JP3269092B2 - MOS circuit for intermittent conduction - Google Patents
MOS circuit for intermittent conductionInfo
- Publication number
- JP3269092B2 JP3269092B2 JP17853991A JP17853991A JP3269092B2 JP 3269092 B2 JP3269092 B2 JP 3269092B2 JP 17853991 A JP17853991 A JP 17853991A JP 17853991 A JP17853991 A JP 17853991A JP 3269092 B2 JP3269092 B2 JP 3269092B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- commutation
- time
- mos
- mos transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Inverter Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はインバータ装置やチョッ
パ装置のようにモータ等の誘導性負荷に流す電流をPW
M制御方式等で断続的に制御する場合に適するMOSト
ランジスタで構成される断続通電用MOS回路に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a current flowing through an inductive load such as a motor, such as an inverter device or a chopper device, is subjected to PW
The present invention relates to an intermittent conduction MOS circuit including MOS transistors suitable for intermittent control using an M control method or the like.
【0002】[0002]
【従来の技術】周知のように、負荷に供給する電流の大
きさを制御する際には電流を断続させながら通電率によ
り負荷電流値を制御するPWM制御方式等が一般に採用
されており、このための断続通電用回路にはトランジス
タ等をスイッチング素子とするブリッジ回路が広く利用
されるが、負荷が誘導性の場合は負荷電流を切った際の
転流用にダイオードを各スイッチング素子と並列に組み
込むのがふつうである。以下、図3以降を参照してかか
る断続通電用回路の従来例を説明する。2. Description of the Related Art As is well known, when controlling the magnitude of a current supplied to a load, a PWM control method or the like in which a load current value is controlled by a duty ratio while interrupting the current is generally adopted. A bridge circuit using a transistor or the like as a switching element is widely used for the intermittent conduction circuit, but if the load is inductive, a diode is combined in parallel with each switching element for commutation when the load current is cut off. <br/>It's normal. Hereinafter will be described an example of a conventional intermittent energization circuit according with reference to subsequent FIGS.
【0003】図3はスイッチング素子にバイポーラトラ
ンジスタを用いた回路例であって、4個のこの例では n
pn形のバイポーラトランジスタ51〜54によりブリッジ回
路60が構成されており、通例のように図では上下側であ
るその一方の対向接続点間に電源1が,図の左右側の他
方の対向接続点間に断続通電すべき誘導性の負荷2がそ
れぞれ接続される。ブリッジ接続された4個のトランジ
スタ51〜54中の図では襷掛け状の対向辺のトランジスタ
対51と53,および他の対向辺のトランジスタ対52と54は
もちろんそれらのベースに受ける信号によりそれぞれ同
時にかつ交互にオンオフ制御される。FIG. 3 shows an example of a circuit using bipolar transistors as switching elements.
A bridge circuit 60 is formed by pn-type bipolar transistors 51 to 54. As is customary, the power supply 1 is connected between one of the opposite connection points on the upper and lower sides in the figure, and the other opposite connection point on the left and right sides in the figure. The inductive loads 2 to be intermittently supplied with electricity are connected between them. In the drawing of the four bridge-connected transistors 51 to 54, the transistor pairs 51 and 53 on the opposite sides cross-shaped and the transistor pairs 52 and 54 on the other opposite sides are, of course, simultaneously simultaneously driven by the signals received at their bases. In addition, on / off control is performed alternately.
【0004】図4はこのオンオフ状態を示すもので、同
図(a) にトランジスタ対51と53の,同図(b) にトランジ
スタ対52と54のそれぞれの状態が示されている。また、
図の左半分が図3の負荷2に電流Iを図示の正方向に流
す時,右半分がその矢印とは反対の逆方向に流す時に対
応する。いずれの電流方向に対しても、2個のトランジ
スタ対の一方をオフ状態に保ち他方を所定の短い周期T
でオンオフ動作させ、この際の各周期T内のオン時間で
ある通電率を制御しながら負荷電流Iの大きさの実効的
な平均値を制御する。FIG. 4 shows the on / off state. FIG. 4A shows the state of the transistor pair 51 and 53, and FIG. 4B shows the state of the transistor pair 52 and 54. Also,
The left half of the figure corresponds to the time when the current I flows in the load 2 in FIG. 3 in the forward direction as shown, and the right half corresponds to the time when the current I flows in the opposite direction opposite to the arrow. In any of the current directions, one of the two transistor pairs is kept in the off state and the other is in a predetermined short period T.
To perform an on-off operation, and control an effective average value of the magnitude of the load current I while controlling a duty ratio which is an on-time in each cycle T at this time.
【0005】しかし、かかるオンオフ動作により負荷電
流Iが断続され、負荷2がモータ等の誘導性である場合
は電流断時にそれに過大な逆起電力が発生するので、図
3に示すように各トランジスタ51〜54に転流ダイオード
61を並列に接続するのが通例である。例えば、トランジ
スタ対51と53をオンさせ負荷2に電流Iを図の方向に流
した後にオフさせた時に他のトランジスタ対52と54に対
応する2個の転流ダイオード61が一斉に導通して、負荷
2に流れていた電流Iをそれまでの方向のまま電源1の
方に短時間内だけ転流して負荷2のインダクタンス内の
蓄積エネルギを吸収させる。なお、電源1にはキャパシ
タがふつう含まれているので、この転流により上述のイ
ンダクタンス内のエネルギはこのキャパシタ内に少時預
けられ、次に負荷2に電流Iを同方向ないしは逆方向に
供給する際のいわば電流源として有効利用すなわち回生
される。However, the load current I is interrupted by the on / off operation, and when the load 2 is an inductive motor or the like, an excessive back electromotive force is generated when the current is interrupted. Therefore, as shown in FIG. Commutation diode to 51-54
It is customary to connect 61 in parallel. For example, when the transistor pair 51 and 53 are turned on, the current I flows to the load 2 in the direction shown in the figure, and then turned off, the two commutation diodes 61 corresponding to the other transistor pairs 52 and 54 are simultaneously turned on. Then, the current I flowing through the load 2 is commutated to the power supply 1 for a short time in the same direction as that of the current I to absorb the energy stored in the inductance of the load 2. Since the power source 1 usually includes a capacitor, the energy in the above-described inductance is temporarily stored in the capacitor by this commutation, and then the current I is supplied to the load 2 in the same or opposite direction. In this case, it is effectively used as a current source, that is, regenerated.
