JPH08226714A - Air conditioning equipment - Google Patents
Air conditioning equipmentInfo
- Publication number
- JPH08226714A JPH08226714A JP3478095A JP3478095A JPH08226714A JP H08226714 A JPH08226714 A JP H08226714A JP 3478095 A JP3478095 A JP 3478095A JP 3478095 A JP3478095 A JP 3478095A JP H08226714 A JPH08226714 A JP H08226714A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- liquid refrigerant
- signal
- temperature
- phase current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、圧縮機を用いた空気調
和機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a compressor.
【0002】[0002]
【従来の技術】近年、空気調和機が普及しているが、そ
の信頼性、とくに起動時における液冷媒の圧縮による圧
縮機の破損が課題である。2. Description of the Related Art In recent years, air conditioners have become widespread, but their reliability, particularly the damage of the compressor due to compression of the liquid refrigerant at the time of startup, is a problem.
【0003】以下、従来の空気調和機について説明す
る。従来、空気調和機において、冷凍サイクルを長時間
停止し、圧縮機が低温に保たれた場合、圧縮機吸入管路
へ液冷媒が寝込み、起動時に液圧縮を生じて軸トルクが
過大となったり、さらには圧縮機破損を引き起こす場合
がある。その現象が発生するのを防止するために、起動
時に逆回転で起動し、突出ポートからガスを吸い込んで
吸入ポートから排出し、吸入管路に寝込んだ液冷媒を押
し戻したのち停止し、改めて正回転で起動することによ
り、主としてガスを吸入するようにして液圧縮を防止し
ていた。A conventional air conditioner will be described below. Conventionally, in an air conditioner, when the refrigeration cycle is stopped for a long time and the compressor is kept at a low temperature, liquid refrigerant stagnates in the compressor suction pipe line, causing liquid compression at startup and excessive axial torque. In addition, it may cause compressor damage. In order to prevent this phenomenon from occurring, it starts up in reverse rotation at startup, sucks gas from the projecting port and discharges it from the suction port, pushes back the liquid refrigerant that has laid down in the suction pipe line, and then stops and restarts again. By starting by rotation, gas was mainly sucked in to prevent liquid compression.
【0004】[0004]
【発明が解決しようとする課題】このような従来の空気
調和機では、上記のように起動時に逆回転で起動したの
ち停止し、改めて正回転起動する動作は、冷凍サイクル
の立ち上がりを遅らせ、また空気調和機に求められる快
適性能の面において不利であると言う問題があった。In such a conventional air conditioner, the above-described operation of starting in reverse rotation at the time of starting and then stopping and starting again in forward rotation delays the start-up of the refrigeration cycle, and There is a problem that it is disadvantageous in terms of comfort performance required for the air conditioner.
【0005】本発明は上記の課題を解決するもので、液
冷媒寝込みを的確に検知し、空気調和機の立ち上がり性
能を損なうことなく、液冷媒寝込みによる起動時の軸ト
ルク過大、さらには圧縮機破損を引き起こすのを防止し
た空気調和機を提供することを目的とする。The present invention solves the above-mentioned problems by accurately detecting liquid refrigerant stagnation, and without excessively impairing the startup performance of the air conditioner, excessive axial torque at startup due to liquid refrigerant stagnation, and further, a compressor. An object is to provide an air conditioner that prevents damage.
【0006】[0006]
【課題を解決するための手段】請求項1に係わる本発明
は、圧縮機、室内側熱交換器、および室外側熱交換器を
備えた空気調和機において、前記圧縮機の内部に設けら
れ、前記圧縮機の内部の液冷媒量が設定量以上になると
信号を出力する液冷媒量検知手段と、圧縮機電源回路
と、装置全体の動作を制御する制御装置とを備え、前記
制御装置は、圧縮機が停止しているとき前記液冷媒量検
知手段の出力信号が所定時間以上連続して出力されると
きに前記圧縮機のモータに微弱の高周波欠相電流を流す
ように前記圧縮機電源回路を制御する空気調和機であ
り、また、請求項2に係わる本発明は、圧縮機の代表部
の温度が所定値以下になると信号を出力する圧縮機温度
検知手段を設け、制御手段は、前記圧縮機が停止してい
るときにおいて、液冷媒量検知手段の信号と前記圧縮機
温度検知手段の信号とがともに出力されたときに前記圧
縮機のモータに微弱の高周波欠相電流を流すように圧縮
機電源回路を制御する請求項1に係わる空気調和機であ
り、また、請求項3に係わる本発明は、室外気温が所定
値以下になると信号を出力する室外温度検知手段を設
け、制御手段は、圧縮機が停止しているときにおいて、
液冷媒量検知手段の信号と前記室外気温検知手段の信号
とがともに出力されたときに前記圧縮機のモータに微弱
の高周波欠相電流を流すように圧縮機電源回路を制御す
る請求項1記載の空気調和機であり、また、請求項4に
係わる本発明は、制御手段は、圧縮機のモータに流す微
弱の高周波欠相電流の通電を、所定時間の通電と所定時
間の切断とを繰り返すように圧縮機電源回路を制御する
請求項1ないし請求項3のいずれかに係わる空気調和機
である。The present invention according to claim 1 is an air conditioner provided with a compressor, an indoor heat exchanger, and an outdoor heat exchanger, the air conditioner being provided inside the compressor, A liquid refrigerant amount detection means for outputting a signal when the amount of liquid refrigerant inside the compressor becomes a set amount or more, a compressor power supply circuit, and a control device for controlling the operation of the entire device, the control device, When the output signal of the liquid refrigerant amount detection means is continuously output for a predetermined time or longer when the compressor is stopped, the compressor power supply circuit is configured to flow a weak high frequency open phase current to the motor of the compressor. The present invention according to claim 2 is provided with a compressor temperature detecting means for outputting a signal when the temperature of the representative part of the compressor is below a predetermined value, and the control means is Liquid cooling when the compressor is stopped The compressor power supply circuit is controlled so that a weak high-frequency open-phase current flows through the motor of the compressor when both the signal of the quantity detecting means and the signal of the compressor temperature detecting means are output. The present invention relates to an air conditioner, and the present invention according to claim 3 is provided with an outdoor temperature detecting means for outputting a signal when the outdoor air temperature becomes equal to or lower than a predetermined value, and the control means, when the compressor is stopped,
The compressor power supply circuit is controlled so that a weak high-frequency open-phase current is caused to flow through the motor of the compressor when both the signal of the liquid refrigerant amount detection means and the signal of the outdoor air temperature detection means are output. In the present invention according to claim 4, the control means repeats energization of a weak high frequency open phase current flowing through the motor of the compressor for a predetermined time and for a predetermined time. The air conditioner according to any one of claims 1 to 3, which controls the compressor power supply circuit as described above.
