解質を用いることができる。このような電解質としては、公知の無機固体電解質の他、ポリエチレンオキサイド、ポリプロピレンオキサイドまたはこれらの誘導体などを主剤とする有機固体電解質などが挙げられる。   In the battery of the present invention, a solid or gel electrolyte can be used as the electrolyte in addition to the above electrolyte. Examples of such electrolytes include known inorganic solid electrolytes and organic solid electrolytes mainly composed of polyethylene oxide, polypropylene oxide, or derivatives thereof.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<正極の作製>
被処理物を精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置として、浅田鉄工株式会社製の「M−KCK−32型」(以下、「M−KCK」という)を用いて、正極活物質と導電助剤の精密混合とメカノケミカル化を行った。上記の図1は、このM−KCKの構造の概略図である。正極活物質として、LiCoO(平均粒径:10μm):100質量部と、導電助剤であるアセチレンブラック:2.1質量部を、粉体供給ユニットにある定量フィーダー内に投入し、M−KCKに供給した。M−KCKの回転軸の回転数は200rpmとし、回転円盤と固定円盤とのクリアランスは1mmとした。また、固定円盤と回転円盤の組み合わせ数は6組とした。
Example 1
<Preparation of positive electrode>
As a continuous shearing device capable of precisely mixing workpieces and causing mechanochemical reaction, "M-KCK-32 type" (hereinafter referred to as "M-KCK") manufactured by Asada Tekko Co., Ltd. Precise mixing and mechanochemicalization of the active material and conductive additive were performed. FIG. 1 is a schematic diagram of the structure of this M-KCK. As a positive electrode active material, LiCoO 2 (average particle diameter: 10 μm): 100 parts by mass and acetylene black: 2.1 parts by mass as a conductive auxiliary agent were charged into a quantitative feeder in a powder supply unit, and M− Supplied to KCK. The rotation speed of the rotating shaft of M-KCK was 200 rpm, and the clearance between the rotating disk and the fixed disk was 1 mm. The number of combinations of fixed disks and rotating disks was six.

図3に処理後の正極活物質と導電助剤との混合物の状態を示す。精密混合とメカノケミカル反応により、正極活物質であるLiCoO表面に導電助剤であるアセチレンブラックが一次粒子状となって付着していることが確認された。 FIG. 3 shows a state of the mixture of the positive electrode active material and the conductive additive after the treatment. Through precise mixing and mechanochemical reaction, it was confirmed that acetylene black as a conductive auxiliary agent was attached as primary particles on the surface of LiCoO 2 as a positive electrode active material.

M−KCKによる上記処理後の正極活物質と導電助剤との混合物を、プラネタリーミキサーに供給し、これに、PVDFのNMP溶液(固形分濃度が12質量%)と溶剤であるNMPを投入し、回転数20rpmで60分間混練して、最終的に得られる正極合剤含有組成物の固形分濃度が80質量%となるように、正極合剤含有組成物を調製した。   The mixture of the positive electrode active material and the conductive additive after the above treatment with M-KCK is supplied to a planetary mixer, and NMP solution of PVDF (solid content concentration is 12% by mass) and NMP as a solvent are added thereto. The positive electrode mixture-containing composition was prepared by kneading for 60 minutes at a rotational speed of 20 rpm so that the solid content concentration of the finally obtained positive electrode mixture-containing composition was 80% by mass.