【0006】バイポーラトランジスタで構成した図3の
断続通電用回路はインバータ装置やチョッパ装置に適す
るが、騒音等の障害を軽減するには負荷電流Iの断続周
期Tを短縮するのが有利なので、最近では高周波動作が
容易なMOSトランジスタをスイッチング素子に用いる
場合が多い。本発明はかかる断続通電用MOS回路に関
し、以下その従来例を図5を参照して説明する。The intermittent energizing circuit shown in FIG. 3 composed of bipolar transistors is suitable for an inverter device or a chopper device. However, it is advantageous to reduce the intermittent period T of the load current I in order to reduce disturbances such as noise. In many cases, MOS transistors that can easily operate at a high frequency are used as switching elements. The present invention relates to such an intermittent conduction MOS circuit, and a conventional example thereof will be described below with reference to FIG.
【0007】4個のMOSトランジスタ71〜74にはふつ
うは縦形構造の数十kHzの高周波用の電力用素子を用い
てブリッジ回路80に接続する。このブリッジ回路80に対
する電源1と負荷2の接続要領は図3の場合と同じであ
る。各トランジスタ71〜74に対し原理上は転流ダイオー
ド81を並列接続するのであるが、MOSトランジスタに
は寄生ダイオード75が付随していて転流時にこれに電流
が流れるとその逆回復動作が遅れるので、それと導通方
向が逆なダイオード82を各トランジスタ71〜74に直列接
続した上でこの直列回路に対して並列に転流ダイオード
81を接続する。なお、この図5のMOS回路では負荷電
流Iの断続周期が図3の場合より短くて高速動作が必要
なので転流ダイオード81には逆回復時間が短い高速ダイ
オードを用い、かつ回路の内部損失を減少させるため直
列ダイオード82には順方向電圧が小さいショットキーバ
リアダイオードを用いるのがふつうである。The four MOS transistors 71 to 74 are usually connected to the bridge circuit 80 by using a high-frequency power element having a vertical structure of several tens of kHz. The procedure for connecting the power supply 1 and the load 2 to the bridge circuit 80 is the same as that in FIG. In principle, a commutation diode 81 is connected in parallel to each of the transistors 71 to 74.However, a parasitic diode 75 is attached to the MOS transistor, and if a current flows through this during commutation, the reverse recovery operation is delayed. , A diode 82 whose conduction direction is reversed is connected in series to each of the transistors 71 to 74, and a commutation diode is connected in parallel to this series circuit.
Connect 81. In the MOS circuit of FIG. 5, the intermittent cycle of the load current I is shorter than that of FIG. 3, and high-speed operation is required. In order to reduce this, a Schottky barrier diode having a small forward voltage is usually used as the series diode 82.
【0008】このように構成された図5の断続通電用M
OS回路では、図3の場合と同様にブリッジ接続中の一
方の対向辺のトランジスタ対71と73,および他方の対向
辺のトランジスタ対72と74がそれらのゲートに受ける信
号によってそれぞれ図4(a)と(b) に示したと同じ態様
で同時にかつ交互にオンオフ制御される。断続周期T内
の通電率を制御して負荷電流Iを制御するのも同じであ
る。負荷電流Iを図5に示す方向に流すようにトランジ
スタ対71と73をオンさせるともちろん対応する直列ダイ
オード82が導通状態になり、これらをオフさせると他の
トランジスタ対72と74に対応する2個の転流ダイオード
81が導通して負荷電流Iを電源1の方に転流させるが、
この転流時間内では直列ダイオード82が不導通状態にな
って寄生ダイオード75に電流が流れないようにして回路
動作を速める。The M for intermittent conduction shown in FIG.
In the OS circuit, as in the case of FIG. 3, the pair of transistors 71 and 73 on one opposite side and the pair of transistors 72 and 74 on the other opposite side during bridge connection receive signals at their gates, respectively, as shown in FIG. ) And (b) are simultaneously and alternately controlled in the same manner as shown in (b). The same applies to controlling the load current I by controlling the duty ratio within the intermittent cycle T. When the transistor pairs 71 and 73 are turned on so that the load current I flows in the direction shown in FIG. 5, the corresponding series diode 82 is turned on, and when these transistors are turned off, the series diodes 82 corresponding to the other transistor pairs 72 and 74 are turned off. Commutation diodes
81 conducts and commutates the load current I to the power supply 1,
Within this commutation time, the series diode 82 becomes non-conductive, preventing current from flowing through the parasitic diode 75, thereby speeding up the circuit operation.
【0009】[0009]
【発明が解決しようとする課題】しかし、図5の従来回
路では、転流ダイオード81内にpn接合がもつ堰層電圧が
あるため、上述の転流動作の際にその順方向電圧が必ず
介在して転流が不完全になりやすい。なお、この順方向
電圧は0.5V程度ではあるが、上述の短い周期Tで繰り返
される通電の断続のつど必ず回路損失が発生するので、
回路の動作周波数が高くなるとともに回路効率の低下が
問題になって来る。However, in the conventional circuit shown in FIG. 5, since there is a weir layer voltage of the pn junction in the commutation diode 81, the forward voltage necessarily intervenes during the commutation operation described above. Commutation is likely to be incomplete. Although the forward voltage is about 0.5 V, a circuit loss always occurs when the power supply is intermittently repeated in the short cycle T described above.
As the operating frequency of the circuit increases, the reduction in circuit efficiency becomes a problem.
【0010】また、従来回路の動作速度を上げるには、
MOSトランジスタ71〜74の逆回復が遅い寄生ダイオー
ド75により転流動作速度が落ちないよう直列ダイオード
82を接続する必要があるので回路構成が複雑になり、か
つ回路効率の低下を防ぐにはこれにショットキーバリア
ダイオードを用いる必要があるのでかなり高価につきや
すい。さらに、転流ダイオード81にも高速ダイオードを
用いる必要があるのでこれも高価につく問題がある。In order to increase the operation speed of the conventional circuit,
A series diode to prevent the commutation operation speed from being reduced by the parasitic diode 75, whose reverse recovery of the MOS transistors 71 to 74 is slow.
