[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000121364A - Azimuth indicator - Google Patents

Azimuth indicator

Info

Publication number
JP2000121364A
JP2000121364A JP10293263A JP29326398A JP2000121364A JP 2000121364 A JP2000121364 A JP 2000121364A JP 10293263 A JP10293263 A JP 10293263A JP 29326398 A JP29326398 A JP 29326398A JP 2000121364 A JP2000121364 A JP 2000121364A
Authority
JP
Japan
Prior art keywords
angular velocity
velocity sensor
azimuth
substrate
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10293263A
Other languages
Japanese (ja)
Inventor
Junichi Ito
純一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP10293263A priority Critical patent/JP2000121364A/en
Publication of JP2000121364A publication Critical patent/JP2000121364A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable one angular velocity sensor to measure the absolute azimuth and azimuth changes in the moving direction during the movement. SOLUTION: An attitude converting means which converts the attitude of the angular velocity sensor 4 is composed of a support shaft 2 which projects at 35 deg. from the plate surface of a substrate 1, and a rotary support body which supports the angular velocity sensor 4 so that an input shaft 5 crosses the support shaft 2 at 55 deg. from the core of the support shaft 2. Here, the attitude converting means converts the direction of the input shaft of the angular velocity sensor 4 to a Z, an X, and a Y direction to measure the angular velocities at the respective attitude positions, thereby measuring the absolute azimuth in a stationary state and azimuth changes in the moving direction during the movement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は1個の角速度セン
サで絶対方位(北からの角度)を測定する構成とした方
位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an azimuth meter configured to measure an absolute azimuth (angle from north) with one angular velocity sensor.

【0002】[0002]

【従来の技術】従来より絶対方位(北の方位)を求める
には、古くは磁気コンパスを、近年では機械的なコマ式
ジャイロコンパスが使用されてきた。磁気コンパスは周
囲の磁気の影響を受けやすく、またコマ式ジャイロコン
パスは高価で、且電源投入から使用可能になるまでの時
間が長い等の欠点がある。
2. Description of the Related Art In the past, a magnetic compass has been used for finding an absolute azimuth (north azimuth), and in recent years, a mechanical top gyro compass has been used. A magnetic compass is susceptible to the influence of the surrounding magnetism, and a top gyro compass is disadvantageous in that it is expensive and a long time is required from when the power is turned on to when it can be used.

【0003】最近では例えば光ファイバジャイロ等の角
速度センサを1個使用して、その入力軸を水平に向け、
鉛直軸回りに1回転させ、水平面上の地球自転角速度の
分布から北を求める方位計が考えられている。
Recently, for example, one angular velocity sensor such as an optical fiber gyro is used, and its input shaft is oriented horizontally.
An azimuth meter that makes one rotation about a vertical axis and obtains the north from the distribution of the rotational angular velocity of the earth on a horizontal plane has been considered.

【0004】[0004]

【発明が解決しようとする課題】上述の光ファイバジャ
イロを利用した方位計は測定中は静止しなければ方位の
測定を行うことができない欠点がある。移動中も方位を
測定するには先の第1の角速度センサに加えて入力軸を
鉛直方向に向けた第2の角速度センサを設置し、この第
2の角速度センサにより移動中の方位変化率を測定して
積算し、この積算値に静止時に求めた方位を初期値とし
て加算し、移動中も方位を知る測定方法もある。
The azimuth meter using the above-mentioned optical fiber gyro has a drawback that the azimuth cannot be measured unless it is stationary during the measurement. To measure azimuth while moving, in addition to the first angular velocity sensor, a second angular velocity sensor whose input axis is oriented vertically is installed, and the azimuth change rate during movement is measured by the second angular velocity sensor. There is also a measurement method of measuring and integrating, and adding the azimuth obtained at the time of rest as an initial value to the integrated value to know the azimuth while moving.

【0005】然し乍ら、この測定方法によれば2個の角
速度センサが必要となり高価になる欠点がある。1個の
角速度センサを用いて移動中も方位を知る方法としては
例えば静止時は角速度計の入力軸を水平方向に向けてこ
れを鉛直軸回り方向に回転させると共に、移動中は角速
度センサの入力軸を鉛直方向に向けて配置する方法もあ
る。
However, according to this measuring method, there is a disadvantage that two angular velocity sensors are required and the cost is high. As a method of knowing the azimuth during movement using one angular velocity sensor, for example, when stationary, the input axis of the gyro is turned in the horizontal direction, and this is rotated around the vertical axis. There is also a method of arranging the shaft in the vertical direction.

【0006】然し乍らこの方法を採るには角速度センサ
を2方向に姿勢変化させなくてはならないため、その姿
勢転換機構の構造が複雑になり、この姿勢転換機構だけ
でも高価なものとなる。この発明の目的は1軸の回転機
構のみの姿勢回転機構によって1個の角速度センサの入
力軸を水平方向と鉛直方向とに転換させ、静止時には絶
対方位を測定し、移動中は方位変化率を求めてこれを積
算し、この積算値を静止時に求めた絶対方向に加算して
刻々の方位を出力させることができる方位計を提案しよ
うとするものである。
However, in order to adopt this method, it is necessary to change the attitude of the angular velocity sensor in two directions. Therefore, the structure of the attitude changing mechanism becomes complicated, and the attitude changing mechanism alone becomes expensive. An object of the present invention is to change the input axis of one angular velocity sensor between a horizontal direction and a vertical direction by a posture rotation mechanism having only one axis rotation mechanism, to measure the absolute azimuth when stationary, and to reduce the azimuth change rate during movement. It is intended to propose an azimuth meter capable of calculating and integrating the obtained values, and adding the integrated value to the absolute direction obtained at the time of standstill to output an instantaneous azimuth.

【0007】[0007]

【課題を解決するための手段】この発明では水平姿勢に
支持される基板と、入力軸を有し、この入力軸を中心に
回転入力が与えられることによりその入力角速度に対応
する角速度データを出力する角速度センサと、この角速
度センサを入力軸が基板の板面に対して鉛直方向Zを向
く姿勢と、基板と平行する水平面内において互いに直行
する2つの水平方向X,Yを向くように支持する姿勢変
換手段と、姿勢転換手段が角速度センサの入力軸を鉛直
方向Zに向く位置に転換した状態において測定される角
速度データから地球自転角速度の鉛直成分理論値を差し
引き角速度センサのバイアス誤差を算出するバイアス誤
差算出手段と、角速度センサの入力軸をX方向、Y方向
に転換した状態で測定される2つの地球自転角速度から
バイアス誤差を差し引き、正しい地球自転角速度成分を
求める地球自転速度算出手段とこの地球自転角速度算出
手段で算出したX,Y方向の地球自転角速度成分から基
板に定めた方位を算出する方位算出手段とによって方位
計を構成したものである。
According to the present invention, there is provided a substrate supported in a horizontal position, and an input shaft. When a rotation input is given about the input shaft, angular velocity data corresponding to the input angular velocity is output. And an angular velocity sensor supporting the angular velocity sensor such that the input shaft is oriented in the vertical direction Z with respect to the plate surface of the substrate and in two horizontal directions X and Y perpendicular to each other in a horizontal plane parallel to the substrate. The attitude conversion means and the attitude conversion means change the input axis of the angular velocity sensor to a position facing the vertical direction Z and subtract the theoretical value of the vertical component of the earth rotation angular velocity from the angular velocity data measured to calculate the bias error of the angular velocity sensor. A bias error is calculated from a bias error calculating means and two earth rotation angular velocities measured with the input axis of the angular velocity sensor changed in the X direction and the Y direction. Then, the compass is determined by earth rotation speed calculating means for obtaining a correct earth rotation angular velocity component, and azimuth calculating means for calculating an azimuth determined on the substrate from the X, Y direction earth rotation angular velocity components calculated by the earth rotation angular velocity calculation means. It is composed.

【0008】この発明の特徴とする構成は、姿勢変換手
段に存する。つまり、姿勢変換手段を基板の板面から約
35°傾いた姿勢で基板から突出して支持した支持軸
と、この支持軸によって回転自在に支持され、支持軸の
軸線から入力軸が約55°傾いた姿勢で角速度センサを
支持した回転支持体とによって構成した点である。上記
した約35°とは正確にはSin-1(1/√3)であ
り、約55°とは上記を90°から差し引いた値であ
る。
[0008] A feature of the present invention resides in the posture changing means. That is, a support shaft that protrudes and supports the posture changing means from the substrate in a posture inclined by about 35 ° from the plate surface of the substrate, and is rotatably supported by the support shaft, and the input shaft is inclined by about 55 ° from the axis of the support shaft. And a rotary support that supports the angular velocity sensor in a different posture. The above-mentioned about 35 ° is exactly Sin -1 (1 / √3), and about 55 ° is a value obtained by subtracting the above from 90 °.

【0009】この構成によれば、回転支持体を支持軸を
中心に回転させるだけで角速度センサの入力軸をこの移
動中に角速度センサの入力軸の姿勢を支持軸の軸線と5
5°の角度で交叉する円錐面に沿わせて移動させること
ができ、鉛直のZ方向と、基板の板面と平行する水平面
において互いに直行するX,Y方向とに転換させること
ができる。
According to this structure, the input shaft of the angular velocity sensor is moved during the movement only by rotating the rotary support about the support shaft.
It can be moved along a conical surface that intersects at an angle of 5 °, and can be switched between a vertical Z direction and X and Y directions that are orthogonal to each other in a horizontal plane parallel to the plate surface of the substrate.

【0010】したがって姿勢転換手段を簡単に構成する
ことができるから安価に方位計を作ることができる利点
が得られる。また、角速度センサの姿勢を転換するには
1軸の回転支持機構に支持した回転支持体を回転させれ
ばよいから簡単に角速度センサの姿勢を転換させること
ができる。この結果角速度センサの入力軸を鉛直Z方向
に向けたとき、角速度センサが測定した角速度データか
ら地球自転レートの鉛直成分理論値を差し引くことによ
り角速度計のバイアス誤差を推定し、角速度センサの入
力軸をX方向とY方向に向けて測定した2つの地球自転
レートデータからバイアス誤差を補正した後、演算処理
して絶対方位(北からの角度)を得ることができる。
[0010] Therefore, since the attitude changing means can be simply constructed, there is an advantage that the compass can be manufactured at low cost. Further, the attitude of the angular velocity sensor can be easily changed because the attitude of the angular velocity sensor can be changed by rotating the rotary supporter supported by the uniaxial rotation support mechanism. As a result, when the input axis of the angular velocity sensor is oriented in the vertical Z direction, the bias error of the angular velocity meter is estimated by subtracting the vertical component theoretical value of the earth rotation rate from the angular velocity data measured by the angular velocity sensor, and the input axis of the angular velocity sensor is estimated. After correcting the bias error from two earth rotation rate data measured in the X direction and the Y direction, arithmetic processing can be performed to obtain an absolute azimuth (angle from north).

【0011】静止時は絶対方位を測定する。移動中は角
速度センサの入力軸を鉛直Z方向に向け移動中の方位変
化率を測定して初期方位に積算し、時々刻々の移動方向
の方位変化を算出することができる。従って、この発明
の方位計によれば、1個の角速度センサを1軸の支持機
構で支持して角速度センサの入力軸の姿勢をZ方向、X
方向、Y方向の3方向に転換するから、その支持機構の
構造は簡単であり、安価に作ることができる。
At the time of rest, the absolute azimuth is measured. During the movement, the input axis of the angular velocity sensor is oriented in the vertical Z direction, and the azimuth change rate during the movement is measured and integrated with the initial azimuth, so that the azimuth change in the movement direction every moment can be calculated. Therefore, according to the compass of the present invention, one angular velocity sensor is supported by the one-axis support mechanism, and the attitude of the input axis of the angular velocity sensor is set in the Z direction and X direction.
Since the direction is changed into three directions, ie, the direction and the Y direction, the structure of the supporting mechanism is simple and can be manufactured at low cost.

【0012】[0012]

【発明の実施の形態】図1にこの発明の要部となる角速
度計の支持機構の概念図を示す。図中1は基板を示す。
基板1は水平な姿勢で支持され、例えば車両等に搭載さ
れる。1Aは装置の進行方向、つまり前方を示す。又は
基板1に35°傾けて植設した支持軸を示す。つまり、
この実施例では支持軸2に回転自在に回転支持体3を装
着し、この回転支持体3に角速度センサ4の入力軸5を
支持軸2から55°傾けて支持する構造とした場合を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a conceptual diagram of a supporting mechanism of an gyro which is a main part of the present invention. In the figure, reference numeral 1 denotes a substrate.
The substrate 1 is supported in a horizontal position, and is mounted on, for example, a vehicle. 1A indicates the traveling direction of the device, that is, the front. Alternatively, a support shaft implanted at 35 ° to the substrate 1 is shown. That is,
In this embodiment, a case is shown in which a rotary support 3 is rotatably mounted on a support shaft 2 and an input shaft 5 of an angular velocity sensor 4 is supported on the rotary support 3 at an angle of 55 ° from the support shaft 2.

【0013】この構成によれば回転支持体3を支持軸2
を中心に回転させると、角速度センサ4の入力軸5を基
板1の板面に対して鉛直Z方向、X方向、Y方向を向く
姿勢に転換させることができる。つまり、支持軸2が基
板1の板面から35°傾いて支持され、更に回転支持体
3は角速度センサ4の入力軸5を支持軸2から55°傾
けて支持しているから、35°+55°=90°とな
り、Z方向を向かせることができる。更に回転支持体3
を回転させると、角速度センサ4の入力軸5は支持軸2
の軸線と55°の角度で交叉する円錐面6(図2参照)に
沿って移動する。この移動中に角速度センサ4の入力軸
5は基板1の板面に対して平行する姿勢位置を2個所通
過する。この2個所で角速度センサ4の入力軸5は互い
に直行する向のX方向とY方向を向く姿勢となる。尚、
図示するX方向を装置の進行方向1Aに一致させるには
支持軸2を上から見て装置の進行方向1Aから時計回り
方向に45°回転させた位置に設定すればよい。
According to this configuration, the rotary support 3 is connected to the support shaft 2.
, The input shaft 5 of the angular velocity sensor 4 can be changed to a posture oriented in the vertical Z, X, and Y directions with respect to the plate surface of the substrate 1. In other words, the support shaft 2 is supported at an angle of 35 ° from the plate surface of the substrate 1, and the rotary support 3 supports the input shaft 5 of the angular velocity sensor 4 at an angle of 55 ° from the support shaft 2; ° = 90 °, and can be turned in the Z direction. Furthermore, the rotating support 3
Is rotated, the input shaft 5 of the angular velocity sensor 4 is
Along the conical surface 6 (see FIG. 2) which intersects with the axis at 55 °. During this movement, the input shaft 5 of the angular velocity sensor 4 passes through two positions parallel to the plate surface of the substrate 1. At these two locations, the input shaft 5 of the angular velocity sensor 4 is oriented in the X and Y directions, which are orthogonal to each other. still,
In order to make the illustrated X direction coincide with the traveling direction 1A of the apparatus, the support shaft 2 may be set at a position rotated 45 ° clockwise from the traveling direction 1A of the apparatus when viewed from above.

【0014】Z、X、Yの各方向を向く姿勢は例えばZ
方向を基点に回転支持体3を120°間隔で停止させる
と規定することができる。従って、例えば回転支持体3
をパルスモータ等で回転操作し、120°毎に停止位置
を規定することにより角速度センサ4の入力軸5の向を
Z、X,Yの各方向の姿勢位置に設定することができ
る。
The posture in each of the directions of Z, X and Y is, for example, Z
It can be defined that the rotation support 3 is stopped at intervals of 120 ° based on the direction. Thus, for example, the rotating support 3
Is rotated by a pulse motor or the like, and the stop position is defined at every 120 °, whereby the direction of the input shaft 5 of the angular velocity sensor 4 can be set to the posture position in each of the Z, X, and Y directions.

【0015】尚、上述では支持軸2を基板1に対して植
設し、この支持軸2に対して回転支持体3を回転自在に
支持した構造として説明したが、支持軸2を基板1に対
して回転自在に支持し、支持軸2と回転支持体3を一体
化して回転させる構造を採ることもできる。何れの構造
を採るにしても、パルスモータ等の駆動源を用いて回転
支持体3をZ,X,Yの各方向の任意の姿勢に設定する
ことができる。
In the above description, the support shaft 2 is planted on the substrate 1 and the rotary support 3 is rotatably supported on the support shaft 2. Alternatively, it is also possible to adopt a structure in which the supporting shaft 2 and the rotating support 3 are integrally rotated. Whichever structure is adopted, the rotary support 3 can be set to any posture in each of the Z, X, and Y directions by using a drive source such as a pulse motor.

【0016】尚、パルスモータ以外でも例えば光学式の
位置検出センサをZ,X,Yの各方向の各位置に配置
し、その検出信号によってモータの停止制御を行う構造
等も考えられる。図3は装置全体の様子を示す。基板1
にパルスモータのような駆動源7を装着し、この駆動源
7によって回転支持体3を回転駆動し、角速度センサ4
の姿勢をZ,X,Yの各方向に転換する。各転換位置で
地理の自転により発生する角速度を測定し、その測定結
果を演算部8に入力する。演算部8では静止時には絶対
方位を算出して絶対方位を出力すると共に、移動中は角
速度センサ4の入力軸5をZ方向に支持させ、移動中の
方位変化率を測定して初期方位に積算すれば時々刻々の
方位変化を算出することができる。
In addition to the pulse motor, for example, a structure in which an optical position detection sensor is disposed at each position in each of the Z, X, and Y directions, and the stop signal of the motor is controlled by the detection signal is also conceivable. FIG. 3 shows the state of the entire apparatus. Substrate 1
A driving source 7 such as a pulse motor is mounted on the rotary support 3, and the rotary support 3 is rotationally driven by the driving source 7.
Is changed to each of the Z, X, and Y directions. The angular velocity generated by the geographic rotation at each turning position is measured, and the measurement result is input to the arithmetic unit 8. The arithmetic unit 8 calculates the absolute azimuth when stationary and outputs the absolute azimuth, while supporting the input shaft 5 of the angular velocity sensor 4 in the Z direction during the movement, measures the azimuth change rate during the movement and integrates it with the initial azimuth. Then, the azimuth change every moment can be calculated.

【0017】演算部8はたとえはマイクロコンピュータ
によって構成することができ、静止中の絶対方位の算出
及び移動中の積算動作、駆動源7の制御等を実行させる
ことができる。以下に演算部8において絶対方位を算出
する手順の一例を説明する。 (1)基板1を水平に且つ進行方向1Aを測定しようとす
る方向に向ける。
The arithmetic unit 8 can be constituted by, for example, a microcomputer, and can execute the calculation of the absolute azimuth at rest, the integration operation during movement, the control of the drive source 7, and the like. Hereinafter, an example of a procedure for calculating the absolute azimuth in the arithmetic unit 8 will be described. (1) Orient the substrate 1 horizontally and in the direction in which the traveling direction 1A is to be measured.

【0018】(2)演算部8からの指令により角速度セ
ンサ4の入力軸5の向をZ方向にセットし、角速度セン
サ4の出力ωZ' を読み取る。 (3)演算部8からの指令により角速度センサ4の入力
軸5の向をX方向にセットし、角速度センサ4の出力ω
X' を読み取る。 (4)演算部8からの指令により角速度センサ4の入力
軸5をY方向にセットし、角速度センサ4の出力ωY'
を読み取る。
(2) The direction of the input shaft 5 of the angular velocity sensor 4 is set in the Z direction in accordance with a command from the arithmetic unit 8, and the output ωZ 'of the angular velocity sensor 4 is read. (3) The direction of the input shaft 5 of the angular velocity sensor 4 is set in the X direction according to a command from the arithmetic unit 8, and the output ω of the angular velocity sensor 4 is set.
Read X '. (4) The input shaft 5 of the angular velocity sensor 4 is set in the Y direction according to a command from the calculation unit 8, and the output ωY ′ of the angular velocity sensor 4 is set.
Read.

【0019】(5)その地域の緯度から地球自転レート
の鉛直成分Ωvを計算する。 Ωv=Ω*cos (緯度) Ω:地球自転レート1
5(°/H) (6)ωZ' からΩvを引くことによりレートセンサの
バイアス誤差δωを知る。
(5) The vertical component Ωv of the earth rotation rate is calculated from the latitude of the area. Ωv = Ω * cos (latitude) Ω: Earth rotation rate 1
5 (° / H) (6) The bias error δω of the rate sensor is obtained by subtracting Ωv from ωZ ′.

【0020】δω=ωa'−ΩV (7)ωX’,ωY’から、(6)で得られた角速度セ
ンサ4のバイアス誤差δωを引くと正しい地球自転レー
ト成分ωX,ωYが求まる。 ωX=ωX' −δω ωY=ωY' −δω (8)ωXは水平面上の前方軸のレートであり、ωYは
水平面上の右方軸のレートである。この両者から装置の
方位ψoを次の式により算出する。
Δω = ωa′−ΩV (7) By subtracting the bias error δω of the angular velocity sensor 4 obtained in (6) from ωX ′ and ωY ′, the correct earth rotation rate components ωX and ωY can be obtained. ωX = ωX′−δω ωY = ωY′−δω (8) ωX is the rate of the forward axis on the horizontal plane, and ωY is the rate of the right axis on the horizontal plane. From these two, the direction ψo of the device is calculated by the following equation.

【0021】ψo=arctan (ωY/ωX) (9)移動する時は、角速度センサ4の入力軸5をZ方
向にセットし、(8)で得られた方位ψoを初期値とし
て、刻々のレートセンサ出力ωX' (t) を積分して、
移動中リアルタイムに方位ψを出力する。 ψ=∫ (ωZ'(t)−δω)dt+ψo (10) 静止すると、再び(1)から(8)を実施す
る。
Ψo = arctan (ωY / ωX) (9) When moving, the input shaft 5 of the angular velocity sensor 4 is set in the Z direction, and the azimuth ψo obtained in (8) is set as an initial value, and the instantaneous rate is set. By integrating the sensor output ωX '(t),
Outputs azimuth リ ア ル タ イ ム in real time while moving. ψ = ∫ (ωZ ′ (t) −δω) dt + ψo (10) When the vehicle comes to rest, steps (1) to (8) are performed again.

【0022】尚、上述では基板を水平に置くとしたが、
基板上に傾斜センサをX,Y軸に設置すれば多少の傾き
が有っても補正することができる。
In the above description, the substrate is placed horizontally.
If a tilt sensor is installed on the X and Y axes on the substrate, it can be corrected even if there is some tilt.

【0023】[0023]

【発明の効果】以上説明したように、この発明による方
位計によれば、角速度センサ4の姿勢を転換する姿勢転
換手段を1軸の回転機構によって構成したから、姿勢転
換手段を安価に作ることができる。然も静止中に絶対方
位を測定し、移動中は方位変化率の測定からリアルタイ
ムの方位を出力することができる。更に低精度の角速度
センサを用いたとしても、静止毎に角速度センサ4のバ
イアス誤差を測定して補正できるように構成したから、
小型で安価、且つ高精度に絶対方位を測定できる利点が
得られる。
As described above, according to the compass of the present invention, since the attitude changing means for changing the attitude of the angular velocity sensor 4 is constituted by a one-axis rotating mechanism, the attitude changing means can be manufactured at low cost. Can be. The absolute azimuth can be measured while still, and the azimuth can be output in real time from the measurement of the azimuth change rate while moving. Furthermore, even if a low-precision angular velocity sensor is used, the bias error of the angular velocity sensor 4 can be measured and corrected for each stop, so that it can be corrected.
The advantage that the absolute azimuth can be measured with a small size, at low cost, and with high accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の要部の構成を説明するための斜視図FIG. 1 is a perspective view for explaining a configuration of a main part of the present invention.

【図2】この発明の要部の動作を説明するための略線
図。
FIG. 2 is a schematic diagram for explaining an operation of a main part of the present invention.

【図3】この発明の全体を説明するためのブロック図。FIG. 3 is a block diagram for explaining the whole of the present invention;

【符号の説明】[Explanation of symbols]

1 基板 2 支持軸 3 回転支持体 4 角速度センサ 5 入力軸 6 円錐面 7 駆動源 8 演算部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Support shaft 3 Rotation support 4 Angular velocity sensor 5 Input shaft 6 Conical surface 7 Drive source 8 Operation part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 A,水平姿勢に支持される基板と、 B,入力軸を有し、この入力軸を中心に回転入力が与え
られることにより、その入力角速度に対応する角速度デ
ータを出力する角速度センサと、 C,この角速度センサを入力軸が上記基板の板面に対し
て垂直のZ方向を向く姿勢と、上記基板と平行する水平
面内において互に直行する2つの水平のX,Y方向を向
くように支持する姿勢転換手段と、 D,上記姿勢転換手段が上記角速度センサの入力軸を鉛
直方向Zを向く位置に支持した状態において測定される
角速度データから地球自転角速度の鉛直成分理論値を差
し引き上記角速度センサのバイアス誤差を算出するバイ
アス誤差算出手段と、 E,上記角速度センサの入力軸を上記X方向、Y方向に
支持した状態で測定される2つの地球自転角速度から上
記バイアス誤差を差し引き、正しい地球自転角速度成分
を求める地球自転角速度算出手段と、 F,この地球自転角速度算出手段で算出した上記X,Y
方向の地球自転角速度成分から、上記基板に定めた方位
を算出する方位算出手段と、 によって構成したことを特徴とする方位計。
An angular velocity which has A, a substrate supported in a horizontal posture, and B, an input shaft, and which outputs angular velocity data corresponding to the input angular velocity when a rotation input is given about the input axis. C, the angular velocity sensor, the posture in which the input axis is oriented in the Z direction perpendicular to the plate surface of the substrate, and the two horizontal X, Y directions orthogonal to each other in a horizontal plane parallel to the substrate. D. a vertical component theoretical value of the earth rotation angular velocity from angular velocity data measured in a state where the input means of the angular velocity sensor is supported at a position facing the vertical direction Z; E. a bias error calculating means for calculating a bias error of the angular velocity sensor; and E, two earth measuring points measured with the input axis of the angular velocity sensor supported in the X and Y directions. Subtracting the bias error from the angular velocity, and earth rotation angular velocity calculating means for calculating a correct earth rotation angular velocity component, F, the X calculated in this earth rotation angular velocity calculating means, Y
Azimuth calculating means for calculating an azimuth determined on the substrate from the rotation angle velocity component of the earth in the direction.
【請求項2】 請求項1記載の方位計において、上記姿
勢転換手段は、上記基板の板面から35°の角度で突設
した支持軸と、この支持軸によって回転自在に支持さ
れ、角速度センサの入力軸を上記支持軸の軸線と55°
の角度で交叉する円錐面にそって回転させる回転支持体
とによって構成したことを特徴とする方位計。
2. The angular velocity sensor according to claim 1, wherein said attitude changing means is rotatably supported by a support shaft projecting from the plate surface of said substrate at an angle of 35 ° and said support shaft. Of the input shaft is 55 ° with the axis of the support shaft.
And a rotating support that rotates along a conical surface intersecting at an angle.
【請求項3】 請求項1記載の方位計において、上記基
板を移動させる状態では上記姿勢転換手段により上記角
速度センサの入力軸を上記鉛直方向Zに支持させ、静止
時に算出した方位φ0を初期値とし、刻々に測定される
角速度センサの測定値を積分し、その積分値を上記初期
値に加算して移動中に変化する方位を出力する構成とし
たことを特徴とする方位計。
3. The azimuth meter according to claim 1, wherein in a state in which the substrate is moved, the input shaft of the angular velocity sensor is supported in the vertical direction Z by the posture changing means, and the azimuth φ0 calculated at rest is an initial value. And a azimuth meter configured to integrate a momentarily measured value of the angular velocity sensor, add the integrated value to the initial value, and output a direction that changes during movement.
JP10293263A 1998-10-15 1998-10-15 Azimuth indicator Withdrawn JP2000121364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10293263A JP2000121364A (en) 1998-10-15 1998-10-15 Azimuth indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10293263A JP2000121364A (en) 1998-10-15 1998-10-15 Azimuth indicator

Publications (1)

Publication Number Publication Date
JP2000121364A true JP2000121364A (en) 2000-04-28

Family

ID=17792569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10293263A Withdrawn JP2000121364A (en) 1998-10-15 1998-10-15 Azimuth indicator

Country Status (1)

Country Link
JP (1) JP2000121364A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215956A (en) * 2007-03-01 2008-09-18 Sumitomo Precision Prod Co Ltd Azimuth measuring device and method therefor
US7613356B2 (en) 2003-07-08 2009-11-03 Canon Kabushiki Kaisha Position and orientation detection method and apparatus
WO2010047078A1 (en) * 2008-10-20 2010-04-29 住友精密工業株式会社 Six-direction orienting device
CN103221776A (en) * 2010-11-19 2013-07-24 住友精密工业株式会社 Six-direction directing device
CN111307149A (en) * 2020-02-21 2020-06-19 Oppo广东移动通信有限公司 Pointing direction determining method, pointing direction determining device, storage medium and electronic equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613356B2 (en) 2003-07-08 2009-11-03 Canon Kabushiki Kaisha Position and orientation detection method and apparatus
JP2008215956A (en) * 2007-03-01 2008-09-18 Sumitomo Precision Prod Co Ltd Azimuth measuring device and method therefor
WO2010047078A1 (en) * 2008-10-20 2010-04-29 住友精密工業株式会社 Six-direction orienting device
US8528220B2 (en) 2008-10-20 2013-09-10 Sumitomo Precision Products Co., Ltd. Six-direction indicator
JP5377507B2 (en) * 2008-10-20 2013-12-25 住友精密工業株式会社 6-directional device
CN103221776A (en) * 2010-11-19 2013-07-24 住友精密工业株式会社 Six-direction directing device
CN111307149A (en) * 2020-02-21 2020-06-19 Oppo广东移动通信有限公司 Pointing direction determining method, pointing direction determining device, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
US3584513A (en) Self-calibrating system for navigational instruments
US8782913B2 (en) Method of determining heading by turning an inertial device
JP2007155584A (en) Inertia navigation system
US4442723A (en) North seeking and course keeping gyro device
JP2000121364A (en) Azimuth indicator
JP3852592B2 (en) Gyro apparatus and method of using gyro apparatus for excavation
US11698465B2 (en) Direction finder
JP2000249552A (en) Method and device for searching north
JP3668855B2 (en) Gyro compass
JP2609976B2 (en) Compass
JP2003139536A (en) Declinometer and azimuth measuring method
JPH11295072A (en) Azimuth meter
JP2770076B2 (en) Late bias device
RU2296299C1 (en) Method for determining direction of true meridian of ground transport
JPH06307864A (en) Inclination angle measuring device
US3701200A (en) Gyroscopic instrument
JP3416694B2 (en) Rotational angular velocity calculating device and vehicle position calculating device
JPH0611348A (en) Gyro apparatus
JPH09280860A (en) Inclination angle measurement device
JPH0282111A (en) Vehicle azimuth detector
JP2611103B2 (en) Automatic relative position surveying device
JPH09126782A (en) Azimuth sensor
JPH11190633A (en) Azimuth meter
JPH063149A (en) Direction sensor
JPH10281773A (en) True direction detector employing vibration gyro sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110