HRP20020312A2 - Moving vehicle active aerodynamic resistance reduction system - Google Patents
Moving vehicle active aerodynamic resistance reduction system Download PDFInfo
- Publication number
- HRP20020312A2 HRP20020312A2 HR20020312A HRP20020312A HRP20020312A2 HR P20020312 A2 HRP20020312 A2 HR P20020312A2 HR 20020312 A HR20020312 A HR 20020312A HR P20020312 A HRP20020312 A HR P20020312A HR P20020312 A2 HRP20020312 A2 HR P20020312A2
- Authority
- HR
- Croatia
- Prior art keywords
- vehicle
- air
- motion
- droplet
- wheels
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims description 39
- 230000003068 static effect Effects 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000013598 vector Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D37/00—Stabilising vehicle bodies without controlling suspension arrangements
- B62D37/02—Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B19/00—Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
- B60B19/10—Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group with cooling fins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/82—Elements for improving aerodynamics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/88—Optimized components or subsystems, e.g. lighting, actively controlled glasses
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Vehicle Body Suspensions (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
Područje tehnike The field of technology
Prema Međunarodnoj klasifikaciji patenata (MKP) izum se može svrstati u slijedeće klase: According to the International Patent Classification (IPC), the invention can be classified into the following classes:
B60B 21/00 Naplatci B60B 21/00 Rims
B60B 21/02 Karakteristični po poprečnom presjeku B60B 21/02 Characteristic in cross-section
B60B 3/10 Kotači s otvorima radi imitacije kotača sa žbicama B60B 3/10 Wheels with openings to imitate spoked wheels
Tehnički problem Technical problem
Tehnički problem koji se rješava ovim izumom sastoji se u konstrukcijskom rješenju aktivnog usmjeravanja protoka zračne struje iz prostora između dna vozila, prednjih kotača i kolnika prema van, te aktivnog usmjeravanja zračne struje u zonu podtlaka koja postoji neposredno iza vozila u kretanju, a u cilju umanjenja aerodinamičkog otpora vozila u kretanju /sila aerodinamičkog uzgona i sile koje su posljedica usporenog protjecanja zračne struje koje se javljaju u prostoru između dna vozila u kretanju, kotača i kolnika te sile koje su posljedica podtlaka u zoni neposredno iza vozila u kretanju/, uz pretpostavku da se učine preinake u konstrukciji vozila, i to: The technical problem that is solved by this invention consists in the design solution of actively directing the air flow from the space between the bottom of the vehicle, the front wheels and the road to the outside, and actively directing the air flow into the negative pressure zone that exists immediately behind the vehicle in motion, with the aim of reducing the aerodynamic resistance of the vehicle in motion /aerodynamic buoyancy force and forces resulting from the slowed down flow of the air stream that occur in the space between the bottom of the moving vehicle, the wheels and the road and forces resulting from the negative pressure in the zone immediately behind the moving vehicle/, assuming that make changes in the vehicle construction, namely:
A. Osnovne preinake: A. Basic changes:
- primijene kotači s naplatkom dizajniranim kao propeler, čime naplatak postaje i aksijalna zračna turbina kojom se proizvodi prisilno strujanje zraka u smjeru iznutra prema van kod prednjih kotača, odnosno izvana prema unutra kod stražnjih kotača; - applied wheels with a rim designed as a propeller, which turns the rim into an axial air turbine that produces a forced flow of air in the direction from the inside to the outside for the front wheels, or from the outside to the inside for the rear wheels;
- pomakne os stražnjih kotača prema kraju vozila (zapravo i iza osnovnog volumena vozila) i tome prilagodi ovjes kotača; - moves the axis of the rear wheels towards the end of the vehicle (actually behind the basic volume of the vehicle) and adjusts the wheel suspension accordingly;
- konstruira naplatak što većeg promjera (uz niskoprofilne gume kako bi aktivni dio sustava bio što efikasniji), s tim da stražnji naplatci budu daleko većeg promjera (25” ili više), sve s ciljem povećanja aktiviranog volumena zraka, dakle efikasnosti. - constructs rims with the largest possible diameter (along with low-profile tires to make the active part of the system as efficient as possible), with the rear rims being far larger in diameter (25" or more), all with the aim of increasing the activated volume of air, thus efficiency.