Since the circuit 82 must be connected, the circuit configuration becomes complicated, and a Schottky barrier diode must be used for preventing a decrease in circuit efficiency. Further, since it is necessary to use a high-speed diode also for the commutation diode 81, there is a problem that this is also expensive.
【0011】本発明は、従来技術がもつかかる問題点を
解決して、簡単な回路構成で負荷に対する通電断続時の
転流動作を改善できる断続通電用MOS回路を提供する
ことを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an intermittent energizing MOS circuit which can improve the commutation operation during intermittent energization to a load with a simple circuit configuration.
【0012】[0012]
【課題を解決するための手段】本発明においては、MO
Sトランジスタで構成され一方の対向接続点間に電源
が,他方の対向接続点間に負荷がそれぞれ接続されたブ
リッジ回路と、ブリッジの対向辺の1対のトランジスタ
を同時にオンオフさせるゲート制御回路とによりPWM
方式で断続通電を断続的に制御する回路において、一方
のトランジスタ対のオフ動作時の転流時間内に他方のト
ランジスタ対をオンさせ、転流時間内の他方のトランジ
スタ対のオン動作が一方のトランジスタ対のオン動作よ
りも短くすることにより前述の目的を達成する。なお、
上記のゲート制御回路はその動作時定数をオン制御時よ
りオフ制御時に短くなるように設定するのが有利であ
り、さらにブリッジ回路の一方のトランジスタ対に対す
るオフ制御と同時に他方のトランジスタ対に対するオン
制御を開始するように構成するのが望ましい。According to the present invention, an MO
A bridge circuit composed of S-transistors and having a power supply connected between one opposed connection point and a load connected between the other opposed connection points, and a gate control circuit for simultaneously turning on and off a pair of transistors on opposite sides of the bridge. PWM
In a circuit that intermittently controls intermittent energization by a method, the other transistor pair is turned on during the commutation time when one transistor pair is turned off, and the other transistor pair is turned on during the commutation time.
The ON operation of one transistor pair is the same as the ON operation of one transistor pair.
Remote shortened due to Rukoto achieve the foregoing objects. In addition,
Advantageously, the gate control circuit has its operating time constant set to be shorter during the off-control than during the on-control. Further, the off-control for one transistor pair of the bridge circuit is simultaneously performed with the on-control for the other transistor pair. Is desirably configured to start.
【0013】[0013]
【作用】本発明はMOSトランジスタがチャネル伝導性
なのでそのオン状態ではpn接合に伴う堰層電圧を含まな
い点に着目して、ブリッジ回路を構成するMOSトラン
ジスタを従来の転流ダイオードのかわりに使用すること
によって問題を解決するものである。すなわち、本発明
ではブリッジ回路を構成する4個のMOSトランジスタ
中の一方の対向辺のトランジスタ対がオフ動作した際の
負荷電流の転流が必要な転流時間内に、前項の構成にい
うとおり他方の対向辺のトランジスタ対をゲート制御回
路によりオンさせて転流ダイオードのかわりに利用す
る。The present invention focuses on the fact that the MOS transistor has channel conductivity and does not include the weir layer voltage associated with the pn junction in the ON state, and uses the MOS transistor constituting the bridge circuit instead of the conventional commutation diode. Doing so will solve the problem. That is, according to the present invention, the commutation time of the load current when commutation of the load current is required when the transistor pair on one of the four MOS transistors constituting the bridge circuit is turned off in the present invention. The other pair of transistors on the opposite side is turned on by the gate control circuit and used instead of the commutation diode.
【0014】この転流側のMOSトランジスタは堰層電
圧がないから従来の転流ダイオードの順方向電圧より低
いオン電圧で導通して負荷電流を転流させることができ
る。従って、本発明では転流時の回路損失が従来より減
少し、かつ転流ダイオードを省けるので回路構成が簡単
になる。なお、転流動作中のMOSトランジスタにはそ
のオン抵抗と並列に前述の寄生ダイオードが順方向に入
ることになるが、電流は当然低いオン抵抗の方に主に流
れて寄生ダイオードにはそのごく一部が流れるだけなの
で、転流動作が実際上その逆回復時間により影響される
おそれはなく、従って従来の直列ダイオードも省いて回
路構成を一層簡単化できる。Since this commutation side MOS transistor has no weir layer voltage, it can conduct at a lower on-state voltage than the forward voltage of the conventional commutation diode and commutate the load current. Therefore, according to the present invention, the circuit configuration at the time of commutation is reduced as compared with the related art, and the circuit configuration is simplified because the commutation diode can be omitted. Note that the above-mentioned parasitic diode enters the forward direction in parallel with the on-resistance of the MOS transistor during the commutation operation, but the current naturally flows mainly toward the lower on-resistance, and the parasitic diode has very little current. Since only a part of the current flows, the commutation operation is not actually affected by the reverse recovery time, so that the circuit configuration can be further simplified by omitting the conventional series diode.
【0015】[0015]
【実施例】以下、図を参照しながら本発明の実施例を説
明する。図1は本発明による断続通電用MOS回路の実
施例回路とMOSトランジスタのオンオフ動作の様子
を,図2はゲート制御回路の要部の構成例と動作波形を
それぞれ示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an intermittent current supply MOS circuit according to the present invention and the state of ON / OFF operation of a MOS transistor, and FIG. 2 shows a configuration example and operation waveforms of a main part of a gate control circuit.