【0007】[0007]
【作用】請求項1に係わる本発明において、圧縮機が停
止しているときに、液冷媒量検知手段が圧縮機内部に滞
留する液冷媒量を検知して所定量以上であれば信号を出
力し、制御手段は、その信号を入力したとき、圧縮機の
モータに微弱の高周波欠相電流を流してモータ巻線を暖
め、液冷媒の低温寝込みを解消する。また、請求項2に
係わる本発明において、圧縮機が停止しているときに、
圧縮機温度検知手段が圧縮機の代表部の温度を検知して
所定値以下であれば信号を出力し、制御手段は、液冷媒
量検知手段の信号と前記圧縮機温度検知手段の信号とを
ともに入力したときに、圧縮機のモータに微弱の高周波
欠相電流を流してモータ巻線を暖め、液冷媒の低温寝込
みを解消する。欠相電流の通電を、圧縮機の代表部の温
度が所定値以下であるときに限って効果的に暖める。ま
た、請求項3に係わる本発明において、圧縮機が停止し
ているときに、室外気温検知手段が室外気温を検知して
所定値以下であれば信号を出力し、制御手段は、液冷媒
量検知手段の信号と前記室外気温検知手段の信号とをと
もに入力したときに、圧縮機のモータに微弱の高周波欠
相電流を流してモータ巻線を暖め、液冷媒の低温寝込み
を解消する。欠相電流の通電を、室外気温が所定値以下
であるときに限って効果的に暖める。また、請求項4に
係わる本発明において、高周波欠相電流の通電パターン
を、所定時間の通電と所定時間の切断との繰り返しとし
て、欠相電流過熱の消費電力を低減する。In the present invention according to claim 1, when the compressor is stopped, the liquid refrigerant amount detecting means detects the amount of liquid refrigerant accumulated inside the compressor and outputs a signal if the amount is equal to or more than a predetermined amount. Then, when the signal is input, the control means causes a weak high-frequency open-phase current to flow in the motor of the compressor to warm the motor windings and eliminate the low temperature stagnation of the liquid refrigerant. In the present invention according to claim 2, when the compressor is stopped,
The compressor temperature detecting means detects the temperature of the representative portion of the compressor and outputs a signal if the temperature is less than or equal to a predetermined value, and the control means outputs the signal of the liquid refrigerant amount detecting means and the signal of the compressor temperature detecting means. When both are input, a weak high-frequency open-phase current is passed through the motor of the compressor to warm the motor windings, eliminating the low temperature stagnation of the liquid refrigerant. The open-phase current is effectively energized only when the temperature of the representative part of the compressor is below a predetermined value. Further, in the present invention according to claim 3, when the compressor is stopped, the outdoor air temperature detecting means detects the outdoor air temperature and outputs a signal if the outdoor air temperature is below a predetermined value, and the control means controls the liquid refrigerant amount. When both the signal of the detection means and the signal of the outdoor temperature detection means are input, a weak high-frequency open-phase current is supplied to the motor of the compressor to warm the motor windings, thereby eliminating the low temperature stagnation of the liquid refrigerant. The open-phase current is effectively energized only when the outdoor temperature is below a predetermined value. Further, in the present invention according to claim 4, the energization pattern of the high-frequency open-phase current is repeated by repeating energization for a predetermined time and disconnection for a predetermined time to reduce the power consumption of the open-phase current overheating.