B. Dodatne preinake: B. Additional changes:
- redizajniraju kočnice i sustav ovjesa kotača kako se ne bi ometao protok zraka kroz naplatak; - redesign the brakes and wheel suspension system so that the air flow through the rim is not obstructed;
- podigne rep vozila; - raise the tail of the vehicle;
- aerodinamički uobliče svi elementi ovjesa i prijenosa koji se nalaze ispod vozila; - aerodynamically shape all suspension and transmission elements located under the vehicle;
- smanji hrapavost dna vozila. - reduce the roughness of the bottom of the vehicle.
Stanje tehnike State of the art
Poznati pasivni sustavi podrazumijevaju oblikovanje vozila što bliže idealnoj aerodinamičnoj formi te primjenu sustava “spojlera” kojima se (počesto neuspješno) pasivno usmjerava zračna struja te pokušava utjecati na silu prianjanja kotača vozila na kolnik. «Repni» spojler ima nešto više smisla jer se njime popunjava volumen repa aeroprofila koji u formi “krnje” kapljice nedostaje (zona podtlaka iza vozila) te smanjuje rezultantna sila suprotna smjeru kretanja vozila budući se volumen spojlera približava centru zone pa se sile dijelom poništavaju. Well-known passive systems imply shaping the vehicle as close as possible to the ideal aerodynamic shape and the use of a "spoiler" system that (often unsuccessfully) passively directs the air flow and tries to influence the adhesion force of the vehicle's wheels to the road. The "tail" spoiler makes a bit more sense because it fills the volume of the tail of the airfoil that is missing in the form of a "truncated" droplet (underpressure zone behind the vehicle) and reduces the resultant force opposite to the direction of movement of the vehicle since the volume of the spoiler approaches the center of the zone and the forces are partially canceled.
Opis rješenja tehničkog problema Description of the solution to the technical problem
Primarni cilj izuma je smanjiti aerodinamički otpor vozila u kretanju. The primary goal of the invention is to reduce the aerodynamic resistance of the vehicle in motion.
Sekundarni cilj izuma je povećati stabilnost i upravljivost vozila u kretanju i smanjiti potrošnju goriva, te poboljšati performanse vozila (maksimalnu brzinu, ubrzanje). The secondary goal of the invention is to increase the stability and controllability of the vehicle in motion and to reduce fuel consumption, as well as to improve the performance of the vehicle (maximum speed, acceleration).
Popratni crteži koji su uključeni u opis i koji čine dio opisa izuma, ilustriraju način izvedbe izuma i pomažu kod objašnjavanja osnovnih principa izuma. The accompanying drawings, which are included in the description and form part of the description of the invention, illustrate the method of carrying out the invention and help explain the basic principles of the invention.
Promatramo li gibanje nekog tijela - vozila kroz zračni medij (Slika 1), vidimo da je brzina strujanja zraka veća na gornjoj površini vozila od one na donjoj površini što rezultira pojavom sile aerodinamičkog uzgona. Razlog navedenom je veći otpor protjecanju struje zraka kroz zonu usporenog protjecanja zraka u prostoru između dna vozila, kotača i kolnika (zbog utjecaja statičke komponente tlaka, hrapavosti površine dna vozila, otpora sklopova ovjesa, sklopova upravljanja i dr., utjecaja hrapavosti kolnika i sl.). Posljedica djelovanja sile aerodinamičkog uzgona na vozilo u gibanju je smanjenje sile prianjanja kotača na kolnik, zbog čega se povećavaju gubici zbog proklizavanja pogonskih kotača te se smanjuje upravljivost vozila. If we observe the movement of a body - a vehicle through the air medium (Figure 1), we see that the speed of the air flow is higher on the upper surface of the vehicle than on the lower surface, which results in the appearance of the force of aerodynamic lift. The reason for the above is the greater resistance to the flow of air through the zone of slowed air flow in the space between the bottom of the vehicle, the wheels and the pavement (due to the influence of the static pressure component, the roughness of the surface of the vehicle bottom, the resistance of the suspension assemblies, steering assemblies, etc., the influence of the roughness of the pavement, etc. ). The effect of the force of aerodynamic buoyancy on the vehicle in motion is a reduction in the force of adhesion of the wheels to the road, which increases the losses due to slippage of the drive wheels and reduces the controllability of the vehicle.