プラネタリーミキサーで調整した正極合剤含有組成物を、70メッシュの網を通過させて大きな未分散体を取り除いた後、リバースコーター塗布機を用いて、厚みが15μmのアルミニウム箔である正極集電体の両面に均一に塗布し、乾燥して正極合剤層を形成した。正極合剤含有組成物の乾燥後の塗布量は、片面当たり23mg/cmとした。プレス処理前の正極合剤層の密度は2.78g/cmであり、プレス処理後の正極合剤層の密度は3.77g/cmであった。所定の電極幅に切断し、集電体の露出部分にアルミニウム製リード体を溶接して、正極合剤層を両面に有するシート状正極を得た。 The positive electrode mixture-containing composition prepared by the planetary mixer is passed through a 70-mesh net to remove a large undispersed material, and then a positive electrode current collector which is an aluminum foil having a thickness of 15 μm using a reverse coater coating machine. It apply | coated uniformly on both surfaces of the body, and it dried and formed the positive mix layer. The coating amount after drying of the positive electrode mixture-containing composition was 23 mg / cm 2 per side. The density of the positive electrode mixture layer before the press treatment was 2.78 g / cm 3 , and the density of the positive electrode mixture layer after the press treatment was 3.77 g / cm 3 . It cut | disconnected to the predetermined electrode width | variety, the aluminum lead body was welded to the exposed part of the electrical power collector, and the sheet-like positive electrode which has a positive mix layer on both surfaces was obtained.

<負極の作製>
負極活物質として凝集型人造黒鉛材料(平均粒径:18μm)300質量部を、CMC水溶液(固形分濃度:1.2質量%)300質量部とSBR系樹脂の水分散体(固形分濃度:40質量%)6.5質量部を、プラネタリーミキサーにて回転数20rpmで60分間、混合混練して負極合剤含有組成物(ペースト)を調製した。さらに水を加え、粘度を調整した。この負極合剤含有組成物の固形分濃度は45質量%であった。この負極合剤含有組成物を、70メッシュの網を通過させて大きな未分散体を取り除いた後、厚みが10μmの帯状の銅箔からなる負極集電体の両面に均一に塗布し、乾燥して負極合剤層を形成した。プレス処理前の負極合剤層の密度は1.10g/cmであり、プレス処理後の負極合剤層の密度は1.50g/cmであった。所定の電極幅に切断し、集電体の露出部分にニッケル製リード体を溶接して、負極合剤層を両面に有するシート状負極を得た。
<Production of negative electrode>
300 parts by mass of an aggregate-type artificial graphite material (average particle diameter: 18 μm) as a negative electrode active material, 300 parts by mass of a CMC aqueous solution (solid content concentration: 1.2% by mass) and an aqueous dispersion of SBR resin (solid content concentration: 40 parts by mass) 6.5 parts by mass was mixed and kneaded with a planetary mixer at a rotation speed of 20 rpm for 60 minutes to prepare a negative electrode mixture-containing composition (paste). Further, water was added to adjust the viscosity. The solid content concentration of the negative electrode mixture-containing composition was 45% by mass. This negative electrode mixture-containing composition was passed through a 70-mesh net to remove a large undispersed material, and then uniformly applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried. Thus, a negative electrode mixture layer was formed. The density of the negative electrode mixture layer before the press treatment was 1.10 g / cm 3 , and the density of the negative electrode mixture layer after the press treatment was 1.50 g / cm 3 . It cut | disconnected to the predetermined electrode width | variety, the nickel-made lead body was welded to the exposed part of an electrical power collector, and the sheet-like negative electrode which has a negative mix layer on both surfaces was obtained.

なお、正負極におけるプレス処理による圧縮前後の電極合剤層密度は以下のようにして求めた(以下の全ての実施例・比較例についても、同様である)。電極を所定面積で切り取り、その重量を、最小目盛り1mgの電子天秤を用いて測定し、この重量から集電体の重量を差し引いて電極合剤層の重量を算出した。また、上記電極の全厚を最小目盛り1μmのマイクロメーターで10点測定し、この厚みから集電体の厚みを差し引いて電極合剤層の厚みを算出し、その平均値と面積から電極合剤層の体積を算出し、この体積で上記の電極合剤層の重量を割ることにより、電極合剤層の密度を算出した。   In addition, the electrode mixture layer density before and after compression by the press treatment in the positive and negative electrodes was determined as follows (the same applies to all the following examples and comparative examples). The electrode was cut out at a predetermined area, and its weight was measured using an electronic balance having a minimum scale of 1 mg. The weight of the electrode mixture layer was calculated by subtracting the weight of the current collector from this weight. Further, the total thickness of the electrode is measured at 10 points with a micrometer having a minimum scale of 1 μm, the thickness of the electrode mixture layer is calculated by subtracting the thickness of the current collector from this thickness, and the electrode mixture is calculated from the average value and the area. The density of the electrode mixture layer was calculated by calculating the volume of the layer and dividing the weight of the electrode mixture layer by this volume.

<電解液の調製>
MECとECとを体積比2:1で混合した混合溶媒に、LiPFを1.2mol/lの濃度となるように溶解し、更に2質量%のシクロヘキシルベンゼンを添加して電解液を調製した。
<Preparation of electrolyte>
LiPF 6 was dissolved in a mixed solvent in which MEC and EC were mixed at a volume ratio of 2: 1 so as to have a concentration of 1.2 mol / l, and further 2% by mass of cyclohexylbenzene was added to prepare an electrolytic solution. .

<非水二次電池の作製>
上記の正極および負極を乾燥処理した。その後、正極と負極を、厚みが20μmの微孔性ポリエチレンフィルムからなるセパレータを介して重ね、これを渦巻き状に巻回し、巻回電極体とした。この巻回電極体を、アルミニウム製の角形缶内に挿入し、正極リード体を蓋に、負極リード体を、蓋にパッキングを介して取り付けられている端子に取り付けられているリード板に溶接した後、蓋と缶とをシーム溶接した。その後、蓋に設けられた電解液注入口から上記電解液を注入し、該注入口を封止した後、3時間室温で放置して正負極およびセパレータに電解液を十分に含浸させて、高さ50mm、幅 34mm、厚み 4.6mmで容量が900mAhの角形非水二次電池を作製した。
<Production of non-aqueous secondary battery>
The above positive electrode and negative electrode were dried. Thereafter, the positive electrode and the negative electrode were overlapped via a separator made of a microporous polyethylene film having a thickness of 20 μm, and this was wound in a spiral shape to obtain a wound electrode body. This wound electrode body was inserted into an aluminum rectangular can, and the positive electrode lead body was welded to a lid, and the negative electrode lead body was welded to a lead plate attached to a terminal attached to the lid via a packing. Thereafter, the lid and the can were seam welded. Thereafter, the electrolyte is injected from the electrolyte inlet provided on the lid, and the inlet is sealed, and then left at room temperature for 3 hours to fully impregnate the positive and negative electrodes and the separator with the electrolyte. A rectangular non-aqueous secondary battery having a thickness of 50 mm, a width of 34 mm, a thickness of 4.6 mm and a capacity of 900 mAh was produced.

実施例2
<負極の作製>
負極活物質として、凝集型人造黒鉛材料(平均粒径:18μm)240質量部と、球状型天然黒鉛材料(平均粒径:20μm)60質量部を、M−KCKの粉体供給ユニットの定量フィーダー内に投入し、連続的に精密混合とメカノケミカル化を行った。M−KCKの回転軸の回転数は100rpmとし、回転円盤と固定円盤とのクリアランスは1mmとした。M−KCK処理を行った負極活物質の混合物を、プラネタリーミキサーに供給し、これに、CMC水溶液(固形分濃度:1.2質量%)300質量部とSBR系樹脂の水分散体(固形分濃度:40質量%)6.5質量部を、プラネタリーミキサーにて混合混練して負極合剤含有組成物(ペースト)を調製した。さらに水を加え、粘度を調整した。この負極合剤含有組成物の固形分濃度は55質量%であった。
Example 2
<Production of negative electrode>
As a negative electrode active material, 240 parts by mass of agglomerated artificial graphite material (average particle size: 18 μm) and 60 parts by mass of spherical natural graphite material (average particle size: 20 μm) were used as a quantitative feeder for a powder supply unit of M-KCK. The mixture was continuously mixed and precision-mixed and mechanochemicalized. The rotation speed of the rotating shaft of M-KCK was 100 rpm, and the clearance between the rotating disk and the fixed disk was 1 mm. The mixture of the negative electrode active material which performed M-KCK process is supplied to a planetary mixer, and 300 mass parts of CMC aqueous solution (solid content concentration: 1.2 mass%) and the aqueous dispersion (solid) of SBR type resin are added to this. (Minute concentration: 40% by mass) 6.5 parts by mass was mixed and kneaded with a planetary mixer to prepare a negative electrode mixture-containing composition (paste). Further, water was added to adjust the viscosity. The solid content concentration of the negative electrode mixture-containing composition was 55% by mass.

この負極合剤含有組成物を、70メッシュの網を通過させて大きな未分散体を取り除いた後、厚みが10μmの帯状の銅箔からなる負極集電体の両面に均一に塗布し、乾燥して負極合剤層を形成した。プレス処理前の負極合剤層の密度は1.22g/cmであり、プレス圧を調整して、プレス処理後の負極合剤密度が1.65g/cmになるようにした。その後、所定の電極幅に切断し、集電体の露出部分にニッケル製リード体を溶接して、負極合剤層を両面に有するシート状負極を得た。 This negative electrode mixture-containing composition was passed through a 70-mesh net to remove a large undispersed material, and then uniformly applied to both sides of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm and dried. Thus, a negative electrode mixture layer was formed. The density of the negative electrode mixture layer before the press treatment was 1.22 g / cm 3 , and the press pressure was adjusted so that the negative electrode mixture density after the press treatment was 1.65 g / cm 3 . Then, it cut | disconnected to the predetermined electrode width, the nickel-made lead body was welded to the exposed part of an electrical power collector, and the sheet-like negative electrode which has a negative mix layer on both surfaces was obtained.

上記のシート状負極を用いた以外は、実施例1と同様にして非水二次電池を作製した。   A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the above sheet-like negative electrode was used.

実施例3
正極活物質として、平均粒径が18μm、および4μmの2種類のLiCoOを混合して用いた以外は、実施例1と同様にして正極合剤含有組成物を調製した。最終的に得られる正極合剤含有組成物の固形分濃度は82質量%であった。得られた正極合剤含有組成物を用いた以外は、実施例1と同様にしてシート状正極を作製した。プレス処理前の正極合剤層の密度は2.81g/cmであり、プレス処理後の正極合剤層の密度は3.80g/cmであった。このシート状正極を用いた以外は、実施例1と同様にして非水二次電池を作製した。
Example 3
A positive electrode mixture-containing composition was prepared in the same manner as in Example 1 except that two kinds of LiCoO 2 having an average particle diameter of 18 μm and 4 μm were mixed and used as the positive electrode active material. The solid content concentration of the finally obtained positive electrode mixture-containing composition was 82% by mass. A sheet-like positive electrode was produced in the same manner as in Example 1 except that the obtained positive electrode mixture-containing composition was used. Density of pressing before the positive electrode mixture layer is 2.81 g / cm 3, the density of the positive electrode mixture layer after the pressing treatment was 3.80 g / cm 3. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this sheet-like positive electrode was used.

比較例1
正極活物質と導電助剤の混合でM−KCKを用いることなく、プラネタリーミキサーを用いて、30rpmの回転数で30分間の条件で混合、混練を実施した以外は、実施例1と同様にして正極合剤含有組成物を調製した。なお、集電体であるアルミニウム箔への塗布に適した粘度に調整するために希釈を行い、最終的な正極合剤含有組成物の固形分濃度は73質量%とした。この正極合剤含有組成物を用いた以外は、実施例1と同様にしてシート状正極を得た。プレス処理前の正極合剤層の密度は2.55g/cmであり、正極合剤層の密度は3.60g/cmであった。このシート状正極を用いた以外は、実施例1と同様にして非水二次電池を作製した。
Comparative Example 1
The same procedure as in Example 1 was performed except that mixing and kneading were performed using a planetary mixer at 30 rpm for 30 minutes without using M-KCK for mixing the positive electrode active material and the conductive additive. Thus, a positive electrode mixture-containing composition was prepared. In addition, it diluted in order to adjust to the viscosity suitable for the application | coating to the aluminum foil which is a collector, and solid content concentration of the final positive mix containing composition was 73 mass%. A sheet-like positive electrode was obtained in the same manner as in Example 1 except that this positive electrode mixture-containing composition was used. Density of pressing before the positive electrode mixture layer is 2.55 g / cm 3, the density of the positive electrode mixture layer was 3.60 g / cm 3. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this sheet-like positive electrode was used.

比較例2
正極活物質として、実施例3で用いた平均粒径が18μm、および4μmの2種類のLiCoOを混合したものを用い、正極活物質と導電助剤の混合でM−KCKを用いることなく、プラネタリーミキサーを用いて、30rpmの回転数で30分間の条件で混合、混練を実施して、正極合剤含有組成物を調製した。なお、集電体であるアルミニウム箔への塗布に適した粘度に調整するために希釈を行い、最終的な正極合剤含有組成物の固形分濃度は70質量%とした。この正極合剤含有組成物を用いた以外は、実施例1と同様にしてシート状正極を得た。プレス処理前の正極合剤層の密度は2.75g/cmであり、プレス処理後の正極合剤層の密度は3.76g/cmであった。このシート状正極を用いた以外は、実施例1と同様にして非水二次電池を作製した。
Comparative Example 2
As the positive electrode active material, a mixture of two types of LiCoO 2 having an average particle diameter of 18 μm and 4 μm used in Example 3 was used, and without using M-KCK in the mixture of the positive electrode active material and the conductive assistant, Using a planetary mixer, mixing and kneading were carried out at 30 rpm for 30 minutes to prepare a positive electrode mixture-containing composition. In addition, it diluted in order to adjust to the viscosity suitable for application | coating to the aluminum foil which is a collector, and solid content concentration of the final positive electrode mixture containing composition was 70 mass%. A sheet-like positive electrode was obtained in the same manner as in Example 1 except that this positive electrode mixture-containing composition was used. Density of pressing before the positive electrode mixture layer is 2.75 g / cm 3, the density of the positive electrode mixture layer after the pressing treatment was 3.76 g / cm 3. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this sheet-like positive electrode was used.

比較例3
負極活物質2種類の混合でM−KCKを用いることなく、プラネタリーミキサーを用いて、30rpmの回転数で30分間の条件で混合、混練を実施し、更に、集電体である銅箔への塗布に適した粘度に調整するために最終的な正極合剤含有組成物の固形分濃度を43質量%とした以外は、実施例2と同様にして負極合剤含有組成物を調製し、シート状負極を得た。プレス処理前の負極合剤層の密度は1.15g/cmであり、プレス圧を調整して、プレス処理後の負極合剤層の密度が1.65g/cmになるようにした。このシート状負極を用いた以外は、実施例1と同様にして非水二次電池を作製した。
Comparative Example 3
Mixing and kneading the mixture of the two types of negative electrode active materials for 30 minutes at 30 rpm using a planetary mixer without using M-KCK, and further to a copper foil as a current collector A negative electrode mixture-containing composition was prepared in the same manner as in Example 2, except that the solid content concentration of the final positive electrode mixture-containing composition was 43% by mass in order to adjust the viscosity to be suitable for the coating of A sheet-like negative electrode was obtained. The density of the negative electrode mixture layer before the press treatment was 1.15 g / cm 3 , and the press pressure was adjusted so that the density of the negative electrode mixture layer after the press treatment was 1.65 g / cm 3 . A nonaqueous secondary battery was produced in the same manner as in Example 1 except that this sheet-like negative electrode was used.

実施例1〜3および比較例1〜3の非水二次電池について、以下の電池特性評価を行った。まず充放電電流をCで示した場合、900mAを1Cとして、1Cの電流で、4.2Vまで充電を行い、1Cで2.75Vまで放電する充放電サイクル試験を行った。400サイクル目の放電容量を測定し、400サイクル目の放電容量については、これを1サイクル目の放電容量で除した容量維持率で評価した。1サイクル目の放電容量(初回放電容量)と400サイクル目の容量維持率を表1に示す。   The following battery characteristic evaluation was performed about the non-aqueous secondary battery of Examples 1-3 and Comparative Examples 1-3. First, when the charge / discharge current is indicated by C, a charge / discharge cycle test was performed in which 900 mA was set to 1C, the battery was charged to 4.2V with a current of 1C, and discharged to 2.75V at 1C. The discharge capacity at the 400th cycle was measured, and the discharge capacity at the 400th cycle was evaluated by a capacity maintenance ratio obtained by dividing this by the discharge capacity at the first cycle. Table 1 shows the discharge capacity at the first cycle (initial discharge capacity) and the capacity retention rate at the 400th cycle.

Figure 0004971646
Figure 0004971646

正極活物質と導電助剤に、予め精密混合とメカノケミカル化処理を施して調製した正極合剤含有組成物を用いて得られた正極(実施例1〜3に係る正極)は、圧縮前後の正極合剤層密度が高くなっている。更に、これらの正極を有する実施例1〜3の非水二次電池では、表1から分かるように、初回放電容量、400サイクル後の容量維持率のいずれもが高く、高性能な電池特性を確保することができる。なお、比較例2のように、粒径の異なる正極活物質を採用することで、精密混合とメカノケミカル化処理を施さなくても、正極合剤層の高密度化は可能であるが、この比較例2の電池では、400サイクル後の容量維持率は低くなった。   A positive electrode (positive electrode according to Examples 1 to 3) obtained using a positive electrode mixture-containing composition prepared by subjecting a positive electrode active material and a conductive additive to precision mixing and mechanochemical treatment in advance was used before and after compression. The density of the positive electrode mixture layer is high. Furthermore, in the nonaqueous secondary batteries of Examples 1 to 3 having these positive electrodes, as can be seen from Table 1, both the initial discharge capacity and the capacity retention rate after 400 cycles are high, and high performance battery characteristics are obtained. Can be secured. As in Comparative Example 2, by using positive electrode active materials having different particle sizes, the density of the positive electrode mixture layer can be increased without performing precise mixing and mechanochemical treatment. In the battery of Comparative Example 2, the capacity retention rate after 400 cycles was low.

さらに、負極活物質に、予め精密混合とメカノケミカル化処理を施して調製した負極合剤含有組成物を用いて得られた負極(実施例2の負極)は圧縮前の負極合剤層密度が高くなった。負極活物質に使用する黒鉛材料は、小さなプレス圧でも圧縮され破壊され易い傾向にあるため、できるだけ小さなプレス圧で圧縮し高密度化できるのが好ましい。そのため、圧縮前の負極合剤層密度が高いものほど好ましい。400サイクル後の容量維持率についても、予め精密混合とメカノケミカル化処理を施したものの方が優れた結果を示しており、高性能な電池性能を提供することができる。   Furthermore, the negative electrode obtained by using a negative electrode mixture-containing composition prepared by subjecting the negative electrode active material to precision mixing and mechanochemical treatment in advance (the negative electrode of Example 2) has a negative electrode mixture layer density before compression. It became high. Since the graphite material used for the negative electrode active material tends to be compressed and broken even with a small pressing pressure, it is preferable that the graphite material can be compressed and densified with the smallest possible pressing pressure. Therefore, the higher the negative electrode mixture layer density before compression, the better. Regarding the capacity retention rate after 400 cycles, the results obtained by applying precision mixing and mechanochemical treatment in advance show superior results, and can provide high-performance battery performance.

本発明で使用する連続せん断装置の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the continuous shearing apparatus used by this invention. 図1の連続せん断装置で回転円盤と固定円盤の一例を示す平面図である。It is a top view which shows an example of a rotation disk and a fixed disk with the continuous shearing apparatus of FIG. 本発明の実施例1において、連続せん断装置を用いて処理を行ったLiCoO正極活物質の表面状態を示す写真である。In Example 1 of the present invention is a photograph showing the surface state of the LiCoO 2 positive electrode active material was treated with a continuous shear device.

符号の説明Explanation of symbols

1 連続せん断装置
2 フィード部
3 混練部
4 排出部
5 定量フィーダー
6 駆動軸
7 フィードスクリュー
8 中間スクリュー
9 回転円盤
10 固定円盤
11 混練シリンダー
12 ジャケット
13 扇型組合円盤
14 菊型組合円盤
15 臼型組合円盤
50 正極活物質
60 導電助剤
DESCRIPTION OF SYMBOLS 1 Continuous shear device 2 Feed part 3 Kneading part 4 Discharge part 5 Fixed feeder 6 Drive shaft 7 Feed screw 8 Intermediate screw 9 Rotating disk 10 Fixed disk 11 Kneading cylinder 12 Jacket 13 Fan-shaped combination disk 14 Chrysanthemum combination disk 15 Mortar type combination Disc 50 Positive electrode active material 60 Conductive aid

Claims (6)

正極活物質、導電助剤および結着剤を含有し、電池用正極の作製に用いられる正極合剤含有組成物を製造するに当たり、
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を有することを特徴とする正極合剤含有組成物の製造方法。
In producing a positive electrode mixture-containing composition that contains a positive electrode active material, a conductive additive, and a binder, and is used to produce a positive electrode for a battery,
At least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are processed by a continuous shearing apparatus capable of causing a mechanochemical reaction by precisely mixing by passing the gap between the fixed disk and the rotating disk in multiple stages. The manufacturing method of the positive mix containing composition characterized by the above-mentioned.
負極活物質および結着剤を含有し、電池用負極の作製に用いられる負極合剤含有組成物を製造するに当たり、
少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を有することを特徴とする負極合剤含有組成物の製造方法。
In producing a negative electrode mixture-containing composition that contains a negative electrode active material and a binder and is used in the production of a negative electrode for a battery,
A negative electrode active material containing at least a negative electrode active material, comprising a step of processing by a continuous shearing device capable of causing a mechanochemical reaction by precisely mixing by passing through a gap between a fixed disk and a rotating disk in multiple stages A method for producing the composition.
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を用いて、正極合剤層を形成する工程を有することを特徴とする電池用正極の製造方法。   Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. The manufacturing method of the positive electrode for batteries characterized by having the process of forming a positive mix layer using the prepared positive mix containing composition containing a positive electrode active material, a conductive support agent, and a binder. 少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、負極活物質および結着剤を含有する負極合剤含有組成物を用いて、負極合剤層を形成する工程を有することを特徴とする電池用負極の製造方法。   At least the negative electrode active material and the negative electrode active material prepared by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction, The manufacturing method of the negative electrode for batteries characterized by having the process of forming a negative mix layer using the negative mix containing composition containing an adhesive agent. 正極と負極とをセパレータを介して積層してなる集電体と非水電解液を備えた非水二次電池であって、正極および負極の少なくとも一方が、下記の正極(a)または負極(b)であることを特徴とする非水二次電池。
正極(a):
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を用いて形成されてなる正極合剤層を有する正極。
負極(b):
少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て調製された、負極活物質および結着剤を含有する負極合剤含有組成物を用いて形成されてなる負極合剤層を有する負極。
A non-aqueous secondary battery comprising a current collector formed by laminating a positive electrode and a negative electrode via a separator and a non-aqueous electrolyte, wherein at least one of the positive electrode and the negative electrode is the following positive electrode (a) or negative electrode ( b) A non-aqueous secondary battery.
Positive electrode (a):
Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. A positive electrode having a positive electrode mixture layer formed using a prepared positive electrode mixture-containing composition containing a positive electrode active material, a conductive additive and a binder.
Negative electrode (b):
At least the negative electrode active material and the negative electrode active material prepared by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction, A negative electrode having a negative electrode mixture layer formed using a negative electrode mixture-containing composition containing an adhesive.
下記の正極製造工程(A)および/または負極製造工程(B)を有することを特徴とする非水二次電池の製造方法。
正極製造工程(A):
少なくとも正極活物質または正極活物質と導電助剤とを、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て、正極活物質、導電助剤および結着剤を含有する正極合剤含有組成物を調製する工程と、
上記正極合剤含有組成物を用いて正極合剤層を有する正極を製造する工程
を有する。
負極製造工程(B):
少なくとも負極活物質を、固定円盤と回転円盤の隙間を多段に通過させることにより精密混合し、かつメカノケミカル反応を生じさせ得る連続せん断装置によって処理する工程を経て、負極活物質および結着剤を含有する負極合剤含有組成物を調製する工程と、
上記負極合剤含有組成物を用いて負極合剤層を有する負極を製造する工程
を有する。
The manufacturing method of the nonaqueous secondary battery characterized by having the following positive electrode manufacturing process (A) and / or negative electrode manufacturing process (B).
Positive electrode manufacturing process (A):
Through a process in which at least the positive electrode active material or the positive electrode active material and the conductive auxiliary agent are precisely mixed by passing through a gap between the fixed disk and the rotating disk in multiple stages and processed by a continuous shearing device capable of causing a mechanochemical reaction. A step of preparing a positive electrode mixture-containing composition containing a positive electrode active material, a conductive additive and a binder;
It has the process of manufacturing the positive electrode which has a positive mix layer using the said positive mix mixture containing composition.
Negative electrode manufacturing process (B):
The negative electrode active material and the binder are processed through a continuous shearing device that can mix at least the negative electrode active material by passing through a gap between the fixed disk and the rotating disk in multiple stages and can cause a mechanochemical reaction. A step of preparing a negative electrode mixture-containing composition,
It has the process of manufacturing the negative electrode which has a negative mix layer using the said negative mix mixture containing composition.
JP2006040350A 2006-02-17 2006-02-17 Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same Active JP4971646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006040350A JP4971646B2 (en) 2006-02-17 2006-02-17 Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006040350A JP4971646B2 (en) 2006-02-17 2006-02-17 Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007220510A JP2007220510A (en) 2007-08-30
JP4971646B2 true JP4971646B2 (en) 2012-07-11

Family

ID=38497551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006040350A Active JP4971646B2 (en) 2006-02-17 2006-02-17 Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4971646B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181387A (en) * 2010-03-02 2011-09-15 Toyo Ink Sc Holdings Co Ltd Manufacturing method of electrode mixture for electrochemical element
JP5655362B2 (en) * 2010-04-28 2015-01-21 淺田鉄工株式会社 Continuous production apparatus and continuous production method for electrode mixture-containing composition slurry for secondary battery
JP5625880B2 (en) * 2010-12-20 2014-11-19 日産自動車株式会社 Method for producing positive electrode slurry and apparatus for producing positive electrode slurry
JP6812928B2 (en) * 2017-08-14 2021-01-13 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138708A (en) * 1991-11-21 1993-06-08 Sekisui Chem Co Ltd Manufacture of resin molded product containing chloride
JP3138838B2 (en) * 1992-04-30 2001-02-26 東レ・ダウコーニング・シリコーン株式会社 Manufacturing method of mixed powder
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2000123879A (en) * 1998-10-15 2000-04-28 Sony Corp Manufacture of positive mix and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2007220510A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5187791B1 (en) Method for producing composition for forming positive electrode mixture layer and method for producing lithium ion secondary battery
CN102013473B (en) Negative electrode for nonaqueous electrolyte secondary cell, method of manufacturing the same, and nonaqueous electrolyte secondary cell
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
JP2012059488A (en) Negative electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2013179924A1 (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
WO2018153122A1 (en) Modified graphite negative electrode material, preparation method therefor, and rechargeable battery
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP4448704B2 (en) Method for producing positive electrode paint for lithium ion secondary battery and lithium ion secondary battery
JP2010182626A (en) Negative electrode for nonaqueous secondary battery
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2012022858A (en) Method for manufacturing electrode
JP2007141527A (en) Electrode and nonaqueous secondary battery using it
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP2019175657A (en) Lithium ion secondary battery
JP3456354B2 (en) Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode
JP5072061B2 (en) Method for producing positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2023520193A (en) Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery
JP4220867B2 (en) Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
JP4830434B2 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7391455B2 (en) Method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material for a lithium secondary battery produced by the method
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
WO2024150390A1 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250