【0016】図1(a) に示すように、本発明の断続通電
用MOS回路は4個のMOSトランジスタ11〜14からな
るブリッジ回路20とゲート制御回路30により構成され、
通例のようにブリッジ回路20の図では上下の一方の対向
接続点間には例えば整流装置である直流の電源1が,図
では左右の他方の対向接続点間に例えばモータである誘
導性の負荷2がそれぞれ接続される。As shown in FIG. 1A, the intermittent conduction MOS circuit of the present invention comprises a bridge circuit 20 comprising four MOS transistors 11 to 14 and a gate control circuit 30,
As is customary, in the diagram of the bridge circuit 20, a DC power source 1 as a rectifier is provided between the upper and lower opposing connection points, and an inductive load such as a motor is connected between the other left and right opposing connection points in the diagram. 2 are respectively connected.
【0017】なお、図1(a) のブリッジ回路20は単相ブ
リッジであって例えば負荷2が直流モータの場合その可
変速かつ可逆駆動に用いるが、負荷2が三相モータの場
合はもちろんブリッジ回路20を三相ブリッジとし、図の
負荷2をモータの各相コイルとする可変速かつ可逆駆動
用のインバータ回路として用いる。かかる負荷駆動用の
MOSトランジスタ11〜14には耐圧が数十V,電流定格
が数十Aで、使用可能周波数が数十kHzの個別素子であ
るふつうは縦形の高周波用MOSトランジスタが用いら
れる。また、図の例ではブリッジ回路20はすべてnチャ
ネル形のMOSトランジスタ11〜14で構成されている
が、電源1の正の電圧点側のMOSトランジスタ11と12
にPチャネル形を用いる場合もある。The bridge circuit 20 shown in FIG. 1A is a single-phase bridge. For example, when the load 2 is a DC motor, it is used for variable speed and reversible drive. The circuit 20 is a three-phase bridge, and the load 2 in the figure is used as an inverter circuit for variable-speed and reversible drive using each phase coil of the motor. The load driving MOS transistors 11 to 14 are usually vertical high-frequency MOS transistors which are individual elements having a withstand voltage of several tens of volts, a current rating of several tens of kHz, and a usable frequency of several tens of kHz. In the example shown in the figure, the bridge circuit 20 is composed of all n-channel MOS transistors 11 to 14, but the MOS transistors 11 and 12 on the positive voltage point side of the power supply 1 are arranged.
In some cases, a P-channel type is used.
【0018】図の例ではMOSトランジスタ11〜14がす
べてnチャネル形なので、ブリッジの一方の対向辺のト
ランジスタ対11と13,および他方の対向辺のトランジス
タ対12と14はそれぞれ共通ゲート接続され、ゲート制御
回路30から与えられるゲート制御信号v1とv2をそれぞれ
共通ゲートに受けて図1(b) と(c) に示すようにオンオ
フ制御される。図ではブロックで示されたゲート制御回
路30は、このオンオフの周期Tを指定するクロックパル
スCPと各周期内の通電率等の指定データである指定信号
SDを受けるPWM制御回路と, その出力に基づきゲート
制御信号v1とv2を発する図2(a) に示すようなゲート駆
動回路とを含む。In the example shown in the figure, since the MOS transistors 11 to 14 are all n-channel transistors, the transistor pairs 11 and 13 on one side of the bridge and the transistor pairs 12 and 14 on the other side are connected to a common gate, respectively. Gate control signals v1 and v2 supplied from the gate control circuit 30 are received by a common gate, respectively, and are turned on / off as shown in FIGS. 1 (b) and (c). In the figure, a gate control circuit 30 indicated by a block includes a clock pulse CP for designating the ON / OFF cycle T and a designation signal which is designating data such as a duty ratio in each cycle.
It includes a PWM control circuit for receiving SD and a gate drive circuit for generating gate control signals v1 and v2 based on the output as shown in FIG. 2 (a).
【0019】図1(b) と(c) はかかるゲート制御信号v1
とv2を受ける一方のトランジスタ対11, 13と他方のトラ
ンジスタ対12, 14のオンオフの様子をそれぞれ示すもの
で、図4の場合と同様にその左半分が同図(a) の負荷電
流Iを図示のとおり正方向に流す場合, 右半分が図とは
逆方向に流す場合にそれぞれ対応する。前者の場合、一
方のトランジスタ対11, 13はゲート制御信号v1を受けて
図1(b) に示すようにオンオフ動作する。もちろん、こ
のオンオフの周期Tとそれに対するオン時間の比である
通電率はゲート制御信号v1により指定される。例えば、
周期TはMOSトランジスタを20kHzで動作させる場合
50μsで、通電率は本発明の場合ふつうどおりではある
が例えば0〜50%の範囲内で指定するのがよい。FIGS. 1B and 1C show such a gate control signal v1.
4 shows the on / off state of one transistor pair 11, 13 and the other transistor pair 12, 14 receiving the load current v2. The left half of the transistor pair 11, 13 receives the load current I of FIG. As shown, the flow in the forward direction corresponds to the case where the right half flows in the opposite direction to that in the figure. In the former case, one of the transistor pairs 11 and 13 receives the gate control signal v1 and turns on and off as shown in FIG. 1 (b). Of course, the duty ratio, which is the ratio of the ON / OFF cycle T to the ON time, is specified by the gate control signal v1. For example,
Period T is when MOS transistor is operated at 20 kHz
In 50 μs, the duty factor is the same as in the case of the present invention, but is desirably specified within a range of, for example, 0 to 50%.
【0020】本発明では、上述の一方のトランジスタ対
11, 13のオフ動作時に負荷電流Iを転流させるために、
図1(b) に示すように他方のトランジスタ対12, 14をゲ
ート制御信号v2によりそれで指定される時間内オン動作
させる。負荷電流Iの転流に要する時間は負荷2のイン
ダクタンス等の回路定数によってもちろん異なるが、上
述の周期Tがこの転流時間tfより元々かなり長めに設定
されているので、この実施例ではトランジスタ対12, 14
を転流のためにオンさせる時間を転流時間tfと同じに設
定され、ふつうはこのように設定するのが転流効果を高
める上で有利である。さらに、この実施例では、負荷2
への断続通電側のトランジスタ対11, 13をオフ制御する
と同時に転流側のトランジスタ対12, 14に対するオン制
御を開始させる。かかる転流開始のタイミングは転流の
促進上望ましく、かつゲート制御回路30の構成を簡単化
できる点で有利である。In the present invention, the above-mentioned one transistor pair
In order to commutate the load current I during the off operation of 11, 13,
As shown in FIG. 1B, the other transistor pair 12, 14 is turned on within the time specified by the gate control signal v2. Although the time required for the commutation of the load current I varies depending on the circuit constant such as the inductance of the load 2, the period T is originally set to be considerably longer than the commutation time tf. 12, 14
Is set to be the same as the commutation time tf, which is usually advantageous for enhancing the commutation effect. Further, in this embodiment, the load 2
Of the transistor pairs 11 and 13 on the intermittent current supply side, and at the same time, start the ON control on the transistor pairs 12 and 14 on the commutation side. Such timing of commutation start is desirable for promoting commutation, and is advantageous in that the configuration of the gate control circuit 30 can be simplified.