Dakle, jedan dio tehničkog problema kojega promatramo je sila aerodinamičkog uzgona te sile otpora protjecanju zračne struje koje se javljaju u prostoru između dna vozila u kretanju, kotača i kolnika. So, one part of the technical problem that we are looking at is the force of aerodynamic buoyancy and the force of resistance to the flow of air that occur in the space between the bottom of the vehicle in motion, the wheels and the road.
Analiziramo li protjecanje medija (zraka) kroz zonu usporenog protjecanja zraka u prostoru između dna vozila, kotača i kolnika, uz neka pojednostavljenja, te zanemarimo li utjecaj stlačivosti zraka i trenja među česticama zraka, situaciju možemo promatrati kao laminarno strujanje medija kroz dvije Bernoullijeve cijevi (Slika 2), gdje bočne stranice tih cijevi čine kotači, te primijeniti Bernoullijev zakon: If we analyze the flow of the medium (air) through the zone of slowed air flow in the space between the bottom of the vehicle, the wheels and the road, with some simplifications, and if we ignore the influence of air compressibility and friction between air particles, we can view the situation as a laminar flow of the medium through two Bernoulli tubes ( Figure 2), where the sides of these pipes are made of wheels, and apply Bernoulli's law:
pdinam + pstat = konst = p pdynam + pstat = const = p
ρv2/2 + pstat = konst = p ρv2/2 + pstat = const = p
Dakle, suma dinamičkog tlaka - ρv2/2 i statičkog tlaka - pstat je konstantna, što znači da je jednaka ukupnom tlaku. Thus, the sum of the dynamic pressure - ρv2/2 and the static pressure - pstat is constant, which means that it is equal to the total pressure.
Kako realno strujanje zraka kroz prostor između dna vozila, kotača i kolnika ipak nije laminarno već vrtložno, brzina strujanja se usporava, zbog čega se smanjuje dinamička komponenta, a raste statička komponenta s vektorom usmjerenim okomito na smjer gibanja. Kako je jedna strana promatranog sustava fiksna (kolnik), statička komponenta tlaka usmjerena okomito na kolnik zapravo se pribraja (umanjena koeficijentom stlačivosti zraka) statičkoj komponenti tlaka usmjerenoj okomito na dno vozila. Drugim riječima, stvara se “zračni jastuk” ispod vozila. As the real air flow through the space between the bottom of the vehicle, the wheels and the pavement is not laminar but vortex, the speed of the flow slows down, which is why the dynamic component decreases, and the static component with a vector directed perpendicular to the direction of motion increases. As one side of the observed system is fixed (road), the static pressure component directed perpendicular to the road is actually added (minus the air compressibility coefficient) to the static pressure component directed perpendicular to the bottom of the vehicle. In other words, an "air cushion" is created under the vehicle.
Posljedica prethodno iznesenog jesu dvije sile jednako usmjerenih vektora (suprotno vektoru zemljine gravitacije) - sila aerodinamičkog uzgona te rezultantna sila kao suma vektora statičke komponente tlaka pri protjecanju zračne struje kroz prostor između dna vozila, kotača i kolnika. The consequence of the above are two equally directed vector forces (opposite to the earth's gravity vector) - the force of aerodynamic buoyancy and the resultant force as the sum of the vectors of the static component of pressure when the air current flows through the space between the bottom of the vehicle, the wheels and the pavement.
Dakle, uspijemo li povećati brzinu strujanja zraka u prostoru između dna vozila, kotača i kolnika te s druge strane, smanjimo li volumen zraka koji protječe kroz isti prostor, povećati će se dinamička komponenta tlaka te smanjiti statička. Posljedica ovoga na vozilo u gibanju su dvije: So, if we manage to increase the speed of air flow in the space between the bottom of the vehicle, the wheels and the road, and on the other hand, if we reduce the volume of air flowing through the same space, the dynamic pressure component will increase and the static component will decrease. The consequence of this on the moving vehicle is twofold:
• smanjuju se obje komponente tlaka i njihov utjecaj na vozilo u gibanju time i rad potreban da se taj otpor svlada. • both pressure components and their impact on the vehicle in motion are reduced, and thus the work required to overcome this resistance.
• povećana je brzina strujanja u zoni između dna vozila i kolnika zbog čega se smanjuje sila aerodinamičkog uzgona i njezin utjecaj na vozilo u gibanju (gubici zbog proklizavanja pogonskih kotača te smanjenja upravljivost vozila). • the speed of the flow in the zone between the bottom of the vehicle and the road surface is increased, due to which the force of aerodynamic buoyancy and its influence on the vehicle in motion are reduced (losses due to slippage of the drive wheels and reduced vehicle controllability).
Ovdje moram naglasiti da se prethodno izneseno odnosi na prednju Bernoullijevu cijev, dok je situacija sa stražnjom ponešto drugačija, pa analizirajmo dalje gibanje tijela - vozila kroz zračni medij. Here I must emphasize that the above mentioned refers to the front Bernoulli tube, while the situation with the rear one is somewhat different, so let's further analyze the motion of the body - the vehicle through the air medium.
Promatramo li bilo koji volumen vode u stanju kada na njega ne djeluje nikakva sila (npr. bestežinsko stanje), on će poprimiti oblik kugle, što je posljedica djelovanja kohezijskih sila među molekulama vode te sila napetosti površine. If we observe any volume of water in a state when no force is acting on it (e.g. weightlessness), it will take the shape of a sphere, which is a consequence of the action of cohesion forces between water molecules and surface tension forces.
Pustimo li jednu takvu kuglu da slobodno pada pod djelovanjem gravitacije kroz zračni medij, kugla se proporcionalno brzini gibanja sve više deformira i poprima formu kapljice, što je učinak djelovanja sila aerodinamičkog otpora, s jedne strane te kohezijskih sila i sila napetosti površine (Slika 3) s druge strane. If we let one such sphere fall freely under the action of gravity through an air medium, the sphere deforms more and more in proportion to the speed of movement and takes the form of a droplet, which is the effect of the forces of aerodynamic resistance, on the one hand, and the forces of cohesion and surface tension (Figure 3) on the other side.
Kapljica se tako sve više produžuje do trenutka kada se nadjačavaju kohezijske sile te se dio volumena odvaja i formira novu kapljicu. Ovaj se proces nastavlja sve do trenutka kada se sile uravnotežuju, a takve se kapljice dalje nastavljaju gibati jednoliko po pravcu. The droplet thus extends more and more until the moment when the cohesive forces are overcome and part of the volume separates and forms a new droplet. This process continues until the moment when the forces are balanced, and such droplets continue to move uniformly in the same direction.
Usporedimo li, sada, gibanje jedne takve kapljice s drugim tijelom iste mase - m i površine projekcije na ravninu okomitu na pravac gibanja - A te istog oblika, ali izrađenog od krutine iste hrapavosti površine kakvu ima vodena kapljica, vidjeti ćemo da se oba tijela gibaju istom brzinom (na oba tijela djeluje ista sila i gibaju se jednoliko po pravcu), što znači da je aerodinamički otpor - R jednak za oba tijela u gibanju (Slika 4). If we now compare the motion of one such droplet with another body of the same mass - m and projection surface on a plane perpendicular to the direction of motion - A and of the same shape, but made of a solid with the same surface roughness as a water droplet, we will see that both bodies move in the same way speed (the same force acts on both bodies and they move uniformly in the same direction), which means that the aerodynamic resistance - R is the same for both bodies in motion (Figure 4).
U slijedećem primjeru usporedimo gibanje istog tijela, dakle krutog tijela oblika kapljice koja se giba jednoliko po pravcu kroz zračni medij, s drugim tijelom iste mase - m i površine projekcije na ravninu okomitu na pravac gibanja - A te iste hrapavosti površine, ali koja se oblikom razlikuje samo po tome što je “krnja” - nedostaje mu “rep” forme kapljice. Vidjeti ćemo da se tijelo oblika “krnje kapljice” giba sporije, što znači da ima veći aerodinamički otpor. Veličina aerodinamičkog otpora tijela forme “krnje kapljice” - R2 biti će proporcionalna sumi aerodinamičkog otpora tijela forme pravilne kapljice - R1 i težine vode volumena jednakog volumenu dijela forme pravilne kapljice koji nedostaje kod tijela forme “krnje kapljice” - S (slike 3 i 4) budući je sila potrebna da bi se proizvela deformacija oblika koji nedostaje kod tijela forme “krnje kapljice” proporcionalna težini toga volumena. In the following example, let's compare the motion of the same body, i.e. a rigid body in the shape of a droplet that moves uniformly in a direction through an air medium, with another body of the same mass - m and a projection surface on a plane perpendicular to the direction of motion - A and the same surface roughness, but which differs in shape only because it is a "trunk" - it lacks the "tail" of the droplet form. We will see that the body in the shape of a "truncated droplet" moves more slowly, which means that it has greater aerodynamic resistance. The size of the aerodynamic resistance of the body in the form of a "truncated droplet" - R2 will be proportional to the sum of the aerodynamic resistance of the body of the form of a regular droplet - R1 and the weight of water of a volume equal to the volume of the part of the form of a regular droplet that is missing from the body of the form of a "truncated droplet" - S (Figures 3 and 4) since the force required to produce the deformation of the form missing from the body of the "truncated droplet" form is proportional to the weight of that volume.
R2 ~ R1 + a m R2 ~ R1 + a m
R2 ~ R1 + a ρvode V R2 ~ R1 + a ρleads V
R2 ~ R1 + a ρvode Sh/3 R2 ~ R1 + a ρlead Sh/3
Gdje je R2 - aerodinamički otpor tijela forme «krnje» kapljice; R1 - aerodinamički otpor tijela forme pravilne kapljice; a - akceleracija (zemljina gravitacija); m - masa volumena dijela forme pravilne kapljice koji u formi «krnje» kapljice nedostaje; ρvode - gustoća vode; V - volumen dijela forme pravilne kapljice koji u formi «krnje» kapljice nedostaje (pojednostavljeno stožac); S - površina repnog dijela forme «krnje» kapljice (baza stošca); h - visina dijela forme pravilne kapljice koja u formi “krnje” kapljice nedostaje (visina stošca); Sh/3 - volumen stošca. Where R2 is the aerodynamic resistance of the body in the form of a "truncated" droplet; R1 - aerodynamic resistance of the body in the form of a regular droplet; a - acceleration (earth gravity); m - the mass of the volume of the part of the regular droplet form that is missing in the "truncated" droplet form; ρvode - density of water; V - the volume of the part of the form of a regular droplet that is missing in the form of a "truncated" droplet (simplified cone); S - the surface of the tail part of the "truncated" form of the droplet (cone base); h - height of the part of the form of a regular droplet that is missing in the form of a "truncated" droplet (cone height); Sh/3 - volume of the cone.
Optimizacijom prethodne formule, uz određenu eksperimentalnu podršku, mogao bi se matematički definirati Cx, koeficijent aerodinamičkog otpora: By optimizing the previous formula, with some experimental support, it would be possible to mathematically define Cx, the coefficient of aerodynamic drag:
Cx ~ R2 / R1 + a ρvode V Cx ~ R2 / R1 + a ρleads V
Dakle, iza tijela forme “krnje kapljice” koja se giba kroz zračni medij javlja se sila otpora suprotna smjeru gibanja, koja je proporcionalna težini vode volumena koji kod tijela forme “krnje kapljice” nedostaje u usporedbi s tijelom forme pravilne kapljice. Sile koje možemo nazvati “sile otpora krnjeg repa aeroprofila” usmjerene su prema centru zamišljenog volumena repa aeroprofila koji nedostaje, djelujući na površinu - S vektorom suprotnim od smjera gibanja tijela te prouzrokuju vrtloženje zrak u toj zoni. Sve ovo povećava otpor gibanju tijela. So, behind the body of the "truncated droplet" form that moves through the air medium, there is a resistance force opposite to the direction of motion, which is proportional to the weight of the volume of water that is missing in the body of the "truncated droplet" form compared to the body of the regular droplet form. The forces that we can call "forces of resistance of the truncated tail of the airfoil" are directed towards the center of the imaginary volume of the missing airfoil tail, acting on the surface - with a vector opposite to the direction of the body's movement, and cause a vortex in the air in that zone. All this increases resistance to body movement.
Znači, drugi problem kojega promatramo jesu “sile otpora krnjeg repa aeroprofila”, odnosno rezultantna sila suprotna smjeru gibanja vozila koja se javlja u zoni iza vozila u gibanju, a posljedica je podtlaka zbog neidealne forme aeroprofila vozila. So, the second problem we are observing is the "forces of resistance of the truncated tail of the airfoil", i.e. the resultant force opposite to the direction of the vehicle's movement that occurs in the zone behind the vehicle in motion, and is the result of negative pressure due to the non-ideal shape of the vehicle's airfoil.
Dovedemo li u zonu iza tijela koje se giba kroz zračni (ili bilo koji drugi) medij dodatni volumen medija (zračnu struju), smanjiti ćemo “sile otpora krnjeg repa aeroprofila” i rezultantnu silu otpora gibanju. Upravo navedeno postiže se Sustavom aktivnog umanjenja otpora kretanju vozila. If we bring an additional volume of the medium (air current) into the zone behind the body moving through the air (or any other) medium, we will reduce the "resistance forces of the truncated tail of the airfoil" and the resultant force of resistance to movement. The aforementioned is achieved by the System of active reduction of the resistance to the movement of the vehicle.
Suština pronalaska je u odvođenju što većeg volumena medija (zraka u slučaju cestovnih vozila) iz zone usporenog protjecanja zraka u prostoru između dna vozila i kolnika i to upravo proporcionalno brzini gibanja vozila, odnosno u dovođenju što većeg volumena medija u zonu iza vozila koje se giba, također upravo proporcionalno brzini gibanja vozila. The essence of the invention is to remove the largest possible volume of media (air in the case of road vehicles) from the zone of slowed air flow in the space between the bottom of the vehicle and the roadway, in proportion to the speed of the vehicle's movement, i.e. to bring the largest possible volume of media to the zone behind the moving vehicle , also directly proportional to the speed of the vehicle.
Novost rješenja je aktivno usmjeravanje protoka zračne struje iz prostora između dna vozila, prednjih kotača i kolnika prema van, te aktivno usmjeravanje zračne struje u zonu podtlaka koja postoji neposredno iza vozila u kretanju. Umanjenje aerodinamičkog otpora vozila postiže se naplatkom konstruiranim u obliku propelera (1) (slika 5), kojim se kotaču dodaje još jedna funkcija. The novelty of the solution is the active direction of the air current flow from the space between the bottom of the vehicle, the front wheels and the road to the outside, and the active direction of the air current to the negative pressure zone that exists immediately behind the moving vehicle. The reduction of the vehicle's aerodynamic resistance is achieved by a rim designed in the shape of a propeller (1) (picture 5), which adds another function to the wheel.
Dakle, osim uloge pretvaranja kružne vrtnje osovine u pravocrtno gibanje vozila i prijenosa snage motora na kolnik, ovakav kotač s naplatkom dizajniranim kao propeler postaje i aksijalna zračna turbina /lopatice (2)/ kojom se proizvodi prisilno strujanje zraka u smjeru iznutra prema van kod prednjih kotača, odnosno izvana prema unutra kod stražnjih kotača (Slika 6). So, in addition to the role of converting the circular rotation of the axle into straight-line motion of the vehicle and transferring the engine's power to the road, this wheel with a rim designed as a propeller also becomes an axial air turbine /blades (2)/ which produces a forced air flow in the direction from the inside to the outside at the front wheels, that is, from the outside to the inside for the rear wheels (Figure 6).
Ovime se povećava brzina strujanja zraka u zoni usporenog strujanja zraka između prednjih kotača zbog čega se smanjuje sila aerodinamičkog uzgona i njen utjecaj na vozilo u gibanju, te se smanjuju obje komponente tlaka i njihov utjecaj na vozilo u gibanju te rad potreban na njihovo svladavanje. This increases the speed of air flow in the zone of slowed air flow between the front wheels, which reduces the force of aerodynamic lift and its impact on the vehicle in motion, and reduces both pressure components and their impact on the vehicle in motion, as well as the work required to overcome them.
S druge strane, dovođenjem dodatnog volumena zraka u zonu iza vozila u gibanju smanjujemo “sile otpora krnjeg repa aeroprofila” i rezultantnu silu otpora gibanju te vrtloženje medija. On the other hand, by introducing an additional volume of air into the zone behind the vehicle in motion, we reduce the "force of resistance of the truncated tail of the airfoil" and the resulting force of resistance to movement and the swirling of the medium.
Ovdje treba naglasiti da je iskoristivost naplatka (1) maksimalna jer se iskorištava vrtnja koja i je osnovna funkcija kotača, te su i svi gubici i otpori već otprije ukalkulirani u toj radnji. It should be emphasized here that the usability of the rim (1) is maximal because the rotation, which is the basic function of the wheel, is used, and all losses and resistances have already been calculated in this action.
Konstrukcija naplatka mora ispuniti zahtjev što većeg odtoka zraka iz zone usporenog protjecanja zraka u prostoru između dna vozila, prednjih kotača i kolnika, te sto većeg dotoka zraka u zonu podtlaka koja se javlja iza vozila u gibanju. The construction of the rim must meet the requirement of maximum air outflow from the zone of slowed air flow in the space between the bottom of the vehicle, the front wheels and the road, and maximum air inflow into the underpressure zone that occurs behind the vehicle in motion.
Osnovne smjernice u konstrukciji vozila temeljem ovdje navedenih principa jesu (Slika 7): The basic guidelines in vehicle construction based on the principles stated here are (Figure 7):
• primijeniti kotače s naplatkom dizajniranim kao propeler, čime naplatak postaje i aksijalna zračna turbina kojom se proizvodi prisilno strujanje zraka u smjeru iznutra prema van kod prednjih kotača, odnosno izvana prema unutra kod stražnjih kotača; • apply wheels with a rim designed as a propeller, whereby the rim also becomes an axial air turbine that produces forced air flow in the direction from the inside to the outside for the front wheels, or from the outside to the inside for the rear wheels;
• pomaknuti os stražnjih kotača prema kraju vozila (zapravo i iza osnovnog volumena vozila) i tome prilagoditi ovjes kotača; • move the axis of the rear wheels towards the end of the vehicle (actually behind the basic volume of the vehicle) and adjust the wheel suspension accordingly;
• primijeniti naplatak što većeg promjera (uz niskoprofilne gume kako bi aktivni dio sustava bio što efikasniji), s tim da stražnji naplatci budu daleko većeg promjera (25” ili više), sve s ciljem povećanja aktiviranog volumena zraka; • apply rims with the largest possible diameter (along with low-profile tires to make the active part of the system as efficient as possible), with the rear rims being much larger in diameter (25" or more), all with the aim of increasing the activated air volume;
• redizajnirati kočnice i sustav ovjesa kotača kako se ne bi ometao protok zraka kroz naplatak; • redesign the brakes and wheel suspension system so as not to obstruct the air flow through the rim;
• podignuti rep vozila; • raise the tail of the vehicle;
• aerodinamički uobličiti sve elemente ovjesa i prijenosa koji se nalaze ispod vozila; • aerodynamically shape all suspension and transmission elements located under the vehicle;
• smanjiti hrapavost dna vozila. • reduce the roughness of the bottom of the vehicle.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HR20020312A HRP20020312A2 (en) | 2002-04-10 | 2002-04-10 | Moving vehicle active aerodynamic resistance reduction system |
PCT/HR2002/000044 WO2003084769A1 (en) | 2002-04-10 | 2002-09-19 | System for active decrese in the aerodynamic resistance of vehicles in motion |
AU2002341222A AU2002341222A1 (en) | 2002-04-10 | 2002-09-19 | System for active decrese in the aerodynamic resistance of vehicles in motion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HR20020312A HRP20020312A2 (en) | 2002-04-10 | 2002-04-10 | Moving vehicle active aerodynamic resistance reduction system |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP20020312A2 true HRP20020312A2 (en) | 2004-02-29 |
Family
ID=28686904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HR20020312A HRP20020312A2 (en) | 2002-04-10 | 2002-04-10 | Moving vehicle active aerodynamic resistance reduction system |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2002341222A1 (en) |
HR (1) | HRP20020312A2 (en) |
WO (1) | WO2003084769A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102275459A (en) * | 2011-05-29 | 2011-12-14 | 开平市中铝实业有限公司 | Heat-dissipating wheel hub for automobiles |
FR2989024B1 (en) * | 2012-04-10 | 2014-09-26 | Peugeot Citroen Automobiles Sa | MOTOR VEHICLE HAVING WHEELS HAVING MIXED AERODYNAMIC CONFIGURATION |
US9919555B2 (en) | 2015-08-11 | 2018-03-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Adaptable wheel assembly |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2341967A1 (en) * | 1973-08-20 | 1975-03-13 | Juergen Posingis | Aerodynamic wheel rim - which draws air out from under vehicle and increases road adhesion |
DE3437855A1 (en) * | 1984-10-16 | 1986-04-17 | Giuseppe Döttingen Lo Monaco | Vehicle wheel on which a tyre can be mounted |
DE3712048A1 (en) * | 1987-04-09 | 1988-10-27 | Bayerische Motoren Werke Ag | Device for reducing lift in vehicles |
DE4231082A1 (en) * | 1992-09-17 | 1994-03-24 | Robert Spies | Wheel for motor vehicle - has wall sections with hollow interior, producing air space below tyre for improved damping effect |
IT1279132B1 (en) * | 1995-04-19 | 1997-12-04 | Dipartimento Di Energetica Del | DEVICE FOR REDUCING THE SHAPE RESISTANCE OF VEHICLES. |
ITTO980130A1 (en) * | 1998-02-18 | 1999-08-18 | Fiat Auto Spa | IMPROVEMENT OF VEHICLE SHAPE RESISTANCE DEVICES. |
-
2002
- 2002-04-10 HR HR20020312A patent/HRP20020312A2/en not_active Application Discontinuation
- 2002-09-19 WO PCT/HR2002/000044 patent/WO2003084769A1/en not_active Application Discontinuation
- 2002-09-19 AU AU2002341222A patent/AU2002341222A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2002341222A1 (en) | 2003-10-20 |
WO2003084769A1 (en) | 2003-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5908217A (en) | Pneumatic aerodynamic control and drag-reduction system for ground vehicles | |
US20210339561A1 (en) | Drag-reducing shaft tailfin for vehicles | |
US5374013A (en) | Method and apparatus for reducing drag on a moving body | |
MX2007014347A (en) | Air deflecting system for automobiles. | |
JP2015515410A (en) | An underbody that is dynamically supported and movable in an automobile and generates downforce | |
CN103502021A (en) | Optimum aerodynamic bicycle wheel | |
JPH06171554A (en) | Automobile | |
HRP20020312A2 (en) | Moving vehicle active aerodynamic resistance reduction system | |
WO2018090928A1 (en) | Suspended automobile running in natural state | |
US20070046067A1 (en) | Rollers for aerodynamic impact | |
CN108068565A (en) | Amphibian automobile | |
Katz et al. | Aerodynamic effects of Indy car components | |
DE202010010586U1 (en) | Dynamic airflow system for automobiles | |
TWI646258B (en) | Submersible power plant | |
Katz et al. | Experimental study of the aerodynamic interaction between an enclosed-wheel racing-car and its rear wing | |
EP3699065B1 (en) | Power vehicle | |
Broadley et al. | Improving the aerodynamic stability of a practical, low drag, aero-stable vehicle | |
CN213948060U (en) | Stabilizing base of automatic driving vehicle | |
RU2467908C2 (en) | Electrodynamic cowl "rakhmaton" | |
CN1067341C (en) | Automotive braking collision-proof device | |
CA2698440C (en) | Air pressure equalizing system | |
US20150258848A1 (en) | Aerodynamically spoked vehicle wheel | |
RU2085427C1 (en) | Streamlined body of car | |
JP2024010593A (en) | kite with spoiler | |
CN117141601A (en) | Jet flow drag reduction technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
OBST | Application withdrawn |