【0008】[0008]
(実施例1)以下、本発明の空気調和機の一実施例につ
いて図面を参照しながら説明する。図1は本実施例の構
成を示す要部ブロック図である。図において、1は圧縮
機、2は圧縮機1の圧縮部、2aは圧縮部2における旋
回スクロール、2bは同固定スクロール、3は吸入管
路、4は吐出管路、5はモータ、6は圧縮機電源回路、
7は制御装置、8は吸入管路3内に設けたフロースイッ
チなどで構成され、圧縮機1内の液冷媒量が設定量以上
になると出力信号を与える液冷媒量検知手段である。(Embodiment 1) An embodiment of the air conditioner of the present invention will be described below with reference to the drawings. FIG. 1 is a principal block diagram showing the configuration of the present embodiment. In the figure, 1 is a compressor, 2 is a compression part of the compressor 1, 2a is an orbiting scroll in the compression part 2, 2b is a fixed scroll, 3 is a suction pipe line, 4 is a discharge pipe line, 5 is a motor, and 6 is Compressor power supply circuit,
Reference numeral 7 is a control device, and 8 is a flow switch or the like provided in the suction pipe line 3, and is a liquid refrigerant amount detection means which gives an output signal when the amount of the liquid refrigerant in the compressor 1 becomes a set amount or more.
【0009】上記構成要素の相互関係と動作について説
明する。制御装置7は、空気調和機の圧縮機1を停止さ
せたとき、液冷媒量検知手段8の出力を計測し、その出
力が所定の時間以上連続してあるか否か判断する。液冷
媒量検知手段8からの出力が所定時間以上連続してある
と判断された場合、制御装置7はモータ5の巻線に、図
2に示したような、微弱の高周波欠相電流を流すように
圧縮機電源回路6を制御する。図2(a)はモータ5の
巻線と電流とを示す。図に示したように、W相を欠相と
してU相とV相とのみに電流をI1 とI1’を交互に間
隔をおいて流している。図2(b)はその電流の通電状
態を示すタイミングチャートである。The mutual relationship and operation of the above components will be described. When the compressor 1 of the air conditioner is stopped, the control device 7 measures the output of the liquid refrigerant amount detection means 8 and determines whether the output is continuous for a predetermined time or longer. When it is determined that the output from the liquid refrigerant amount detection means 8 is continuous for a predetermined time or longer, the control device 7 causes a weak high frequency open phase current to flow through the winding of the motor 5 as shown in FIG. Thus, the compressor power supply circuit 6 is controlled. FIG. 2A shows the winding and current of the motor 5. As shown in the figure, the currents I1 and I1 'are alternately flowed at intervals only in the U phase and the V phase with the W phase missing. FIG. 2B is a timing chart showing the energized state of the current.
【0010】このように、液冷媒量検知手段8により、
圧縮機1の停止時に一定量以上の液冷媒が圧縮機1内に
溜っていることを検知し、欠相電流を流して圧縮機1の
モータ巻線を暖めることによって、圧縮機起動時の負荷
を低減することができ、空気調和機の立ち上がり性能を
損なうことなく液冷媒寝込みによる起動時の軸トルク過
大、さらには圧縮機破損を引き起こすのを防止すること
ができる。In this way, the liquid refrigerant amount detecting means 8
When the compressor 1 is stopped, it is detected that a certain amount or more of liquid refrigerant is accumulated in the compressor 1, and an open-phase current is passed to warm the motor winding of the compressor 1 to load the compressor at the time of startup. Therefore, it is possible to prevent excessive axial torque at startup due to liquid refrigerant stagnation and further damage to the compressor without impairing the start-up performance of the air conditioner.
【0011】(実施例2)以下、請求項2に係わる本発
明の空気調和機の一実施例について図面を参照しながら
説明する。なお、図1と同じ構成要素には同一番号を付
与して詳細な説明を省略する。本実施例が実施例1と異
なる点は、図1に示した構成に加えて圧縮機温度検知手
段9を設け、圧縮機1の代表部の温度が設定温度以下に
なると出力を制御装置7に与えるようにしたことにあ
る。(Embodiment 2) An embodiment of the air conditioner according to the present invention will be described below with reference to the drawings. The same components as those in FIG. 1 are assigned the same reference numerals and detailed explanations thereof will be omitted. The present embodiment is different from the first embodiment in that a compressor temperature detecting means 9 is provided in addition to the configuration shown in FIG. 1, and when the temperature of the representative part of the compressor 1 becomes equal to or lower than a set temperature, the output is sent to the control device 7. I have tried to give it.
【0012】上記構成においてその動作を説明する。圧
縮機1が停止すると、制御装置7は、液冷媒量検知手段
8の出力が所定時間以上連続してあり、かつそのとき圧
縮機温度検知手段9により検出した圧縮機1の代表部の
温度が設定温度以下であるとき、モータ5の巻線に図2
に示した微弱の高周波欠相電流を流すよう圧縮機電源回
路6を制御する。したがって、圧縮機1の温度が所定値
より高いときには欠相電流を流さないようにしている。
以上の動作により、モータ5の巻線の温度が上昇し、圧
縮機起動時の負荷を低減することができ、空気調和機の
立ち上がり性能を損なうことなく液冷媒寝込みによる起
動時の軸トルク過大、さらには圧縮機破損を引き起こす
のを防止することができる。The operation of the above configuration will be described. When the compressor 1 is stopped, the control device 7 indicates that the output of the liquid refrigerant amount detecting means 8 is continuous for a predetermined time or longer, and the temperature of the representative portion of the compressor 1 detected by the compressor temperature detecting means 9 at that time is When the temperature is below the set temperature, the winding of the motor 5 is
The compressor power supply circuit 6 is controlled so that the weak high-frequency open-phase current shown in FIG. Therefore, the open phase current is prevented from flowing when the temperature of the compressor 1 is higher than a predetermined value.
By the above operation, the temperature of the winding of the motor 5 rises, the load at the time of starting the compressor can be reduced, and the axial torque at the time of starting is excessive due to liquid refrigerant stagnation without impairing the start-up performance of the air conditioner. Further, it is possible to prevent the compressor from being damaged.
【0013】上記動作から明らかなように、液冷媒量検
知手段8により、圧縮機1の停止時に一定量以上の液冷
媒が圧縮機1内に滞留していることを検知し、かつ圧縮
機温度検知手段9により圧縮機1の温度が所定値より低
いことを検知したとき、圧縮機1のモータ巻線に微弱の
高周波欠相電流を流して圧縮機1の温度を上げて冷媒を
暖めるようにしたことにより、圧縮機1の温度が所定値
以下であるときに限って欠相電流を流すので、より効果
的に対応して圧縮機起動時の負荷を低減でき、空気調和
機の立ち上がり性能を損なうことなく液冷媒寝込みによ
る起動時の軸トルク過大、さらには圧縮機破損を引き起
こすのを防止することができる。As is apparent from the above operation, the liquid refrigerant amount detecting means 8 detects that a certain amount or more of the liquid refrigerant stays in the compressor 1 when the compressor 1 is stopped, and the compressor temperature When the detection unit 9 detects that the temperature of the compressor 1 is lower than a predetermined value, a weak high-frequency open-phase current is passed through the motor winding of the compressor 1 to raise the temperature of the compressor 1 and warm the refrigerant. By doing so, the open-phase current flows only when the temperature of the compressor 1 is equal to or lower than the predetermined value, so that the load at the time of starting the compressor can be reduced more effectively and the startup performance of the air conditioner can be improved. It is possible to prevent an excessive shaft torque at the time of start-up due to the liquid refrigerant stagnation and further damage to the compressor without damage.
【0014】(実施例3)以下、請求項3に係わる本発
明の一実施例について図面を参照しながら説明する。図
4は本実施例の構成を示すブロック図である。なお、図
1と同じ構成要素には同一番号を付与して詳細な説明を
省略する。本実施例が実施例1と異なる点は、図1に示
した構成に加えて空気調和機外箱11に室外気温度検知
手段10を設け、室外気温にも対応して欠相電流を流す
ようにしたことにある。(Embodiment 3) An embodiment of the present invention according to claim 3 will be described below with reference to the drawings. FIG. 4 is a block diagram showing the configuration of this embodiment. The same components as those in FIG. 1 are assigned the same reference numerals and detailed explanations thereof will be omitted. The present embodiment is different from the first embodiment in that, in addition to the configuration shown in FIG. 1, the air conditioner outer box 11 is provided with the outdoor air temperature detecting means 10 so that the open-phase current flows according to the outdoor air temperature. There is something I did.
【0015】上記構成において動作を説明する。圧縮機
1が停止すると、制御装置7は、液冷媒量検知手段8の
出力が所定時間以上連続してあるとき、かつ室外気温度
検知手段10の出力が所定温度以下である場合に、圧縮
機1のモータ5の巻線に、図2に示した微弱の高周波欠
相電流を流すように圧縮機電源回路6を制御する。した
がって、室外気温が所定値を越えるときには欠相電流を
流さない。The operation of the above configuration will be described. When the compressor 1 is stopped, the control device 7 controls the compressor when the output of the liquid refrigerant amount detection means 8 is continuous for a predetermined time or longer and when the output of the outdoor air temperature detection means 10 is equal to or lower than a predetermined temperature. The compressor power supply circuit 6 is controlled so that the weak high-frequency open-phase current shown in FIG. Therefore, when the outdoor temperature exceeds a predetermined value, the open phase current is not passed.
【0016】上記動作から明らかなように、液冷媒量検
知手段8により所定値以上の液冷媒が圧縮機1内に溜っ
ていることを検知し、かつ室外気温度検知手段10によ
り室外気温が所定値以下であることを検知したときに、
圧縮機モータ巻線に微弱の高周波欠相電流を流して圧縮
機1の温度を上げるようにしたことにより、室外気温が
所定値以下であるときに限って欠相電流を流すので、効
果的に対応して、圧縮機起動時の負荷を低減することが
でき、空気調和機の立ち上がり性能を損なうことなく液
冷媒寝込みによる起動時の軸トルク過大、さらには圧縮
機破損を引き起こすのを防止することができる。As is apparent from the above operation, the liquid refrigerant amount detecting means 8 detects that the liquid refrigerant having a predetermined value or more is accumulated in the compressor 1, and the outdoor air temperature detecting means 10 determines the outdoor air temperature. When it is detected that it is less than the value,
By applying a weak high-frequency open-phase current to the compressor motor winding to raise the temperature of the compressor 1, the open-phase current flows only when the outdoor air temperature is equal to or lower than a predetermined value. Correspondingly, it is possible to reduce the load at the time of starting the compressor, and prevent excessive axial torque at the time of starting due to liquid refrigerant stagnation without damaging the start-up performance of the air conditioner, and further preventing damage to the compressor. You can
【0017】(実施例4)以下、請求項4に係わる本発
明の一実施例について図面を参照しながら説明する。な
お、本実施例の構成は図1に示した構成に同じとする。
本実施例が実施例1と異なる点は、高周波欠相電流の通
電パターンにある。(Embodiment 4) An embodiment of the present invention according to claim 4 will be described below with reference to the drawings. The configuration of this embodiment is the same as that shown in FIG.
The present embodiment differs from the first embodiment in the energization pattern of the high frequency open phase current.
【0018】以下、本実施例の動作を説明する。図5は
本実施例における圧縮機モータ巻線に流す微弱の高周波
欠相電流の通電状態を示すタイミングチャートである。
本実施例においては、液冷媒量検知手段8により冷媒の
寝込みを検出し、圧縮機1のモータ巻線に微弱の高周波
電流を流すとき、図2(b)に示したパターンの通電を
所定時間ON、所定時間OFFを繰り返すように圧縮機
電源回路6を制御する。この動作により、電力消費を最
低限に抑えながら、圧縮機1の温度を上げて冷媒を暖め
ることによって圧縮機起動時の負荷を低減することがで
き、空気調和機の立ち上がり性能を損なうことなく液冷
媒寝込みによる起動時の軸トルク過大、さらには圧縮機
破損を引き起こすのを防止することができる。The operation of this embodiment will be described below. FIG. 5 is a timing chart showing an energized state of a weak high frequency open-phase current flowing through the compressor motor winding in the present embodiment.
In the present embodiment, when the refrigerant stagnation is detected by the liquid refrigerant amount detection means 8 and a weak high-frequency current is passed through the motor winding of the compressor 1, energization of the pattern shown in FIG. The compressor power supply circuit 6 is controlled to repeat ON and OFF for a predetermined time. By this operation, it is possible to reduce the load at the time of starting the compressor by raising the temperature of the compressor 1 and warming the refrigerant while suppressing the power consumption to the minimum, and to reduce the load without impairing the start-up performance of the air conditioner. It is possible to prevent excessive axial torque at the time of startup due to refrigerant stagnation and further damage to the compressor.
【0019】[0019]
【発明の効果】以上の説明から明らかなように、請求項
1に係わる本発明は、圧縮機、室内側熱交換器、および
室外側熱交換器を備えた空気調和機において、前記圧縮
機の内部に設けられ、前記圧縮機の内部の液冷媒量が設
定量以上になると信号を出力する液冷媒量検知手段と、
圧縮機電源回路と、装置全体の動作を制御する制御装置
とを備え、前記制御装置は、圧縮機が停止しているとき
前記液冷媒量検知手段の出力信号が所定時間以上連続し
て出力されるときに前記圧縮機のモータに微弱の高周波
欠相電流を流すように前記圧縮機電源回路を制御するこ
とにより、圧縮機内部に滞留する液冷媒の低温滞留を解
消して、圧縮機の損傷を防止し、かつ空調動作の立ち上
がりを速やかにできる。また、請求項2に係わる本発明
は、圧縮機の代表部の温度が所定値以下になると信号を
出力する圧縮機温度検知手段を設け、制御手段は、前記
圧縮機が停止しているときにおいて、液冷媒量検知手段
の信号と前記圧縮機温度検知手段の信号とがともに出力
されたときに前記圧縮機のモータに微弱の高周波欠相電
流を流すように圧縮機電源回路を制御することにより、
圧縮機の代表部の温度が所定値以下であるときに限って
高周波欠相電流を通電するので効果的に圧縮機を暖める
ことができる。また、請求項3に係わる本発明は、室外
気温が所定値以下になると信号を出力する室外温度検知
手段を設け、制御手段は、圧縮機が停止しているときに
おいて、液冷媒量検知手段の信号と前記室外気温検知手
段の信号とがともに出力されたときに前記圧縮機のモー
タに微弱の高周波欠相電流を流すように圧縮機電源回路
を制御することにより、室外気温が所定値以下であると
きに限って高周波欠相電流を通電するので効果的に圧縮
機を暖めることができる。また、請求項4に係わる本発
明は、制御手段は、圧縮機のモータに流す微弱の高周波
欠相電流の通電を、所定時間の通電と所定時間の切断と
を繰り返すように圧縮機電源回路を制御することにより
高周波欠相通電の消費電力を低減できる。As is apparent from the above description, the present invention according to claim 1 is an air conditioner equipped with a compressor, an indoor heat exchanger, and an outdoor heat exchanger, Liquid refrigerant amount detection means provided inside, which outputs a signal when the amount of liquid refrigerant inside the compressor is equal to or greater than a set amount,
A compressor power supply circuit and a control device for controlling the operation of the entire device are provided, and the control device outputs the output signal of the liquid refrigerant amount detection means continuously for a predetermined time or more when the compressor is stopped. By controlling the compressor power supply circuit so that a weak high-frequency open-phase current flows to the motor of the compressor when the temperature is low, the low temperature retention of the liquid refrigerant that accumulates inside the compressor is eliminated, and the compressor is damaged. It is possible to prevent the above and to quickly start the air conditioning operation. Further, the present invention according to claim 2 is provided with a compressor temperature detecting means for outputting a signal when the temperature of the representative portion of the compressor becomes equal to or lower than a predetermined value, and the control means is provided when the compressor is stopped. By controlling the compressor power supply circuit so that a weak high-frequency open-phase current flows to the motor of the compressor when both the signal of the liquid refrigerant amount detection means and the signal of the compressor temperature detection means are output. ,
Since the high frequency open phase current is passed only when the temperature of the representative portion of the compressor is equal to or lower than the predetermined value, it is possible to effectively warm the compressor. Further, the present invention according to claim 3 is provided with an outdoor temperature detecting means for outputting a signal when the outdoor air temperature becomes equal to or lower than a predetermined value, and the control means controls the liquid refrigerant amount detecting means when the compressor is stopped. By controlling the compressor power supply circuit so that a weak high-frequency open-phase current flows to the motor of the compressor when both the signal and the signal from the outdoor air temperature detecting means are output, the outdoor air temperature is below a predetermined value. Since the high-frequency open-phase current is supplied only at certain times, the compressor can be effectively warmed. In the present invention according to claim 4, the control means controls the compressor power supply circuit to repeat energization of a weak high-frequency open-phase current flowing through the motor of the compressor for a predetermined time and for a predetermined time. By controlling, it is possible to reduce power consumption during high frequency open phase energization.
【図1】請求項1に係わる本発明の空気調和機の一実施
例の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of an embodiment of an air conditioner of the present invention according to claim 1.
【図2】請求項1ないし3に係わる本発明の空気調和機
における高周波欠相電流の通電状態を示すモータ巻線の
模式図およびタイミングチャートFIG. 2 is a schematic diagram and a timing chart of a motor winding showing a conduction state of a high frequency open phase current in the air conditioner of the present invention according to claims 1 to 3.
【図3】請求項2に係わる本発明の空気調和機の一実施
例の構成を示すブロック図FIG. 3 is a block diagram showing the configuration of an embodiment of the air conditioner of the present invention according to claim 2;
【図4】請求項3に係わる本発明の空気調和機の一実施
例の構成を示すブロック図FIG. 4 is a block diagram showing the configuration of an embodiment of the air conditioner of the present invention according to claim 3;
【図5】請求項4に係わる本発明の空気調和機における
高周波欠相電流の通電状態を示すタイミングチャートFIG. 5 is a timing chart showing an energized state of a high frequency open phase current in the air conditioner of the present invention according to claim 4;
1 圧縮機 5 モータ 6 圧縮機電源回路 7 制御装置 8 液冷媒量検知手段 9 圧縮機温度検知手段 10 室外気温度検知手段 1 Compressor 5 Motor 6 Compressor Power Supply Circuit 7 Control Device 8 Liquid Refrigerant Amount Detection Means 9 Compressor Temperature Detection Means 10 Outdoor Air Temperature Detection Means
Claims (4)
熱交換器を備えた空気調和機において、前記圧縮機の内
部に設けられ、前記圧縮機の内部の液冷媒量が設定量以
上になると信号を出力する液冷媒量検知手段と、圧縮機
電源回路と、装置全体の動作を制御する制御装置とを備
え、前記制御装置は、圧縮機が停止しているとき前記液
冷媒量検知手段の出力信号が所定時間以上連続して出力
されるときに前記圧縮機のモータに微弱の高周波欠相電
流を流すように前記圧縮機電源回路を制御する空気調和
機。1. An air conditioner comprising a compressor, an indoor heat exchanger, and an outdoor heat exchanger, wherein the amount of liquid refrigerant inside the compressor is equal to or greater than a set amount. Liquid refrigerant amount detection means that outputs a signal, a compressor power supply circuit, and a control device for controlling the operation of the entire device, the control device, the liquid refrigerant amount detection when the compressor is stopped An air conditioner that controls the compressor power supply circuit so that a weak high-frequency open-phase current is passed through the motor of the compressor when the output signal of the means is continuously output for a predetermined time or longer.
ると信号を出力する圧縮機温度検知手段を設け、制御手
段は、前記圧縮機が停止しているときにおいて、液冷媒
量検知手段の信号と前記圧縮機温度検知手段の信号とが
ともに出力されたときに前記圧縮機のモータに微弱の高
周波欠相電流を流すように圧縮機電源回路を制御する請
求項1記載の空気調和機。2. A compressor temperature detecting means for outputting a signal when the temperature of the representative portion of the compressor becomes lower than a predetermined value is provided, and the control means has a liquid refrigerant amount detecting means when the compressor is stopped. 2. The air conditioner according to claim 1, wherein the compressor power supply circuit is controlled so that a weak high frequency open-phase current is caused to flow to the motor of the compressor when both the signal from the compressor and the signal from the compressor temperature detecting means are output. .
力する室外温度検知手段を設け、制御手段は、圧縮機が
停止しているときにおいて、液冷媒量検知手段の信号と
前記室外気温検知手段の信号とがともに出力されたとき
に前記圧縮機のモータに微弱の高周波欠相電流を流すよ
うに圧縮機電源回路を制御する請求項1記載の空気調和
機。3. An outdoor temperature detecting means for outputting a signal when the outdoor air temperature falls below a predetermined value, and the control means detects the signal from the liquid refrigerant amount detecting means and the outdoor air temperature detection when the compressor is stopped. The air conditioner according to claim 1, wherein the compressor power supply circuit is controlled so that a weak high-frequency open-phase current is caused to flow to the motor of the compressor when the signal of the means is output together.
の高周波欠相電流の通電を、所定時間の通電と所定時間
の切断とを繰り返すように圧縮機電源回路を制御する請
求項1ないし請求項3のいずれかに記載の空気調和機。4. The control means controls the compressor power supply circuit such that energization of a weak high-frequency open-phase current flowing through the motor of the compressor is repeated for a predetermined time and for a predetermined time. The air conditioner according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3478095A JPH08226714A (en) | 1995-02-23 | 1995-02-23 | Air conditioning equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3478095A JPH08226714A (en) | 1995-02-23 | 1995-02-23 | Air conditioning equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08226714A true JPH08226714A (en) | 1996-09-03 |
Family
ID=12423809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3478095A Pending JPH08226714A (en) | 1995-02-23 | 1995-02-23 | Air conditioning equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08226714A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154953A (en) * | 1998-11-18 | 2000-06-06 | Matsushita Electric Ind Co Ltd | Refrigerant recovery method from waste product |
JP2005186785A (en) * | 2003-12-25 | 2005-07-14 | Denso Corp | Air conditioner for vehicle |
WO2011013277A1 (en) | 2009-07-27 | 2011-02-03 | 三菱電機株式会社 | Air conditioner |
WO2011018863A1 (en) | 2009-08-10 | 2011-02-17 | 三菱電機株式会社 | Air conditioner |
WO2012029099A1 (en) | 2010-08-30 | 2012-03-08 | 三菱電機株式会社 | Heat pump device, heat pump system and three-phase inverter control method |
WO2012049763A1 (en) | 2010-10-15 | 2012-04-19 | 三菱電機株式会社 | Heat pump device, heat pump system, and method for controlling three-phase inverter |
WO2012086010A1 (en) | 2010-12-21 | 2012-06-28 | 三菱電機株式会社 | Heat pump device, heat pump system, and method for controlling three-phase inverter |
CN102597643A (en) * | 2009-12-17 | 2012-07-18 | 三菱电机株式会社 | Air conditioner |
JP2013067248A (en) * | 2011-09-21 | 2013-04-18 | Nippon Soken Inc | Charging device for vehicle |
US9077274B2 (en) | 2011-02-07 | 2015-07-07 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling three-phase inverter |
EP2894409A2 (en) | 2013-12-27 | 2015-07-15 | Mitsubishi Electric Corporation | Air conditioner and control method of air conditioner |
US9322587B2 (en) | 2011-06-17 | 2016-04-26 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and refrigerating machine |
CN105579708A (en) * | 2014-04-11 | 2016-05-11 | 哈农系统 | Electric compressor and method for controlling same |
US9739515B2 (en) | 2012-04-16 | 2017-08-22 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer that efficiently heats refrigerant on standby |
US9746216B2 (en) | 2012-06-29 | 2017-08-29 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, air conditioner, and freezer |
US9829234B2 (en) | 2011-09-30 | 2017-11-28 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling inverter |
US9829226B2 (en) | 2011-04-28 | 2017-11-28 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling inverter |
US9903629B2 (en) | 2012-06-20 | 2018-02-27 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer |
US10208991B2 (en) | 2011-12-14 | 2019-02-19 | Mitsubishi Electric Corporation | Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device |
US10605500B2 (en) | 2012-01-04 | 2020-03-31 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer |
CN111780338A (en) * | 2020-07-13 | 2020-10-16 | 珠海格力电器股份有限公司 | Control method and device of air conditioner |
CN115135880A (en) * | 2020-02-26 | 2022-09-30 | 三菱电机株式会社 | Power conversion device |
-
1995
- 1995-02-23 JP JP3478095A patent/JPH08226714A/en active Pending
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000154953A (en) * | 1998-11-18 | 2000-06-06 | Matsushita Electric Ind Co Ltd | Refrigerant recovery method from waste product |
JP2005186785A (en) * | 2003-12-25 | 2005-07-14 | Denso Corp | Air conditioner for vehicle |
US8944777B2 (en) | 2009-07-27 | 2015-02-03 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN102472529A (en) * | 2009-07-27 | 2012-05-23 | 三菱电机株式会社 | Air conditioner |
AU2010277114B9 (en) * | 2009-07-27 | 2013-07-25 | Mitsubishi Electric Corporation | Air conditioner |
EP2461123A4 (en) * | 2009-07-27 | 2018-03-21 | Mitsubishi Electric Corporation | Air conditioner |
JP2011027334A (en) * | 2009-07-27 | 2011-02-10 | Mitsubishi Electric Corp | Air conditioner |
WO2011013277A1 (en) | 2009-07-27 | 2011-02-03 | 三菱電機株式会社 | Air conditioner |
US20120096881A1 (en) * | 2009-07-27 | 2012-04-26 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
AU2010277114B2 (en) * | 2009-07-27 | 2013-06-27 | Mitsubishi Electric Corporation | Air conditioner |
US9263984B2 (en) | 2009-08-10 | 2016-02-16 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN102472532A (en) * | 2009-08-10 | 2012-05-23 | 三菱电机株式会社 | Air conditioner |
US20120111043A1 (en) * | 2009-08-10 | 2012-05-10 | Kazunori Hatakeyama | Air-conditioning apparatus |
AU2010283408B2 (en) * | 2009-08-10 | 2013-03-07 | Mitsubishi Electric Corporation | Air conditioner |
JP2011038689A (en) * | 2009-08-10 | 2011-02-24 | Mitsubishi Electric Corp | Air conditioner |
WO2011018863A1 (en) | 2009-08-10 | 2011-02-17 | 三菱電機株式会社 | Air conditioner |
CN102597643A (en) * | 2009-12-17 | 2012-07-18 | 三菱电机株式会社 | Air conditioner |
WO2012029099A1 (en) | 2010-08-30 | 2012-03-08 | 三菱電機株式会社 | Heat pump device, heat pump system and three-phase inverter control method |
CN103154636A (en) * | 2010-08-30 | 2013-06-12 | 三菱电机株式会社 | Heat pump device, heat pump system and three-phase inverter control method |
JP5460876B2 (en) * | 2010-08-30 | 2014-04-02 | 三菱電機株式会社 | Heat pump device, heat pump system, and control method for three-phase inverter |
AU2010360053B2 (en) * | 2010-08-30 | 2014-08-28 | Mitsubishi Electric Corporation | Heat pump device, heat pump system and three-phase inverter control method |
US9651289B2 (en) | 2010-08-30 | 2017-05-16 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and a control method of three-phase inverter |
WO2012049763A1 (en) | 2010-10-15 | 2012-04-19 | 三菱電機株式会社 | Heat pump device, heat pump system, and method for controlling three-phase inverter |
US9543887B2 (en) | 2010-10-15 | 2017-01-10 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling three-phase inverter |
WO2012086010A1 (en) | 2010-12-21 | 2012-06-28 | 三菱電機株式会社 | Heat pump device, heat pump system, and method for controlling three-phase inverter |
US9618249B2 (en) | 2010-12-21 | 2017-04-11 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling three-phase inverter |
US9077274B2 (en) | 2011-02-07 | 2015-07-07 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling three-phase inverter |
US9829226B2 (en) | 2011-04-28 | 2017-11-28 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling inverter |
US9322587B2 (en) | 2011-06-17 | 2016-04-26 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and refrigerating machine |
JP2013067248A (en) * | 2011-09-21 | 2013-04-18 | Nippon Soken Inc | Charging device for vehicle |
US9829234B2 (en) | 2011-09-30 | 2017-11-28 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, and method for controlling inverter |
US10208991B2 (en) | 2011-12-14 | 2019-02-19 | Mitsubishi Electric Corporation | Heat pump device, and air conditioner, heat pump water heater, refrigerator and freezing machine including heat pump device |
US10605500B2 (en) | 2012-01-04 | 2020-03-31 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer |
US9739515B2 (en) | 2012-04-16 | 2017-08-22 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer that efficiently heats refrigerant on standby |
US9903629B2 (en) | 2012-06-20 | 2018-02-27 | Mitsubishi Electric Corporation | Heat pump device, air conditioner, and freezer |
US9746216B2 (en) | 2012-06-29 | 2017-08-29 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, air conditioner, and freezer |
US9696045B2 (en) | 2013-12-27 | 2017-07-04 | Mitsubishi Electric Corporation | Air conditioner and control method of air conditioner |
EP2894409A2 (en) | 2013-12-27 | 2015-07-15 | Mitsubishi Electric Corporation | Air conditioner and control method of air conditioner |
EP2894409A3 (en) * | 2013-12-27 | 2015-10-21 | Mitsubishi Electric Corporation | Air conditioner and control method of air conditioner |
RU2598867C2 (en) * | 2013-12-27 | 2016-09-27 | Мицубиси Электрик Корпорейшн | Air conditioning unit and method of controlling air conditioner |
CN105579708A (en) * | 2014-04-11 | 2016-05-11 | 哈农系统 | Electric compressor and method for controlling same |
CN115135880A (en) * | 2020-02-26 | 2022-09-30 | 三菱电机株式会社 | Power conversion device |
CN115135880B (en) * | 2020-02-26 | 2024-05-14 | 三菱电机株式会社 | Power conversion device |
CN111780338A (en) * | 2020-07-13 | 2020-10-16 | 珠海格力电器股份有限公司 | Control method and device of air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08226714A (en) | Air conditioning equipment | |
US4638643A (en) | Control system for compressor motor used with air-conditioning unit | |
JP2000337682A (en) | Air conditioner | |
JP3731214B2 (en) | Liquid refrigerant discharge device for compressor | |
US4840220A (en) | Heat pump with electrically heated heat accumulator | |
JPH08261571A (en) | Method for actuating compression type freezer | |
JP2005337234A (en) | Inverter-driven compressor warm-up operating method and apparatus | |
JP3329603B2 (en) | Air conditioner | |
EP0789201B1 (en) | Split type air conditioner | |
JP3977523B2 (en) | Air conditioner | |
JPS6122161A (en) | Air conditioner | |
JPH0618103A (en) | Air conditioner | |
JPH08178438A (en) | Engine heat pump | |
JPS63294461A (en) | Air conditioner | |
JPS61246537A (en) | Air conditioner | |
JP2000161752A (en) | Air conditioner | |
JPH0678839B2 (en) | Air conditioner | |
KR100272230B1 (en) | Device and method for controlling operation of air conditioner | |
JP3536454B2 (en) | Heat pump system | |
JP2000292014A (en) | Drive control device for compressor for air-conditioner and refrigerant flooding preventing control method therefor | |
JPH0510604A (en) | Refrigerating cycle device | |
JPS6358048A (en) | Defroster in air conditioner | |
JP2004205163A (en) | Refrigerating plant | |
JP2000074458A (en) | Refrigeration cycle | |
JP2004028454A (en) | Fan drive control device of duct type air conditioner |