【0021】このトランジスタ対12, 14のオン動作によ
り、図1(a) の負荷2内にそれまで図の方向に流れてい
た負荷電流Iはその方向のまま両トランジスタ12と14の
オン抵抗を介して負荷2のインダクタンス内の蓄積エネ
ルギが消失するまで電源1の方に還流される。これによ
り、誘導性負荷2内の蓄積エネルギは前に図3で説明し
たように電源1内のキャパシタ等に一旦預けられて次に
負荷2に電流Iを供給する際に回生される。By the on operation of the pair of transistors 12 and 14, the load current I which has been flowing in the direction shown in FIG. 1A into the load 2 shown in FIG. The electric power is returned to the power source 1 until the stored energy in the inductance of the load 2 disappears. As a result, the energy stored in the inductive load 2 is temporarily stored in a capacitor or the like in the power supply 1 and then regenerated when the current I is supplied to the load 2 as described above with reference to FIG.
【0022】かかる転流に際してチャネル伝導性のMO
Sトランジスタ12と14は従来の転流ダイオードの順方向
電圧よりも低いオン電圧で導通して、堰層電圧による制
約を受けることなく負荷電流Iを転流させる。例えば、
12Vの電源1から給電される断続通電用MOS回路をイ
ンバータとして単相の負荷2を駆動する場合、従来の図
5の回路では1個の転流ダイオード81あたり 0.5Vの順
方向電圧があるので、2個で1Vの電圧損失が転流時に
発生するが、図1の場合はMOSトランジスタ11〜14に
60Vの耐圧のものを用いたとしてオン抵抗が20mΩ程度
なので、転流時の電流を10Aとすると1個あたり 0.2
V, 2個で 0.4Vの電圧損失でよく、従来の半分程度以
下に回路損失を低減できる。At the time of such commutation, the channel conductivity MO
S-transistors 12 and 14 conduct at an on-voltage lower than the forward voltage of a conventional commutation diode, and commutate load current I without being restricted by the weir layer voltage. For example,
When a single-phase load 2 is driven by using an intermittent conduction MOS circuit supplied from a 12 V power supply 1 as an inverter, the conventional circuit of FIG. 5 has a forward voltage of 0.5 V per commutation diode 81. 1 causes a voltage loss of 1 V during commutation. In the case of FIG.
Since the on-resistance is about 20 mΩ when using a withstand voltage of 60 V, if the current during commutation is 10 A, 0.2
V, a voltage loss of 0.4 V is sufficient for two units, and the circuit loss can be reduced to about half or less of the conventional case.
【0023】なお、この転流動作中にトランジスタ12と
14内ではそのオン抵抗と並列に寄生ダイオード15が順方
向に入るが、転流時の電流は堰層電圧がない低いオン抵
抗の方にのみ流れて寄生ダイオード15にはごく一部が流
れるだけなので、転流動作が寄生ダイオード15の逆回復
時間の影響を受けるおそれはほとんどない。During this commutation operation, the transistor 12 and
In 14, the parasitic diode 15 enters the forward direction in parallel with its on-resistance, but the current at the time of commutation flows only toward the low on-resistance with no weir layer voltage, and only a small part flows through the parasitic diode 15. Therefore, there is almost no possibility that the commutation operation is affected by the reverse recovery time of the parasitic diode 15.
【0024】以上、図1(b) と(c) の左半分に対応する
動作を説明したが、もちろん右半分についてもトランジ
スタ対11, 13とトランジスタ対12, 14のオンオフ状態が
逆になるだけで動作は全く同じなので説明を省略する。
なお、図1(a) を従来の図5と比べるとわかるように、
本発明回路では従来必要であった転流ダイオード81と直
列ダイオード82が省けるので構成が格段に簡易化され
る。The operation corresponding to the left half of FIGS. 1 (b) and 1 (c) has been described above. Of course, in the right half, only the on / off states of the transistor pairs 11, 13 and the transistor pairs 12, 14 are reversed. And the operation is exactly the same, so the description is omitted.
As can be seen by comparing FIG. 1 (a) with the conventional FIG. 5,
In the circuit of the present invention, the commutation diode 81 and the series diode 82, which are conventionally required, can be omitted, so that the configuration is greatly simplified.
【0025】次に、図2を参照してゲート制御回路30内
のゲート駆動回路の構成例と動作を説明する。図2(a)
は符号10が付されたMOSトランジスタとゲート制御回
路30内のそのゲート駆動部分を示す。周知のように、M
OSトランジスタ10はゲート電圧vにより可変なゲート
キャパシタンスをもち、かつ本発明では短い周期T内に
転流動作を含めたオンオフ動作を繰り返すので、キャパ
シタンスの電圧依存性に則した転流に有利な波形をゲー
ト電圧vに与えるのが望ましく、図2のゲート駆動回路
ではオフ制御の時定数をオン制御時より短く設定する。Next, a configuration example and operation of the gate drive circuit in the gate control circuit 30 will be described with reference to FIG. Fig. 2 (a)
Denotes a MOS transistor denoted by reference numeral 10 and its gate driving portion in the gate control circuit 30. As is well known, M
Since the OS transistor 10 has a variable gate capacitance depending on the gate voltage v and repeats on / off operations including commutation within a short period T in the present invention, a waveform advantageous for commutation in accordance with the voltage dependence of the capacitance. Is preferably applied to the gate voltage v. In the gate drive circuit of FIG. 2, the time constant of the off control is set shorter than that of the on control.
【0026】図2(a) に示すゲート駆動回路は抵抗31
と, 抵抗32とダイオード33の直列回路を並列接続してな
り、ダイオード33はゲートを正の電圧に充電する際に非
導通で放電時に導通する方向に挿入される。図2(b) は
ゲート駆動回路にnチャネル形MOSトランジスタ10の
オン制御時に正の電圧Vgを与えてゲートキャパシタンス
を充電する際のゲート電圧vを示す。電圧Vgを与えた時
刻t0の直後はキャパシタンスが小さいので充電が急速に
進み、ゲート電圧vは短時間後の時刻t1に電圧Vtに達す
るが、キャパシタンスが大きくなる時刻t2まではほぼ一
定で、それ以降は抵抗31と大なキャパシタンスで決まる
時定数で緩やかに上昇し、時刻t3でMOSトランジスタ
10が完全オンの状態になる電圧Vgに達する。The gate drive circuit shown in FIG.
, A series circuit of a resistor 32 and a diode 33 are connected in parallel, and the diode 33 is inserted in a direction in which the gate is non-conductive when charging the gate to a positive voltage and is conductive when discharging. FIG. 2B shows a gate voltage v when a positive voltage Vg is applied to the gate drive circuit to control the gate capacitance when the n-channel MOS transistor 10 is turned on. Immediately after the time t0 when the voltage Vg is applied, the charging is rapidly progressed because the capacitance is small, and the gate voltage v reaches the voltage Vt at a short time t1, but is substantially constant until the time t2 when the capacitance increases. Thereafter, it gradually rises with a time constant determined by the resistance 31 and the large capacitance, and at time t3, the MOS transistor
10 reaches the voltage Vg at which it is completely turned on.
【0027】図2(c) はMOSトランジスタ10のオフ制
御時にゲート駆動回路への電圧Vgを消失させてキャパシ
タンスを放電させる際のゲート電圧vの波形を示す。電
圧Vgを切った時刻t0の直後のキャパシタンスは大きいが
ダイオード33が導通するのでそれと抵抗31と32の並列抵
抗値で決まる時定数で急速に放電されてゲート電圧vは
比較的短時間後の時刻t1に電圧Vtに下がり、暫く一定値
を保った後の時刻t2にキャパシタンスが小さくなるので
ごく短時間後の時刻t3に0にまで落ちてMOSトランジ
スタ10が完全オフの状態になる。なお、図2(b) と(c)
のゲート電圧vの波形がほぼ一定値である時刻t1〜t2の
間はMOSトランジスタ10がオフからオンの状態に, あ
るいは逆にオンからオフの状態に移る時間である。FIG. 2C shows the waveform of the gate voltage v when the voltage Vg to the gate drive circuit is eliminated and the capacitance is discharged when the MOS transistor 10 is turned off. The capacitance immediately after the time t0 when the voltage Vg is cut is large, but since the diode 33 conducts, it is rapidly discharged with a time constant determined by the parallel resistance of the diode 31 and the resistors 31 and 32, and the gate voltage v becomes a time after a relatively short time. The voltage drops to the voltage Vt at t1, and the capacitance decreases at time t2 after maintaining the constant value for a while. Therefore, the voltage drops to 0 at time t3, which is a very short time, and the MOS transistor 10 is completely turned off. 2 (b) and 2 (c)
The period from time t1 to time t2 when the waveform of the gate voltage v is substantially constant is the time when the MOS transistor 10 transitions from off to on or vice versa.
【0028】図2(a) のように構成されたゲート駆動回
路では、その抵抗31と32の合成抵抗をオフ制御時に負荷
2に過大な逆起電力が生じない程度に設定し、かつもち
ろん場合によりかなり異なるが例えば抵抗32を抵抗31の
2〜3分の1程度に設定して図2(c) のt0〜t3のオフ動
作時間が同図(b) のt0〜t3の例えば1μs程度のオン動
作時間の半分かこれを若干下回るようにするのが、図1
の回路の転流時の動作を速める上で有利である。すなわ
ち、これによって図1のMOSトランジスタ対11, 13の
オフ動作を速めてMOSトランジスタ対12, 14への転流
を促進することができるからである。In the gate drive circuit constructed as shown in FIG. 2 (a), the combined resistance of the resistors 31 and 32 is set so that no excessive back electromotive force is generated in the load 2 during the OFF control. For example, the resistance 32 is set to about one-third of the resistance 31 and the OFF operation time from t0 to t3 in FIG. 2C is about 1 μs of t0 to t3 in FIG. One half of the ON operation time or slightly less than this is shown in FIG.
This is advantageous in speeding up the operation of the circuit in commutation. That is, the off operation of the pair of MOS transistors 11 and 13 in FIG. 1 can be accelerated to promote commutation to the pair of MOS transistors 12 and 14.
【0029】なお、かかる転流動作を速めるだけであれ
ば転流側のトランジスタ対12, 14に対するゲート制御信
号v2の立ち上がりも短くすればよいことになるが、オフ
動作中のトランジスタ対11, 13のオフ抵抗がまだ充分に
立ち上がらない内に、転流側のトランジスタ対12, 14の
オン抵抗があまり早く低くなり過ぎると電源1が短絡さ
れたに近い状態になって大きな短絡阻止が発生するおそ
れがあるので、これを防止するため転流側へのゲート制
御信号v2の立ち上がりをオフ動作側へのゲート制御信号
v1の立ち下がりより回路条件に則した程度に遅らせるの
が有利になる。図2の実施例では、このようにして合理
的に転流動作を速めながら図1の回路の動作速度を向上
することができる。In order to only speed up the commutation operation, the rising of the gate control signal v2 for the pair of transistors 12 and 14 on the commutation side may be shortened. If the on-resistance of the pair of transistors 12 and 14 on the commutation side becomes too low too quickly before the off-resistance of the power supply 1 has yet risen sufficiently, the power supply 1 will be in a state close to being short-circuited and large short-circuit prevention may occur. In order to prevent this, the rise of the gate control signal v2 to the commutation side is controlled by the gate control signal to the off operation side.
It is advantageous to delay the falling of v1 to an extent in accordance with the circuit conditions. In the embodiment of FIG. 2, the operation speed of the circuit of FIG. 1 can be improved while the commutation operation is rationally accelerated.
【0030】[0030]
【発明の効果】以上の説明からわかるように本発明で
は、一方の対向接続点間に電源が,他方の対向接続点間
に断続通電すべき誘導性負荷がそれぞれ接続されたMO
Sトランジスタで構成されたブリッジ回路と、ブリッジ
の対向辺のMOSトランジスタ対をそれぞれ同時にオン
オフ制御するゲート制御回路とによりPWM制御方式で
断続通電を制御する回路を構成して、一方のMOSトラ
ンジスタ対のオフ動作時の負荷電流の転流時間内に他方
のMOSトランジスタ対をゲート制御回路によりオン制
御し、転流時間内の他方のMOSトランジスタ対のオン
動作が一方のMOSトランジスタ対のオン動作よりも短
くすることにより、次の効果を得ることができる。As can be seen from the above description, according to the present invention, a power supply is connected between one opposing connection point and an inductive load to be intermittently connected between the other opposing connection points.
A bridge circuit composed of S transistors and a gate control circuit for simultaneously turning on and off the MOS transistor pairs on the opposite sides of the bridge at the same time in a PWM control method.
A circuit for controlling intermittent energization is configured so that the other MOS transistor pair is turned on by the gate control circuit within the commutation time of the load current during the off operation of one MOS transistor pair, and the other MOS transistor pair is turned on during the commutation time. ON of MOS transistor pair
Operation is shorter than ON operation of one MOS transistor pair
By Ku, it is possible to obtain the following effects.
【0031】(a) ブリッジ回路内のMOSトランジスタ
を従来の転流ダイオードのかわりに利用することによ
り、転流ダイオードの順方向電圧より低いオン電圧で負
荷電流を転流させて転流動作時の回路損失を減少させる
ことができる。 (b) ブリッジ回路のMOSトランジスタを転流ダイオー
ドのかわりに活用することにより回路構成を簡単化する
ことができ、かつ転流ダイオードの逆回復時の電力損失
をなくすことができる。 (c) 転流動作中にMOSトランジスタの寄生ダイオード
を低いオン抵抗でほぼ短絡することによりそれに流れる
電流を減少させ、寄生ダイオードの逆回復時間が転流動
作に与える悪影響をなくすことができるので、従来の直
列ダイオードを省いて回路構成を一層簡単化することが
できる。 (d) MOSトランジスタの低いオン抵抗を利用して回路
の転流動作を促進することにより、断続通電回路の動作
速度を高めてより高い周波数で動作させることができ、
例えばモータに給電するインバータとして使用する場合
に従来より正確な正弦波形の断続電流をモータに通電さ
せることができる。(A) By using the MOS transistor in the bridge circuit instead of the conventional commutation diode, the load current is commutated at an on-voltage lower than the forward voltage of the commutation diode, and the commutation operation is performed. Circuit loss can be reduced. (b) The circuit configuration can be simplified by utilizing the MOS transistor of the bridge circuit instead of the commutation diode, and the power loss at the time of reverse recovery of the commutation diode can be eliminated. (c) Since the parasitic diode of the MOS transistor is almost short-circuited with a low on-resistance during the commutation operation, the current flowing through the parasitic diode can be reduced, and the reverse recovery time of the parasitic diode can eliminate the adverse effect on the commutation operation. The circuit configuration can be further simplified by eliminating the conventional series diode. (d) By promoting the commutation operation of the circuit by using the low on-resistance of the MOS transistor, the operation speed of the intermittent conduction circuit can be increased to operate at a higher frequency,
For example, when used as an inverter that supplies power to a motor, an intermittent current with a more accurate sine waveform can be supplied to the motor than before.
【0032】このように、本発明はインバータ装置やチ
ョッパ装置の断続通電用MOS回路に適用して、転流に
伴う回路内のむだな電力損失を減少させ、回路構成を簡
易化して装置を合理化し、さらには装置の性能を高める
効果を有するもので、本発明の実施によりこれら装置技
術の一層の発展に貢献することができる。As described above, the present invention is applied to an intermittent conduction MOS circuit of an inverter device or a chopper device, thereby reducing unnecessary power loss in a circuit due to commutation, simplifying a circuit configuration, and streamlining the device. Further, the present invention has the effect of improving the performance of the device, and the implementation of the present invention can contribute to the further development of these device technologies.
【図1】本発明による断続通電用MOS回路の実施例を
示し、同図(a) はその回路図、同図(b) と(c) はMOS
トランジスタのオンオフ波形図である。FIGS. 1A and 1B show an embodiment of an intermittent conduction MOS circuit according to the present invention. FIG. 1A is a circuit diagram thereof, and FIGS.
FIG. 3 is an on / off waveform diagram of a transistor.
【図2】本発明におけるゲート制御回路内のゲート駆動
部の構成例を示し、同図(a) はその回路図、同図(b) と
(c) はMOSトランジスタに対するそれぞれオン制御時
とオフ制御時のゲート電圧の波形図である。FIG. 2 shows a configuration example of a gate drive unit in a gate control circuit according to the present invention. FIG. 2 (a) is a circuit diagram thereof, and FIG.
(c) is a waveform diagram of the gate voltage at the time of ON control and at the time of OFF control for the MOS transistor, respectively.
【図3】バイポーラトランジスタを用いる従来の断続通
電用回路の回路図である。FIG. 3 is a circuit diagram of a conventional intermittent conduction circuit using a bipolar transistor.
【図4】図3と図5に対応する従来の断続通電用回路の
トランジスタのオンオフ波形図である。FIG. 4 is an ON / OFF waveform diagram of a transistor of a conventional intermittent conduction circuit corresponding to FIGS. 3 and 5;
【図5】MOSトランジスタを用いる従来の断続通電用
MOS回路の回路図である。FIG. 5 is a circuit diagram of a conventional intermittent conduction MOS circuit using a MOS transistor.
1 電源 2 誘導性の負荷 11 ブリッジ回路を構成するMOSトランジスタ 12 ブリッジ回路を構成するMOSトランジスタ 13 ブリッジ回路を構成するMOSトランジスタ 14 ブリッジ回路を構成するMOSトランジスタ 15 MOSトランジスタの寄生ダイオード 20 ブリッジ回路 30 ゲート制御回路 I 負荷電流 T 通電の断続周期 tf 転流時間 DESCRIPTION OF SYMBOLS 1 Power supply 2 Inductive load 11 MOS transistor which comprises a bridge circuit 12 MOS transistor which comprises a bridge circuit 13 MOS transistor which comprises a bridge circuit 14 MOS transistor which comprises a bridge circuit 15 Parasitic diode of MOS transistor 20 Bridge circuit 30 Gate Control circuit I Load current T Intermittent cycle of conduction tf Commutation time
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02M 7/5387 H02M 7/537 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02M 7/5387 H02M 7/537
Claims (3)
接続点間に電源が,他方の対向接続点間に断続通電すべ
き誘導性負荷がそれぞれ接続されたブリッジ回路と、ブ
リッジの対向辺の1対のMOSトランジスタを同時にオ
ンオフさせるゲート制御回路とを備え、前記断続通電が
PWM制御方式で断続的に制御される回路において、一
方のMOSトランジスタ対のオフ動作時の負荷電流の転
流時間内に他方のMOSトランジスタ対をゲート制御回
路によってオン制御するようにし、前記転流時間内の他
方のMOSトランジスタ対のオン動作が一方のMOSト
ランジスタ対のオン動作よりも短いことを特徴とする断
続通電用MOS回路。1. A bridge circuit comprising a MOS transistor and a power supply connected between one of the opposite connection points and an inductive load to be intermittently connected between the other opposite connection points, and a pair of opposite sides of the bridge. comprising simultaneously a gate control circuit turning on and off the MOS transistors, the intermittent energization
In a circuit intermittently controlled by the PWM control method, the other MOS transistor pair is controlled to be turned on by a gate control circuit within a commutation time of a load current when one of the MOS transistor pairs is turned off , and Other in time
The ON operation of one MOS transistor pair is
An intermittent energizing MOS circuit, which is shorter than the ON operation of a transistor pair .
御回路のオフ制御時の時定数がそのオン制御時の時定数
よりも短く設定されたことを特徴とする断続通電用MO
S回路。2. A circuit according to claim 1, wherein a time constant at the time of off control of the gate control circuit is set shorter than a time constant at the time of on control of the gate control circuit.
S circuit.
一方のMOSトランジスタ対のオフ制御と同時に他方の
MOSトランジスタ対のオン制御を開始するようにした
ことを特徴とする断続通電用MOS回路。3. The circuit according to claim 1, wherein
An intermittent conduction MOS circuit, wherein the on control of one MOS transistor pair is started simultaneously with the off control of another MOS transistor pair.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17853991A JP3269092B2 (en) | 1991-07-19 | 1991-07-19 | MOS circuit for intermittent conduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17853991A JP3269092B2 (en) | 1991-07-19 | 1991-07-19 | MOS circuit for intermittent conduction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0530759A JPH0530759A (en) | 1993-02-05 |
JP3269092B2 true JP3269092B2 (en) | 2002-03-25 |
Family
ID=16050250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17853991A Expired - Fee Related JP3269092B2 (en) | 1991-07-19 | 1991-07-19 | MOS circuit for intermittent conduction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3269092B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4513863B2 (en) * | 2008-01-09 | 2010-07-28 | 株式会社デンソー | Control device for multi-phase rotating machine |
DE102008054487A1 (en) | 2008-01-09 | 2009-07-16 | DENSO CORPORARTION, Kariya-shi | Control system for a multiphase electric lathe |
KR102024565B1 (en) | 2017-04-20 | 2019-09-24 | 엘지전자 주식회사 | Device and method for measuring dust |
US11511452B2 (en) * | 2017-04-25 | 2022-11-29 | Tism Co., Ltd | Punching device |
-
1991
- 1991-07-19 JP JP17853991A patent/JP3269092B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0530759A (en) | 1993-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | A self-boost charge pump topology for a gate drive high-side power supply | |
US4859921A (en) | Electronic control circuits, electronically commutated motor systems, switching regulator power supplies, and methods | |
US6256214B1 (en) | General self-driven synchronous rectification scheme for synchronous rectifiers having a floating gate | |
US4566059A (en) | Converter with lossless snubbing components | |
US5710698A (en) | Delta connected resonant snubber circuit | |
JP3917156B2 (en) | Method and circuit configuration for limiting overvoltage | |
US5642273A (en) | Resonant snubber inverter | |
US8390241B2 (en) | Motor drive based on III-nitride devices | |
US6246593B1 (en) | Topology-independent synchronous rectifier commutation circuit | |
JPH04299074A (en) | Snubber circuit for power converter | |
JP3577807B2 (en) | Driver circuit for self-extinguishing semiconductor device | |
JPH0748942B2 (en) | High efficiency power converter with synchronous switching system | |
JP2008533962A (en) | Reduced power loss in switching power converters | |
US7009850B2 (en) | Soft switching converter using current shaping | |
KR100936427B1 (en) | Power converter | |
US7248093B2 (en) | Bipolar bootstrap top switch gate drive for half-bridge semiconductor power topologies | |
JP3269092B2 (en) | MOS circuit for intermittent conduction | |
JP4506276B2 (en) | Drive circuit for self-extinguishing semiconductor device | |
JP2001037207A (en) | Gate drive circuit | |
US9705423B1 (en) | Controlled bootstrap driver for high side electronic switching device | |
US6268754B1 (en) | Gate driving circuit for power semiconductor switch | |
US6069472A (en) | Converter/inverter using a high efficiency switching circuit | |
JP3568024B2 (en) | Gate drive circuit for voltage driven semiconductor device | |
JPH07337005A (en) | Dc/dc converter and power supply | |
Sobczynski | Active gate drivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100118 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |