[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000109386A - Composting method of organic waste and evaluation method of composted material thereby - Google Patents

Composting method of organic waste and evaluation method of composted material thereby

Info

Publication number
JP2000109386A
JP2000109386A JP10280291A JP28029198A JP2000109386A JP 2000109386 A JP2000109386 A JP 2000109386A JP 10280291 A JP10280291 A JP 10280291A JP 28029198 A JP28029198 A JP 28029198A JP 2000109386 A JP2000109386 A JP 2000109386A
Authority
JP
Japan
Prior art keywords
organic waste
composting
compost
bacteria
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10280291A
Other languages
Japanese (ja)
Inventor
Sumio Tsukamoto
純男 塚本
Masaaki Mori
正旭 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Environmental System Ltd
Original Assignee
Asahi Environmental System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Environmental System Ltd filed Critical Asahi Environmental System Ltd
Priority to JP10280291A priority Critical patent/JP2000109386A/en
Publication of JP2000109386A publication Critical patent/JP2000109386A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composting method for producing compost from organic waste without generating any malodor and also to provide an evaluation method of a composted material by the composting method. SOLUTION: This composting method comprises subjecting organic waste to microbial decomposition in an anaerobic atmosphere and further subjecting the decomposed waste to microbial decomposition in an atmosphere in which facultative anaerobic bacteria and aerobic bacteria can be grown, wherein the organic waste is subjected to saccharification and fermentation and bacteria of the genus Bacillus, lactic acid bacteria and yeast are grown and further, aerobic decomposition of the organic waste by actinomycetes proceeds. The evaluation method comprises measuring a near-infrared spectrum of the composted material thus produced and on the basis of the measured near- infrared spectrum, determining the degree of ripening of the composted material, wherein the smaller the absorbance or the larger the amount of reflection in the near-infrared spectrum, the higher the degree of ripening of the composted material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機廃棄物を発酵
させて堆肥を製造する有機廃棄物の堆肥化方法及び堆肥
の製造において堆肥化の進行度合を判定するための堆肥
化物の評価方法に関し、特に、有機廃棄物の発酵中に悪
臭による環境問題を引き起こすことなく良質の堆肥の製
造を可能とする有機廃棄物の堆肥化方法及び堆肥化物の
評価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for composting organic waste by fermenting organic waste to produce compost, and a method for evaluating compost to determine the progress of composting in the production of compost. More particularly, the present invention relates to a method for composting organic waste and a method for evaluating compost, which enable production of high-quality compost without causing environmental problems due to bad smell during fermentation of organic waste.

【0002】[0002]

【従来の技術】生産単位が小規模であるかつての農業に
おいては、農畜産業の工程や農家から排出される生ゴミ
等の有機廃棄物を長期間の発酵・分解期間を経て堆肥化
し、農業生産の肥料として用いるといったことが行われ
ていた。しかし、現在においては、農業生産の拡大及び
安定化を求めて農薬や化学肥料が使用され、有機廃棄物
の堆肥化は行われない。
2. Description of the Related Art In the past, in agriculture where the production unit was small, composting of organic waste such as garbage discharged from the processes of the agriculture and livestock industry and farmers through a long fermentation and decomposition period was carried out. It was used as a fertilizer for production. However, at present, pesticides and chemical fertilizers are used in order to expand and stabilize agricultural production, and organic waste is not composted.

【0003】ところが、近年、家庭ゴミ及び産業廃棄物
等を含む廃棄物の処理において、埋立地や焼却処理能力
の不足と言う問題が顕在化し、廃棄物処理行政自体にお
ける行き詰まり感から、廃棄物処理における何等かの打
開策が必要となっている。
However, in recent years, in the treatment of wastes including household garbage and industrial wastes, the problem of lack of landfills and incineration capacity has become apparent, and the waste disposal administration itself has felt a deadlock. Some kind of breakthrough is needed.

【0004】又、合成化学物質の環境や生物に対する影
響等に関する議論が盛んになり、農産物の有機栽培への
関心が高まりつつあるため、堆肥の使用が注目されてい
る。
[0004] The use of compost has attracted attention because the discussion on the influence of synthetic chemical substances on the environment and living organisms has been vigorously conducted and interest in organic cultivation of agricultural products has been increasing.

【0005】このような状況において、家庭の生ゴミ
や、農畜産業、食品加工業、食品サービス業、汚泥処理
等の処理産業において排出される多量の有機廃棄物につ
いては、過去において行われていたような堆肥化による
処理が適切と考えられ、様々な試みがなされている。
[0005] Under such circumstances, household garbage and a large amount of organic waste discharged in the processing industries such as the agriculture and livestock industry, the food processing industry, the food service industry, and the sludge treatment have been produced in the past. Such treatment by composting is considered appropriate, and various attempts have been made.

【0006】例えば、従来の堆肥製造方法としては、特
開昭52−112568号公報などに開示されるような
好気性発酵材を利用した方法がある。好気発酵により堆
肥を製造する方法は、堆肥化に長時間を要することか
ら、空気送風や加熱などにより発酵を促進させることが
試みられている。又、堆肥製造に要する時間を短縮し、
悪臭の発生を防止することを目的として、嫌気発酵によ
る堆肥製造方法が特開平8−16789号公報に提案さ
れている。この方法によれば、有機廃棄物の含水率を3
0〜60%となるように調製した後に嫌気性発酵を行
う。
[0006] For example, as a conventional method for producing compost, there is a method using an aerobic fermentation material as disclosed in Japanese Patent Application Laid-Open No. 52-112568. Since the method of producing compost by aerobic fermentation requires a long time for composting, attempts have been made to promote fermentation by air blowing or heating. In addition, we shorten time required for compost production,
For the purpose of preventing generation of offensive odor, a method for producing compost by anaerobic fermentation has been proposed in Japanese Patent Application Laid-Open No. H8-16789. According to this method, the water content of the organic waste is reduced to 3
An anaerobic fermentation is performed after adjusting to be 0 to 60%.

【0007】[0007]

【発明が解決しようとする課題】しかし、現在提案され
ている有機廃棄物から堆肥を製造する方法は不完全であ
り、処理効率を重視する余りに堆肥化に要する時間を短
縮することに視点をおいているため、製造した堆肥が悪
臭を放ったり農業生産に適さない低質のものとなるとい
う問題が生じる。
However, the currently proposed method for producing compost from organic waste is incomplete, and the viewpoint is to reduce the time required for composting, with emphasis on treatment efficiency. Therefore, there is a problem that the compost produced has a bad smell or is of low quality unsuitable for agricultural production.

【0008】本発明は、この様な従来技術の課題を解決
するためになされたもので、悪臭を生じない農業生産に
適した高品質の堆肥が提供可能な有機廃棄物の堆肥化方
法を提供することを目的とする。
The present invention has been made to solve such problems of the prior art, and provides a method for composting an organic waste capable of providing a high-quality compost suitable for agricultural production without generating a bad odor. The purpose is to do.

【0009】又、本発明は、有機廃棄物を堆肥化する際
の進行具合いを検出するための堆肥化物の評価方法を提
供することを目的とする。
Another object of the present invention is to provide a method for evaluating compost for detecting the progress of composting of organic waste.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、堆肥化を進行
させるのに必要な微生物が好適に繁殖するように発酵条
件を管理することにより、悪臭や有害物質の生成を防止
しつつ良好な堆肥を提供することが可能であることを見
出し、本発明に係る有機廃棄物の堆肥化方法を発明する
に至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have managed fermentation conditions so that microorganisms necessary for the progress of composting can be suitably propagated. By doing so, it has been found that it is possible to provide good compost while preventing generation of offensive odors and harmful substances, and has invented a method for composting organic waste according to the present invention.

【0011】又、有機廃棄物の堆肥化において、近赤外
反射スペクトルを測定して得られる吸光度(又は反射)
が変化することを見出し、本発明に係る堆肥化物の評価
方法を発明するに至った。
In the composting of organic waste, the absorbance (or reflection) obtained by measuring the near-infrared reflection spectrum
Was found to be changed, and the method for evaluating compost according to the present invention was invented.

【0012】本発明の一様相によれば、本発明に係る有
機廃棄物の堆肥化方法は、有機廃棄物を糖化発酵させる
第1の工程と、第1の工程を経た有機廃棄物にバチルス
属細菌、乳酸菌及び酵母を繁殖させて有機廃棄物を分解
する第2の工程とを有するものである。
According to one aspect of the present invention, the method for composting organic waste according to the present invention includes a first step of saccharifying and fermenting the organic waste, and a method of adding Bacillus genus to the organic waste that has passed through the first step. And a second step of decomposing organic waste by breeding bacteria, lactic acid bacteria and yeast.

【0013】上記第1の工程において糸状菌が繁殖す
る。
[0013] In the first step, filamentous fungi propagate.

【0014】上記堆肥化方法は、更に、前記第2の工程
を経た有機廃棄物に抗生物質を生産する放線菌を繁殖さ
せる第3の工程を有してもよい。
[0014] The above composting method may further include a third step of propagating an actinomycete producing an antibiotic to the organic waste that has passed through the second step.

【0015】又、更に、第3の工程を経た有機廃棄物を
成形して水分含量が30wt%以上となる程度に乾燥する
成形工程を有してもよい。
The method may further include a forming step of forming the organic waste having passed through the third step and drying the formed organic waste to a water content of at least 30 wt%.

【0016】更に、上記第1の工程前に、有機廃棄物の
C/N比を25〜40、含水率を45〜70wt%に調整
する工程を有してもよい。
Further, before the first step, a step of adjusting the C / N ratio of the organic waste to 25 to 40 and the water content to 45 to 70 wt% may be provided.

【0017】上記第1の工程において有機廃棄物は嫌気
性雰囲気中で40〜70℃に維持され、上記第2の工程
はバチルス属細菌及び乳酸菌が繁殖する第1期間と酵母
が繁殖する第2期間とを有して通性嫌気性菌及び好気性
菌が繁殖可能な雰囲気中で行われる。
In the first step, the organic waste is maintained at 40 to 70 ° C. in an anaerobic atmosphere. In the second step, a first period during which Bacillus bacteria and lactic acid bacteria propagate and a second period during which yeast propagates The test is performed in an atmosphere in which facultative anaerobic bacteria and aerobic bacteria can proliferate.

【0018】上記第2の工程の第1期間において、有機
廃棄物の温度が60〜75℃に維持されてバチルス属細
菌が繁殖し、温度が50℃以下に降下して乳酸菌が繁殖
する。
In the first period of the second step, the temperature of the organic waste is maintained at 60 to 75 ° C. and bacteria of the genus Bacillus proliferate, and the temperature drops to 50 ° C. or less, and lactic acid bacteria proliferate.

【0019】あるいは、本発明の他の様相によれば、本
発明に係る有機廃棄物の堆肥化方法は、有機廃棄物を嫌
気性雰囲気中で微生物分解する第1の工程と、該第1の
工程を経た有機廃棄物を通性嫌気性菌及び好気性菌が繁
殖可能な雰囲気中で微生物分解する第2の工程とを有す
ることを特徴とする。
Alternatively, according to another aspect of the present invention, the method for composting organic waste according to the present invention comprises a first step of microbial decomposition of organic waste in an anaerobic atmosphere; A second step of microbial decomposition of the organic waste that has passed through the process in an atmosphere in which anaerobic and aerobic bacteria can grow.

【0020】上記第1の工程の嫌気性雰囲気は、炭酸ガ
ス濃度が10〜35 vol%、酸素濃度が5 vol%未満、
湿度が70〜90%であり、上記第2の工程の雰囲気
は、酸素ガス濃度が5〜40 vol%、炭酸ガス濃度が2
vol%以下、湿度が50〜70%である。
The anaerobic atmosphere in the first step has a carbon dioxide gas concentration of 10 to 35 vol%, an oxygen concentration of less than 5 vol%,
The humidity is 70 to 90%, and the atmosphere in the second step has an oxygen gas concentration of 5 to 40 vol% and a carbon dioxide gas concentration of 2 to 40 vol%.
vol% or less, humidity is 50 to 70%.

【0021】上記第1の工程において、有機廃棄物の温
度は40〜70℃に維持され、上記第2の工程は、有機
廃棄物の温度が60〜75℃に維持される期間と温度が
50℃以下となる期間とを有する。
In the first step, the temperature of the organic waste is maintained at 40 to 70 ° C., and in the second step, the period during which the temperature of the organic waste is maintained at 60 to 75 ° C. and the temperature are 50 ° C. C. or less.

【0022】上記堆肥化方法は、更に、上記第2の工程
を経た有機廃棄物に抗生物質を生産する放線菌を繁殖さ
せる第3の工程を有してもよい。
The above composting method may further include a third step of propagating actinomycetes producing antibiotics to the organic waste that has passed through the second step.

【0023】上記第3の工程の雰囲気は、酸素ガス濃度
が18〜20%、炭酸ガス濃度が2%以下、湿度が50
〜70%となるように管理される。
The atmosphere in the third step has an oxygen gas concentration of 18 to 20%, a carbon dioxide gas concentration of 2% or less, and a humidity of 50%.
It is managed to be ~ 70%.

【0024】上記堆肥化方法は、更に、第3の工程を経
た有機廃棄物を成形して水分含量が30wt%以上となる
程度に乾燥する成形工程を有してもよい。
The above composting method may further include a forming step of forming the organic waste that has passed through the third step and drying the formed organic waste to a water content of at least 30 wt%.

【0025】上記堆肥化方法は、更に、上記第1の工程
前に、有機廃棄物のC/N比を25〜40、含水率を4
5〜70wt%に調整する工程を有してもよく、種類によ
りC/N比及び含水率の異なる有機廃棄物に対応可能と
なる。
In the above composting method, before the first step, the C / N ratio of the organic waste is 25 to 40 and the water content is 4%.
It may have a step of adjusting to 5 to 70 wt%, and it is possible to cope with organic wastes having different C / N ratios and water contents depending on the types.

【0026】上記第1の工程は5〜10日間、上記第2
の工程は14〜30日間、上記第3の工程は30〜90
日間行われる。
The first step is carried out for 5 to 10 days,
Step is 14 to 30 days, and the third step is 30 to 90 days.
Done for days.

【0027】又、本発明によれば、上記第1の工程に有
機廃棄物を供することによって、有機廃棄物が減容化さ
れる。
Further, according to the present invention, the volume of the organic waste is reduced by providing the organic waste to the first step.

【0028】更に、本発明によれば、堆肥化物の評価方
法は、有機物の堆肥化によって得られる堆肥化物の近赤
外スペクトルを測定し、測定された近赤外スペクトルに
基づいて該堆肥化物の腐熟度を判定するものである。
Further, according to the present invention, the method for evaluating compost comprises measuring a near-infrared spectrum of the compost obtained by composting an organic substance, and based on the measured near-infrared spectrum, measuring the near-infrared spectrum of the compost. This is to determine the maturity.

【0029】上記腐熟度の判定において、近赤外スペク
トルにおける吸光度が小さい場合又は反射が大きい場合
に腐熟度が高くなるように判定される。
In the above determination of the maturity, it is determined that the maturity is increased when the absorbance in the near infrared spectrum is small or when the reflection is large.

【0030】本発明の他の様相によれば、本発明に係る
堆肥化物の評価方法は、腐熟度のキャリブレーション用
堆肥化物試料の近赤外スペクトルデータから腐熟度を判
定するための判別関数を判別分析によって作成し、評価
する堆肥化物の近赤外スペクトルデータから上記判別関
数を用いて該堆肥化物の腐熟度を判定する。
According to another aspect of the present invention, the method for evaluating compost according to the present invention includes a discriminant function for judging maturity from near-infrared spectrum data of a compost sample for calibration of maturity. The maturity of the compost is determined from the near-infrared spectrum data of the compost to be prepared and evaluated using the above discriminant function.

【0031】[0031]

【発明の実施の形態】堆肥は、微生物の代謝によって有
機物が分解されることにより得られる代謝産物と微生物
とを含有する混合物であり、堆肥を土壌に施与すること
により、植物体に有用な成分が直接に又は土中の微生物
や小生物を介して間接的に植物体に取り込まれて同化す
る。しかし、堆肥化する条件によっては、植物体に有害
な物質が堆肥に生じたり植物体や土壌微生物の生育を阻
害する病原菌が発生する場合もある。つまり、有機廃棄
物を微生物によって分解した堆肥が全て植物の育成に好
適なわけではなく、適切な堆肥を得るためには堆肥化す
る環境に留意して条件を整えることが極めて重要であ
る。又、植物の種類によって生育に必要な成分の比率が
異なるので、施与する植物体によっては適した堆肥とは
ならない場合もある。更に、堆肥化の際に腐敗による悪
臭が放出されるという問題が生じることも多く、有機物
廃棄物の処理として堆肥化を行う場合の障害となってい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Compost is a mixture containing metabolites obtained by decomposing organic substances by metabolism of microorganisms and microorganisms, and is useful for plants by applying compost to soil. The components are directly or indirectly incorporated into plants through microorganisms and small organisms in the soil to be assimilated. However, depending on the composting conditions, substances harmful to the plant may be generated in the compost or pathogenic bacteria that inhibit the growth of the plant or soil microorganisms may be generated. In other words, not all composts obtained by decomposing organic waste by microorganisms are suitable for growing plants, and in order to obtain an appropriate compost, it is extremely important to adjust the conditions while paying attention to the composting environment. In addition, since the ratio of components required for growth differs depending on the type of plant, a suitable compost may not be obtained depending on the plant to which the plant is applied. Further, there is often a problem that a bad odor due to putrefaction is released at the time of composting, which is an obstacle in performing composting as a treatment of organic waste.

【0032】良質な堆肥とは、植物体の生育を阻害する
ような成分及び微生物を含まず、植物体の生育に必要な
養分を適切に植物体に与えることができるもので、もち
ろん、食物連鎖を介して植物が人間に摂取されることを
考慮すれば、人体に有害な重金属や化学物質が混入して
いないことは大前提である。
[0032] Good quality compost is one that does not contain components and microorganisms that inhibit the growth of the plant, and that can properly provide nutrients necessary for the growth of the plant to the plant. Considering that plants can be ingested by humans via, it is a major premise that no harmful heavy metals or chemicals are mixed in the human body.

【0033】このような良質な堆肥を有機廃棄物の堆肥
化によって得るために試行錯誤を重ねる重ねたところ、
腐敗が支配的に進行しないように堆肥化環境を整えて繁
殖する微生物のバランスをとることが必要で、微生物の
繁殖バランスが良好であれば、養分や酵素、免疫向上物
質等を適切に含有する良質な堆肥が得られ、しかも腐敗
による悪臭や有毒物質の発生がないことが判明した。つ
まり、良質な堆肥を得るには、堆肥化中に腐敗の進行が
支配的にならず有機物の発酵などの低分子化による非腐
敗的な分解が進行することが肝要である。これは、特定
の微生物種を有機廃棄物に投与してこれのみを繁殖させ
るような不自然な状態を必要とするものではなく、土壌
微生物の繁殖を適切に管理することによって可能なもの
である。要するに単体菌による発酵でなく複合菌による
発酵・分解を行うものである。
In order to obtain such a high quality compost by composting organic waste, trial and error were repeated.
It is necessary to prepare a composting environment so that rot does not predominantly progress and balance the microorganisms that propagate, and if the reproduction balance of the microorganisms is good, properly contain nutrients, enzymes, immune-enhancing substances, etc. It was found that good quality compost was obtained, and that no odor and no toxic substances were generated due to decay. In other words, in order to obtain a high-quality compost, it is important that the progress of putrefaction do not become dominant during the composting, and that non-degradable decomposition due to depolymerization such as fermentation of organic matter proceeds. This does not require an unnatural state in which specific microbial species are administered to organic waste and only propagates it, but is possible by properly managing the growth of soil microorganisms. . In short, fermentation / decomposition by complex bacteria is performed instead of fermentation by simple bacteria.

【0034】有機物質の分解に関与する微生物には様々
な種類のものがあり、分解によって生成される物質も多
岐に渡る。例えば、一般的な発酵食品の生産に用いられ
る麹カビ等の糸状菌や酵母、乳酸菌などは、糖類やアル
コール等の有用物質を生産するものとして知られてお
り、ある種の嫌気性有胞子細菌はタンパク質の分解(腐
敗)により食中毒や破傷風などの疾病を引き起こす有毒
タンパク質(外毒素)を生産する。又、ペニシリンのよ
うな抗生物質を産生するカビ、アフラトキシンの様な発
ガン物質を産生するカビなどもある。このように、微生
物による分解においては、悪臭、病原菌、毒素等の有害
物を生産する場合も、有用物質を生産する場合もある。
There are various types of microorganisms involved in the decomposition of organic substances, and the substances produced by the decomposition also vary widely. For example, filamentous fungi such as koji mold, yeast, lactic acid bacteria and the like used in the production of general fermented foods are known to produce useful substances such as sugars and alcohols. Produces toxic proteins (exotoxins) that cause diseases such as food poisoning and tetanus by the decomposition (rot) of proteins. There are also molds that produce antibiotics such as penicillin and molds that produce carcinogens such as aflatoxin. As described above, in the decomposition by microorganisms, harmful substances such as bad smells, pathogenic bacteria, and toxins may be produced, and useful substances may be produced.

【0035】有機廃棄物を堆肥化するには、デンプン、
糖、繊維質、油脂、炭化水素、タンパク質、キチン質な
ど様々な有機物質を分解する必要があり、このために
は、多種の有用微生物の繁殖が必要である。しかも、こ
れらの多種類の微生物が段階的に適切なタイミングで繁
殖できなければ、微生物の良好な繁殖バランスによる好
適な堆肥化は進行しない。又、単体菌による発酵では分
解はできない。
To compost organic waste, starch,
It is necessary to decompose various organic substances such as sugars, fibers, fats and oils, hydrocarbons, proteins, and chitin, and this requires the propagation of various useful microorganisms. Moreover, if these various kinds of microorganisms cannot be propagated stepwise at appropriate timing, suitable composting with a good reproduction balance of the microorganisms does not proceed. In addition, it cannot be decomposed by fermentation with a simple microorganism.

【0036】好適な堆肥化が進行する過程を調査した結
果、まず最初に有機物の糖化作用を有する微生物が繁殖
する点で共通することが判明した。砂糖やブドウ糖、麦
芽糖、果糖などの糖分は、糸状菌、乳酸菌、酵母菌、放
線菌、細菌など様々な微生物の養分となるので、有機物
の糖化が進行することにより微生物の繁殖の基礎を作る
ことができる。有機物の糖化即ち糖発酵は、アスペルギ
ルス(コウジカビ)やリゾプス(クモノスカビ)等の糸
状菌などによって行われ、このような微生物は嫌気性条
件において繁殖する。腐敗を起こす細菌には嫌気性条件
下で不活な好気性のものが多いので、嫌気性条件におい
ては好気性条件より腐敗を防止し易く、また、糖発酵を
行う微生物が優先的に繁殖することにより他の菌の繁殖
が抑制されるので腐敗菌も繁殖し難い。
As a result of investigating the process in which suitable composting proceeds, it was first found that the common process is common in that microorganisms having a saccharification action of organic substances propagate. Sugar, glucose, maltose, fructose, and other sugars are nutrients for various microorganisms such as filamentous fungi, lactic acid bacteria, yeasts, actinomycetes, and bacteria. Can be. Saccharification of organic matter, that is, sugar fermentation, is carried out by filamentous fungi such as Aspergillus (Aspergillus) and Rhizopus (Cryptobacterium), and such microorganisms propagate under anaerobic conditions. Many of the bacteria that cause spoilage are aerobic inactive under anaerobic conditions, so that they are easier to prevent spoilage under anaerobic conditions than under aerobic conditions, and that microorganisms that perform sugar fermentation preferentially propagate. As a result, propagation of other bacteria is suppressed, so that spoilage bacteria are also difficult to propagate.

【0037】次に共通することは、糖発酵が進行した後
に、生成した糖分を用いて他の有用微生物が繁殖するこ
とである。この段階において重要なことは、デンプン分
解酵素、タンパク質分解酵素、脂肪分解酵素などのよう
な分解酵素を分泌する微生物が繁殖することである。こ
のような微生物としては納豆菌や枯草菌などのバチルス
属細菌があり、納豆菌は脂質や繊維の分解活性が高く、
枯草菌はアミラーゼ(デンプン分解酵素)やプロテアー
ゼ(タンパク分解酵素)を分泌しながら繁殖する。枯草
菌の繁殖によってタンパク質の分解が進行してアミノ化
合物が生成する。アミノ化合物は、空気(酸素)が存在
すると、ニトロソモナス(アンモニア酸化細菌)及びニ
トロバクター(亜硝酸酸化細菌)によって更にアンモニ
アから硝酸塩へと酸化されることにより、植物体による
吸収が可能となる。この際に、二酸化炭素が存在する
と、系のpHを低下させてアミノ化合物やアンモニアに
よる悪臭の放散を抑制する働きをする。このような微生
物の繁殖に続いて、乳酸菌が増殖し、糖類から乳酸を生
成して系のpHが低下する。乳酸のような有機酸は、ア
ンモニア等による悪臭の放散を抑制し、低いpHによっ
て耐酸性の低い腐敗菌の増殖を防止するので、乳酸菌の
繁殖は腐敗及び悪臭の防止に非常に有効である。
Next, the common feature is that after the sugar fermentation has progressed, other useful microorganisms are propagated using the produced sugar. Important at this stage is the growth of microorganisms that secrete degradative enzymes such as amylolytic enzymes, proteolytic enzymes, lipolytic enzymes, and the like. Such microorganisms include Bacillus bacteria such as Bacillus subtilis and Bacillus subtilis, and Bacillus subtilis has a high lipid and fiber decomposition activity,
Bacillus subtilis propagates while secreting amylase (amylolytic enzyme) and protease (proteolytic enzyme). Propagation of the protein progresses due to propagation of Bacillus subtilis to produce an amino compound. In the presence of air (oxygen), the amino compound is further oxidized from ammonia to nitrate by nitrosomonas (ammonia-oxidizing bacteria) and nitrobacter (nitrite-oxidizing bacteria), so that it can be absorbed by plants. At this time, the presence of carbon dioxide lowers the pH of the system and acts to suppress the emission of bad odors due to amino compounds and ammonia. Following the propagation of such microorganisms, lactic acid bacteria grow and produce lactic acid from saccharides to lower the pH of the system. Organic acids such as lactic acid suppress the emission of offensive odors due to ammonia and the like, and the low pH prevents the growth of putrefactive bacteria having low acid resistance. Therefore, the propagation of lactic acid bacteria is very effective in preventing putrefaction and offensive odor.

【0038】更にこの後、酵母菌が繁殖し、これにより
ビタミン類や有機酸、アミノ酸などが生成する。
Thereafter, yeasts propagate, thereby producing vitamins, organic acids, amino acids and the like.

【0039】このように、糸状菌及びこれに続いて繁殖
する微生物が生成した糖分を養分として多種類の微生物
が次々と繁殖し始め、個々の微生物種にとって最も繁殖
条件のよい時に各々繁殖ピークを向かえて衰退する。こ
の間の微生物代謝によって系の温度が上昇し、耐熱性の
低い腐敗菌の増殖防止に有効に作用する。従って、堆肥
化する有機廃棄物がこのようなプロセスを経るように管
理することによって、好適な堆肥が得られる。
As described above, many kinds of microorganisms start to proliferate one after another by using the sugars produced by the filamentous fungi and the microorganisms proliferating subsequently as nutrients. Fading away. During this time, the temperature of the system rises due to the metabolism of microorganisms, which effectively acts to prevent the growth of putrefactive bacteria having low heat resistance. Therefore, by managing the organic waste to be composted to go through such a process, a suitable compost can be obtained.

【0040】上記の過程を経過して得られる堆肥は、養
分が豊富で植物の育成に好適に使用することができる
が、更に、放線菌が繁殖する条件で堆肥を熟成すると、
抗生物質など植物体の耐性を向上させる成分が生成する
放線菌、例えば、ストレプトマイセスやアクチノマイセ
ス等が繁殖し、pH値が上昇して中性又は弱塩基とな
る。この様な熟成後の堆肥を用いて育てた植物を飼料と
して家畜等の動物を育成すると動物の免疫力が向上する
という効果もある。
The compost obtained through the above process is rich in nutrients and can be suitably used for growing plants. Further, when the compost is matured under conditions in which actinomycetes grow,
Actinomycetes, such as Streptomyces and Actinomyces, produced by components that improve plant resistance, such as antibiotics, proliferate, and their pH values rise to neutral or weak bases. When animals such as livestock are raised by using the plants grown using such aged compost as feed, there is also an effect that the immunity of the animals is improved.

【0041】上記のような微生物の繁殖を進行させるた
めの要点は、まず、嫌気性条件下で有機廃棄物を微生物
分解し、その後、通性嫌気性/好気性共存条件に移行し
て分解を継続することである。初期の嫌気性条件におい
て、嫌気性の糸状菌による糖発酵(一次分解)が進行
し、この後に通性嫌気性/好気性共存条件に移行するこ
とによって、偏性嫌気性菌の繁殖が阻害され通性嫌気性
菌及び好気性菌の繁殖が可能となって、バチルス菌及び
乳酸菌による分解(二次分解)、酵母による分解(三次
分解)及び好気性菌である放線菌による分解(熟成)が
続いて進行する。
The main point for promoting the propagation of microorganisms as described above is that the organic waste is firstly decomposed by microorganisms under anaerobic conditions, and then the organic waste is transferred to facultative anaerobic / aerobic coexisting conditions to decompose. It is to continue. In the initial anaerobic condition, saccharide fermentation (primary decomposition) by anaerobic filamentous fungi progresses, and thereafter the condition shifts to facultative anaerobic / aerobic coexistence conditions, thereby inhibiting the growth of obligate anaerobic bacteria. Facultative anaerobic bacteria and aerobic bacteria can be propagated, and degradation by Bacillus and lactic acid bacteria (secondary degradation), degradation by yeast (tertiary degradation), and degradation by aerobic bacteria actinomycetes (ripening) are possible. Then proceed.

【0042】微生物の増殖は、他の微生物の増殖とのバ
ランスにおいて進行し、1つの微生物が他の微生物の増
殖が盛んな状態で繁殖するのは難しい。従って、堆肥化
において発酵が進行し易いように環境を整えるのは、腐
敗防止のために有効である。本発明においては、一次分
解の糖生成により二次分解以降の有用微生物の繁殖が容
易になり、腐敗菌の繁殖に先んじて有用微生物の繁殖が
進行することにより腐敗が抑制され易い。実際に本発明
に従って堆肥化を実施した場合、一次分解が十分に進行
していれば、二次分解から熟成までの工程で腐敗菌に汚
染されることは少なく、管理は比較的容易である。
The growth of microorganisms progresses in balance with the growth of other microorganisms, and it is difficult for one microorganism to grow with the growth of other microorganisms active. Therefore, preparing an environment so that fermentation easily proceeds in composting is effective for preventing spoilage. In the present invention, the propagation of useful microorganisms after the secondary decomposition is facilitated by the production of sugars in the primary decomposition, and the decay is easily suppressed by the propagation of the useful microorganisms prior to the propagation of the putrefactive bacteria. When composting is actually carried out in accordance with the present invention, if the primary decomposition has sufficiently proceeded, there is little contamination with putrefactive bacteria in the steps from secondary decomposition to ripening, and the management is relatively easy.

【0043】但し、発酵食品の製造において経験的に知
られているように、腐敗を起こす微生物が一旦繁殖する
と、その後に環境を整えても目的の発酵分解を行う微生
物を繁殖させることは難しい。特に、本発明の堆肥化
は、自然に存在する微生物群の本来有する機能を特定の
方向により確実に発揮させるものであって、無菌状態で
特定の純粋培養微生物を接種するような限定的なプロセ
スを意図するものではない。従って、環境条件を整えて
も、何等化の要因により微生物の繁殖バランスが変化す
る可能性がなくなるわけではなく、堆肥化が完了するま
で有機廃棄物及び微生物の繁殖状況を管理し、状況に応
じて制御する必要がある。
However, as is empirically known in the production of fermented foods, it is difficult to breed microorganisms that undergo the desired fermentation and decomposition once the microorganisms that cause spoilage once propagate, even if the environment is adjusted. In particular, the composting of the present invention ensures that the inherent functions of naturally occurring microorganisms are exerted in a specific direction in a specific direction, and is a limited process such as inoculating a specific pure culture microorganism in an aseptic state. It is not intended. Therefore, even if the environmental conditions are adjusted, there is no possibility that the reproduction balance of microorganisms will change due to any factor of equalization, and the growth of organic waste and microorganisms will be managed and composted until composting is completed. Need to be controlled.

【0044】そこで、上述に従って実施される本発明の
有機廃棄物の堆肥化プロセスについて管理・制御を含め
た詳細を以下に説明する。
The details of the organic waste composting process of the present invention, which is carried out in accordance with the above, including management and control, will be described below.

【0045】まず、金属、プラスチック、ガラス等のよ
うな微生物が分解できない異物が有機廃棄物に含まれる
場合には、前処理としてこれらの異物を有機廃棄物から
予め除去するのが好ましい。特に、乾電池、バッテリ
ー、水銀温度計等の重金属を含む廃棄物には注意が必要
である。プラスチックやガラスは堆肥化した後に除去し
てもよいが、処理空間容積を効率よく使用するためには
これらの異物も初期に除去するのが望ましい。
First, when foreign substances such as metals, plastics, and glass which cannot be decomposed by microorganisms are contained in the organic waste, it is preferable to remove these foreign substances from the organic waste in advance as a pretreatment. In particular, care must be taken for waste containing heavy metals such as dry batteries, batteries, and mercury thermometers. Plastic and glass may be removed after composting, but it is desirable to remove these foreign substances at the beginning in order to use the processing space volume efficiently.

【0046】異物を除去した有機廃棄物は、その内容に
応じて、C/N比(炭素/窒素比)が好ましくは約25
〜40となるように混合・調整し、含有水分量が好まし
くは約45〜70wt%、より好ましくは60〜65wt%
程度となるように水切り又は加水する。
The organic waste from which foreign matter has been removed has a C / N ratio (carbon / nitrogen ratio) of preferably about 25, depending on its content.
It is mixed and adjusted to be と 40, and the water content is preferably about 45 to 70 wt%, more preferably 60 to 65 wt%.
Drain or add water to a degree.

【0047】堆肥化する有機廃棄物のC/N比を調整す
るのは以下のような理由による。
The reason for adjusting the C / N ratio of the organic waste to be composted is as follows.

【0048】オガクズ、チップ、キノコ栽培の廃オガ、
落葉、藁、もみがら、バーク等はC/N比が高い有機廃
棄物で、このようなC/N比が高いものは、微生物分解
が進行するにつれて微生物体を構成するための窒素分が
不足して分解速度が次第に低下し、分解が停止し易い。
このため、堆肥化に要する時間が長くなり分解し難い。
十分に堆肥化せずに土壌に施与すると、土中の窒素分を
奪って土を痩せさせるため、作物の成長を遅らせる。他
方、ボカシ、畜糞、米糠、オカラ、油粕、フスマ、生ゴ
ミ、コーヒー粕、ビール粕、汚泥等は、C/N比が低い
有機廃棄物で、分解は進行し易いが、堆肥化途中の状態
で土壌に施与すると、土中で盛んに分解してアンモニ
ア、メタン、炭酸ガスなどを発生させ、酸素不足や多量
のアンモニアによって根焼を起こして根の呼吸を困難に
し植物体を枯死させる。逆に、この様な性質を利用し
て、例えば、過剰な窒素が溜った土壌の窒素量を減少さ
せるためにC/N比の高い有機物から調製途中の堆肥を
用いるというようなことも可能であるが、有機廃棄物の
堆肥化を効率よく行わせるには、微生物による分解が容
易に進行するようにC/N比を上述のように適正な範囲
となるように調整するのが好ましい。この点に関して、
酪農業廃棄物、食品加工業廃棄物などは内容組成が比較
的明確であるので、C/N比の調整は難しくない。
Sawdust, chips, waste mushrooms grown in mushrooms,
Leaf litter, straw, rice husk, bark, etc. are organic wastes with a high C / N ratio, and those with such a high C / N ratio have a shortage of nitrogen for constituting microorganisms as the microbial decomposition progresses. As a result, the decomposition rate gradually decreases, and the decomposition is easily stopped.
For this reason, the time required for composting becomes long and it is difficult to decompose.
When applied to soil without sufficient composting, it slows crop growth by depriving the soil of nitrogen and thinning the soil. On the other hand, swarf, animal dung, rice bran, rice bran, okara, oil cake, bran, garbage, coffee cake, beer cake, sludge, etc. are organic wastes having a low C / N ratio, and are easily decomposed, but in the middle of composting. When it is applied to soil, it decomposes vigorously in the soil to generate ammonia, methane, carbon dioxide, etc., and causes root burning due to lack of oxygen or a large amount of ammonia, making root respiration difficult and killing the plant. Conversely, by utilizing such properties, for example, it is also possible to use a compost that is being prepared from an organic substance having a high C / N ratio in order to reduce the amount of nitrogen in soil where excess nitrogen has accumulated. However, in order to efficiently compost organic waste, it is preferable to adjust the C / N ratio so as to be in the appropriate range as described above so that the decomposition by microorganisms proceeds easily. In this regard,
Dairy waste, food processing waste, and the like have relatively clear contents, so it is not difficult to adjust the C / N ratio.

【0049】水分は微生物の生育にとって必要な要素で
あるが、有機廃棄物の含水量が過剰であると通気性が低
下し、微生物の生育を抑制する。従って、有機廃棄物の
含水量は、通気性を考慮しながら微生物の繁殖に必要と
される条件に応じて前述のように調整される。微生物に
よる分解の速度は含水量による影響を受け、含水量が6
0〜65wt%程度の時に最もよく分解し、40wt%以下
になると分解の速度がきわめて遅くなる。水分過多は腐
敗を招き易いので、分解開始前には含水量を50wt%前
後に設定しておき一次分解を開始した後に加水して適正
量に調整すると腐敗を防止し易い。但し、加水により温
度が低下し易いので、水分調整のための加水は2回以下
が望ましく、その際には温度管理に留意する必要があ
る。
Although water is a necessary element for the growth of microorganisms, if the water content of the organic waste is excessive, air permeability is reduced, and the growth of microorganisms is suppressed. Accordingly, the water content of the organic waste is adjusted as described above according to the conditions required for the propagation of microorganisms while taking into consideration the air permeability. The rate of microbial degradation is affected by the water content,
It decomposes most when the amount is about 0 to 65% by weight, and when it is less than 40% by weight, the decomposition rate becomes extremely slow. Since excessive moisture easily causes putrefaction, if the water content is set to about 50% by weight before the start of decomposition and the primary decomposition is started and then water is adjusted to an appropriate amount, the putrefaction is easily prevented. However, since the temperature is easily lowered by the addition of water, the addition of water for adjusting the water content is desirably two or less, and in that case, it is necessary to pay attention to the temperature control.

【0050】有機廃棄物の含水量を調節するために添加
する水は、自然の水であることが好ましい。水道水のよ
うに濾過及びカルキ添加による殺菌を経た水は、堆肥化
には適しておらず、良質の井戸水や岩清水等のような微
生物やミネラルを含み得る水が好適である。土壌微生物
あるいは前述した有用微生物を培養した培養液を用いる
のもよい。含水量の調整に関して、副資材の使用、つま
り、複数種の有機廃棄物の混合は有効な手段である。例
えば、モミガラ等のような含水量及び密度の小さいもの
と畜糞等のような含水量及び密度の大きいものとを混合
することにより含水量及びC/N比の双方を適正に調整
することができる。
The water added to adjust the water content of the organic waste is preferably natural water. Water that has been filtered and sterilized by adding calcium, such as tap water, is not suitable for composting, and water that can contain microorganisms and minerals, such as high-quality well water and Iwashimizu water, is preferable. It is also possible to use a culture solution obtained by culturing a soil microorganism or the above-mentioned useful microorganism. Regarding the adjustment of the water content, the use of secondary materials, that is, the mixing of multiple types of organic wastes is an effective means. For example, it is possible to properly adjust both the water content and the C / N ratio by mixing a material having a low water content and density such as peach grass and a material having a high water content and density such as animal dung. .

【0051】更に、蟹殻等のキチン質廃物を予め加えて
おくと、セルロースを分解するトリコデルマ(ツチアオ
カビ)等の繁殖が可能となるので好ましい。
Further, it is preferable to add chitinous waste such as crab shells in advance, since it becomes possible to propagate Trichoderma (Thyroid mold) which degrades cellulose.

【0052】水分及びC/N比を調整した有機廃棄物
は、一次分解に供し微生物による分解を進行させる。一
次分解は、嫌気性条件下で約5〜10日間行われ、糸状
菌の繁殖により糖化が進行する。より具体的には、一次
分解中の雰囲気が実質的に酸素ガスを含まず(5%未
満)、炭酸ガス濃度が10〜35 vol%程度、湿度が7
0〜90%となるように管理する。分解の進行に従って
雰囲気中の水分量が増加するので、雰囲気条件を維持す
るためには、分解雰囲気を系から取り出して除湿により
湿度調整した後に系に戻すようにして循環させるのがよ
い。温度は40〜70℃程度に維持される。このような
条件下で、酵母、糸状菌、乳酸菌などの嫌気性菌、特に
糸状菌の増殖が進行し、好気性菌の増殖は抑制される。
好適に一次分解が進行すると、糖発酵に伴い甘酒のよう
な香りが発生する。微生物による分解が局所的に進行す
ると環境の局所的変化により腐敗を起こすカビの発生な
どが起こり易いので、適時に切り返しを行って有機廃棄
物全体において均一に発酵分解が進行するようにするの
が望ましい。
The organic waste whose water content and C / N ratio have been adjusted is subjected to primary decomposition to promote decomposition by microorganisms. Primary degradation is performed under anaerobic conditions for about 5 to 10 days, and saccharification progresses due to propagation of filamentous fungi. More specifically, the atmosphere during the primary decomposition is substantially free of oxygen gas (less than 5%), the carbon dioxide gas concentration is about 10 to 35 vol%, and the humidity is 7
Manage so as to be 0 to 90%. Since the amount of water in the atmosphere increases with the progress of decomposition, in order to maintain atmospheric conditions, it is preferable to circulate the decomposition atmosphere by taking it out of the system, adjusting the humidity by dehumidification, and then returning it to the system. The temperature is maintained at about 40-70 ° C. Under such conditions, the growth of anaerobic bacteria such as yeast, filamentous fungi and lactic acid bacteria, particularly filamentous fungi, progresses, and the growth of aerobic bacteria is suppressed.
When the primary decomposition proceeds suitably, aroma such as amazake is generated with the sugar fermentation. If the decomposition by microorganisms progresses locally, molds that cause decay due to local changes in the environment are likely to occur.Therefore, it is necessary to switch back in a timely manner so that the fermentation decomposition proceeds uniformly in the entire organic waste. desirable.

【0053】一次分解によって糖化が進行した有機廃棄
物は、通性嫌気/好気共存条件下で約14〜30日間二
次分解を行って更に微生物による分解を進行させる。具
体的には、二次分解中の雰囲気の炭酸ガス濃度が約2%
以下、酸素濃度が5〜40%程度、湿度が50〜70%
程度となるように管理される。枯草菌によるタンパク質
分解が進行すると温度が上昇するが、温度が高くなりす
ぎると窒素分が急激に減少し、以後の微生物の増殖に支
障をきたすので、60〜75℃程度に維持されるように
4回/月程度の割合で切り返しを行う。水分補給を兼ね
て水の投与によって温度を下げてもよい。好適に二次分
解が進行すると、この時点で味噌又は醤油に似た香りが
発生する。含水量あるいはC/N比の調整の誤りに起因
して一次分解における糸状菌の増殖が不十分で二次分解
がうまく進行しない場合には、糖類又は有機炭素分と微
量のミネラルとを含有する水溶液(例えば黒砂糖水等)
で乳酸菌、バチラス菌などを増殖させた液を有機廃棄物
に補充すると分解を進めることができ、臭気を防ぐこと
もできる。枯草菌による分解がピークを過ぎると有機廃
棄物の温度が低下し、50℃以下になると乳酸菌が活動
し始め、有機廃棄物のpH値が低下して酸性となる。こ
れにより、有害菌が殺菌される。乳酸菌が繁殖しないで
腐食が起こると、pH値が低下せず逆に塩基性を示すよ
うになり、酸刺激臭のような悪臭を放ち始める。この場
合、上述した微生物の増殖液を添加して再度二次分解を
行う。
The organic waste that has undergone saccharification due to the primary decomposition is subjected to secondary decomposition for about 14 to 30 days under conditions of coexisting anaerobic / aerobic conditions, and is further decomposed by microorganisms. Specifically, the carbon dioxide concentration in the atmosphere during the secondary decomposition is about 2%.
Hereinafter, the oxygen concentration is about 5 to 40%, and the humidity is 50 to 70%.
It is managed to be on the order. When the protein decomposition by Bacillus subtilis progresses, the temperature rises. However, if the temperature is too high, the nitrogen content decreases sharply and hinders the growth of the microorganisms thereafter, so that the temperature is maintained at about 60 to 75 ° C. Switching is performed about four times a month. The temperature may be lowered by administration of water, also serving as hydration. If the secondary decomposition proceeds favorably, a scent similar to miso or soy sauce is generated at this point. If the secondary decomposition does not proceed properly due to insufficient growth of the filamentous fungi in the primary decomposition due to an error in the adjustment of the water content or the C / N ratio, the saccharide or organic carbon content and a trace amount of minerals are contained. Aqueous solution (for example, brown sugar water)
By replenishing the organic waste with a liquid in which lactic acid bacteria, Bacillus bacteria and the like have been grown, decomposition can proceed and odor can be prevented. When the decomposition by Bacillus subtilis passes the peak, the temperature of the organic waste decreases, and when the temperature falls below 50 ° C., lactic acid bacteria start to be activated, and the pH value of the organic waste decreases to become acidic. This kills harmful bacteria. If the lactic acid bacteria do not propagate and corrosion occurs, the pH value does not decrease and the lactic acid bacteria become basic instead, and begin to emit a bad smell such as an acid-stimulated odor. In this case, the secondary decomposition is performed again by adding the growth liquid of the microorganism described above.

【0054】乳酸菌の繁殖のピーク後に切り返しを行い
静置すると、有機廃棄物の温度が再び5℃前後上昇し、
その後また低下する。この期間は約90日で、酵母が繁
殖して有機物表面下に白く菌体が見られるようになり三
次分解が進行して、有機廃棄物は、アミノ酸、タンパク
質、アルコール、ビタミン等を含むようになる。
When the lactic acid bacterium is turned over after its peak, the temperature of the organic waste rises again by about 5 ° C.
Then it drops again. In this period, about 90 days, yeast grows, white cells can be seen below the surface of organic matter, tertiary decomposition proceeds, and organic waste contains amino acids, proteins, alcohol, vitamins, etc. Become.

【0055】三次分解が終了した時点で乾燥した分解物
は、堆肥として十分使用できるが、更に熟成させること
によって、より有効な堆肥となる。三次分解を完了した
有機廃棄物の熟成は、好気性条件下で約30〜90日間
行われる。熟成中の雰囲気は、好ましくは炭酸ガス濃度
が約2%以下、酸素濃度が約18〜20%、湿度が50
〜70%程度となるように管理される。この状態でスト
レプトマイセス、アクチノマイセス、フラボバクテリウ
ム等の放線菌が繁殖して抗生物質が生成され、pH値が
上昇して中性から弱アルカリ性の範囲で安定化する。有
機廃棄物にキチン質が含まれる場合にはトリコデルマも
繁殖する。抗生物質を生産する菌の繁殖は、通気性を必
要とするので、1〜2回/月程度の割合で切り返しを行
って腐敗を防止するのが好ましい。熟成中は、水分が不
足気味になるので加水調整を行う。微生物の培養液など
を用いてするのが好ましい。通常、1カ月程度熟成させ
ると、放線菌による灰色の斑点が生じた堆肥が得られ
る。熟成中に花崗岩や玄武岩などの岩石をなるべく細か
く破砕して投入すると、土壌及び微生物に必要なミネラ
ルが豊富な堆肥を得ることができる。ミネラルは微生物
の活性を向上させ、又、植物の活性を促すことができ
る。堆肥に岩石を加えると、土壌への施与後に、植物の
発芽や発根の促進、根の呼吸作用の増大、植物中のタン
パク質量の増加、連作障害の防止、土壌成分のバランス
調整、土壌における干ばつなどのストレスに対する抵抗
力の付与、粘土質土壌の改善、水溶性無機質肥料の保
持、植物の根に不要な物質の吸収などの効果を得ること
ができる。
The decomposed product dried at the time of completion of the tertiary decomposition can be sufficiently used as compost, but it becomes more effective compost by further aging. Aging of the organic waste after the completion of the tertiary decomposition is performed under aerobic conditions for about 30 to 90 days. The atmosphere during ripening preferably has a carbon dioxide concentration of about 2% or less, an oxygen concentration of about 18-20%, and a humidity of 50%.
It is managed to be about 70%. In this state, actinomycetes such as Streptomyces, Actinomyces, and Flavobacterium multiply to produce antibiotics, which increase the pH value and stabilize the neutral to weakly alkaline range. If organic waste contains chitin, Trichoderma will also propagate. Propagation of bacteria that produce antibiotics requires air permeability, so it is preferable to turn them back once or twice a month to prevent spoilage. During ripening, the water content is likely to be insufficient, so the water content is adjusted. It is preferable to use a culture solution of a microorganism. Usually, after aging for about one month, a compost having gray spots caused by actinomycetes is obtained. If rocks such as granite and basalt are crushed and introduced as much as possible during maturation, a compost rich in minerals necessary for soil and microorganisms can be obtained. Minerals can enhance the activity of microorganisms and promote plant activity. When rock is added to the compost, after application to the soil, it promotes germination and rooting of the plant, increases the respiratory action of the root, increases the amount of protein in the plant, prevents continuous cropping failure, adjusts the balance of soil components, In this method, effects such as imparting resistance to stress such as drought, improving clay soil, retaining water-soluble inorganic fertilizer, and absorbing unnecessary substances to plant roots can be obtained.

【0056】一次分解から熟成までを3〜6カ月程度か
けて行うと、有機廃棄物は良好な堆肥となる。熟成を終
えた堆肥は、必要に応じて造粒などの形状加工を施し、
水分量が30%以下にならないように乾燥することによ
り、悪臭や害を生じない堆肥製品となる。乾燥し過ぎる
と、堆肥中の放線菌は不活化する。
When the process from primary decomposition to ripening takes about 3 to 6 months, the organic waste becomes good compost. The compost that has matured is subjected to shape processing such as granulation as necessary,
By drying so that the water content does not become 30% or less, a compost product that does not cause odor or harm is obtained. If overdried, actinomycetes in the compost will be inactivated.

【0057】上述の一次分解、二次分解、三次分解及び
熟成において、雰囲気中にマイナスイオンを導入する
と、微生物、特に嫌気性微生物の活性が向上する。嫌気
性微生物にとって酸素、特にO2 + は生命機構を阻害す
るものであるが、還元型のO2 は無害であるので、雰
囲気中の酸素を還元型に変換したり、あるいは、マイナ
スイオンを供給することによって嫌気性微生物の活力を
向上させることができる。又、好気性微生物も生命機構
にイオン交換が組み込まれており、供給される酸素の質
は重要で、マイナスイオンの供給は活性化に効果をもた
らす。マイナスイオンの供給は、例えば、特開平9−2
74946号公報記載の負イオン発生装置を用いて安全
に行うことができる。
In the above-mentioned primary decomposition, secondary decomposition, tertiary decomposition and ripening, the introduction of negative ions into the atmosphere improves the activity of microorganisms, especially anaerobic microorganisms. For anaerobic microorganisms, oxygen, particularly O 2 + , inhibits the vital mechanism, but reduced O 2 - is harmless, so it converts oxygen in the atmosphere to reduced form or converts negative ions into negative ions. By supplying, the vitality of anaerobic microorganisms can be improved. Also, aerobic microorganisms have ion exchange incorporated into their biological mechanisms, the quality of oxygen supplied is important, and the supply of negative ions has an effect on activation. The supply of negative ions is described in, for example,
It can be performed safely using the negative ion generator described in Japanese Patent No. 74946.

【0058】又、上述の一次分解、二次分解、三次分解
及び熟成の少なくとも一工程において、分解を促進する
ために音楽など適切な波長及び波形の振動の弾性波を供
給してもよい。
In at least one of the above-described primary decomposition, secondary decomposition, tertiary decomposition and ripening, an elastic wave having an appropriate wavelength and waveform such as music may be supplied to promote the decomposition.

【0059】工業生産の場合と比較して、微生物を用い
た工程においては、管理を十分に行っていても有害菌の
繁殖など不意の事故にみまわれる恐れが大きい。従っ
て、そのような事故による被害を最小限にするために、
腐敗が廃棄物全体に広がらないように有機廃棄物を比較
的少量のバッチに分けて個別の容器を用いて発酵・分解
処理し、容器毎に分解の進行度を確認しながら処理を進
めるのが好ましい。有機廃棄物の容量は、堆肥化の進行
に従って、特に一次分解から二次分解にかけて急激に減
少するので、これを考慮して分解時の容器容量やシステ
ム全体の容量、容器の配分等を設計するのが好ましい。
生ゴミのような廃棄物は一次分解を経ることによって容
量が約25分の1に減少する。ことのことから、本発明
の堆肥化方法の一次分解工程を、有機廃棄物の減容方法
として好適に利用することができる。
Compared with the case of industrial production, in a process using microorganisms, even if the control is performed sufficiently, there is a greater risk of unexpected accidents such as propagation of harmful bacteria. Therefore, to minimize the damage caused by such accidents,
It is better to divide organic waste into relatively small batches and use separate containers for fermentation / decomposition so that rot does not spread throughout the waste, and to proceed while checking the progress of decomposition for each container. preferable. Since the volume of organic waste rapidly decreases with the progress of composting, especially from the primary decomposition to the secondary decomposition, the container capacity during decomposition, the capacity of the entire system, the distribution of containers, etc. are designed taking this into account. Is preferred.
Waste, such as garbage, undergoes primary decomposition, reducing its capacity by a factor of about 25. For this reason, the primary decomposition step of the composting method of the present invention can be suitably used as a method for reducing the volume of organic waste.

【0060】上述の有機廃棄物の堆肥化方法は、例え
ば、図1に示すような堆肥製造システム1を用いて実施
することができる。この堆肥製造システム1は、搬送コ
ンベア3を備えた建物5を有し、建物5の内部は、第1
分解室7、第2分解室9及び熟成室11に区画されてい
る。更に、倉庫13、脱臭室15、仮置きスペース1
7、水処理/クーラント装置19、前分解室21A,2
1B、事務所61、品質管理室63及び出荷室65が付
設されており、有機廃棄物は、植物性残渣(生ゴミ)、
動物性残渣、動物糞及び魚介類廃棄物などに分別してコ
ンテナに収納されて仮置きスペース17に置かれる。第
1分解室7、第2分解室9及び熟成室11には、各々、
炭酸ガス濃度計、酸素濃度計、温度計、湿度計、熱温度
計、アンモニア濃度計が付設されており、雰囲気の成分
組成及び温度が管理される。更に、微生物の発育、分解
促進のために、マイナスイオン発生装置や音楽を供給す
るためのスピーカーを付設してもよい。
The above-mentioned method for composting organic waste can be carried out, for example, using a compost production system 1 as shown in FIG. This compost production system 1 has a building 5 equipped with a conveyor 3 and the inside of the building 5
It is partitioned into a decomposition chamber 7, a second decomposition chamber 9, and an aging chamber 11. Furthermore, warehouse 13, deodorization room 15, temporary storage space 1
7. Water treatment / coolant device 19, pre-decomposition chamber 21A, 2
1B, an office 61, a quality control room 63, and a shipping room 65 are attached, and organic waste is a vegetable residue (garbage),
They are separated into animal residues, animal droppings, fish and shellfish waste, etc., stored in containers, and placed in the temporary storage space 17. In the first decomposition chamber 7, the second decomposition chamber 9 and the aging chamber 11,
A carbon dioxide gas concentration meter, an oxygen concentration meter, a thermometer, a hygrometer, a thermothermometer, and an ammonia concentration meter are additionally provided to control the composition and temperature of the atmosphere. Further, in order to promote the growth and decomposition of microorganisms, a negative ion generator and a speaker for supplying music may be provided.

【0061】有機廃棄物に関する情報は、品質管理室6
3の管理システムに蓄積管理され、コンテナの有機廃棄
物は、管理システムの情報に基づいてホッパ付き搬入コ
ンベア23A又は23Bを介して前分解室21A又は2
1Bに投入され混合されて、適切なC/N比の有機廃棄
物に調製される。ここで、水分調整のための水切りも行
われる。前分解室21A及び21Bの有機廃棄物はコン
ベア25A及び25Bによって搬送コンベア3へ供給さ
れパレットPに収容される。この際、パレットPの有機
廃棄物に乳酸菌などの微生物培養液を散布することによ
り臭気の発生が防止される。
Information on organic waste is stored in the quality control room 6
The organic waste of the container is accumulated and managed in the management system of No. 3 and the pre-decomposition chamber 21A or 2B is transferred through the carry-in conveyor with hopper 23A or 23B based on the information of the management system.
1B and mixed to prepare an organic waste having an appropriate C / N ratio. Here, drainage for moisture adjustment is also performed. The organic waste in the pre-decomposition chambers 21A and 21B is supplied to the transport conveyor 3 by the conveyors 25A and 25B and stored in the pallet P. At this time, the generation of odor is prevented by spraying a microorganism culture solution such as lactic acid bacteria on the organic waste on the pallet P.

【0062】搬送コンベア3のパレットPを第1分解室
7及び通路31へ供給するための取り出しコンベア2
7,33が設けられ、通路31は第2分解室9及び熟成
室11に通じている。各室の雰囲気をコンベア3から遮
断するために開閉可能なシャッター29,35,37,
39,41が設けられている。搬送コンベア3の途中に
は反転切り返し装置43,45及び振い選別機47が添
説されている。
The take-out conveyor 2 for supplying the pallets P of the conveyor 3 to the first disassembling chamber 7 and the passage 31
7 and 33 are provided, and the passage 31 communicates with the second decomposition chamber 9 and the aging chamber 11. Shutters 29, 35, 37, which can be opened and closed to shut off the atmosphere of each room from the conveyor 3
39 and 41 are provided. In the middle of the conveyor 3, reversing and turning devices 43 and 45 and a shaker 47 are additionally provided.

【0063】搬送コンベア3から第1分解室7へ搬送さ
れたパレットPは、ロボット71により棚69に収納さ
れ、有機廃棄物の一次分解が行われる。各パレットP内
の有機廃棄物は、適時、分析により発酵の進度を調べ、
一次分解を完了したと判定されたパレットPは、搬送コ
ンベア3及び取り出しコンベア33によって通路31へ
搬送され、ロボット79によって第2分解室9内の棚7
3に収納され、二次分解及び三次分解が行われる。分析
により有機廃棄物の三次分解が完了したと判定されたパ
レットPは、ロボット79によって熟成室11の棚75
に収納され、熟成されて堆肥ができあがる。熟成を終了
したパレットPは、更にロボット79によって倉庫13
の棚77に収納される。
The pallet P transported from the transport conveyor 3 to the first decomposition chamber 7 is stored on a shelf 69 by the robot 71, and the primary decomposition of the organic waste is performed. The organic waste in each pallet P is timely analyzed to check the progress of fermentation,
The pallet P that has been determined to have completed the primary disassembly is transported to the passage 31 by the transport conveyor 3 and the take-out conveyor 33, and is moved by the robot 79 to the shelf 7 in the second disassembly chamber 9.
3 for secondary decomposition and tertiary decomposition. The pallet P determined to have undergone the tertiary decomposition of the organic waste by the analysis is transferred to the shelf 75 of the maturing room 11 by the robot 79.
Is stored and aged to produce compost. The aged pallet P is further stored in the warehouse 13 by the robot 79.
Is stored on the shelf 77.

【0064】出荷室65には、造粒装置49、袋詰め装
置51、取り出しコンベア53及び供給コンベア57が
備え付けられ、コンベア53,57と倉庫13とを遮断
するための開閉可能なシャッター55,59が設けられ
ている。熟成室11から倉庫13に搬送されたパレット
Pは、コンベア53によって出荷室65に搬入され、最
終製品チェックのためにサンプリング及び分析を行い、
堆肥化が不十分なものがあれば再度熟成するために熟成
室11へ戻す。完成した堆肥は、振い選別機47で異物
を除去し、粒度によって選別する。粒度の粗いものは、
有機廃棄物の水分調整用としてあるいは種菌として、有
機廃棄物に添加される。粒度の細かい堆肥は、必要に応
じて、造粒装置49を用いた造粒、袋詰め装置51によ
る包装を施す。袋詰めされた製品は、パレタイジングロ
ボット67によってパレットに詰めてコンベア47によ
って倉庫13の棚77に保管する。袋詰めしない製品に
ついても同様にパレットで倉庫13に保管する。
The shipping room 65 is provided with a granulating device 49, a bag filling device 51, a take-out conveyor 53 and a supply conveyor 57, and shutters 55, 59 which can be opened and closed to shut off the conveyors 53, 57 and the warehouse 13. Is provided. The pallet P conveyed from the aging room 11 to the warehouse 13 is carried into the shipping room 65 by the conveyor 53, and performs sampling and analysis for a final product check.
If there is insufficient composting, it is returned to the ripening room 11 for ripening again. The completed compost is subjected to a shaking sorter 47 to remove foreign substances and sorted by particle size. Coarse particle size
It is added to the organic waste for adjusting the water content of the organic waste or as a seed fungus. The compost having a fine particle size is subjected to granulation using a granulation device 49 and packaging by a bag packing device 51 as necessary. The packed products are packed in pallets by the palletizing robot 67 and stored on the shelves 77 of the warehouse 13 by the conveyor 47. Products that are not bagged are also stored in the warehouse 13 on pallets.

【0065】微生物によって有機物が分解堆肥化される
ことを”腐熟”と言い、”腐敗”とは区別される。有機
物の腐熟の進行程度、”腐熟度”の判定は、従来、後述
する燃焼法や発芽試験、腐敗試験などによって行ってい
たが、最近、定量的な判定方法としてGPC法が一般的
に用いられつつある。GPC法は、GPC(ゲルパーミ
エーションクロマトグラフィ)を用いて成分を分子量に
従って分画し、全成分中における所定低分子量の成分の
割合(GPC率)を求めて、これにより腐熟度を判定す
る方法である。腐熟が進行すると、炭水化物などの分解
消失により炭素含量が減少し、これに従って有機物のC
/N比も減少する。このC/N比の低下に従ってGPC
率も低下するという相関関係があることを利用して腐熟
度が判定される。GPC法に従って、分子量約1500
以下に分画され検出されるフラクションの量(280nm
におけるタンパク質、核酸などの物質において特徴的な
紫外線の吸収による検出)の全成分中における割合(G
PC率)を求めると、この値は、本発明に係る堆肥化に
おいては、一次分解(糖化発酵)中の”未熟”状態のも
のでは10%以上、二次分解中の”中熟”状態では2〜
10%、三次分解中の”成熟”状態では0.5〜2%、
熟成中の”完熟”状態ではGPC率が0.5%以下とな
る。”未熟”状態では、易分解性のタンパク質及び糖類
が未分解でフェノール酸、タンニン酸及び脂肪が残存し
ており、病原菌及び雑草種子も死滅していない。”中
熟”状態は、易分解性タンパク質及び糖類が半分程度分
解し、分解による温度上昇によって病原菌及び雑草種子
が死滅している。”完熟”状態は、フェノール酸、タン
ニン酸を含むほとんどの有機物が分解され、微生物相も
安定化している。いずれの状態の堆肥も、土壌に施用す
れば土壌中微生物によって分解され、植物の肥料となる
が、未熟堆肥は、土壌中で分解される際に炭酸ガス、硫
化水素、メタン、有機酸、アンモニア等を発生して植物
の根の正常な発育を妨げたり病気を発生させ、また、悪
臭や地下水汚染を生じたり、更に、病害虫による農産物
の品質低下を引き起こしたり伝染病の感染源となったり
する。堆肥が腐熟すると、このような害は減少し、免疫
向上物質が生じて植物体の生育が助長されるようにな
る。
The decomposition and composting of organic matter by microorganisms is called "ripening" and is distinguished from "rot". Conventionally, the degree of maturity of organic matter and the degree of “maturity” have been determined by a combustion method, a germination test, a decay test, and the like described below. Recently, a GPC method has been generally used as a quantitative determination method. It is getting. The GPC method is a method in which components are fractionated according to molecular weight using GPC (gel permeation chromatography), and a ratio (GPC ratio) of a component having a predetermined low molecular weight in all components is determined, thereby determining a degree of maturity. is there. As ripening progresses, the carbon content decreases due to the disappearance of decomposition of carbohydrates and the like.
The / N ratio also decreases. As the C / N ratio decreases, GPC
The degree of maturity is determined using the correlation that the rate also decreases. According to the GPC method, a molecular weight of about 1500
The amount of fractions detected and fractionated below (280 nm
(Detection by absorption of ultraviolet light characteristic of substances such as proteins and nucleic acids) in the total components (G
PC ratio), in the composting according to the present invention, this value is 10% or more in the “immature” state during the primary decomposition (saccharification and fermentation), and in the “mature” state during the secondary decomposition. Two
10%, 0.5-2% in "mature" state during tertiary degradation,
In the “ripe” state during ripening, the GPC rate is 0.5% or less. In the “immature” state, readily degradable proteins and saccharides are undegraded, phenolic acid, tannic acid and fat remain, and pathogenic bacteria and weed seeds are not killed. In the "medium-ripened" state, easily degradable proteins and saccharides are degraded by about half, and pathogenic bacteria and weed seeds are killed by the rise in temperature due to the degradation. In the "ripe" state, most organic substances including phenolic acid and tannic acid are decomposed and the microflora is stabilized. Both types of compost are decomposed by microorganisms in the soil when applied to the soil, and become fertilizers for plants.Immature compost is decomposed in the soil when carbon dioxide, hydrogen sulfide, methane, organic acids, ammonia Etc., which interfere with the normal growth of plant roots and cause disease, and also cause odor and groundwater contamination, and also cause the quality of agricultural products to be reduced by pests and become a source of infection. . As the compost matures, such harms are reduced and immunity-enhancing substances are generated to promote plant growth.

【0066】本発明に係る有機廃棄物の堆肥化におい
て、適正に堆肥化を行うには、各分解段階の移行時期、
特に一次分解から二次分解へ移行する時期を決定する判
断基準が必要である。外観や匂い等に基づいて知覚的に
判断したり後述する手法により判断することはもちろん
可能であるが、より正確に且つ短時間で効率よく判断す
るためには機器分析的手法が必要である。これに関し
て、前述のGPC法は、測定に時間を要するため、頻繁
に分解状況を検査するには不向きであり、プラントの効
率化や製品の品質検査においても不利である。本願発明
者は、堆肥化する有機廃棄物の腐熟度を短時間で正確に
且つ効率よく検出することができる方法を見出し、ここ
に提示する。本願発明者が提示する方法は、近赤外線反
射スペクトルの測定に基づいて腐熟度を判定する方法で
ある。
In the composting of organic waste according to the present invention, in order to properly perform the composting, the transition time of each decomposition stage,
In particular, a criterion for determining when to shift from the primary decomposition to the secondary decomposition is required. Although it is of course possible to make a perceptual judgment based on the appearance or smell or the like by a method described later, a device analysis method is required for making a more accurate and efficient judgment in a short time. In this regard, the above-described GPC method requires time for measurement, and thus is not suitable for frequently inspecting the decomposition state, and is also disadvantageous in improving the efficiency of a plant and inspecting the quality of products. The inventor of the present application has found a method capable of accurately and efficiently detecting the maturity of an organic waste to be composted in a short time, and presents the method here. The method presented by the inventor of the present application is a method of determining the maturity based on the measurement of the near-infrared reflection spectrum.

【0067】図2は、堆肥化を施した有機廃棄物の近赤
外線反射スペクトルを示すスペクトルチャートで、堆肥
サンプルの腐熟度をGPC法によって判定して一次分解
を完了したもの、三次分解を完了したもの及び熟成を終
えたものについて各々5つのサンプルの近赤外線反射ス
ペクトルを測定した結果をまとめたものである。符号A
で示した斜線領域は一次分解完了後のもののスペクトル
が分布する領域、符号Bで示した縦線領域は三次分解完
了後のスペクトルが分布する領域、符号Cで示した横線
領域は熟成完了後の堆肥のスペクトルが分布する領域で
ある。図2から明らかなように、近赤外線反射スペクト
ルにおいては、堆肥の腐熟度によって全波数領域でスペ
クトル形状及び吸光度(又は反射)が変化し、腐熟する
に従って吸光度が減少する。約4200〜5000cm-1
及び約5400〜7000cm-1において吸光度の差が著
しく、特に4500cm-1付近においてはスペクトル形状
にも特異性が見られる。このことから、堆肥の近赤外ス
ペクトル分析により腐熟度を決定することができること
が明白である。例えば、図2の領域A,B及びCを各
々、未熟状態と中熟状態との境界、成熟状態と完熟状態
との境界及び完熟状態と熟成完了状態との境界として堆
肥化プロセスの管理を行うことができる。吸光度を測定
する波長(又は波数)を一個あるいは数個に特定し、こ
の波長において測定される吸光度の変化から腐熟度を判
定するように判定材料を限定すれば、判定時間を短縮す
ることができる。
FIG. 2 is a spectrum chart showing a near-infrared reflection spectrum of the organic waste subjected to composting. The degree of maturity of the compost sample was determined by the GPC method, the primary decomposition was completed, and the tertiary decomposition was completed. It summarizes the results of measuring the near-infrared reflection spectrum of five samples for each of the sample and the matured sample. Sign A
The hatched area indicated by the symbol indicates the area in which the spectrum of the one after completion of the primary decomposition is distributed, the vertical line area indicated by the symbol B indicates the area in which the spectrum after the completion of the third decomposition is distributed, and the horizontal line area indicated by the symbol C indicates the area after the ripening is completed. This is the area where the spectrum of compost is distributed. As is clear from FIG. 2, in the near-infrared reflection spectrum, the spectrum shape and the absorbance (or reflection) change in the entire wavenumber range depending on the maturity of the compost, and the absorbance decreases as the maturity increases. About 4200-5000cm -1
And remarkable difference in absorbance at about 5400~7000cm -1, specificity is seen in the spectral shape in the vicinity especially 4500cm -1. It is clear from this that the maturity can be determined by near-infrared spectral analysis of the compost. For example, the areas A, B, and C in FIG. 2 are used to manage the composting process as a boundary between an immature state and a mature state, a boundary between a mature state and a mature state, and a boundary between a mature state and a mature state. be able to. If the wavelength (or wave number) at which the absorbance is measured is specified to be one or several, and the judging material is limited so as to judge the maturity from the change in the absorbance measured at this wavelength, the judgment time can be reduced. .

【0068】このように、基準とする堆肥試料及び評価
する堆肥化物の近赤外スペクトルを測定し、得られたス
ペクトルチャートを目視比較して判断することによって
腐熟度を決定することができるが、データ処理によって
腐熟度の判定を行えれば、工程の自動管理や品質管理に
有効である。近赤外反射スペクトルの測定からデータ処
理により腐熟度の判定を行う一例を以下に記載する。も
ちろん、データ処理方法として一般的に知られている他
の方法を用いてもよく、必要に応じて適切なデータ処理
方法を採用すればよい。
As described above, the degree of maturity can be determined by measuring the near-infrared spectra of the standard compost sample and the compost to be evaluated and visually comparing the obtained spectrum charts. If the degree of maturity can be determined by data processing, it is effective for automatic control and quality control of the process. An example of judging the maturity by data processing from the measurement of the near-infrared reflection spectrum will be described below. Of course, other generally known data processing methods may be used, and an appropriate data processing method may be used as needed.

【0069】まず、図2のような近赤外領域で測定され
たキャリブレーション用試料の測定データをフーリエ変
換した後、波数と吸光度(あるいは透過率、反射)との
スペクトルデータとして保存する。必要があれば、スペ
クトル変換(透過率−吸光度−反射)する。各波数にお
ける吸光度(又は透過率、反射)を多次元空間に展開
し、主成分分析を行う。PLS回帰分析の場合には、波
数以外に手分析値も変数として、同様に多次元空間に吸
光度(又は透過率、反射)を展開して主成分分析を行
う。
First, the measurement data of the calibration sample measured in the near-infrared region as shown in FIG. 2 is subjected to Fourier transform, and then stored as spectral data of wave number and absorbance (or transmittance, reflection). If necessary, the spectrum is converted (transmittance-absorbance-reflection). The absorbance (or transmittance, reflection) at each wave number is developed in a multidimensional space, and principal component analysis is performed. In the case of PLS regression analysis, the principal component analysis is performed by similarly developing the absorbance (or transmittance, reflection) in a multidimensional space using the hand analysis value as a variable in addition to the wave number.

【0070】主成分分析によって新たな主成分軸(第1
軸、第2軸----)を決定した後、各試料が主成分空間に
おいてどの様な位置づけになるかを決定し(主成分得点
の計算)、判別分析に従って各試料点から判別モデル及
び腐熟度を判定するための判別関数を作成する。
A new principal component axis (first
After determining the axis and the second axis ---), it is determined how each sample is positioned in the principal component space (calculation of principal component scores), and a discriminant model and a discriminant model are calculated from each sample point according to discriminant analysis. A discriminant function for judging the maturity is created.

【0071】評価する未知試料を測定し、得られたスペ
クトルデータから上述と同様の処理に従って主成分空間
における位置を決定し、判別関数によりマハラノビスの
汎距離を求めることによって未知試料が判別モデルにお
いてどの分類(腐熟度)に帰属するかが定量的に判定さ
れ、腐熟度が決定される。
The unknown sample to be evaluated is measured, the position in the principal component space is determined from the obtained spectral data according to the same processing as described above, and the Mahalanobis general distance is determined by the discriminant function. Whether it belongs to the classification (maturity) is quantitatively determined, and the maturity is determined.

【0072】堆肥化物の近赤外スペクトルの測定は、一
般的に用いられている測定装置を用いて測定すればよい
が、試料に直接挿入して測定することができる検知器を
備えたプローブ型の測定装置を用いると、工程管理及び
品質管理の効率化に特に有効である。
The measurement of the near-infrared spectrum of the compost can be carried out by using a commonly used measuring device, but a probe type equipped with a detector which can be directly inserted into a sample and measured. The use of the measuring device is particularly effective for improving the efficiency of process control and quality control.

【0073】上述したような近赤外線反射スペクトルに
よる判定結果を確認するために、上述のGPC法や他の
腐塾度判定方法を併用することができる。例えば、燃焼
法、発芽試験、腐敗試験、ミミズ評価法等がある。これ
らの評価法の詳細は、以下の通りである。
In order to confirm the judgment result based on the near-infrared reflection spectrum as described above, the above-described GPC method and other methods for judging the degree of junk can be used together. For example, there are a combustion method, a germination test, a putrefaction test, an earthworm evaluation method, and the like. The details of these evaluation methods are as follows.

【0074】(燃焼法) 金属製のホイル又はスプーン
等に載せた堆肥を火であぶり、その臭気によって腐熟度
を判定する。堆肥が未熟で有れば、アンモニア臭、酸臭
等の悪臭が感じられる。完熟で有れば悪臭はなく、場合
によりぶどう酒のような香りがある。
(Combustion Method) Compost placed on a metal foil or spoon is fired, and the degree of maturity is determined based on the odor. If the compost is immature, an unpleasant odor such as ammonia odor or acid odor is felt. When ripe, there is no odor, and in some cases it has a wine-like aroma.

【0075】(発芽試験) ハツカダイコン、コマツ
ナ、ハクサイ等の種子の発芽率や生育量を調べることに
よって腐熟度を判定する。発芽率が80%以上で生育阻
害や根の異常がなければ完熟と判定する。土壌を用いる
プランタ方式や土壌を用いないシャーレ方式があり、対
照試験として堆肥を用いない場合の発芽を併せて行って
おく。
(Germination test) The degree of maturity is determined by examining the germination rate and growth amount of seeds such as radish, komatsuna and Chinese cabbage. If the germination rate is 80% or more and there is no growth inhibition or abnormal roots, it is judged to be ripe. There are a planter method using soil and a petri dish method using no soil. Germination when no compost is used is also performed as a control test.

【0076】(腐敗試験) 堆肥に水を加えて微生物が
繁殖可能な状態を作り、20〜30℃で3〜7日放置し
て、状態を観察する。ガスがわき不快臭(アンモニア
臭、酸敗臭)が発生した場合は易分解性有機物が含まれ
ていたことを示すので、未熟と判定する。
(Rot test) Water is added to the compost to create a state in which microorganisms can proliferate, and the state is left at 20 to 30 ° C. for 3 to 7 days to observe the state. When an unpleasant odor (ammonia odor, rancid odor) is generated aside from the gas, it indicates that a readily decomposable organic substance is contained, and thus it is judged to be immature.

【0077】(ミミズ評価法) 腐熟による有機物の多
い土壌を好み皮膚呼吸を行うミミズの性質を利用して、
堆肥上に置いたミミズの行動及び皮膚状態を観察するこ
とによって腐熟度を判定する。堆肥の含水率を60〜7
0%に調整した後にミミズを堆肥の上に置き、直後の状
態を観察した後遮光して1日放置し、再度観察する。未
熟である場合は、ミミズは堆肥に触れた途端に体をくね
らせて逃亡しようとし、1日後には殆ど死滅する。中塾
の場合は、堆肥に触れると嫌がり、1日後には皮膚が変
色し、動きが鈍くなる。完熟の場合は、堆肥上に置くと
すぐ潜り始め、1日後にも皮膚色や行動に変化はない。
(Evaluation method of earthworms) By utilizing the property of earthworms that prefers soil with a lot of organic matter due to ripening and performs skin respiration,
The maturity is determined by observing the behavior and skin condition of the earthworm placed on the compost. Compost moisture content is 60 ~ 7
After adjusting to 0%, place the earthworm on the compost, observe the state immediately after that, leave it for 1 day in the shade, and observe again. If immature, the earthworms will bend as soon as they come into contact with the compost and try to escape, almost dead in a day. In the case of juku juku, she dislikes touching the compost, and one day later, her skin discolors and her movement slows down. In the case of ripeness, it begins to dive as soon as it is placed on compost, and there is no change in skin color or behavior after one day.

【0078】[0078]

【実施例】以下、実験結果に基づいて、本発明をさらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail based on experimental results.

【0079】(実施例)375リットルのモミガラ(C
/N比=70〜80)、375リットルの米ぬか(C/
N比=約15)、300リットルのおから(C/N比=
8〜12)、75リットルの鶏糞及び1125リットル
の赤土を分解槽内で混合することによってC/N比が3
0、含水量が60wt%の有機廃棄物を調製した。分解槽
を外気から遮断して、雰囲気の酸素量が5 vol%以下、
炭酸ガス濃度が15 vol%、湿度が80%以下となるよ
うに一次分解用雰囲気に調整して静置し、1週間に1回
の割合で切り返しを行った。この間に、温度は急激に上
昇した後40〜60℃で安定していた。有機廃棄物の含
水率は50〜60%に維持されていた。7日後、有機廃
棄物から甘酒のような香りが発生し、近赤外反射スペク
トルを測定したところ、5200cm-1における反射が
0.09であり一次分解完了であると判定された。
(Example) 375 liters of fir (C)
/ N ratio = 70-80), 375 liters of rice bran (C /
N ratio = about 15), 300 liters of okara (C / N ratio =
8-12), 75 liters of chicken manure and 1125 liters of red clay are mixed in a decomposition tank to obtain a C / N ratio of 3
0, an organic waste having a water content of 60% by weight was prepared. The decomposition tank is isolated from the outside air, and the oxygen content of the atmosphere is 5 vol% or less.
The atmosphere was adjusted to a primary decomposition atmosphere such that the concentration of carbon dioxide gas became 15 vol% and the humidity became 80% or less, and the mixture was allowed to stand still, and cut back once a week. During this time, the temperature rose rapidly and was stable at 40-60 ° C. The water content of the organic waste was maintained at 50-60%. Seven days later, a smell like amazake was generated from the organic waste, and the near-infrared reflection spectrum was measured. The reflection at 5200 cm -1 was 0.09, and it was determined that the primary decomposition was completed.

【0080】分解槽内の雰囲気の酸素ガス濃度が20
%、炭酸ガス濃度が約2%以下、湿度が60%程度とな
るように二次分解用雰囲気に調整して静置し、1週間に
1回の割合で切り返しを行った。この間に温度は上昇し
て55〜75℃の範囲にあった。有機廃棄物は醤油のよ
うな香りを発生するようになり、二次分解を14日経過
した後に温度が45℃前後まで低下し、近赤外反射スペ
クトルを測定したところ、5200cm-1における反射が
0.18で二次分解完了であると判定された。更に、切
り返しを行って90日間経過した後に近赤外反射スペク
トルを測定したところ、5200cm-1における反射が
0.30で三次分解完了であると判定された。又、pH
値を測定したところ、5.5〜6.0と弱酸性を示して
いた。
When the oxygen gas concentration in the atmosphere in the decomposition tank is 20
%, The concentration of carbon dioxide gas was about 2% or less, and the humidity was adjusted to about 60%. The atmosphere was adjusted to a secondary decomposition atmosphere, allowed to stand, and cut back once a week. During this time the temperature rose and was in the range 55-75 ° C. The organic waste began to emit soy sauce-like aroma, and after 14 days of secondary decomposition, the temperature dropped to around 45 ° C. When the near-infrared reflection spectrum was measured, the reflection at 5200 cm −1 was found. It was determined that the secondary decomposition was completed at 0.18. Further, 90 days after the switching, the near-infrared reflection spectrum was measured. The reflection at 5200 cm -1 was 0.30, indicating that the tertiary decomposition was completed. Also, pH
When the value was measured, it was 5.5-6.0 and showed weak acidity.

【0081】分解槽内の雰囲気を酸素ガス濃度が20
%、炭酸ガス濃度が約2%以下、湿度が60%程度の熟
成用雰囲気に調整して静置し、1回/月程度の割合で切
り返しを行った。60日経過後、有機廃棄物の表面に灰
色の斑点が多数できており、近赤外反射スペクトルを測
定したところ、5200cm-1における反射が0.35で
三次分解完了であると判定された。pH値を測定したと
ころ、ほぼ中性を示していた。
The atmosphere in the decomposition tank was adjusted to an oxygen gas concentration of 20.
%, A carbon dioxide gas concentration of about 2% or less and a humidity of about 60% were adjusted to an aging atmosphere and allowed to stand, and then cut back once a month. After 60 days, many gray spots were formed on the surface of the organic waste, and the near-infrared reflection spectrum was measured. The reflection at 5200 cm -1 was 0.35, indicating that the tertiary decomposition was completed. When the pH value was measured, it was almost neutral.

【0082】分解槽内の有機廃棄物を取り出して1リッ
トルビーカーに入れ、上面にミミズを載せて暗所に1日
放置したところ、ミミズは有機廃棄物中に潜っており、
異常はみられなかった。
When the organic waste in the decomposition tank was taken out and put into a 1-liter beaker, an earthworm was placed on the upper surface and left in a dark place for one day, and the earthworm died in the organic waste.
No abnormalities were seen.

【0083】[0083]

【発明の効果】以上説明したように、本発明によれば、
有機廃棄物から悪臭を放つことなく優れた堆肥を得るこ
とができ、その工業的価値は極めて大である。また、本
発明によって得られる堆肥は植物の育成を促進する成分
に富み、農業生産や園芸に適した高品質の堆肥の供給が
可能となる。
As described above, according to the present invention,
An excellent compost can be obtained from an organic waste without emitting a bad smell, and its industrial value is extremely large. In addition, the compost obtained by the present invention is rich in components that promote the growth of plants, so that high-quality compost suitable for agricultural production and horticulture can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る堆肥化方法を実施する堆肥製造シ
ステムを示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a compost production system that performs a composting method according to the present invention.

【図2】堆肥化を施した有機廃棄物の近赤外線反射スペ
クトルを示すスペクトルチャート。
FIG. 2 is a spectrum chart showing a near-infrared reflection spectrum of an organic waste subjected to composting.

【符号の説明】[Explanation of symbols]

1 堆肥製造システム 3 搬送コンベア 7 第1分解室 9 第2分解室 11 熟成室 13 倉庫 15 脱臭室 19 水処理/クーラント装置 21A,21B 前分解室 DESCRIPTION OF SYMBOLS 1 Compost manufacturing system 3 Conveyor 7 First decomposition room 9 Second decomposition room 11 Aging room 13 Warehouse 15 Deodorization room 19 Water treatment / coolant device 21A, 21B Pre-decomposition room

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C05F 9/02 G01N 21/35 Z G01N 21/35 B09B 3/00 ZABA ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C05F 9/02 G01N 21/35 Z G01N 21/35 B09B 3/00 ZABA

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 有機廃棄物を糖化発酵させる第1の工程
と、第1の工程を経た有機廃棄物にバチルス属細菌、乳
酸菌及び酵母を繁殖させて有機廃棄物を分解する第2の
工程とを有することを特徴とする有機廃棄物の堆肥化方
法。
A first step of saccharifying and fermenting the organic waste; and a second step of decomposing the organic waste by propagating Bacillus bacteria, lactic acid bacteria, and yeast on the organic waste that has passed through the first step. A method for composting organic waste, comprising:
【請求項2】 前記第1の工程において糸状菌が繁殖す
る請求項1記載の堆肥化方法。
2. The method according to claim 1, wherein filamentous fungi propagate in the first step.
【請求項3】 更に、前記第2の工程を経た有機廃棄物
に抗生物質を生産する放線菌を繁殖させる第3の工程を
有する請求項1又は2記載の堆肥化方法。
3. The composting method according to claim 1, further comprising a third step of breeding actinomycetes producing antibiotics on the organic waste that has passed through the second step.
【請求項4】 更に、第3の工程を経た有機廃棄物を成
形して水分含量が30wt%以上となる程度に乾燥する成
形工程を有することを特徴とする請求項3記載の堆肥化
方法。
4. The method for composting according to claim 3, further comprising a forming step of forming the organic waste that has passed through the third step and drying the formed organic waste to a water content of 30% by weight or more.
【請求項5】 更に、前記第1の工程前に、有機廃棄物
のC/N比を25〜40、含水率を45〜70wt%に調
整する工程を有する請求項1〜4のいずれかに記載の堆
肥化方法。
5. The method according to claim 1, further comprising the step of adjusting the C / N ratio of the organic waste to 25 to 40 and the water content to 45 to 70 wt% before the first step. The composting method as described.
【請求項6】 前記第1の工程において有機廃棄物は嫌
気性雰囲気中で40〜70℃に維持され、前記第2の工
程はバチルス属細菌及び乳酸菌が繁殖する第1期間と酵
母が繁殖する第2期間とを有して通性嫌気性菌及び好気
性菌が繁殖可能な雰囲気中で行われる請求項1〜5のい
ずれかに記載の堆肥化方法。
6. In the first step, the organic waste is maintained at 40 to 70 ° C. in an anaerobic atmosphere, and in the second step, a first period during which Bacillus bacteria and lactic acid bacteria grow and a yeast grows. The composting method according to any one of claims 1 to 5, wherein the method is performed in an atmosphere in which facultative anaerobic bacteria and aerobic bacteria can proliferate, including a second period.
【請求項7】 前記第2の工程の第1期間において、有
機廃棄物の温度が60〜75℃に維持されてバチルス属
細菌が繁殖し、温度が50℃以下に降下して乳酸菌が繁
殖する請求項6記載の堆肥化方法。
7. In the first period of the second step, the temperature of the organic waste is maintained at 60 to 75 ° C. and bacteria of the genus Bacillus proliferate, and the temperature falls to 50 ° C. or lower, and lactic acid bacteria proliferate. The method for composting according to claim 6.
【請求項8】 有機廃棄物を嫌気性雰囲気中で微生物分
解する第1の工程と、該第1の工程を経た有機廃棄物を
通性嫌気性菌及び好気性菌が繁殖可能な雰囲気中で微生
物分解する第2の工程とを有することを特徴とする有機
廃棄物の堆肥化方法。
8. A first step of microbial decomposition of organic waste in an anaerobic atmosphere, and in an atmosphere in which organic anaerobic bacteria and aerobic bacteria that have passed through the first step can propagate. And a second step of microbial decomposition.
【請求項9】 前記第1の工程の嫌気性雰囲気は、炭酸
ガス濃度が10〜35 vol%、酸素濃度が5 vol%未
満、湿度が70〜90%であり、前記第2の工程の雰囲
気は、酸素ガス濃度が5〜40 vol%、炭酸ガス濃度が
2 vol%以下、湿度が50〜70%である請求項8記載
の堆肥化方法。
9. The anaerobic atmosphere in the first step has a carbon dioxide gas concentration of 10 to 35 vol%, an oxygen concentration of less than 5 vol%, and a humidity of 70 to 90%. The composting method according to claim 8, wherein the oxygen gas concentration is 5 to 40 vol%, the carbon dioxide gas concentration is 2 vol% or less, and the humidity is 50 to 70%.
【請求項10】 前記第1の工程において、有機廃棄物
の温度は40〜70℃に維持され、前記第2の工程は、
有機廃棄物の温度が60〜75℃に維持される期間と温
度が50℃以下となる期間とを有する請求項8又は9に
記載の堆肥化方法。
10. In the first step, the temperature of the organic waste is maintained at 40 to 70 ° C., and in the second step,
The composting method according to claim 8 or 9, wherein the method has a period in which the temperature of the organic waste is maintained at 60 to 75 ° C and a period in which the temperature is 50 ° C or lower.
【請求項11】 更に、前記第2の工程を経た有機廃棄
物に抗生物質を生産する放線菌を繁殖させる第3の工程
を有する請求項8〜10のいずれかに記載の堆肥化方
法。
11. The composting method according to claim 8, further comprising a third step of breeding actinomycetes producing antibiotics in the organic waste that has passed through the second step.
【請求項12】 前記第3の工程の雰囲気は、酸素ガス
濃度が18〜20%、炭酸ガス濃度が2%以下、湿度が
50〜70%となるように管理されることを特徴とする
請求項11記載の堆肥化方法。
12. The atmosphere in the third step is controlled so that the oxygen gas concentration is 18 to 20%, the carbon dioxide gas concentration is 2% or less, and the humidity is 50 to 70%. Item 13. The composting method according to Item 11.
【請求項13】 更に、第3の工程を経た有機廃棄物を
成形して水分含量が30wt%以上となる程度に乾燥する
成形工程を有することを特徴とする請求項11又は12
記載の堆肥化方法。
13. The method according to claim 11, further comprising a forming step of forming the organic waste having passed through the third step and drying the formed organic waste to a water content of 30% by weight or more.
The composting method as described.
【請求項14】 更に、前記第1の工程前に、有機廃棄
物のC/N比を25〜40、含水率を45〜70wt%に
調整する工程を有する請求項8〜13のいずれかに記載
の堆肥化方法。
14. The method according to claim 8, further comprising a step of adjusting the C / N ratio of the organic waste to 25 to 40 and the water content to 45 to 70 wt% before the first step. The composting method as described.
【請求項15】 前記第1の工程は5〜10日間、前記
第2の工程は14〜30日間、前記第3の工程は30〜
90日間行われることを特徴とする請求項11〜14の
いずれかに記載の堆肥化方法。
15. The first step is 5-10 days, the second step is 14-30 days, and the third step is 30-30 days.
The method according to any of claims 11 to 14, wherein the method is performed for 90 days.
【請求項16】 有機物の堆肥化によって得られる堆肥
化物の近赤外スペクトルを測定し、測定された近赤外ス
ペクトルに基づいて該堆肥化物の腐熟度を判定すること
を特徴とする堆肥化物の評価方法。
16. A method of measuring the near-infrared spectrum of a compost obtained by composting an organic matter, and judging the maturity of the compost based on the measured near-infrared spectrum. Evaluation method.
【請求項17】 前記腐熟度の判定において、近赤外ス
ペクトルにおける吸光度が小さい場合又は反射が大きい
場合に腐熟度が高くなるように判定される請求項16記
載の評価方法。
17. The evaluation method according to claim 16, wherein in the determination of the maturity, the maturity is determined to be high when the absorbance in the near-infrared spectrum is small or when the reflection is large.
【請求項18】 腐熟度のキャリブレーション用堆肥化
物試料の近赤外スペクトルデータから腐熟度を判定する
ための判別関数を判別分析によって作成し、評価する堆
肥化物の近赤外スペクトルデータから上記判別関数を用
いて該堆肥化物の腐熟度を判定することを特徴とする堆
肥化物の評価方法。
18. A discriminant function for judging the degree of maturity from near-infrared spectrum data of a compost sample for calibration of maturity is prepared by discriminant analysis, and the discrimination function is determined from near-infrared spectrum data of the compost to be evaluated. A method for evaluating compost, comprising determining the maturity of the compost using a function.
JP10280291A 1998-10-01 1998-10-01 Composting method of organic waste and evaluation method of composted material thereby Pending JP2000109386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10280291A JP2000109386A (en) 1998-10-01 1998-10-01 Composting method of organic waste and evaluation method of composted material thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10280291A JP2000109386A (en) 1998-10-01 1998-10-01 Composting method of organic waste and evaluation method of composted material thereby

Publications (1)

Publication Number Publication Date
JP2000109386A true JP2000109386A (en) 2000-04-18

Family

ID=17622947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10280291A Pending JP2000109386A (en) 1998-10-01 1998-10-01 Composting method of organic waste and evaluation method of composted material thereby

Country Status (1)

Country Link
JP (1) JP2000109386A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347247A (en) * 2000-06-07 2001-12-18 Kurita Water Ind Ltd Dry methane fermentation method for organic waste
WO2005090265A1 (en) * 2004-03-24 2005-09-29 Sunroute Co., Ltd. Process for producing plant/soil activation liquid and method of using the same
JP2007312738A (en) * 2006-05-29 2007-12-06 Kikkoman Corp Method for predicting growth of microorganism in food and drink
JP2008037718A (en) * 2006-08-09 2008-02-21 Hoei Bussan Kk Low odor composting treatment method
JP2010088302A (en) * 2007-11-14 2010-04-22 Shinjiro Kanazawa Manufacturing method of odor-assimilating (decomposing) bacteria and compost, and utilization method thereof
US7842510B2 (en) 2006-08-24 2010-11-30 Ryokusan Corporation Limited Method for measuring maturity degree of compost and measuring solution
CN102319719A (en) * 2011-07-14 2012-01-18 浙江大学 Comprehensive recycling treatment method of domestic garbage in villages and towns
JP2012076020A (en) * 2010-10-01 2012-04-19 Kyoritsu Kogyo Kk Food waste treatment system
CN102718577A (en) * 2012-06-15 2012-10-10 山东光大肥业科技有限公司 Special organic culturing substrate capable of preventing and treating diseases for peppers and preparation method of special organic culturing substrate
JP2012228253A (en) * 2012-07-04 2012-11-22 National Agriculture & Food Research Organization Method for preparing nutrient solution for plant cultivation
JP2013159535A (en) * 2012-02-07 2013-08-19 Someya:Kk Method for producing liquid fertilizer, method for producing compost and no-tillage farming method
JP5557967B1 (en) * 2013-03-13 2014-07-23 株式会社シティック Method for producing seeding agent
JP2016113357A (en) * 2014-12-10 2016-06-23 株式会社前川製作所 Producing method of phosphoric acid fertilizer and producing device of phosphoric acid fertilizer
CN111842419A (en) * 2020-07-10 2020-10-30 江门市赛科环保科技有限公司 Kitchen waste treatment method
KR102228080B1 (en) * 2020-09-22 2021-03-15 박이동 Method for Manufacturing Fertilizer Using Organic Waste
WO2021205960A1 (en) * 2020-04-09 2021-10-14 昭和電工株式会社 Method for manufacturing fertilizer
CN115304410A (en) * 2022-10-12 2022-11-08 广东省农业科学院动物科学研究所 Method for treating Chinese herbal medicine solid waste

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543504B2 (en) * 2000-06-07 2010-09-15 栗田工業株式会社 Dry methane fermentation method for organic waste
JP2001347247A (en) * 2000-06-07 2001-12-18 Kurita Water Ind Ltd Dry methane fermentation method for organic waste
WO2005090265A1 (en) * 2004-03-24 2005-09-29 Sunroute Co., Ltd. Process for producing plant/soil activation liquid and method of using the same
JP2005306616A (en) * 2004-03-24 2005-11-04 Sunroute:Kk Process for producing plant/soil activation liquid and method of using the same
JP2007312738A (en) * 2006-05-29 2007-12-06 Kikkoman Corp Method for predicting growth of microorganism in food and drink
JP2008037718A (en) * 2006-08-09 2008-02-21 Hoei Bussan Kk Low odor composting treatment method
US7842510B2 (en) 2006-08-24 2010-11-30 Ryokusan Corporation Limited Method for measuring maturity degree of compost and measuring solution
JP2010088302A (en) * 2007-11-14 2010-04-22 Shinjiro Kanazawa Manufacturing method of odor-assimilating (decomposing) bacteria and compost, and utilization method thereof
JP2012076020A (en) * 2010-10-01 2012-04-19 Kyoritsu Kogyo Kk Food waste treatment system
CN102319719A (en) * 2011-07-14 2012-01-18 浙江大学 Comprehensive recycling treatment method of domestic garbage in villages and towns
JP2013159535A (en) * 2012-02-07 2013-08-19 Someya:Kk Method for producing liquid fertilizer, method for producing compost and no-tillage farming method
CN102718577A (en) * 2012-06-15 2012-10-10 山东光大肥业科技有限公司 Special organic culturing substrate capable of preventing and treating diseases for peppers and preparation method of special organic culturing substrate
JP2012228253A (en) * 2012-07-04 2012-11-22 National Agriculture & Food Research Organization Method for preparing nutrient solution for plant cultivation
JP5557967B1 (en) * 2013-03-13 2014-07-23 株式会社シティック Method for producing seeding agent
JP2016113357A (en) * 2014-12-10 2016-06-23 株式会社前川製作所 Producing method of phosphoric acid fertilizer and producing device of phosphoric acid fertilizer
WO2021205960A1 (en) * 2020-04-09 2021-10-14 昭和電工株式会社 Method for manufacturing fertilizer
CN111842419A (en) * 2020-07-10 2020-10-30 江门市赛科环保科技有限公司 Kitchen waste treatment method
CN111842419B (en) * 2020-07-10 2022-05-27 江门市赛科环保科技有限公司 Kitchen waste treatment method
KR102228080B1 (en) * 2020-09-22 2021-03-15 박이동 Method for Manufacturing Fertilizer Using Organic Waste
CN115304410A (en) * 2022-10-12 2022-11-08 广东省农业科学院动物科学研究所 Method for treating Chinese herbal medicine solid waste

Similar Documents

Publication Publication Date Title
JP2000109386A (en) Composting method of organic waste and evaluation method of composted material thereby
Adegunloye et al. Microbial analysis of compost using cowdung as booster
Gajalakshmi et al. Solid waste management by composting: state of the art
Wang et al. Maturity indices for composted dairy and pig manures
Li et al. Compositional changes of cottonseed hull substrate during P. ostreatus growth and the effects on the feeding value of the spent substrate
TWI410394B (en) Fermented Fertilizers Containing Bamboo Active Ingredients and Their Manufacturing Methods
US8361171B2 (en) Method and kit
CN105112311B (en) Pichia pastoris YPD-YL2 and its application in biological deodorizing
JP2011078394A (en) Fermentation medium for edible mushroom and production method therefor
CN105859338A (en) Functional microbial soil conditioner and preparation method thereof
US20040115791A1 (en) Method and system of disposing food wastes
JP3993070B2 (en) Method for producing lactic acid fermentation decomposition active enzyme composition and lactic acid fermentation decomposition active enzyme composition
JP2004141147A (en) Fermentation type decomposition-accelerating enzyme agent, organic fertilizer, organic feed and method for producing them
Baldi et al. Organic and symbiotic fertilization of tomato plants monitored by Litterbag-NIRS and Foliar-NIRS rapid spectroscopic methods
CN103875453B (en) The filbert Twospore Mushroom bacterial strain in Tibet and sporocarp culture method thereof
Natasya et al. Analysis of Eco-enzyme Quality Based on Differences in Plant Tissue
Indasah et al. Local microorganism from “tape”(fermented cassava) in composition and its effect on physical, chemical and biological quality in environmental
JP6901091B2 (en) Manufacturing method of fermented product
JP2008023523A (en) Lactic acid fermentation composition and its manufacturing method
Taskirawati Sago pulp and rice husk as an alternative material for the cultivation of oyster mushroom (Pleurotus ostreatus)
Bhatia et al. Characterization and yield performance of spawn prepared from Hypsizygus ulmarius (Bull.) Redhead and some Pleurotus species (Agaricomycetes)
Omokaro et al. Cultivation of mushroom (Pleurotus ostreatus) and the microorganisms associated with the substrate used.
KR100283577B1 (en) Composting and Feeding Method of Food Waste and Organic Waste and Property Fermentation Method
Khalil et al. Evaluation of the composting process through the changes in physical, chemical, microbial and enzymatic parameters
Natasya et al. Analyzing the Quality of Eco-Enzymes Based on Differences in Plant Tissue on the Organic Matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203