JP2000018672A - Heat source instrument control device - Google Patents
Heat source instrument control deviceInfo
- Publication number
- JP2000018672A JP2000018672A JP10195033A JP19503398A JP2000018672A JP 2000018672 A JP2000018672 A JP 2000018672A JP 10195033 A JP10195033 A JP 10195033A JP 19503398 A JP19503398 A JP 19503398A JP 2000018672 A JP2000018672 A JP 2000018672A
- Authority
- JP
- Japan
- Prior art keywords
- forced
- heat source
- determination
- load
- increase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、負荷状態に応じ
て熱源機器の運転台数を制御する熱源機器制御装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source device control device for controlling the number of operating heat source devices according to a load state.
【0002】[0002]
【従来の技術】図11に冷凍機の運転台数を制御する運
転台数制御システムの計装図を示す。同図において、1
−1〜1−3は冷凍機、2−1〜2−3はポンプ、3お
よび4はヘッダ、5はファンコイルユニット等の負荷機
器、6は送水管路、7は還水管路、8は負荷機器5への
送水の温度TSを検出する温度計、9は負荷機器5から
の還水の温度TR1を検出する温度計、10は還水の流
量Fを検出する流量計、11はヘッダ3とヘッダ4との
間をバイパスするバイパス管路、12はバイパス管路1
1の途上に設けられたバイパス弁、13はヘッダ3とヘ
ッダ4との間の差圧を検出する差圧計、14は制御装置
(熱源機器制御装置)、15は冷凍機1−1〜1−3へ
の還水の入口温度(熱源入口温度)TR2を検出する温
度計である。2. Description of the Related Art FIG. 11 shows an instrumentation diagram of an operation number control system for controlling the number of operating refrigerators. In the figure, 1
-1 to 1-3 are refrigerators, 2-1 to 2-3 are pumps, 3 and 4 are headers, 5 is load equipment such as a fan coil unit, 6 is a water supply line, 7 is a return line, and 8 is a return line. A thermometer for detecting a temperature TS of water supplied to the load device 5, a thermometer 9 for detecting a temperature TR1 of the return water from the load device 5, a flow meter 10 for detecting a flow rate F of the return water, and a header 3 A bypass line for bypassing between the header and the header 4;
1, a bypass valve provided on the way 1, a differential pressure gauge 13 for detecting a differential pressure between the header 3 and the header 4, a control device (heat source device control device) 14, and a refrigerator 1-1 to 1-1- 3 is a thermometer for detecting the inlet temperature TR2 of the return water (heat source inlet temperature).
【0003】この運転台数制御システムにおいて、ポン
プ2−1〜2−3により圧送された送水は、冷凍機1−
1〜1−3を介しヘッダ3を経て送水管路6により供給
され、負荷機器5を介し、還水管路7により還水として
ヘッダ4へ至り、再びポンプ2−1〜2−3によって圧
送され、以上の経路を循環する。制御装置14は、差圧
計13からの計測値に応じてバイパス弁12へ開度指令
を与え、送水の送水圧力を制御する一方、温度計8から
の送水温度TS,温度計9からの還水温度TR1および
流量計10からの還水の流量Fから、F×(TR1−T
S)として現在の負荷熱量Qを求め(Q=F×(TR1
−TS))、この現在の負荷熱量Qに応じて冷凍機1−
1〜1−3の運転台数を制御する。In this system for controlling the number of operating units, water supplied by pumps 2-1 to 2-3 is supplied to a refrigerator 1-
The water is supplied by the water supply line 6 via the header 3 via the 1-1 to 1-3, reaches the header 4 as the return water via the return device 7 via the load device 5, and is again pumped by the pumps 2-1 to 2-3. Circulate through the above paths. The control device 14 gives an opening command to the bypass valve 12 according to the measurement value from the differential pressure gauge 13 to control the water supply pressure, while the water supply temperature TS from the thermometer 8 and the return water from the thermometer 9. From the temperature TR1 and the flow rate F of the return water from the flow meter 10, F × (TR1-T
S), the current load heat quantity Q is obtained (Q = F × (TR1
-TS)), and the refrigerator 1-
The number of operating units 1-3 is controlled.
【0004】この場合、制御装置14には、図12
(a),(b)に示すような運転順序テーブルTAと機
器能力表TBとが設定されており、この運転順序テーブ
ルTAと機器能力表TBとから現在の負荷熱量Qを満た
すような最小台数の運転機器の組み合わせを決定する。
すなわち、制御装置14は、図12(c)に運転指定表
TCを示すように、負荷量Qが500冷凍トン(RT)
までは機器NO.1に対応する冷凍機1−1を選択指定
し、1000RTまでは機器NO.1,2に対応する冷
凍機1−1,1−2を選択指定し、1500RTまでは
機器NO.1,2,3に対応する冷凍機1−1,1−
2,1−3を選択指定し、この選択指定した冷凍機を起
動する。In this case, the control device 14
An operation sequence table TA and a device capacity table TB as shown in FIGS. 3A and 3B are set, and the minimum number of units satisfying the current load heat quantity Q is obtained from the operation sequence table TA and the device capability table TB. Determine the combination of operating devices.
That is, as shown in the operation designation table TC in FIG. 12C, the control device 14 sets the load Q to 500 refrigeration tons (RT).
Until the device No. Select and specify the refrigerator 1-1 corresponding to the device No. 1 and the device No. up to 1000RT. Refrigerators 1-1 and 1-2 corresponding to Nos. 1 and 2 are selected and designated. Refrigerator 1-1,1- corresponding to 1,2,3
2, 1-3 is selected and specified, and the selected and specified refrigerator is started.
【0005】また、制御装置14は、上述した負荷熱量
Qに応じた運転台数の制御と併せ、熱源入口温度TR2
が許容範囲(例えば、9℃以上)となるように冷凍機の
運転台数制御を行う。例えば、送水温度TSを7℃に設
定した場合、熱源入口温度TR2が9℃以上ないと、冷
凍機1−1〜1−3が故障したり、あるいは冷凍機自身
の保護機能が働き停止してしまう。空調負荷が小さい場
合は熱源入口温度TR2が9℃以下になる可能性があ
る。そこで、この熱源入口温度TR2に基づく運転台数
の制御により減段を行って、熱源入口温度TR2が9℃
以上に保たれるようにする。In addition to controlling the number of operating units according to the load heat quantity Q, the control device 14
Of the refrigerators is controlled so that is within an allowable range (for example, 9 ° C. or more). For example, when the water supply temperature TS is set to 7 ° C., if the heat source inlet temperature TR2 is not 9 ° C. or more, the refrigerators 1-1 to 1-3 break down, or the protection function of the refrigerator itself operates and stops. I will. When the air conditioning load is small, the heat source inlet temperature TR2 may be 9 ° C. or less. Therefore, the step reduction is performed by controlling the number of operating units based on the heat source inlet temperature TR2, and the heat source inlet temperature TR2 becomes 9 ° C.
To be kept above.
【0006】また、制御装置14は、上述した負荷熱量
Qに応じた運転台数の制御と併せて、負荷熱量Qが所定
範囲(増段補正可能範囲)内にあることを前提とし、送
水温度TSが増段補正温度設定値ts(例えば、ts=
7℃)を越えないように冷凍機の運転台数制御を行う。
すなわち、負荷熱量Qが増段補正可能範囲内で、かつ送
水温度TSが増段補正温度設定値ts以上(TS>t
s)となった場合、増段(増段補正)を行う。In addition to controlling the number of operating units according to the load heat quantity Q, the control device 14 assumes that the load heat quantity Q is within a predetermined range (a step-up correction possible range) and controls the water supply temperature TS Is the step correction temperature setting value ts (for example, ts =
(7 ° C) so that the number of operating refrigerators is controlled.
That is, the load calorie Q is within the step-up correction possible range, and the water supply temperature TS is equal to or higher than the step-up correction temperature set value ts (TS> t
If s), step increase (step increase correction) is performed.
【0007】図13に従来の運転台数制御動作を示す。
先ず、負荷判定1として、熱源入口温度に基づく運転台
数の減段判定を行う。すなわち、熱源入口温度TR2が
予め設定されている強制減段温度設定値tx以下(TR
2<tx)か否かをチェックし(ステップ201)、T
R2<txであれば負荷判定1が成立したとして(ステ
ップ202の「Y」)、減段処理を行う(ステップ20
3)。TR2≧txであれば、負荷判定1が成立しなか
ったとして、ステップ204へ進む。FIG. 13 shows a conventional operation number control operation.
First, as load determination 1, a step-down determination of the number of operating units based on the heat source inlet temperature is performed. That is, the heat source inlet temperature TR2 is equal to or less than the preset forced step-down temperature set value tx (TR
2 <tx) (step 201), and T
If R2 <tx, it is determined that the load determination 1 is satisfied (“Y” in step 202), and the step reduction process is performed (step 20).
3). If TR2 ≧ tx, it is determined that the load determination 1 has not been established, and the process proceeds to step 204.
【0008】ステップ204では、負荷判定3として、
負荷熱量に基づく減段判定を行う。すなわち、送水温度
TS,還水温度TR1および流量Fから、現在の負荷熱
量Q=F×(TR1−TS)を求め、この現在の負荷熱
量Qと「(現在運転中合計定格機器能力−減段予定機能
力)×(1−DIF)=QDIF」とを比較する。ここ
で、DIFはディファレンシャルであり、20%程度の
値とされている。現在の負荷熱量QがQDIFよりも小
さければ(QDIF>Q)、負荷判定3が成立したとし
て(ステップ205の「Y」)、減段処理を行う。QD
IF≦Qであれば、負荷判定3が成立しなかったとし
て、ステップ206へ進む。In step 204, load determination 3
A step-down determination is performed based on the amount of load heat. That is, the current load heat quantity Q = F × (TR1-TS) is calculated from the water supply temperature TS, the return water temperature TR1, and the flow rate F, and the current load heat quantity Q is referred to as “(total rated equipment capacity during current operation−step-down step). (Scheduled functional capability) × (1−DIF) = QDIF ”. Here, DIF is a differential, and is set to a value of about 20%. If the current load heat quantity Q is smaller than QDIF (QDIF> Q), it is determined that the load determination 3 has been established (“Y” in step 205), and the step reduction process is performed. QD
If IF ≦ Q, it is determined that the load determination 3 has not been established, and the process proceeds to step 206.
【0009】ステップ206では、負荷判定4として、
負荷熱量に基づく増段判定を行う。すなわち、現在の負
荷熱量Qと「現在運転中合計定格機器能力×(1+HL
MT)=QHLMT」とを比較する。ここで、HLMT
はハイリミットであり、DIFよりも少し小さ目の値
(HLMT=DIF−α)とされている。現在の負荷熱
量QがQHLMTよりも大きければ(Q>QHLM
T)、負荷判定4が成立したとして(ステップ207の
「Y」)、増段処理を行う(ステップ208)。Q≦Q
HLMTであれば、負荷判定4が成立しなかったとし
て、ステップ209へ進む。In step 206, load determination 4
A step increase determination based on the load heat amount is performed. That is, the current load calorie Q and “the total rated equipment capacity during the current operation × (1 + HL)
MT) = QHLMT ”. Where HLMT
Is a high limit, which is a value slightly smaller than DIF (HLMT = DIF-α). If the current load heat quantity Q is larger than QHLMT (Q> QHLM
T), assuming that the load determination 4 has been established (“Y” in step 207), the step increase process is performed (step 208). Q ≦ Q
If it is HLMT, it is determined that the load determination 4 has not been established, and the process proceeds to step 209.
【0010】ステップ209では、負荷判定5として、
負荷熱量および送水温度に基づく増段補正判定を行う。
すなわち、現在の負荷熱量Qと「現在運転中合計定格機
器能力×(1−LLMT)=QLLMT」と「現在運転
中合計定格機器能力×(1+HLMT)=QHLMT」
とを比較すると共に、送水温度TSと増段補正温度設定
値tsとを比較する。ここで、LLMTはローリミット
であり、HLMTと等しい値とされている(LLMT=
HLMT=DIF−α)とされている。QLLMT<Q
<QHLMT(図10に斜線で示す領域:増段補正可能
範囲)、かつTS>tsであれば、負荷判定5が成立し
たとして(ステップ210の「Y」)、増段処理を行う
(ステップ208)。In step 209, as load determination 5,
A step-up correction determination is performed based on the load calorie and the water supply temperature.
That is, the current load calorie Q, “currently operating total rated equipment capacity × (1−LLMT) = QLLMT” and “currently operating total rated equipment capacity × (1 + HLMT) = QHLMT”
Is compared with the water supply temperature TS and the step-up correction temperature set value ts. Here, LLMT is a low limit, and has a value equal to HLMT (LLMT =
HLMT = DIF-α). QLLMT <Q
If <QHLMT (the area indicated by hatching in FIG. 10: step increase correction possible range) and TS> ts, it is determined that load determination 5 is satisfied (“Y” in step 210), and step increase processing is performed (step 208). ).
【0011】QLLMT<Q<QHLMT、かつTS>
tsでなければ、負荷判定5が成立しなかったとして、
数制御終了でないことを確認のうえ(ステップ21
1)、ステップ201へ戻る。この負荷判定5(増段補
正判定)は冷凍機の能力が外気の気象条件により常に変
動するために行う。また、この負荷判定5では、送水温
度TSによる増段はあくまで補助的なものであるため、
負荷熱量Qによる台数制御を主体的に動作させるよう
に、負荷熱量Qがある一定レベル(QLLMT<Q<Q
HLMT)に達していないと送水温度条件が成立しても
増段補正がかからないようにしている。QLLMT <Q <QHLMT and TS>
If it is not ts, it is determined that the load determination 5 is not satisfied,
After confirming that the numerical control has not been completed (step 21)
1) Return to step 201. This load determination 5 (step increase correction determination) is performed because the capacity of the refrigerator always fluctuates due to the weather conditions of the outside air. In addition, in the load determination 5, since the step increase by the water supply temperature TS is merely an auxiliary,
The load heat quantity Q is fixed at a certain level (QLLMT <Q <Q) such that the unit control based on the load heat quantity Q is mainly operated.
HLMT), the step increase correction is not performed even if the water supply temperature condition is satisfied.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、従来の
運転台数制御システムでは、例えば性能劣化によって冷
凍機能力が想定能力を大きくした回る場合、実際の生成
能力より必要な熱量が上回り、結果として送水温度が上
昇してしまい、空調機で十分な熱交換が行えなくなり、
結果として温度差がつかずに計測消費熱量が増段するの
に十分なレベルに達することができない場合が発生す
る。一度この状況に陥ると、消費熱量は増えないため、
送水温度が上昇しても次段の冷凍機が起動しなくなる。
このような状況は、冷凍機の始動時間が長い場合や冷凍
機の起動の前に空調機が起動してしまっている場合に
も、同様にして生ずる。However, in the conventional system for controlling the number of operating units, for example, when the refrigeration function exceeds the assumed capacity due to performance deterioration, the required heat quantity exceeds the actual generation capacity, and as a result, the water supply temperature increases. Rise, the air conditioner can not perform sufficient heat exchange,
As a result, there occurs a case where the measured heat consumption cannot reach a level sufficient to increase the number of steps without a temperature difference. Once in this situation, the amount of heat consumed will not increase,
Even if the water supply temperature rises, the next stage refrigerator will not start.
Such a situation also occurs when the start-up time of the refrigerator is long or when the air conditioner has been started before the start of the refrigerator.
【0013】例えば、図11において、冷凍機1−1,
1−2,1−3の設計能力(定格機器能力)が各々20
0RTであり、1台目に起動した冷凍機1−1の冷凍機
能力が実際には120RT、空調負荷が150RT、設
計送水条件が7℃であったとする。この場合、計測され
る負荷熱量Qは150RTであり、冷凍機1−1の定格
機器能力は200RTであるため、負荷熱量Qによる増
段は行われない。この時、能力は30RT分不足してい
るので、送水温度TSが上昇する。しかし、消費熱量Q
は増段補正可能範囲に入らないので(送水温度TSが上
昇し過ぎると熱交換がされず実際には負荷があっても冷
水側の計測熱量は増えない)、送水温度TSがいくら上
昇しても次段の冷凍機は追加起動されない。[0013] For example, in FIG.
Each of 1-2 and 1-3 has a design capacity (rated equipment capacity) of 20
It is assumed that the refrigerating function of the refrigerator 1-1 started at the first unit is actually 120 RT, the air conditioning load is 150 RT, and the design water supply condition is 7 ° C. In this case, the measured load heat amount Q is 150 RT, and the rated device capability of the refrigerator 1-1 is 200 RT, so that the step increase by the load heat amount Q is not performed. At this time, the water supply temperature TS increases because the capacity is insufficient for 30 RT. However, the heat consumption Q
Does not fall within the range in which the water supply temperature can be corrected (if the water supply temperature TS rises too high, heat exchange does not occur, and even if there is a load, the measured caloric value on the chilled water side does not increase). Also, the next-stage refrigerator is not started additionally.
【0014】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、熱源機器の
性能劣化によって実際の能力が設計能力を大幅に下回る
場合や熱源機器が起動されて十分能力を発揮する前に空
調機が起動してしまった場合など、検出される負荷熱量
が熱源機器を新たに増段する程でなくとも実際には増段
する必要がある場合の不都合を取り除くことのできる熱
源機器制御装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to reduce the performance of a heat source device so that its actual performance is significantly lower than the design capability or to start the heat source device. In some cases, such as when the air conditioner is started before the capacity is fully demonstrated, the detected heat load does not have to be enough to add a new heat source device, but it actually needs to be increased. An object of the present invention is to provide a heat source device control device that can be removed.
【0015】[0015]
【課題を解決するための手段】このような目的を達成す
るために、第1発明(請求項1に係る発明)は、負荷状
態に応じて熱源機器の運転台数を制御する熱源機器制御
装置において、送水温度,還水温度および流量より求ま
る負荷熱量に基づいて熱源機器の運転台数の増減段判定
を行う増減段判定手段と、この増減段判定手段による増
減段判定よりも前に送水温度に基づく強制増段判定を行
い、現在の送水温度が強制増段温度設定値よりも不足状
態ならば熱源機器の運転台数の強制増段を行う強制増段
判定手段とを設けたものである。この発明によれば、送
水温度,還水温度および流量より求まる負荷熱量に基づ
く増減段判定よりも前に、送水温度に基づく強制増段判
定が行われる。この強制増段判定では、現在の送水温度
が強制増段温度設定値よりも不足状態ならば(冷凍機の
場合:送水温度が強制増段温度設定値よりも高い、温水
機の場合:送水温度が強制増段温度設定値よりも低
い)、熱源機器の運転台数が強制増段される。In order to achieve the above object, a first invention (an invention according to claim 1) is directed to a heat source device control apparatus for controlling the number of operating heat source devices according to a load state. Increase / decrease stage determination means for determining the increase / decrease stage of the number of operating heat source devices based on the load heat quantity obtained from the water supply temperature, the return water temperature and the flow rate, and based on the water supply temperature prior to the increase / decrease stage determination by the increase / decrease stage determination means. A forced step-up determination means for performing a step-by-step determination and forcing the step-up of the number of operating heat source devices if the current water supply temperature is lower than the set value of the forced step-up temperature. According to the present invention, the forced step increase determination based on the water supply temperature is performed before the increase / decrease stage determination based on the load heat quantity obtained from the water supply temperature, the return water temperature, and the flow rate. In this forced step-up determination, if the current water supply temperature is lower than the forced step-up temperature set value (for the refrigerator: the water supply temperature is higher than the forced step-up temperature set value, for the water heater: the water supply temperature Is lower than the forced stepping temperature set value), the number of operating heat source devices is stepped up.
【0016】第2発明(請求項2に係る発明)は、負荷
状態に応じて熱源機器の運転台数を制御する熱源機器制
御装置において、熱源入口温度に基づいて熱源機器の運
転台数の減段判定を行う減段判定手段と、この減段判定
手段による減段判定の後に送水温度による強制増段判定
を行い、現在の送水温度が強制増段温度設定値よりも不
足状態ならば熱源機器の運転台数の強制増段を行う強制
増段判定手段と、この強制増段判定手段による強制増段
判定の後に送水温度,還水温度および流量より求まる負
荷熱量に基づいて熱源機器の運転台数の増減段判定を行
う増減段判定手段と、この増減段判定手段による増減段
判定の後に負荷熱量および送水温度に基づく増段補正判
定を行う増段補正判定手段とを設けたものである。この
発明によれば、第1ステップとして熱源入口温度に基づ
く減段判定(負荷判定1)が行われ、第2ステップとし
て送水温度による強制増段判定が行われ(負荷判定
2)、第3ステップとして送水温度,還水温度および流
量より求まる負荷熱量に基づく増減段判定(負荷判定
3,4)が行われ、第4ステップとして負荷熱量および
送水温度に基づく増段補正判定(負荷判定5)が行われ
る。第2ステップの強制増段判定では、現在の送水温度
が強制増段温度設定値よりも不足状態ならば(冷凍機の
場合:送水温度が強制増段温度設定値よりも高い、温水
機の場合:送水温度が強制増段温度設定値よりも低
い)、熱源機器の運転台数が強制増段される。A second invention (an invention according to claim 2) is a heat source equipment control device for controlling the number of operating heat source equipment in accordance with a load state, wherein a step-down determination of the number of operating heat source equipment is performed based on a heat source inlet temperature. Step-down determining means for performing the step-down determination, and after the step-down determination by the step-down determining means, performs a forced step-up determination based on the water supply temperature. A forced step-up determining means for forcibly increasing the number of units, and a step of increasing or decreasing the number of operating heat source devices based on the load heat quantity obtained from the water supply temperature, the return water temperature and the flow rate after the forced step-up determination by the forced step-up determining means An increase / decrease stage determining means for making a determination and an increase / decrease determination unit for performing an increase correction determination based on the load calorie and the water supply temperature after the increase / decrease stage determination by the increase / decrease stage determination means are provided. According to the present invention, the step reduction determination (load determination 1) based on the heat source inlet temperature is performed as the first step, the forced step increase determination based on the water supply temperature is performed (load determination 2) as the second step, and the third step As a fourth step, an increase / decrease stage determination based on the load calorie obtained from the water supply temperature, the return water temperature and the flow rate (load determinations 3 and 4) is performed. As a fourth step, a stage increase correction determination based on the load calorie and the water supply temperature (load determination 5) is performed. Done. In the forced step-up determination of the second step, if the current water supply temperature is insufficient than the forced step-up temperature set value (in the case of a refrigerator: the water supply temperature is higher than the forced step-up temperature set value, in the case of a water heater : The water supply temperature is lower than the forced stage temperature setting value), and the number of operating heat source devices is forcibly increased.
【0017】第3発明(請求項3に係る発明)は、第1
および第2発明において、強制増段判定手段によって強
制増段が行われる場合、増減段判定手段における通常の
減段位置を強制増段が行われる位置から所定値分下回っ
た位置に変更する減段位置変更手段を設けたものであ
る。この発明によれば、送水温度に基づく強制増段が行
われると、増減段判定手段における通常の減段位置(Q
DIF)が、強制増段が行われた位置から所定値下回っ
た位置(QDIF’)に変更される。第4発明(請求項
4に係る発明)は、第3発明において、強制増段判定手
段による強制増段中に減段された場合、増減段判定手段
において変更された減段位置を通常の減段位置に戻す減
段位置戻帰手段を設けたものである。この発明によれ
ば、強制増段中に減段されると、強制増段が行われた位
置から所定値下回った位置に変更されていた減段位置
(QDIF’)が通常の減段位置(QDIF)に戻され
る。第5発明(請求項5に係る発明)は、第1〜第4発
明において、強制増段判定手段によって強制増段が行わ
れる場合、警報を出力する警報出力手段を設けたもので
ある。この発明によれば、警報によって、強制増段が知
らされる。The third invention (the invention according to claim 3) is the first invention.
In the second invention, when the forced step-up determining means performs the step-up operation, the step-down step of changing the normal step-down position in the increasing / decreasing step determining means from a position where the forced step-up is performed to a position lower by a predetermined value. A position changing means is provided. According to the present invention, when the forced step-up based on the water supply temperature is performed, the normal step-down position (Q
DIF) is changed to a position (QDIF ′) below a predetermined value from the position where the forced step-up is performed. A fourth invention (an invention according to claim 4) is the third invention, wherein, when the step is reduced during the forced step-up by the forced step-up determining means, the step-down position changed by the increasing / decreasing step determining means is reduced to a normal position. A step-down position returning means for returning to the step position is provided. According to the present invention, when the step is reduced during the forced step-up, the step-down position (QDIF '), which has been changed from the position where the forced step-up is performed to a position lower than the predetermined value, is changed to the normal step-down position ( QDIF). A fifth invention (an invention according to claim 5) is the first to fourth inventions, wherein an alarm output means for outputting an alarm when the forced step-up determination is performed by the forced step-up determination means is provided. According to the present invention, the forced step increase is notified by the alarm.
【0018】[0018]
【発明の実施の形態】以下、本発明を実施の形態に基づ
き詳細に説明する。本発明に係る熱源機器制御装置を図
11に14’として示す。この制御装置(熱源機器制御
装置)14’を従来の制御装置14に代えて使用する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. The heat source device control device according to the present invention is shown as 14 'in FIG. This control device (heat source device control device) 14 'is used in place of the conventional control device 14.
【0019】制御装置14’は、その内部構成の概略を
図2に示すように、CPU14−1とROM14−2と
RAM14−3とインターフェイス14−4〜14−7
とを備えている。CPU14−1は、インターフェイス
14−4,14−5を介して与えられるシステムからの
各種入力情報を得て、ROM14−2に格納されたプロ
グラムに従い、RAM14−3にアクセスしながら、各
種処理動作を行う。As shown in FIG. 2, the controller 14 'has a CPU 14-1, a ROM 14-2, a RAM 14-3, and interfaces 14-4 to 14-7.
And The CPU 14-1 obtains various input information from the system provided via the interfaces 14-4 and 14-5, and performs various processing operations while accessing the RAM 14-3 according to a program stored in the ROM 14-2. Do.
【0020】CPU14−1には、インターフェイス1
4−4を介して送水温度TS,還水温度TR1および流
量Fが与えられ、インターフェイス14−5を介して冷
凍機1−1〜1−3への熱源入口温度TR2が与えられ
る。また、CPU14−1は、インターフェイス14−
6を介して警報を出力し、インターフェイス14−7を
介して冷凍機1−1〜1−3へ制御指令を送る。The CPU 14-1 has an interface 1
The water supply temperature TS, the return water temperature TR1, and the flow rate F are provided via 4-4, and the heat source inlet temperature TR2 to the refrigerators 1-1 to 1-3 is provided via the interface 14-5. In addition, the CPU 14-1 includes an interface 14-
6 to output a control command to the refrigerators 1-1 to 1-3 via the interface 14-7.
【0021】〔運転台数制御動作〕図1に制御装置1
4’のCPU14−1が行う運転台数制御動作を示す。 〔負荷判定1〕先ず、CPU14−1は、負荷判定1と
して、熱源入口温度に基づく運転台数の減段判定を行う
(ステップ101)。図3にこのステップ101での処
理動作の詳細を示す。CPU14−1は、現在運転台数
と減段可能台数とを比較し、現在運転台数>減段可能台
数であればステップ302へ進む。通常、減段可能台数
は1台とされる。[Operation for controlling the number of operating units] FIG.
4 'shows the operation number control operation performed by the CPU 14-1 of 4'. [Load Judgment 1] First, as the load judgment 1, the CPU 14-1 makes a step-down judgment of the number of operating units based on the heat source inlet temperature (step 101). FIG. 3 shows details of the processing operation in step 101. The CPU 14-1 compares the currently operated number with the number of step-down possible units, and proceeds to step 302 if the current number of operation> the number of step-down possible units. Usually, the number of steps that can be reduced is one.
【0022】ステップ302では、前回減段終了時から
減段効果待ち時間経過したか否かをチェックし、減段効
果待ち時間を経過していればステップ303へ進む。ス
テップ303では、インターフェイス14−5を介して
与えられる熱源入口温度TR2と強制減段温度設定値t
xとを比較する。ここで、TR2<txであれば、所定
時間の経過を待って(ステップ304)、負荷判定1が
成立したと判定する(ステップ305)。これに対し
て、ステップ301,302,303が「N」であれ
ば、負荷判定1は成立せずと判定する(ステップ30
6)。In step 302, it is checked whether or not the step-down effect waiting time has elapsed since the end of the previous step-down operation. If the step-down effect waiting time has elapsed, the routine proceeds to step 303. In step 303, the heat source inlet temperature TR2 provided through the interface 14-5 and the forced step-down temperature set value t
Compare with x. Here, if TR2 <tx, after elapse of a predetermined time (step 304), it is determined that the load determination 1 has been established (step 305). On the other hand, if steps 301, 302, and 303 are “N”, it is determined that load determination 1 is not established (step 30).
6).
【0023】この負荷判定1の結果は、ステップ102
でチェックされ、負荷判定1が成立していれば、減段処
理を行う(ステップ114)。この減段処理では現在運
転中の冷凍機の中から運転順位の一番低いものに停止指
令を送る。これにより、熱源入口温度TR2が強制減段
温度設定値tx以上に保たれるようになり、冷凍機1−
1〜1−3の故障が防止される。負荷判定1が成立して
いなければ、ステップ103へ進み、負荷判定2を行
う。The result of this load judgment 1 is
When the load determination 1 is established, the step reduction process is performed (step 114). In this step-down process, a stop command is sent to the lowest operating order among the refrigerators that are currently operating. As a result, the heat source inlet temperature TR2 is maintained at or above the forced step-down temperature set value tx.
Failures of 1-3 are prevented. If the load determination 1 has not been established, the routine proceeds to step 103, where the load determination 2 is performed.
【0024】〔負荷判定2〕負荷判定2では送水温度に
基づく運転台数の強制増段を行う。図4このステップ1
03での処理動作の詳細を示す。CPU14−1は、現
在運転台数と増段可能台数とを比較し、現在運転台数<
増段可能台数であればステップ402へ進む。増段可能
台数は最大運転可能台数であり、この実施の形態では3
台とされる。[Load Judgment 2] In Load Judgment 2, the number of operating units is forcibly increased based on the water supply temperature. Figure 4 Step 1
03 shows the details of the processing operation. The CPU 14-1 compares the current operating number with the number of units that can be increased, and determines the current operating number <
If the number can be increased, the process proceeds to step 402. The number of units that can be increased is the maximum number of units that can be operated.
It is a stand.
【0025】ステップ402では、前回増段終了時から
増段効果待ち時間経過したか否かをチェックし、増段効
果待ち時間を経過していればステップ403へ進む。ス
テップ403では、インターフェイス14−4を介して
与えられる送水温度TSと強制増段温度設定値tsuと
を比較する。ここで、TS>tsuであれば、所定時間
の経過を待って(ステップ404)、負荷判定2が成立
したと判定する(ステップ405)。これに対して、ス
テップ401,402,403が「N」であれば、負荷
判定2は成立せずと判定する(ステップ406)。In step 402, it is checked whether or not the step-up effect waiting time has elapsed since the end of the previous step-up, and if the step-up effect waiting time has elapsed, the routine proceeds to step 403. In step 403, the water supply temperature TS provided via the interface 14-4 is compared with the forced step-up temperature set value tsu. Here, if TS> tsu, after elapse of a predetermined time (step 404), it is determined that the load determination 2 has been established (step 405). On the other hand, if steps 401, 402, and 403 are “N”, it is determined that load determination 2 is not established (step 406).
【0026】この負荷判定2の結果は、ステップ104
でチェックされ、負荷判定2が成立していれば、インタ
ーフェイス14−6を介して警報を出力する(ステップ
116)。また、負荷熱量に基づく減段判定に際する減
段位置を変更したうえ(ステップ117)、強制増段処
理を行う(ステップ118)。図5にステップ117,
118での処理動作(減段位置変更,強制増段)の詳細
を示す。The result of this load judgment 2 is
Is checked, and if the load determination 2 is established, an alarm is output via the interface 14-6 (step 116). In addition, the position of the step reduction at the time of the step reduction determination based on the load heat amount is changed (step 117), and the forced step increase processing is performed (step 118). Step 117, FIG.
Details of the processing operation at 118 (step change position change, forced step increase) will be described.
【0027】ステップ117では、強制増段が行われる
位置からDIF(%)分下回った位置を減段位置(補正
減段位置)QDIF’に変更する(ステップ501)。
すなわち、負荷熱量に基づく減段判定に際し、通常であ
ればQDIFとされる減段位置を補正減段位置QDI
F’に変更する。これにより、負荷判定2に基づいて強
制増段された場合、直後の負荷熱量Qに基づく減段判定
で減段されてしまうということが防がれ、増減段の反復
が防止される。ステップ118では、現在停止中の冷凍
機の中から運転順位の一番高いものに起動指令を送り
(ステップ502)、効果待ち時間の経過を待つ(ステ
ップ503)。In step 117, the position lower by DIF (%) from the position where the forced step-up is performed is changed to the step-down position (correction step-down position) QDIF '(step 501).
That is, in the step-down determination based on the load heat amount, the step-down position that is normally set to QDIF is replaced with the correction step-down position QDI.
Change to F '. As a result, when the step is forcibly increased based on the load determination 2, it is prevented that the step is reduced by the step reduction determination based on the immediately subsequent load heat amount Q, and the repetition of the increase / decrease step is prevented. In step 118, a start command is sent to the highest operating order among the currently stopped refrigerators (step 502), and the elapse of the effect waiting time is waited (step 503).
【0028】ステップ104において負荷判定2が成立
していなければ、強制増段中か否かをチェックし(ステ
ップ105)、強制増段中であればステップ113へ進
み、強制増段中でなければステップ106へ進む。ステ
ップ106では負荷判定3を行う。ステップ113で
は、現在の負荷熱量Qと補正減段位置QDIF’とを比
較し、Q<補正減段位置QDIF’であれば減段処理を
行う(ステップ114)。この場合、ステップ115に
おいて、補正減段位置QDIF’を通常の減段位置QD
IFに戻す。If the load determination 2 is not established in step 104, it is checked whether or not a forced increase is being performed (step 105). Proceed to step 106. In step 106, load determination 3 is performed. In step 113, the current load heat quantity Q is compared with the corrected step-down position QDIF ', and if Q <the corrected step-down position QDIF', step-down processing is performed (step 114). In this case, in step 115, the correction step-down position QDIF 'is changed to the normal step-down position QDIF.
Return to IF.
【0029】〔負荷判定3〕負荷判定3では負荷熱量に
基づく減段判定を行う。図6ステップ106での処理動
作の詳細を示す。CPU14−1は、現在運転台数と減
段可能台数とを比較し、現在運転台数>減段可能台数で
あればステップ602へ進む。ステップ602では、前
回減段終了時から減段効果待ち時間経過したか否かをチ
ェックし、減段効果待ち時間を経過していればステップ
603へ進む。[Load Judgment 3] In the load judgment 3, a step-down judgment based on the load heat quantity is performed. 6 shows details of the processing operation in step 106. The CPU 14-1 compares the currently operated number with the number of step-down possible units, and proceeds to step 602 if the current number-of-operations unit> the number of step-down possible units. In step 602, it is checked whether or not the step-down effect waiting time has elapsed since the end of the previous step-down operation. If the step-down effect waiting time has elapsed, the process proceeds to step 603.
【0030】ステップ603では、インターフェイス1
4−4を介して与えられる送水温度TS,還水温度TR
1および流量Fから、現在の負荷熱量Q=F×(TR1
−TS)を求め、この現在の負荷熱量Qと「(現在運転
中合計定格機器能力−減段予定機能力)×(1−DI
F)=QDIF」とを比較する(ステップ604)。現
在の負荷熱量QがQDIFよりも小さければ(QDIF
>Q)、負荷判定3が成立したと判定する(ステップ6
05)。現在の負荷熱量QがQDIFよりも大きければ
(QDIF≦Q)、負荷判定3は成立せずと判定する
(ステップ606)。In step 603, the interface 1
Water supply temperature TS and return water temperature TR given via 4-4
1 and the flow rate F, the current load heat quantity Q = F × (TR1
−TS), and the present load heat quantity Q and “(total rated equipment capacity during current operation−step-down scheduled functional capacity) × (1-DI
F) = QDIF ”(step 604). If the current load calorific value Q is smaller than QDIF (QDIF
> Q), it is determined that the load determination 3 has been established (step 6).
05). If the current load heat quantity Q is larger than QDIF (QDIF ≦ Q), it is determined that the load determination 3 does not hold (step 606).
【0031】この負荷判定3の結果は、ステップ107
でチェックされ、負荷判定3が成立していれば、減段処
理を行う(ステップ114)。この減段処理では現在運
転中の冷凍機の中から運転順位の一番低いものに停止指
令を送る。負荷判定3が成立していなければ、ステップ
108へ進み、負荷判定4を行う。The result of the load determination 3 is determined in step 107
When the load determination 3 is established, the step reduction process is performed (step 114). In this step-down process, a stop command is sent to the lowest operating order among the refrigerators that are currently operating. If the load determination 3 is not established, the process proceeds to step 108, where the load determination 4 is performed.
【0032】〔負荷判定4〕負荷判定4では負荷熱量に
基づく増段判定を行う。図7にステップ108での処理
動作の詳細を示す。CPU14−1は、現在運転台数と
増段可能台数とを比較し、現在運転台数<増段可能台数
であればステップ702へ進む。ステップ702では、
前回増段終了時から増段効果待ち時間経過したか否かを
チェックし、増段効果待ち時間を経過していればステッ
プ703へ進む。[Load Judgment 4] In load judgment 4, a step increase judgment based on the load calorie is performed. FIG. 7 shows details of the processing operation in step 108. The CPU 14-1 compares the number of currently operated units with the number of units that can be increased, and proceeds to step 702 if the number of currently operated units is smaller than the number of units that can be increased. In step 702,
It is checked whether or not the step-up effect waiting time has elapsed since the end of the previous step-up operation. If the step-up effect waiting time has elapsed, the process proceeds to step 703.
【0033】ステップ703では、先のステップ603
で求めた現在の負荷熱量Qと「現在運転中合計定格機器
能力×(1+HLMT)=QHLMT」とを比較する。
現在の負荷熱量QがQHLMTよりも大きければ(QH
LMT<Q)、負荷判定4が成立したと判定する(ステ
ップ704)。現在の負荷熱量QがQHLMTよりも小
さければ(QHLMT≧Q)、負荷判定4は成立せずと
判定する(ステップ705)。In step 703, the previous step 603
The current load calorie Q obtained in the above is compared with “total rated equipment capacity during current operation × (1 + HLMT) = QHLMT”.
If the current load calorific value Q is larger than QHLMT (QH
LMT <Q), it is determined that the load determination 4 has been established (step 704). If the current load heat quantity Q is smaller than QHLMT (QHLMT ≧ Q), it is determined that the load determination 4 does not hold (step 705).
【0034】この負荷判定4の結果は、ステップ109
でチェックされ、負荷判定4が成立していれば、増段処
理を行う(ステップ119)。この増段処理では、現在
停止中の冷凍機の中から運転順位の一番高いものに起動
指令を送り(図8に示すステップ801)、効果待ち時
間の経過を待つ(ステップ802)。負荷判定4が成立
していなければ、ステップ110へ進み、負荷判定5を
行う。The result of the load determination 4 is based on step 109
In step 119, if the load determination 4 is established, the step increase process is performed. In this step-up process, a start command is sent to the highest-operation refrigerator out of the currently stopped refrigerators (step 801 shown in FIG. 8), and the elapse of the effect waiting time is waited (step 802). If the load determination 4 is not established, the process proceeds to step 110, where the load determination 5 is performed.
【0035】〔負荷判定5〕負荷判定5では負荷熱量お
よび送水温度に基づく増段補正判定を行う。図9にステ
ップ110での処理動作の詳細を示す。CPU14−1
は、現在運転台数と増段可能台数とを比較し、現在運転
台数<増段可能台数であればステップ902へ進む。ス
テップ902では、前回増段終了時から増段効果待ち時
間経過したか否かをチェックし、増段効果待ち時間を経
過していればステップ903へ進む。[Load Judgment 5] In load judgment 5, a stage increase correction judgment is performed based on the load calorie and the water supply temperature. FIG. 9 shows details of the processing operation in step 110. CPU 14-1
Compares the current operating number with the number of units that can be increased, and proceeds to step 902 if the number of currently operated units is smaller than the number of units that can be increased. In step 902, it is checked whether or not the step-up effect waiting time has elapsed since the end of the previous step-up operation. If the step-up effect waiting time has elapsed, the process proceeds to step 903.
【0036】ステップ903では、先のステップ603
で求めた現在の負荷熱量Qと「現在運転中合計定格機器
能力×(1−LLMT)=QLLMT」と「現在運転中
合計定格機器能力×(1+HLMT)=QHLMT」と
を比較すると共に、送水温度TSと増段補正温度設定値
tsとを比較する。QLLMT<Q<QHLMT、かつ
TS>tsであれば、負荷判定5が成立したと判定する
(ステップ904)。QLLMT<Q<QHLMT、か
つTS>tsでなければ、負荷判定5は成立せずと判定
する(ステップ905)。In step 903, the previous step 603
The current load calorific value Q obtained in the above is compared with "currently operating total rated equipment capacity x (1-LLMT) = QLLMT" and "currently operating total rated equipment capacity x (1 + HLMT) = QHLMT", and the water supply temperature. TS is compared with the step increase correction temperature set value ts. If QLLMT <Q <QHLMT and TS> ts, it is determined that the load determination 5 has been established (step 904). If QLLMT <Q <QHLMT and TS> ts are not satisfied, it is determined that the load determination 5 does not hold (step 905).
【0037】この負荷判定5の結果は、ステップ111
でチェックされ、負荷判定5が成立していれば、増段処
理を行う(ステップ119)。負荷判定5が成立してい
なければ、ステップ112において台数制御終了でない
ことを確認のうえ、ステップ101へ戻る。The result of the load determination 5 is determined in step 111
In step 119, if the load determination 5 is established, the step increase process is performed. If the load determination 5 is not satisfied, it is confirmed in step 112 that the number control has not been completed, and the process returns to step 101.
【0038】なお、強制増段中は、ステップ108での
負荷判定4において、通常の増段位置QHLMTに代え
て強制増段した冷凍機を含め現在運転中の冷凍機の定格
能力の合計値(現在運転中合計定格機器能力)を使用す
る。すなわち、強制的に起動した冷凍機が運転中にさら
に別冷凍機の起動が必要な場合には、強制的に起動した
冷凍機を含め運転中冷凍機の定格能力合計値を負荷熱量
Qの値を越えた際に別冷凍機の起動条件とする。これは
ある程度の時間経過により、送水条件が整ったり、また
は冷凍機の運転性能が通常レベルまで復帰する可能性が
あるためである。During the forced step-up operation, in the load determination 4 in step 108, the total value of the rated capacity of the currently operating refrigerator including the forcedly stepped-up refrigerator in place of the normal step-up position QHLMT ( Use the total rated equipment capacity during current operation). That is, if it is necessary to start another refrigerator while the forcedly activated refrigerator is operating, the rated capacity total value of the operating refrigerator including the forcedly activated refrigerator is calculated as the value of the load heat quantity Q. When it exceeds, the start condition of another refrigerator is set. This is because the water supply conditions may be adjusted or the operation performance of the refrigerator may return to the normal level after a certain period of time has elapsed.
【0039】また、上述においては、負荷判定2の成立
を確認した後に直ちに警報を出すようにしたが(ステッ
プ116)、ステップ118で強制増段処理を行った後
に警報を出すようにしてもよい。強制増段に際して警報
を出すことによって管理者に対して点検の必要性がある
ことを知らせる。この機能により、冷凍機廻りのみでは
なく、空調システム全体の不具合を明確にするととも
に、冷凍機の予防保全の効果が期待される。In the above description, an alarm is issued immediately after the establishment of the load determination 2 is confirmed (step 116). However, an alarm may be issued after the forced step-up process is performed in step 118. . A warning is issued at the time of forced step-up to notify the administrator that there is a need for inspection. With this function, it is possible to clarify the malfunction of the entire air conditioning system, not only around the refrigerator, and to expect the effect of preventive maintenance of the refrigerator.
【0040】また、上述した実施の形態では、冷凍機の
運転台数を制御する場合について説明したが、温水機な
どの運転台数を制御する場合についても同様にして適用
することが可能である。In the above-described embodiment, the case where the number of operating refrigerators is controlled has been described. However, the present invention can be similarly applied to the case where the number of operating water heaters or the like is controlled.
【0041】[0041]
【発明の効果】以上説明したことから明らかなように本
発明によれば、第1発明では、送水温度,還水温度およ
び流量より求まる負荷熱量に基づく増減段判定よりも前
に、送水温度に基づく強制増段判定が行われるものとな
り、この強制増段判定では、現在の送水温度が強制増段
温度設定値よりも不足状態ならば熱源機器の運転台数が
強制増段されるので、熱源機器の性能劣化によって実際
の能力が設計能力を大幅に下回る場合や熱源機器が起動
されて十分能力を発揮する前に空調機が起動してしまっ
た場合など、検出される負荷熱量が熱源機器を新たに増
段する程でなくとも実際には増段する必要がある場合の
不都合を取り除くことができるようになる。As is apparent from the above description, according to the present invention, in the first invention, before the increase / decrease stage determination based on the load heat quantity obtained from the water supply temperature, the return water temperature and the flow rate, the water supply temperature is reduced. In this forced stage determination, if the current water supply temperature is lower than the forced stage temperature setting value, the number of operating heat source devices is forcibly increased. If the actual capacity is significantly lower than the design capacity due to the performance degradation of the air conditioner, or if the air conditioner is started before the heat source equipment is activated and the capacity is fully exhibited, the detected heat load will change the heat source equipment. Even if the number of steps is not increased, it is possible to eliminate the inconvenience when the steps need to be actually increased.
【0042】第2発明では、第1ステップとして熱源入
口温度に基づく減段判定(負荷判定1)が行われ、第2
ステップとして送水温度による強制増段判定が行われ
(負荷判定2)、第3ステップとして送水温度,還水温
度および流量より求まる負荷熱量に基づく増減段判定
(負荷判定3,4)が行われ、第4ステップとして負荷
熱量および送水温度に基づく増段補正判定(負荷判定
5)が行われるものとなり、第2ステップの強制増段判
定では、現在の送水温度が強制増段温度設定値よりも不
足状態ならば熱源機器の運転台数が強制増段されるの
で、第1ステップで熱源機機の故障防止が図られ、第2
ステップで第1発明で述べた効果が得られ、第3ステッ
プで負荷熱量に見合う熱源の運転能力が確保され、第4
ステップで設計送水温度を確保することができる。この
手順は重要性の大きい順番になっている。In the second aspect of the invention, as a first step, a step reduction determination (load determination 1) based on the heat source inlet temperature is performed, and the second step is performed.
As a step, a forced step increase determination based on the water supply temperature is performed (load determination 2), and as a third step, an increase / decrease step determination based on the load heat quantity obtained from the water supply temperature, the return water temperature, and the flow rate (load determination 3, 4) is performed. As a fourth step, a step-up correction judgment (load judgment 5) based on the load calorie and the water supply temperature is performed. In the forced step-up determination in the second step, the current water supply temperature is lower than the forced step-up temperature set value. In this state, the number of operating heat source devices is forcibly increased, so that in the first step, the failure of the heat source devices is prevented, and the second
The effect described in the first invention is obtained in the step, and the operation capability of the heat source corresponding to the heat load is ensured in the third step.
The design water supply temperature can be ensured in steps. The steps are in order of importance.
【0043】第3発明では、送水温度に基づく強制増段
が行われると、増減段判定手段における通常の減段位置
(QDIF)が、強制増段が行われた位置から所定値下
回った位置(QDIF’)に変更されるものとなり、送
水温度に基づく強制増段によって増段された熱源機器が
直後の負荷熱量に基づく減段判定で停止させられ、増減
段が繰り返されるという問題を防ぐことができる。第4
発明では、強制増段中に減段されると、強制増段が行わ
れた位置から所定値下回った位置に変更されていた減段
位置(QDIF’)が通常の減段位置(QDIF)に戻
されるものとなり、強制増段が必要な状態から不要な状
態にスムーズに戻すことができる。第5発明では、警報
によって強制増段が知らされるものとなり、熱源機器の
性能が劣化したり、故障が生じた等、システムとして異
常状態が発生したことをオペレータに知らせることがで
き、システムを早急に正常に回復する手助けとなる。In the third aspect of the invention, when the forced step-up based on the water supply temperature is performed, the normal step-down position (QDIF) in the increase / decrease step determining means is at a position lower than the position where the forced step-up has been performed by a predetermined value ( QDIF ') to prevent the problem that the heat source equipment increased by the forced increase based on the water supply temperature is stopped by the immediately following step reduction determination based on the heat load and the increase and decrease steps are repeated. it can. 4th
According to the present invention, when the step is reduced during the forced step-up, the step-down position (QDIF '), which has been changed from the position where the forced step-up is performed to a position lower than the predetermined value, becomes the normal step-down position (QDIF). This makes it possible to smoothly return from the state where forced step-up is required to the state where forced step-up is not required. In the fifth invention, the forced step increase is notified by an alarm, and the operator can be notified that an abnormal state has occurred in the system such as the performance of the heat source device has been degraded or a failure has occurred. It will help you to recover to normal as soon as possible.
【図1】 本発明に係る熱源機器制御装置が行う運転台
数制御動作を示すフローチャートである。FIG. 1 is a flowchart showing the operation number control operation performed by a heat source device control device according to the present invention.
【図2】 この熱源機器制御装置の内部構成の概略を示
すブロック図である。FIG. 2 is a block diagram schematically showing an internal configuration of the heat source device control device.
【図3】 この熱源機器制御装置が行う負荷判定1の詳
細を示すフローチャートである。FIG. 3 is a flowchart showing details of load determination 1 performed by the heat source device control device.
【図4】 この熱源機器制御装置が行う負荷判定2の詳
細を示すフローチャートである。FIG. 4 is a flowchart showing details of load determination 2 performed by the heat source device control device.
【図5】 この熱源機器制御装置が行う減段位置変更お
よび強制増段処理の詳細を示すフローチャートである。FIG. 5 is a flowchart showing details of the step-down position change and forced step-up processing performed by the heat source device control device.
【図6】 この熱源機器制御装置が行う負荷判定3の詳
細を示すフローチャートである。FIG. 6 is a flowchart showing details of load determination 3 performed by the heat source device control device.
【図7】 この熱源機器制御装置が行う負荷判定4の詳
細を示すフローチャートである。FIG. 7 is a flowchart showing details of a load determination 4 performed by the heat source device control device.
【図8】 この熱源機器制御装置が行う増段処理の詳細
を示すフローチャートである。FIG. 8 is a flowchart showing details of a stage increase process performed by the heat source device control device.
【図9】 この熱源機器制御装置が行う負荷判定5の詳
細を示すフローチャートである。FIG. 9 is a flowchart illustrating details of a load determination 5 performed by the heat source device control device.
【図10】 この熱源機器制御装置において定められる
増段補正可能範囲を示す図である。FIG. 10 is a diagram showing a step-up correction possible range determined in the heat source device control device.
【図11】 熱源機器制御装置を用いてなる運転台数制
御システムの計装図である。FIG. 11 is an instrumentation diagram of a system for controlling the number of operating units using a heat source device control device.
【図12】 この運転台数制御システムの制御装置で用
いられている運転順序テーブルおよび機器能力表ならび
に実質的に用いられる運転指定表を例示する図である。FIG. 12 is a diagram exemplifying an operation order table and a device capacity table used in the control device of the operating number control system, and an operation designation table substantially used;
【図13】 この運転台数制御システムにおいて制御装
置が行う従来の運転台数制御動作を示すフローチャート
である。FIG. 13 is a flowchart showing a conventional operation number control operation performed by the control device in the operation number control system.
1−1〜1−3…冷凍機、2−1〜2−3…ポンプ、
3,4…ヘッダ、5…負荷機器、6…送水管路、7…還
水管路、8,9,15…温度計、10…流量計、11…
バイパス管路、12…バイパス弁、13…差圧計、1
4’…制御装置(熱源機器制御装置)、14−1…CP
U、14−2…ROM、14−3…RAM、14−4〜
14−7…インターフェイス。1-1 to 1-3: refrigerator, 2-1 to 2-3 ... pump,
3, 4 header, 5 load equipment, 6 water supply line, 7 return water line, 8, 9, 15 thermometer, 10 flow meter, 11
Bypass line, 12: bypass valve, 13: differential pressure gauge, 1
4 '... Control device (heat source device control device), 14-1 ... CP
U, 14-2 ... ROM, 14-3 ... RAM, 14-4 ~
14-7 Interface.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 幸彦 東京都渋谷区渋谷2丁目12番19号 山武ハ ネウエル株式会社内 (72)発明者 鴨志田 知子 東京都渋谷区渋谷2丁目12番19号 山武ハ ネウエル株式会社内 Fターム(参考) 3L060 AA08 CC05 CC15 DD03 EE31 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukihiko Oka 2-12-19 Shibuya, Shibuya-ku, Tokyo Yamatake Ha Newel Co., Ltd. (72) Tomoko Kamoshida 2-12-19 Shibuya, Shibuya-ku, Tokyo Yamatake F-term in Honeywell Co., Ltd. (reference) 3L060 AA08 CC05 CC15 DD03 EE31
Claims (5)
制御する熱源機器制御装置において、 送水温度,還水温度および流量より求まる負荷熱量に基
づいて前記熱源機器の運転台数の増減段判定を行う増減
段判定手段と、 この増減段判定手段による増減段判定よりも前に送水温
度に基づく強制増段判定を行い、現在の送水温度が強制
増段温度設定値よりも不足状態ならば前記熱源機器の運
転台数の強制増段を行う強制増段判定手段とを備えたこ
とを特徴とする熱源機器制御装置。1. A heat source device control device for controlling the number of operating heat source devices according to a load state, comprising: determining a step of increasing or decreasing the number of operating heat source devices based on a load heat amount obtained from a water supply temperature, a return water temperature, and a flow rate. Means for performing increase / decrease stage determination; and performing forced increase / decrease determination based on the water supply temperature prior to the increase / decrease stage determination by the increase / decrease stage determination means. If the current water supply temperature is in a state less than the forced increase stage temperature set value, the heat source A heat source device control device, comprising: forced step-up determination means for forcibly increasing the number of operating devices.
制御する熱源機器制御装置において、 熱源入口温度に基づいて前記熱源機器の運転台数の減段
判定を行う減段判定手段と、 この減段判定手段による減段判定の後に送水温度による
強制増段判定を行い、現在の送水温度が強制増段温度設
定値よりも不足状態ならば前記熱源機器の運転台数の強
制増段を行う強制増段判定手段と、 この強制増段判定手段による強制増段判定の後に送水温
度,還水温度および流量より求まる負荷熱量に基づいて
前記熱源機器の運転台数の増減段判定を行う増減段判定
手段と、 この増減段判定手段による増減段判定の後に前記負荷熱
量および送水温度に基づく増段補正判定を行う増段補正
判定手段とを備えたことを特徴とする熱源機器制御装
置。2. A heat source device control device for controlling the number of operating heat source devices according to a load state, comprising: a step reduction determining means for determining a step reduction of the number of operating heat source devices based on a heat source inlet temperature; After the step-down determination by the step determination means, a forced step-up determination based on the water supply temperature is performed, and if the current water supply temperature is less than the forced-step-up temperature set value, a forced increase of the number of operating heat source devices is performed. Stage determination means, and increase / decrease stage determination means for performing increase / decrease stage determination of the number of operating heat source devices based on the load heat quantity obtained from the water supply temperature, the return water temperature and the flow rate after the forced stage increase determination by the forced stage increase determination means; And a step-up correction determining means for performing a step-up correction determination based on the load calorie and the water supply temperature after the step-up / step-down determination by the step-up / down step determining means.
判定手段によって強制増段が行われる場合、前記増減段
判定手段における通常の減段位置を強制増段が行われる
位置から所定値分下回った位置に変更する減段位置変更
手段を備えたことを特徴とする熱源機器制御装置。3. The method according to claim 1, wherein when the forced step-up determination is performed by the forced step-up determining means, a normal step-down position in the increasing / decreasing step determination means is shifted by a predetermined value from a position at which the forced step-up is performed. A heat-source-equipment control device comprising: a step-down position changing unit that changes a position to a position lower than a predetermined position.
段による強制増段中に減段された場合、前記増減段判定
手段において変更された減段位置を通常の減段位置に戻
す減段位置戻帰手段を備えたことを特徴とする熱源機器
制御装置。4. The step-down operation according to claim 3, wherein when the step-down operation is carried out during the forced step-up operation by said forced step-up operation, the step-down position changed by said increase / decrease step operation is returned to a normal step-down position. A heat source device control device comprising a position returning means.
記強制増段判定手段によって強制増段が行われる場合、
警報を出力る警報出力手段を備えたことを特徴とする熱
源機器制御装置。5. The method according to claim 1, wherein the forced step-up determining means performs step-up.
A heat source device control device comprising an alarm output unit for outputting an alarm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19503398A JP3371091B2 (en) | 1998-06-24 | 1998-06-24 | Heat source equipment control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19503398A JP3371091B2 (en) | 1998-06-24 | 1998-06-24 | Heat source equipment control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000018672A true JP2000018672A (en) | 2000-01-18 |
JP3371091B2 JP3371091B2 (en) | 2003-01-27 |
Family
ID=16334431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19503398A Expired - Lifetime JP3371091B2 (en) | 1998-06-24 | 1998-06-24 | Heat source equipment control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3371091B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021855A (en) * | 2009-07-17 | 2011-02-03 | Toyo Netsu Kogyo Kk | Control method of refrigerator |
CN104246381B (en) * | 2012-02-29 | 2017-03-08 | 三菱重工业株式会社 | The number control device of heat source system and its method and heat source system |
KR101854549B1 (en) * | 2013-12-03 | 2018-06-08 | 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 | Device for controlling number of operating heat source devices, heat source system, control method, and program |
US10197301B2 (en) | 2014-11-12 | 2019-02-05 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Heat source system, and control device and control method therefor |
-
1998
- 1998-06-24 JP JP19503398A patent/JP3371091B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021855A (en) * | 2009-07-17 | 2011-02-03 | Toyo Netsu Kogyo Kk | Control method of refrigerator |
CN104246381B (en) * | 2012-02-29 | 2017-03-08 | 三菱重工业株式会社 | The number control device of heat source system and its method and heat source system |
US9823633B2 (en) | 2012-02-29 | 2017-11-21 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Number-of-machines control device for heat source system, method therefor, and heat source system |
KR101854549B1 (en) * | 2013-12-03 | 2018-06-08 | 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 | Device for controlling number of operating heat source devices, heat source system, control method, and program |
US10197301B2 (en) | 2014-11-12 | 2019-02-05 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Heat source system, and control device and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3371091B2 (en) | 2003-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10488126B2 (en) | Valve control in an HVAC system with sensors | |
US8826680B2 (en) | Pressure ratio unload logic for a compressor | |
CN110296519A (en) | A kind of control method of electric expansion valve, control system and multi-online air-conditioning system | |
JPH08226714A (en) | Air conditioning equipment | |
KR102722362B1 (en) | Performance verification method of cooling system using big data | |
EP3252383A1 (en) | Apparatus for space heating and warm water supply | |
JP2004278884A (en) | Control device | |
JP2009264715A (en) | Heat pump hot water system | |
JP2003294290A (en) | Unit number control device of heat source and unit number control method | |
JP4249591B2 (en) | Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method | |
JP2009127936A (en) | Unit count control device for heat source unit and unit count control method for heat source unit | |
JP3211188B2 (en) | Heat source equipment control device | |
JP2000018672A (en) | Heat source instrument control device | |
JP2006153324A (en) | Operating unit number control method and device | |
JP5221907B2 (en) | Water heater | |
JP2009019842A (en) | Water delivery control system and water delivery control method | |
JP5140341B2 (en) | Heat source control device and heat source control method | |
JP5677198B2 (en) | Air cooling heat pump chiller | |
JP3876721B2 (en) | Water heater | |
US11940192B2 (en) | Air conditioning device | |
EP2085706B1 (en) | Hot water storage type heat pump unit | |
JPH10300163A (en) | Method for operating air conditioner and air conditioner | |
JP3731095B2 (en) | Control device for refrigeration equipment | |
JP3240440B2 (en) | Equipment operation number control device | |
EP3604933B1 (en) | Heat medium circulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |