GB2317393A - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- GB2317393A GB2317393A GB9619927A GB9619927A GB2317393A GB 2317393 A GB2317393 A GB 2317393A GB 9619927 A GB9619927 A GB 9619927A GB 9619927 A GB9619927 A GB 9619927A GB 2317393 A GB2317393 A GB 2317393A
- Authority
- GB
- United Kingdom
- Prior art keywords
- cationic
- detergent composition
- group
- alkyl
- granular detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Granular detergent compositions or components thereof containing a lipase enzyme and one or more cationic compounds, which are cationic, (partially) quaternized ethoxylated (poly)amine compounds with clay-soil removal / anti-redeposition properties, for use in laundry and dish washing processes.
Description
Detergent ComPositions
Technical Field
The present invention relates to granular detergent compositions or components thereof containing cationic compounds with particulate/ claysoil removallanti-redeposition properties and a lipase enzyme for use in laundry and dish washing processes.
Background to the Invention
A particularly important property of a detergent composition is its ability to remove particulate type soils from a variety of fabrics during laundering.
Perhaps the most important particulate soils are the clay-type soils. Clay soil particles generally comprise negatively charged layers of aluminosilicates and positively charged cations (e.g. calcium) which are positioned between and hold together the negatively charged layers.
A variety of models can be proposed for compounds which would have particulate/ clay-soil removal properties. One model requires that the compound have two distinct characteristics. The first is the ability of the compound to adsorb onto the negatively charged layers of the clay particle.
The second is the ability of the compound, once adsorbed, to push apart (swell) the negatively charged layers so that the clay particle loses its cohesive force and can be removed in the wash water.
In addition to clay soil removal, there is a need to keep the removed soil in suspension during the laundenng (or dish washing) cycle. Soil which is removed from the fabric and suspended in the wash water can redeposit on the surface of the fabric. This redeposited soil causes a dulling or "greying" effect which is especially noticeable on white fabrics. To minimise this problem, anti-redeposition agents can be included in the detergent composition.
For example EP-B-l 11 965 disclose the use in detergents of cationic compounds, which have both clay-soil removal and anti-redeposition properties.
US 4,659,802 and US 4,664,848 describe quaternized amines which have clay-soil removal and anti-redeposition properties and which can be used in combination with anionic surfactants.
A model proposed for the anti-redeposition action of the positively charged anti-redeposition compounds is as follows. Adsorption of the positively charged molecule on the surface of clay particles in the wash water gives the particles the dispersancy properties of the molecule. As more and more of these compounds adsorb onto the suspended clay soil particles, the latter become encased within a hydrophilic layer provided by the attached ethoxy units. As such the hydrophilically encased soil is prevented from redepositing on fabrics, in particular hydrophobic fabrics such as polyester, during the laundering or dish washig cycle.
Other detergent components frequently employed in detergents are lipase enzymes, which are known to be used in detergent compositions to aid the removal of (greasy) stains, containing triglycerides or fatty esters. For example WO 92/05249 discloses certain lipase enzyme variants for improved properties and methods of their production.
Generally, the stain removal performance of lipase enzymes is directly related to their concentration in the detergent composition, so that an increase in the amount of lipase enzyme increases the stain removal performance. It has however been observed that under stressed conditions, such as the use of short washing machine cycles, or at low temperatures or in the presence of highly stained substrates, the optimum performance of the lipase enzyme is achieved at a certain level. Increasing the level of lipase enzyme beyond this amount does not result in increased stain removal performance benefits.
The Applicants have now found that these problems can be ameliorated by inclusion of lipase enzymes in a granular detergent composition (or components thereof), comprising cationic, (partially) quaternized ethoxylated (poly) amines which have clay-soil removal/anti-redeposition properties. Detergent compositions (or components thereof) employing both cationic quaternized ethoxylated (poly) amines and lipase enzyme have been shown to deliver a surprisingly better cleaning performance than that of detergent compositions employing either of the two components individually.
A further advantage of the present invention is that the stain/ soil removal benefits can even be observed after the completion of only one wash cycle.
All documents cited in the present description are, m relevant part, incorporated herein by reference.
Summarv of the invention
The present invention relates to granular detergent compositions or components thereof, which comprise a lipolytic enzyme and one or more cationic compounds, which are cationic, (partially) quaternized ethoxylated (poly) amine compounds with particulatel clay-soil removal / antiredeposition properties.
In more detail, the present invention relates to a granular detergent composition or component thereof which comprises (a) a lipolytic enzyme on a 100KLU/gram basis., and (b) a water-soluble cationic compound
having clay soil removal/anti-redeposition properties, which is
selected from the group consisting of:
1) ethoxylated cationic monoamines having the formula:
2) ethoxylated cationic diamines having the formula:
wherein M1 is an N+ or N group; each M2 is an N+ or N group, and at least one M2 is an N+ group;
3) ethoxylated cationic polyamines having the formula:
4) mixtures thereof; wherein Al is
R is H or C1-C4 alkyl or hydroxyalkyl, R1 is C2-C12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene, or a C2-C3 oxyalkylene moiety having from 2 to about 20 oxyalkylene units provided that no O-N bonds are formed; each R2 is C1-C4 alkyl or hydroxyalkyl, the moiety -L
X, or two R2 together form the moiety -(CH2)rA2-(CH2)s-, wherein A2 is O-or-CH2-,ris 1 or2,sis 1 or2andr+sis3 or4; eachR3isCl-C8 alkyl or hydroxyalkyl, benzyl, the moiety L-X, or two R3 or one R2 and one
R3 together form the moiety -(CH2)rA2-(CH2)s-; R4 is a substituted C3 C12 alkyl, hydroxyalkyl, alkenyl, aryl or alkaryl group having p substitution sites; R5 is Cl-Cl2 alkenyl, hydroxyalkylene, alkenylene, arylene or alkarylene, or a C2-C3 oxyalkylene moiety having from 2 to about 20 oxyalkylene units provided that no 0-0 or O-N bonds are formed; X is a nonionic group selected from the group consisting of H, C 1 -C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof; L is a hydrophilic chain which contains the polyoxyalkylene moiety -[(R60)m(CH2CH20)n]-; wherein R6 is C3-C4 alkylene or hydroxyalkylene and m and n are numbers such that the moiety -(CH2CH2O)"- comprises at least about 50% by weight of said polyoxyalkylene moiety; d is 1 when M2 is N+ and is 0 when M2 is N; n is at least about 16 for said cationic monoamines, is at least about 6 for said cationic diamines and is at least about 3 for said cationic polyamines; p is from 3 to 8; q is 1 or 0; t is 1 or 0, provided that t is 1 when q is 1: and wherein the ratio of compound (a) to (b) is from 1:100 to 100:1.
Detailed description of the invention
An essential feature of the present invention is a water-soluble cationic compound which has particulatel clay-soil removal/anti -redeposition properties and which is selected from the group consisting of cationic monodi- and polyamines.
The ratio of lipolytic enzyme to water-soluble cationic compound is from 1:100 to 100:1, more preferably from 1;10 to 10:1 most preferably from 1:4 to 5:1.
If present in detergent compositions in accord with the invention the watersoluble cationic compound is preferably present at a level of from 0.01% to 30%, more preferably from 0.1% to 15% most preferably from 0.2% to 3.0% by weight of the detergent composition.
Cationic amines
The water-soluble cationic compounds of the present invention useflil in the granular detergent compositions or components thereof in accord with the present invention include ethoxylated cationic monoamines, ethoxylated cationic diamines and ethoxylated cationic polyamines as previously defined.
In the preceding formulas for the cationic amines, R1 can be branched (e.g.
cyclic (e.g.
or most preferably linear (e.g. CH2CH2 , CH2cH2cH2 ) alkylene, hydroxyalkylene, alkenylene, alkarylene or oxyalkylene. R1 is preferably C2-C6 alkylene for the ethoxylated cationic diamines. Each R2 is preferably methyl or the moiety -L-X; each R3 is preferably C1-C4 alkyl or hydroxyalkyl, and most preferably methyl.
The positive charge of the N+ groups is offset by the appropriate number of counter anions. Suitable counter anions include C1-, Br-, SO3-2, PO4-2, MeOSO3- and the like. Particularly preferred counter anions are Cl - and
Br-.
X can be a nonionc group selected from hydrogen (H), C l-C4 alkyl or hydroxyalkyl ester or ether groups, or mixtures thereof. Preferred esters or ethers are the acetate ester and methyl ether, respectively. The particularly preferred nonionic groups are H and the methyl ether.
In the preceding formulas, hydrophilic chain L usually consists entirely of the polyoxyalkylene moiety -[(R6O)m(CH2CH2-On)-] The moieties -(R60)m- and -(CH2CH20)n- of the polyoxyalkylene moiety can be mixed together or preferably form blocks of-(R6O)m- and -(CH2CH2O)n- moieties. R6 is preferably C3 (propylene); m is preferably from 0 to about 5 and is most preferably 0, i.e. the polyoxyalkylene moiety consists entirely ofthe moiety (CH2CH2O)n-. The moiety -(CH2CH2O)n- preferably comprises at least about 85% by weight of the polyoxyalkylene moiety and most preferably 100% by weight (m is O).
In the preceding formulas, M1 and each M2 are preferably an N+ group for the cationic diamines and polyamines.
Preferred ethoxylated cationic monoamines and diamines have the formula:
wherein X and n are defined as before, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0. For preferred cationic monoamines (b=0), n is preferably at least about 16, with a typical range of from about 20 to about 35. For preferred cationic diamines (b=l), n is at least about 12 with a typical range of from about 12 to about 42.
In the preceding formula for the ethoxylated cationic polyamines, R4 (linear, branched, or cyclic) is preferably a substituted C3-C6 alkyl, hydroxyalkyl or aryl group; A1 is preferably
0
CN
H n is preferably at least about 12, with a typical range of from about 12 to about 42; p is preferably from 3 to 6. When R4 is a substituted aryl or alkaryl group, q is preferably 1 and R5 is preferably C2-C3 alkylene. When
R4 is a substituted alkyl, hydroxyalkyl, or alkenyl group, and when q is 0,
R5 is preferably a C2-C3 oxyalkylene moiety; when q is 1, R5 is preferably
C2-C3 alkylene.
These ethoxylated cationic polyammes can be derived from polyarnmo amides such as:
These ethoxylated cationic polyamnies can also be derived from polyaminopropyleneoxide derivatives such as:
-(OC3H6)c-NH2
CH3-(OC3H6)c-NH2 AOC3H6)c NH2 wherein each c is a number from 2 to about 20.
Lipase Enzyme
Another essential component of the granular detergent compositions or component thereof in acoord with the present invention is a lipolytic or lipase enzyme.
The ratio of lipolytic enzyme to water-soluble cationic compound is from 1:100 to 100:1, more preferably from 1;10 to 10:1 ,most preferably from 1:5 to 5;1.
In detergent compositions, the lipolytic or lipase enzym is preferably present at levels of from 0.01% to 3% by weight, more preferably 0.03% to 1% by weight, most preferably from 0.06% to 0.5% by weight of the compositions on a 100KLU/gram basis.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri
ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in
Japanese Patent Application 53,20487, laid open to public inspection on
February 24, 1978. This lipase is available from Amano Pharmaceutical Co.
Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co.,
Tagata, Japan; and further Chromobacter viscosum lipases from U.S.
Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341,947) is a preferred lipase for use herein.
Another preferred lipase for use herein is D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa. Most preferably the
Humicola lanuginosa strain DSM 4106 is used.
By D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 viz. wherein the native lipase ex Humicola lanuginosa aspartic acid (D) residue at position 96 is changed to Leucine (L).
According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L. To determine the activity of the enzyme
D96L the standard LU assay was used (Analytical method, internal Novo
Nordisk number AF 95/6-GB 1991.02.07). A substrate for D96L was prepared by emulsifying glycerine tributyrate (Merck) using gum-arabic as emulsifier. Lipase activity was assayed at pH 7 using pH stat. method.
Cationic polymers
The detergent composition or components thereof can comprise additional polymeric cationic ethoxylated amine compounds with particulatel clay-soil removal anti-redeposition, selected from the group consisting of watersoluble cationic polymers. These polymers comprise a polymer backbone, at least 2M groups and at least on L-X group, wherein M is a cationic group attached to or integral with the backbone; X is a nonionic group selected from the group consisting of H, C1 -C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof; and L is a hydrophilic chain connecting groups
M and X or connecting X to the polymer backbone.
The polymeric cationic ethoxylated amine compounds can be present in detergent compositions at a level of from 0.01% to 30%, more preferably from 0. 1% to 15%, most preferably from 0.2% to 3% by weight of the detergent composition.
As used herein, the term "polymer backbone" refers to the polymeric moiety to which groups M and L-X are attached to or integral with. Included within this term are oligomer backbones (2 to 4 units), and true polymer backbones (5 or more units).
As used herein, the term "attached to " means that the group is pendent from the polymer backbone, examples of which are represented by the following general structures A and B:
M ML
L X
X
A B
As used herein, the term "integral with" means that the group forms part of the polymer backbone, examples of which are represented by the following general structures C and D:
x x
C D
Any polymer backbone can be used as long as the cationic polymer formed is water-soluble and has clay soil removaVanti-redeposition properties.
Suitable polymer backbones can be derived from the polyurethanes, the polyesters, the polyethers, the polyamides, the polyirnides and the like, the polyacrylates, the polyacrylamides, the polyvinylethers, the polyethylenes, the polypropylenes and like polyalkylenes, the polystyrenes and like polyalkarylenes, the polyalkyleneamines, the polyalkyleneimines, the polyvinylamines, the polyalylamines, the polydiallylamines, the polyvinylpyridines, the polyaminotriazoles, polyvinyl alcohol, the sminopolyureylenes, and mixtures thereof.
M can be any compatible cationic group which comprises an NT (quarternary), positively charged center. The quarternary positively charged center can be represented by the following general structures E and F:
+N- N+
E F
Particularly preferred M groups are those containing a quarternary center represented by general structure E. The cationic group is preferably positioned close to or integral with the polymer backbone.
The positive charge of the N+ centres is offset by the appropriate number of counter unions. Suitable counter anions include C1-, Br, S032-, S042-, PO42-, MeOSO3~ and the like. Particularly preferred counter anions are Ci- and Br
X can be a nonionic group selected from hydrogen (H), C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof. The preferred ester or ether groups are the acetate ester and methyl ether, respectively;
The particularly preferred nonionic groups are H and the methyl ether.
The cationic polymers suitable for use in granular detergent compositions in accord with the present inventions normally have a ratio of cationic groups
M to nonionic groups X of from about 1:1 to about 1:2. However, for example, by appropriate copolymerization of cationic, nonionic (i.e.
containing the group L-X), and mixed cationic/nonionic monomers, the ratio of cationic groups M to nonionic groups X can be varied. The ratio of groups M to groups X can usually range from about 2:1 to about 1:10. In preferred cationic polymers, the ratio is from about 1:1 to about 1:5. The polymers formed from such copolymerization are typically random, i.e. the cationic, nonionic and mixed cationclnonionic monomers copolymerize in a nonrepeating sequence.
The units which contain groups M and groups L-X can comprise 100% of the cationic polymers of the present invention. However, inclusion of other units (preferably nonionic) in the polymers is also permissible. Examples of other units include acrylamides, vinyl ethers and those containing unquaternized tertiary amine groups (M1) containing an N centre. These other units can comprise from 0% to about 90% of the polymer (from about 10% to 100% of the polymer being units containing M and L-X groups, including M1 -L-X groups). Normally, these other units comprise from 0% to about 50% of the polymer (from about 50% to 100% of the polymer being units containing M and L-X groups).
The number of groups M and L-X each usually ranges from about 2 to about 200. Typically the number of groups M and L-X are each from about 3 to about 100. Preferably, the number of groups M and L-X are each from about 3 to about 40.
Other than moieties for connecting groups M and X, or for attachment to the polymer backbone, hydrophilic chain L usually consists entirely of the polyoxyalkylene moiety -[(R'O)m(CH2CH2O)n]-. The moieties -(R'O)m- and -(CH2CH20)n- of the polyoxyalkylene moiety can be mixed together, or preferably form blocks of (R'O)rn and -(CH2CH20)"- moieties. R' is preferably C3H6 (propylene); m is preferably from 0 to about 5, and most preferably 0; i.e. the polyoxyalkylene moiety consists entirely of the moiety (CH2CH2O)n-. The moiety -(CH2CH2O)n- preferably comprises at least about 85% by weight of the polyoxyalkylene moiety, and most preferably
100% by weight (m is 0). For the moiety -(CH2CH2O)n-, n is usually from about 3 to about 100. Preferably n, is from about 12 to about 42.
A plurality (2 or more) of moieties -L-X can also be hooked together and attached to group M or to the polymer backbone, examples of which are represented by the following general structures G and H:
M ~~~~~~~~ L L
L L
X X
x x G H
Structures such as G and H can be formed, for example, by reacting glycidol
with group M or with the polymer backbone, and ethoxylating the
subsequently formed hydroxy groups.
Representative classes of cationic polymers of the present invention are as
follows:
A. Polyurethane, Polyester, Polyether, Polyamide or like Polymers.
One class of suitable cationic polymers are derived from polyurethanes, polyesters, polyethers, polyamides and the like. These polymers comprise units selected from those having formulas I, II and III:
(R5)k-[(C3H6O)m(CH2CH2O)n]-X
(R5)k-[(C3H6O)m(CH2CH2O)n]-X wherein A | is
0 0 0 0 0
NC-,-CN-,-CO-,-OC- or -C-;
R R
X is O or 1; R is H or C1-C4 alkyl or hydroxyalkyl; R1 is C2-C12 alkylene, hydroxyalkylene, alkenylene, cycloalkylene, arylene or alkarylene, or a C2
C3 oxyalkylene moiety having from 2 to abut 20 oxyalkylene units provided that no 0-0 or O-N bonds are formed with A1; when x is 1 R2 is -R5except when A1 is
or is -(OR8)y- or -OR5- provided that no 0-0 or N-O bonds are formed with
A1, and R3 is -R5- except when Al is
0
C or is -(R8O)-y or -R5O- provided that no 0-0 or O-N bonds are formed with
A; when x is 0, R is -(OR8)y-,-OR5-,-COR5-,-OCR5-,-OCR5,
O O O -NCR5-,-NCOR5-,-CNR5-, or -OCNR5
RO RO OR OR and R3 is -R5-; R4 is C1-C4 alkyl or hydroxyalkyl, or the moiety -(R5)k- [(C3H6O)m(CH2CH2O)n]-X; R5 is C1-C12 alkylene, hydroxyalkylene, alkenylene, arylene, or alkarylene; each R6 is C1 C4 alkyl or hydroxyalkyl, or the moiety -(CH2)r-A-(CH2)s-, wherein A2 is -O- or -CH2-; R7 is H or
R4; R8 is C2-C3 alkylene or hydroxyalkylene; X is H,
0
CR9, -R9 or a mixture thereof, wherein R9 is C1-C4 alkyl or hydoxyalkyl; k is 0 or 1; m and n are numbers such that the moiety -(CH2CH2O)n comprises at least about 85% by weight of the moiety [(C3H6O)m(CH2CH2O)n]-; m is from 0 to about 5; n is at least about 3; r is 1 or 2, 5 is 1 or 2, and r + 5 is 3 or 4; y is from 2 to about 20; the number of U, v and w are such that there are at least 2 N+ centers and at least 2 X groups.
In the above formulas, A1 is preferably
A2 is preferably -0-; x is preferably 1; and R is preferably H. R1 can be linear (e.g. -CH2-CH2-CH2-,
alkylene, hydroxyalkylene, alkenylene, cycloalkylene, alkarylene or oxyalkylene; when R1 is a C2-C3 oxyalkylene moiety, the number of oxyalkylene units is preferably from about 2 to about 12; R1 is preferably
C2-C6 alkylene or phenylene, and most preferably C2-C6 alkylene (e.g.
ethylene, propylene, hexamethylene). R2 is preferably -OR5- or
R3 is preferably -R50- or -(OR8)-; R4 and R6 are preferably methyl. Like R1, K5 can be linear or branched, and is preferably C2-C3 alkylene; R7 is preferably H or C1-C3 alkyl; R8 is preferably ethylene; R9 is preferably methyl; X is preferably H or methyl; k is preferably 0; m is preferably 0, r and s are each preferably 2; y is preferably from 2 to about 12.
In the above formulas, n is preferably at least about 6 when the number of
N+ centers and X groups is 2 or 3; n is most preferably at least about 12, with a typical range of about 12 to about 42 for all ranges of u + v + w. For homopolymers (v and w are 0), u is preferably from about 3 to about 20.
For random compolymers (u is at least 1 or preferably 0), v and w are each preferably from about 3 to about 40.
B. Polyacrylate, Polyacrylamide, Polyvinylether or
Like Polymers
Another class of suitable cationic polymers are derived from polyacrylates, polyacrylamides, polyvinylethers and the like. These polymers comprise units selected from those having formulas IV, V and VI.
(R2)j (R3)2 N+ (R2)k - [(C3H6O)m(CH2CH2O)n] X IV
R is H or C1-C4 alkyl or hydroxyalkyl; R1 is substituted C2-C12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene, or C2-C3 oxyalkylene; each R2 is C1-C12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene; each R3 is C 1-C4 alkyl or hydroxyalkyl, the moiety -(R)k- [(C3H6O)m(CH2CH2O)n]-X, or together form the moiety -(CH2)r-A (CH2)s-, wherein A2 is -O- or -CH2-; each R4 is C1-C4 alkyl or hydroxyalkyl, or two R4 together form the moiety -(CH2)r-A-(CH2)s-; X is H,
0
CR5, -R5 or mixture thereof, wherein R5 is C1-C4 alkyl or hydroxalkyl; j is 1 or 0; k is 1 or 0; m and n are numbers such that the moiety -(CH2CH2O)n comprises at least about 85% by weight of the moiety [(C3H6O)m(CH2CH2O)n]-; m is from 0 to about 5; n is at least about 3; r is 1 or2,sis 1 or2andr+sis3or4; the number of u, v and w are such that there are at least 2N+ centres and at least 2 X groups.
In the above formulas, A1 is preferably
0 0
CN , CO or O R
A2 is preferably -0-; R is preferably H. R can be linear (e.g. CH2 CH-CH2 , CH2CH ) or
CH3
branched (e.g. CH2 C , CH2CH
CH3
CH3
CH2C-,-CH2C-)
CH2 substituted alkylene, hydroxyalkylene, alkenylene, alkarylene or oxyalkylene; R is preferably substituted C2-C6 alkylene or substituted C2
C3 oxyalkylene, and most preferably
CH3
CH2CH or-CH2 C
Each R2 is preferably C2-C3 alkylene, each R3 and R4 are preferably methyl; R5 is preferably methyl; X is preferably H or methyl; j is preferably 1; k is preferably 0; m is preferably 0; r and s are each preferably 2.
In the above formulas, n, u, v and w can be varied according to the n, u, v and w for the polyurethane and like polymers.
C. Polyalkyleneamine, Polyalkyleneimine or like polymers.
Another class of suitable cationic polymers are derived from polyalkyleneamines, polyalkyleneimines and the like. These polymers comprise units selected from those having formulas VII and VIII and IX.
(R )k-[(C3H6O)m(CH2CH2O)n)-X
(R )k-[(C3H6O)m(CH2CH2O)n]-X wherein R is C2-C 12 alkylene, hydroxyalkylene, alkenylene, cycloalkylene, arylene or alkarylene, or a C2-C3 oxyalkylene moiety having from 2 to about 20 oxyalkylene units provided that no O-N bonds are formed, each R2 is C1-C4 alkyl or hydroxyalkyl, or the moiety -(R3)k- [(C3H6O)m(CH2CH2O)n]-X; R is C1-C12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene; Mis an N or N centre; X is H,
CR4,
0 -R4 or mixture thereof; wherein R4 is C 1-C4 alkyl or hydroxyalkyl; d is 1 when M' is N+ and is 0 when M' is N; e is 2 when M' is N+ and is 1 when
M' is N; k is 1 or 0; m and n are numbers such that the moiety (CH2CH2O)n- comprises at least about 85% by weight of the moiety [(C3H6O)m(CH2CH2O)"]-; m is from 0 to about 5; n is at least about 3; the number of x, y and z are such that there are at least 2M' groups, at least 2N+ centres and at least 2 X groups.
In the above formulas, R can be varied like R1 of the polyurethene and like polymers; each R2 is preferably methyl or the moiety -(R3)k [(C3H6O)m(CH2CH2O)n]-X; R3 is preferably C2-C3 alkylene; R4 is preferably methyl; X is preferably H; k is preferably 0; m is preferably 0.
In the above formulas, n is preferably at least about 6 when the number of
M' and X groups is 2 or 3; n is most preferably at least about 12, with a typical range of from about 12 to about 42 for all ranges of x + y + z.
Typically, x + y + z is from 2 to about 40 and preferably from 2 to about 20.
For short chain length polymers,
(R2)d (R2)d [M']a [CF{2 CH2M']x [(CH2CH2O ']n X]2
(R2)d (R2)d [CH2CH2M']y [CH2CH2M ]Z (CH2CH2O)n-X [(CH2CH2O)n-X]2 wherein R2 (preferably methyl), M', X, d, x, y, z and n are defined as before; ais 1 oreo.
Prior to ethoxylation, the PEAs used in preparing cationic polymers of the present invention have the following general formula: [H2N]a- -[CH2CH2N]x- -[CH2CH2N]y- -[CH2CH2NH2]z
H wherein x + y + z is from 2 to 9, and a is 0 or 1 (molecular weight of from about 100 to about 400). Each hydrogen atom attached to each nitrogen atom represents an active site for subsequent ethoxylation. For preferred
PEAs, x - v -: z is from about 3 to about 7 (molecular weight is from about 140 to about 310). These PEA's can be obtained by reactions involving ammonia and ethylene dichloride, followed by fractional distillation. The common PEA's obtained are triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). Above the pentamines, i.e., the hexamines, heptamines, octamines and possibly nonamines, the cogenerically derived mixture does not appear to separate by distillation and can include other materials such as cyclic amines and particularly piperazines. There can also be present cyclic amines with side chains in which nitrogen atoms appear.
See US Pat. No. 2,792,372 to Dickson, issues May 14, 1957, which describes the preparation of PEAs.
The minimum degree of ethoxylation required for preferred clay soil removal/anti-redeposition performance can vary depending upon the number of units in the PEA. Where y + z is 2 or 3, n is preferably at least about 6.
Where y + z is from 4 to 9, suitable benefits are achieved when n is at least about 3. For preferred cationic PEAs, n is at least about 12, with a typical range of about 12 to about 42.
The PEIs used in preparing the polymers of the present invention have a molecular weight of at least about 440 prior to ethoxylation, which represents at least about 10 units. Preferred PEIs used in preparing these polymers have a molecular weight of from about 600 to about 1800. The polymer backbone of these PEIs can be represented by the general formula:
wherein the sum of x, y, and z represents a number of sufficient magnitude to yield a polymer having the molecular weights previously specified.
Although linear polymer backbones are possible, branch chains can also occur. The relative proportions of primary, secondary and tertiary amine groups present in the polymer can vary, depending on the manner of preparation. The distribution of amine groups is typically as follows:
CH2CH2 N112 30% CH2CH2 -L- NH - 40% CHwCH2 N 30%
Each hydrogen atom attached to each nitrogen atom of the PEI represents an active site for subsequent ethoxylation. These PEIs can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc. Specific methods for preparing PEIs are disclosed in US Pat. No. 2,182,306 to Ulrich et al., issued Dec. 5, 1939; US
Pat No. 3,033,746 to Mayle et al., issued May 8, 1962; US Pat. No.
2,208,095 to Esselmann et al., issued July 16, 1940; US Pat. No. 2,806,839 to Crowther, issued Sept. 17, 1957; and US Pat. No. 2,533,696 to Wilson, issued May 21, 1951 (all herein incorporated by reference).
As defined in the preceding formulas, n is at least about 3 for the cationic
PEIs. However, it should be noted that the minimum degree of ethoxylation required for suitable clay soil removal/anti-redeposition performance can increase as the molecular weight of th PEl increases, especially much beyond about 1800. Also, the degree of ethoxyalation for preferred polymers increases as the molecular weight of the PEI increases. For PEIs having a molecular weight of at least about 600, n is preferably at least about 12, with a typical range of from about 12 to about 42. For PEIs having a molecular weight of at least 1800, n is preferably at least about 24, with a typical range of from about 24 to about 42.
D. Diallylamine Polymers
Another class of suitable cationic polymers are those derived from the diallylamines. These polymers comprise units selected from those having formulas X and XI:
wherein R1 is C 1 -C4 alkyl or hydroxyalkyl, or the moiety -(R2)k- [(C3H6O)m(CH2CH2O)n]-X; R2 is Cl-C12 alkylene, hydroxyalkylene, alkylene, arylene or alkarylene; each R3 is C1-C4 alkyl or hydroxyalkyl, or together form the moiety -(CH2)r-A-(CH2)s-, wherein A is -O- or -CH2-; X is H,
CR4,
0 -R4 or mixture thereof, wherein R4 is C 1-C4 alkyl or hydroxyalkyl; k is 1 or O; m and n are numbers such that the moiety -(CH2CH2O)n- comprises at least about 85% by weight of the moiety -[(C3H6O)m(CH2CH2O)n]-; m is from 0 to about 5; n is at least about 3; ris 1 or 2, s is 1 or 2, and r + s is 3 or 4; x is 1 or 0; y is 1 when x is 0 and 0 when x is 1; the number of u and v are such that there are at least 2N- centres and at least 2 X groups.
In the above formulas, A is preferably -0-; R1 is preferably methyl; each
R2 is preferably C2-C3 alkylene; each R3 is preferably methyl; R4 is preferably methyl; X is preferably H; k is preferably 0; m is preferably 0; r and s are each preferably 2.
In the above formulas, n is preferably at least about 6 when the number of
N+ centres and X groups are each 2 or 3, n is preferably at least 12, with a typical range of from about 12 to about 42 for all range of u + v. Typically, v is 0, and u is from 2 to about 40, and preferably from 2 to about 20.
Additional detergent components
The detergent compositions or components thereof in accord with the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component thereof, and the precise nature of the washing operation for which it is to be used.
The compositions or components thereof of the invention preferably contain one or more additional detergent components selected from additional surfactants, builders, sequestrants, bleach, bleach precursors, bleach catalysts, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, additional soil suspension and antiredeposition agents soil releasing agents, perfumes and corrosion inhibitors.
Additional surfactant
The detergent compositions or components thereof in accord with the invention preferably contain an additional surfactant selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P.
4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic surfactant
The detergent compositions or components thereof in accord with the present invention preferably comprise an additional anionic surfactant.
Essentially any anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12-C 18 monoesters) esters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates.
Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant
Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C- C 17 acyl-N-(C 1 -C4 alkyl) and -N-(C l-C2 hydroxyalkyl) glucarnine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the linear and branched primary C 10-Cl 8 alkyl sulfates, more preferably the C l-Cl 5 branched chain alkyl sulfates and the C12-C14 linear chain alkyl sulfates.
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C l0-Cl 8 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C1 1-C18, most preferably C1 l-Cls alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic sulfonate surfactant
Anionic sulfonate surfactants suitable for use herein include the salts of Cs- C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxvlate surfactant
Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)X CH2COO-Mt wherein R is a C6 to C18 alkyl group, x ranges from O to 10, and the ethoxvlate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1- undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2butyl-l-octanoic acid and 2-pentyl-l -heptanoic acid. Certain soaps may also be included as suds suppressors.
Alkali metal sarcosinate surfactant
Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a Cs-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxylated nonionic surfactant
Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diarmne adducts.
Nonionic alkoxvlated alcohol surfactant
The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic polvhvdroxy fatty acid amide surfactant
Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : R1 is H, C1-C4 hydrocarbyl, 2hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C 1 -C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a Cg-C31 hydrocarbyl, preferably straightchain Cs-Clg alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive armnation reaction; more preferably Z is a glycityl.
Nonionic fattv acid amide surfactant
Suitable fatty acid amide surfactants include those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C 1 -C4 alkyl, C 1 -C4 hydroxyalkyl, and (CH40)XH, where x is in the range of from 1 to 3.
Nonionic alkvlsolvsaccharide surfactant
Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula
RȎ(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkyiphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Arnphoteric surfactant
Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)xN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C10-C 18 alkyl dimethylamine oxide, and C 10- 18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant
Zwitterionic surfactants can also be incorporated into the detergent compositions or components thereof in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')N+R2COO- wherein R is a C6-C18 hydrocarbvl group, each R1 is typically C1-C3 alkyl, and R2 is a C1-C5 hydrocarbyl group. Preferred betaines are C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic surfactants
Suitable cationic surfactants to be used in the detergent compositions or components thereof, herein include the quaternary ammonium surfactants selected from mono C6-Cl6, preferably C6-ClO N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
Another suitable group of cationic surfactants which can be used in the detergent compositions or components thereof, for use herein are cationic ester surfactants.
The cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -0-0- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2- linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Water-soluble builder compound
The detergent compositions or components thereof in accord with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and filmaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in
U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymetalphosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partiallv soluble or insoluble builder compound
The detergent compositions or components thereof, of the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60 / weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(A102)z(SiO2)y]. xH2O wherein z and y are at least 6; the molar ratio ofz toy is from 1.0 to 0.5 and xis at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite
Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
Na 12 [A1 2) 12 (SiO2)12]. xH2O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AlO2)86(SiO2)1o6]. 276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15% to 40% by weight of the compositions.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal aluinino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a ds0 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
The d50 value indicates that 50% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing dso values are disclosed in EP 384070A.
Heavv metal ion sequestrant
The detergent compositions or components thereof in accord with the invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the armno alkylene poly (alkylene phosphonates), alkali metal ethane hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2hydroxypropylenediamine disuccinic acid or any salts thereof. Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The P ss-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP
A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant.
Dipicolinic acid and 2-phosphonobutane-l ,2,4-tricarboxylic acid are alos suitable. Olycinarnide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Organic peroxvacid bleaching system
A preferred feature of detergent compositions or component thereof in accord with the invention is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an alternative preferred execution a preformed organic peroxyacid is incorporated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Inorganic perhydrate bleaches
Inorganic perhydrate salts are a preferred source of hydrogen peroxide.
These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1 % to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB02H2O2 or the tetrahydrate NaB02H202.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H202, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Peroxvacid bleach precursor
Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
0
X-C-L where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
0
X-C-OOH
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useflil materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP
A-0 170386.
Leaving groups
The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, R5 is an alkenyl chain containing from 1 to 8 carbon atoms and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, arnine, nitrosyl, amide and ammonium or alkyl ammmonium groups
The preferred solubilizing groups are -SO3-M+, -CO2-M+, -SO4M+, -N+(R )4X- and O < --N(R )3 and most preferably -SO3M+ and -CO2M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methyl sulfate or acetate anion.
Alkyl percarboxvlic acid bleach precursors
Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-trimethyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide substituted alkvl peroxyacid precursors
Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R-C-N-R-C-L R-N-C-R-C-L
0 R5 0 or R5 0 0 wherein R1 is an alkyl group with from 1 to 14 carbon atoms, R2 is an alkylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Perbenzoic acid precursor
Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl irnidazole and N-benzoyl benzimidazole. Other useful N-acyl groupcontaining perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Cationic peroxyacid precursors
Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group.
Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in UK
Patent Application No. 9407944.9 and US Patent Application Nos.
08/298903, 08/298650, 08/298904 and 08/298906.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, Nacylated caprolactarns, and monobenzoyltetraacetyl glucose berizoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
Benzoxazin organic peroxyacid precursors
Also suitable are precursor compounds of the berizoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
wherein R1 is H, alkyl, alkaryl, aryl, or arylalkyl.
Preformed organic peroxyacid
The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
wherein R1 is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Enzyme
Another preferred ingredient useful in the detergent compositions or components thereof is one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available cellulases, endolases, cutinases, amylases, neutral and alkaline proteases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by
Novo Industries A/S (Denmark), those sold under the tradename Maxatase,
Maxacal and Maxapem by Gist-Brocades, those sold by Genencor
International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
Preferred amylases include, for example, a-amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
Organic Dolvmeric compound
Organic polymeric compounds are preferred additional components of the detergent compositions or components thereof in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, not being an quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent in accord with the invention.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1 % to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter tqpe are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-35 1629.
Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Suds suppressing svstem
The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic Ci 8-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortrjazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most
preferably a silicone antifoam compound comprising in combination
(i) polydimethyl siloxane, at a level of from 50% to 99%,
preferably 75% to 95% by weight of the silicone antifoam
compound; and
(ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by
weight of the silicone/silica antifoam compound; wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight; (b) a dispersant compound, most preferably comprising a silicone glycol
rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1: z 1 1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a
particularly preferred silicone glycol rake copolymer of this type is
DCO544, commercially available from DOW Corning under the
tradename DCO544;
(c) an inert carrier fluid compound, most preferably comprising a C 16
C 18 ethoxylated alcohol with a degree of ethoxylation of from 5 to
50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A
0210731 and comprises a silicone antifoam compound and an organic carrier
material having a melting point in the range 50"C to 850C, wherein the
organic carrier material comprises a monoester of glycerol and a fatty acid
having a carbon chain containing from 12 to 20 carbon atoms. EP-A
0210721 discloses other preferred particulate suds suppressing systems
wherein the organic carrier material is a fatty acid or alcohol having a carbon
chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a
melting point of from 45"C to 800C.
Polsmenc dve transfer inhibiting agents
The detergent compositions herein may also comprise from 0.01% to 10 %.
preferably from 0.05% to 0.5% by weight of polymeric dye transfer
inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from
polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N vinylirmdazole, polyvinylpyrrolidonepolymers or combinations thereof,
whereby these polymers can be cross-linked polymers.
a) Polvamine N-oxide polvmers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula:
P
(I) Ax
R wherein P is a polymerisable unit, and
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures:
O # O (R1) x -N-(R2)y A (R3)z or N-(R1 )x wherein R, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyanime N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine
N-oxides are those wherein R is a heterocyclic group such as pyrridine, pymole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N
O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
The polyamine N-oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
Typically, the average molecular weight is within the range of 500 to 1000,000.
b) Cooolvmers of N-vinvlpvrrolidone and N-vinvlimidazole
Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000. The preferred copolymers have a molar ratio of N-vinylimidazole to Nvinylpyrrolidone from 1 to 0.2.
c) Polvvinvlvvrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
*Suitable polyvinylpyrrolidones are commercially vailable from ISP
Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF
Cooperation include Sokalan HP 165 and Sokalan HP 12.
d) Polvvinyloxazolidone The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
e! Poivvinvllmidazole The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
Optical brightener
The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and
M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2 bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation.
Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4 anilino-6-(N-2 -hydroxyethyl-N-methylamino)-s-triazine-2 -yl)amino]2,2 '- stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba
Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s- triazine-2-yl)arnino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal L;MS-GX by Ciba Geigy Corporation.
Polvmeric Soil Release Agent
Known polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, topically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structural.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S.
4,968,451, November 6, 1990 to J.J. Scheibel and EP. Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in wate terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S.
3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1 -C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S. 4,000,093,
December 28, 1976 to Nicol, et al., and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 200C as a 2% aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S.
4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S.
4,525,524 Tung et al.. Other classes include: (m) anionic terephthalatebased SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.,
Other optional inaredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
Near neutral wash DH deraent formulation
While the detergent compositions of the present invention are operative within a wide range of wash pHs (e.g. from about 5 to about 12), they are particularly suitable when formulated to provide a near neutral wash pH, i.e.
an initial pH of from about 7.0 to about 10.5 at a concentration of from about 0.1 to about 2% by weight in water at 200C. Near neutral wash pH formulations are better for enzyme stability and for preventing stains from setting. In such formulations, the wash pH is preferably from about 7.0 to about 10.5, more preferably from about 8.0 to about 10.5, most preferably from 8.0 to 9.0.
Preferred near neutral wash pH detergent formulations are disclosed to
European Patent Application 83.200688.6, filed May 16, 1983, J.H.M.
Wertz and P.C.E. Goffinet.
Highly preferred compositions of this type also preferably contain from about 2 to about 10% by weight of citric acid and minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzymes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides, dyes, perfumes and brighteners, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein incorporated by reference).
Form of the compositions
The detergent component of the invention can be made via a variety of methods, including dry-mixing and agglomerating of the various compounds comprised in the detergent component.
The detergent component preferably forms part of a detergent composiiton.
The compositions in accordance with the invention can take a variety of physical forms including granular, tablet, flake, pastille and bar forms. The compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
In general, granular detergent compositions in accordance with the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation. The quaternised clay-soil removal/ anti-redeposition agent in accord with the present invention can be added to the other detergent components by dry-mixing, agglomeration (preferably combined with a carrier material) or as a spray-dried component.
The mean particle size of the components of granular compositions in accordance with the invention, comprising the water-soluble cationic claysoil removal/anti-redeposition compounds, should preferably be such that no more that 15% of the particles are greater than 1.8mm in diameter and not more than 15% of the particles are less than 0.25mm in diameter. Preferably the mean particle size is such that from 10% to 50% of the particles has a particle size of from 0.2rnm to 0.7mm in diameter.
The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of sieves, preferably Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre. Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
Compacted solids may be manufactured using any suitable compacting process, such as tabletting, briquetting or extrusion, preferably tabletting.
Preferably tablets for use in dish washing processes, are manufactured using a standard rotary tabletting press using compression forces of from 5 to 13 KN/cm2, more preferably from 5 to 11KN/cm2 so that the compacted solid has a minimum hardness of 176N to 275N, preferably from 195N to 245N, measured by a C100 hardness test as supplied by I.
Holland instruments. This process may be used to prepare homogeneous or layered tablets of any size or shape. Preferably tablets are symmetrical to ensure the uniform dissolution of the tablet in the wash solution.
Laundrv washing method
Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from lOg to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
The dispensing device containing the detergent product is placed inside the drum before the commencement of the wash, before, simultaneously with or after the washing machine has been loaded with laundry. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass.
Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents;
GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and
EP-A-0288346. An article by J.Bland published in Manufacturing Chemist,
November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette". Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent
Application No. W094/11562.
Especially preferred dispensing devices are disclosed in European Patent
Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos.
001 1500, 001 1501 001 1502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Machine dishwashin method
Any suitable methods for machine dishwashing or cleaning soiled tableware, particularly soiled silverware are envisaged.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Packaging for the compositions
Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in European Application No. 94921505.7.
Abbreviations used in Examples
In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS Sodium linear C12 alkyl benzene sulfonate
TAS Sodium tallow alkyl sulfate
CxyAS Sodium Clx - Cly alkyl sulfate
C46SAS Sodium C14 - C16 secondary (2,3) alkyl sulfate
CxyEzS Sodium C1x-C1y alkyl sulfate condensed with z
moles of ethylene oxide
CxyEz C1 x-C 1 y predominantly linear primary alcohol
condensed with an average of z moles of ethylene
oxide
QAS R2.N+(CH3)2(C2H40H) with R2 = C12- C14
Soap Sodium linear alkyl carboxylate derived from an
80/20 mixture of tallow and coconut oils
CFAA C12-C14 (coco) alkyl N-methyl glucamide
TFAA Cl 6-C 18 alkyl N-methyl glucamide TPKFA C12-C14 topped whole cut fatty acids
STPP Anhydrous sodium tripolyphosphate
TSPP Tetrasodium pyrophosphate
Zeolite A Hydrated Sodium Aluminosilicate of formula Nal2(A102SiO2)12.27H2O having a primary
particle size in the range from 0.1 to 10
micrometers
Zeolite MAP Hydrated sodium aluminosilicate zeolite MAP
having a silicon to aluminium ratio of 1.07
NaSKS-6 Crystalline layered silicate of formula 6
Na2 Si205
Citric acid Anhydrous citric acid
Borate Sodium borate
Carbonate Anydrous sodium carbonate with a particle size
between 200m and 900!1m Bicarbonate Anhydrous sodium bicarbonate with a particle
size distribution between 400m and 1200 m
Silicate Amorphous Sodium Silicate (SiO2:Na20 = 2.0:1)
Sodium sulfate Anhydrous sodium sulfate
Citrate Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425pm and 8501lm MA/AA Copolymer of 1:4 maleic/acrylic acid, average
molecular weight about 70,000
AA Sodium polyacrylate polymer of average
molecular weight 4,500
CMC Sodium carboxymethyl cellulose
Cellulose ether Methyl cellulose ether with a degree of
polymerization of 650 available from Shin Etsu
Chemicals
Protease Proteolytic enzyme of activity 4KNPU/g sold by
NOVO Industries A/S under the tradename
Savinase
Alcalase Proteolytic enzyme of activity 3AU/g sold by
NOVO Industries A/S
Cellulase Cellulytic enzyme of activity 1000 CEVU/g sold
by NOVO Industries A/S under the tradename Carezyme Amylase Amylolytic enzyme of activity 120KNU/g sold by
NOVO Industries AIS under the tradename
Termamyl 120T
Lipase Lipolytic enzyme of activity 100KLU/g sold
by NOVO Industries A/S under the tradename
Lipolase
Endolase Endoglucanase enzyme of activity 3000 CEVU/g
sold by NOVO Industries A/S
PB4 Sodium perborate tetrahydrate of nominal formula NaB02 .3H20.H202 PB 1 Anhudrous sodium perborate bleach of nominal
formula NaB02.H202 Percarbonate Sodium percarbonate of nominal formula
2Na2C03 .3H202
NOBS Nonanovloxybenzene sulfonate in the form of the
sodium salt
TAED Tetraacetylethylenediarnine
Mn catalyst MnIV2(m-O)3(1,4,7-trimethyl- 1,4,7 triazacyclononane)2 (PFg)2, as described in U.S.
Pat. Nos. 5,246,621 and 5,244,594.
DTPA Diethylene triamine pentaacetic acid
DTPMP Diethylene triamine penta (methylene
phosphonate), marketed by Monsanto under the
Tradename Dequest 2060
Photoactivated Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer
Brightener 1 Disodium 4,4'-bis(2-sulphostyry)biphenyl
Brightener 2 Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-
triazin-2-yl)amino) stilbene-2 :2'-disulfonate HEDP 1,1-hydroxyethane diphosphonic acid
EDDS Ethylenediamine-N, N'-disuccinic acid
QEA1 biS((C2H5O)(C2H4O)n) (CH3) -N±C6H12-N± (CH3) bis((C2HsO)-(C2H4O)n), wherein n=from
20to30
QEA2 biS((C2H5O)-(C2H4O)n) (CH3) N+ R1, wherein
R1 is C4-C12 alkyl group and n=from 20 to 30
QEA3 tri ( (bis((C2H5 O)-(C2H4O)n)(CH3)-N+)- (CONC3H6)}-C3H6O, wherein n=from
20to26
PEGX Polyethylene glycol, with a molecular weight of x
PEO Polyethylene oxide, with a molecular weight of
50,000
TEPAE Tetraethylenepentaamine ethoxylate
PVP Polyvinylpyrolidone polymer
PVNO Polyvinylpyridine N-oxide
PVPVI Copolymer of polyvinylpyrolidone and
vinylimidazole
SRP 1 Sulfobenzoyl and capped esters with oxyethylene
oxy and terephtaloyl backbone
SRP 2 Diethoxylated poly (1, 2 propylene terephtalate)
short block polymer
Silicone antifoam Polydimethylsiloxane foam controller with
siloxane-oxyalkylene copolymer as dispersing
agent with a ratio of said foam controller to said
dispersing agent of 10:1 to 100:1
Wax Paraffin wax
In the following examples all levels are quoted as % by weight of the composition:
Example 1
The following high density granular laundry detergent compositions A to F of particular utility under European machine wash conditions were prepared in accord with the invention:
A B C D E F LAS 8.0 8.0 8.0 8.0 8.0 8.0 C25E3 3.4 3.4 3.4 3.4 3.4 3.4 C46AS 1.0 2.0 2.5 - 3.0 4.0 C68AS 3.0 2.0 5.0 | 7.0 1.0 0.5 QAS = = 0.8 = 0 0.8 Zeolite A 18.1 18.1 16.1 18.1 18.1 18.1 Zeolite MAP - 4.0 3.5 - - Carbonate 13.0 13.0 13.0 27.0 27.0 27.0 Silicate 1.4 1.4 1.4 3.0 3.0 3.0 Sodium Sulfate 26.1 26.1 26.1 26.1 26.1 26.1 MA/AA 0.3 0.3 0.3 0.3 0.3 0.3 CMC 0.2 0.2 | 0.2 0.2 0.2 0.2 PB4 9.0 9.0 | 9.0 | 9.0 9.0 9.0
TAED 1.5 1.5 1.0 1.5 - 1.5 Mn Catalyst 0 0.03 0.07 - - - DTPMP 0.25 0.25 0.25 0.25 0.25 0.25 HEDP 0.3 0.3 0.2 0.2 0.3 0.3 EDDS - - 0.4 0.2 - QEA 1 1.0 0.8 0.7 1.2 - 0.5 QEA 2 - - - 1.0 0.5 Protease 0.26 0.26 0.26 0.26 0.26 0.26 Amylase 0.1 0.1 0.4 0.3 0.1 0.1 Lipase 0.05 0.6 0.7 0.1 0.07 0.1 Photoactivated 15 15 15 15 15 15 bleach (ppm) ppm ppm ppm ppm ppm ppm Brightener 1 0.09 0.09 0.09 0.09 0.09 0.09 Perfume 0.3 0.3 0.3 0.3 0.3 0.3 Silicone antifoam 0.5 0.5 0.5 0.5 0.5 0.5 Misc/minors to 100% Density in g/litre 850 850 850 850 850 850 Example 2
The following granular laundry detergent compositions G to I of particular utility under European machine wash conditions were prepared in accord with the invention:
G H I LAS 5.25 5.61 4.76 TAS 1.25 1.86 1.57 C45AS 2.24 3.89 C25E3S 0.76 1.18 C45E7 3.25 5.0 C25E3 5.5 QAS 0.8 2.0 2.0 STPP 19.7 Zeolite A 19.5 19.5 Zeolite MAP 2.0 NaSKS-6/citric acid (79:21) - 6 10.6 10.6 Carbonate 6.1 21.4 21.4 Bicarbonate - 2.0 2.0 Silicate | 6.8 | - Sodium Sulfate 39.8 - 14.3 MA/AA 0.8 1.6 1.6 CMC 0.2 0.4 0.4
PB4 5.0 12.7 Percarbonate 5.0 - 12.7 TAED 0.5 3.1 Mn Catalyst 0.04 DTPMP 0.25 0.2 0.2 HEDP 0.3 0.3 QEA 1 0.9 1.2 QEA 2 - 1.0 Protease 0.26 0.85 0.85 Lipase 0.15 0.25 0.15 Cellulase 0.28 0.28 0.28 Amylase 0.4 0.1 0.1 PVP 0.9 1.3 0.8 Photoactivated bleach (ppm) 15 ppm 27 ppm 27 ppm Bnghtener 1 ; 0.08 0.19 0.19 Brightener 2 - 0.04 0.04 Perfume 0.3 0.3 0.3 Silicone antifoam l 0.5 2.4 2.4 Minors/misc to 100% Example 3
The following detergent formulations of particular utility under European machine wash conditions were prepared in accord with the invention.
J K L M Blown powder LAS 6.0 5.0 11.0 6.0 TAS 2.0 - - 2.0 Zeolite A 27.0 - 20.0 STPP 24.0 - 24.0 Sulfate 9.0 6.0 13.0 MA/AA 2.0 4.0 6.0 4.0 Silicate 7.0 3.0 3.0 3.0 CMC 1.0 1.0 0.5 0.6 QEA 1 0.8 1.0 1.4 0.5 QEA 2 - - - 0.5 Brightener 0.2 0.2 0.2 0.2 Silicone antifoam 1.0 1.0 1.0 0.3 DTPMP 0.4 0.4 0.2 0.4 Spray on C45E7 - - - 5.0 C45E2 2.5 2.5 2.0 C45E3 2.6 2.5 2.0 PerfUme 0.3 0.3 0.3 0.2 Silicone antifoam 0.3 0.3 0.3 Dry additives Sulfate 3.0 3.0 5.0 10.0 Carbonate 6.0 | 13.0 15.0 14.0 PB1 - - - 1.5 PB4 18.0 18.0 10.0 18.5 TAED 3.0 2.0 - 2.0 EDDS - 2.0 2.4 Protease 1.0 1.0 1.0 1.0 Lipase 0.4 0.5 | 0.4 0.2 Amylase 0.2 0.2 0.2 0.4
Photoactivated bleach - - - 0.15 Total 100.0 100.0 100.0 100.0 Example 4
The following granular detergent formulations were prepared in accord with the invention. Formulation N is particularly suitable for usage under
Japanese machine wash conditions. Formulations O to S are particularly suitable for use under US machine wash conditions.
N O P | Q R S Blown powder LAS 22.0 5.0 4.0 9.0 8.0 7.0 C45AS 7.0 7.0 6.0 - - C46AS - 4.0 3.0 - - C45E35 - 3.0 2.0 8.0 5.0 4.0 Zeolite A 6.0 16.0 14.0 19.0 16.0 14.0 MA/AA 6.0 3.0 3.0 - - AA - 3.0 3.0 2.0 3.0 3.0 Sodium Sulfate 7.0 18.3 11.3 24.0 19.3 19.3 Silicate 5.0 1.0 1.0 2.0 1.0 1.0 Carbonate 28.3 9.0 7.0 25.7 8.0 6.0 QEA 1 0.9 0.9 - - 0.5 1.1 QEA 2 - - 0.8 1.0 - QEA 3 - - 0.4 - - PEG 4000 0.5 1.5 1.5 1.0 1.5 1.0 Sodium oleate 2.0 - - - - - DTPA 0.4 - 0.5 - - 0.5 Brightener 0.2 0.3 0.3 0.3 0.3 0.3 Spray on C25E9 1.0 - - - - - C45E7 - 2.0 2.0 0.5 2.0 2.0 Perfume 1.0 0.3 0.3 1.0 0.3 0.3 Agglomerates C45AS - 5.0 5.0 - 5.0 5.0 LAS - 2.0 2.0 - 2.0 2.0 Zeolite A 7.5 7.5 - 7.5 7.5 HEDP - 1.0 - - 2.0 Carbonate - 4.0 4.0 - 4.0 4.0
PEG 4000 - 0.5 0.5 - 0.5 0.5 Misc (water etc) - 2.0 2.0 - 2.0 2.0 Dry additives TEAD 1.0 2.0 3.0 1.0 3.0 2.0 PB4 4 - 1.0 4.0 - 5.0 | 0.5 PB1 6.0 - - - - Percarbonate - 5.0 12.5 - | - | - Carbonate - 5.3 1.8 - 4.0 4.0 NOBS 4.5 - 6.0 - - 0.6 Cumeme sulfonic acid - 2.0 2.0 - 2.0 2.0 Lipase 0.4 0.4 0.4 0.06 0.05 0.2 Cellulase 0.1 0.2 0.2 - 0.2 0.2 Amylase 0.1 0.3 0.3 - - - Protease 1.0 0.5 0.5 0.5 0.5 0.5 PVPVI - 0.5 0.5 - - -
Example 5
The following granular detergent formulations were prepared in accord with the invention. Formulations W and X are of particular utility under US machine wash conditions. Y is of particular utility under Japanese machine wash conditions
T U V Blown Powder Zeolite A 30.0 22.0 6.0 Sodium Sulfate 19.0 5.0 7.0 MA/AA 3.0 3.0 6.0 LAS 14.0 12.0 22.0 C45AS 8.0 7.0 7.0 Silicate 1.0 5.0 Soap 2.0 Brightener 1 0.2 0.2 0.2 QEA 1 0.6 2.0 1.0 Carbonate 8.0 16.0 20.0 DTPMP - 0.4 0.4 Spray On - 1.0 5.0 C45E7 1.0 1.0 1.0 Dry additives HEDP 1.0 PVPVI/PVNO 0.5 0.5 0.5 Protease 1.0 1.0 1.0 Lipase 0.4 0.1 0.2 Amylase 0.1 0.1 0.1 Cellulase 0.1 0.1 0.1 TEAD - 6.1 4.5 PB1 11.0 5.0 6.0 Sodium Sulfate - 6.0 1 Balance (Moisture and Misc.) Example 6
The following granular detergent compositions of particular utility under
European wash conditions were prepared in accord with the invention.
W X Blown powder Zeolite A 20.0 STPP - 20.0 LAS 6.0 6.0 C68AS 2.0 2.0 Silicate 3.0 8.0 MA/AA 4.0 2.0 CMC 0.6 0.6 QEA 1 0.9 0.6 QEA 3 0.1 Brightener 1 0.2 0.2 DTPMP 0.4 0.4 Spray on C45E7 5.0 5.0 Silicone antifoam 0.3 0.3 Perfume 0.2 ~ 0.2 Dry additives Carbonate 14.0 9.0 PB1 1.5 2.0 PB4 18.5 1 13.0 TAED 2.0 | 2.0 Photoactivated bleach 15 ppm m 15 ppm Protease 1.0 1.0 Lipase 0.2 0.08 Amylase 0.4 0.4 Cellulase 0.1 0.1 Sulfate 10.0 20.0 Balance (Moisture and Misc.) Density (g/litre) 700 | 700 Example 7
The following detergent compositions, according to the present invention were prepared:
Y Z AA Blown Powder Zeolite A 15.0 15.0 15.0 Sodium Sulfate 0.0 5.0 0.0 LAS 3.0 3.0 3.0 QAS 1.5 1.5 DTPMP 0.4 0.2 0.4 CMC 0.4 0.4 0.4 MA/AA 4.0 2.0 2.0 Agglomerates LAS 5.0 5.0 5.0 TAS 2.0 2.0 1.0 Silicate | 3.0 3.0 4.0 QEA 1 1.0 2.5 0.6 Mn Catalyst 0.03 - Zeolite A 8.0 8.0 | 8.0 Carbonate 8.0 8.0 4.0 Spray On Perfume 0.3 0.3 0.3 C45E7 2.0 2.0 2.0 C25R3 2.0 Dry additives Citrate 5.0 - 2.0 Bicarbonate ~ 3.0 ~ Carbonate 8.0 15.0 10.0 Percarbonate - 7.0 10.0 TAED 6.0 2.0 5.0 PB1 14.0 7.0 10.0 EDDS - 2.0 Polyethylene oxide of MW 5,000,000 - - 0.2 Bentonite clay - - 10.0 Protease 1.0 1.0 1.0
Li ase 0.4 0.1 0.3 Amylase 0.6 0.6 0.6 Cellulase 0.6 0.6 0.6 Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 3.0 0.0 Balance (Moisture and Misc.) 100.0 100.0 100.0 Density (g/litre) 850 850 850 Example 8
The following detergent formulations, according to the present invention were prepared:
BB CC DD EE LAS 20.0 14.0 24.0 22.0 QAS 0.7 1.0 - 0.7 TFAA - 1.0 - C25E5/C45E7 2.0 0.5 C45E3S - 2.5 - STPP 30.0 18.0 30.0 22.0 Silicate 9.0 5.0 10.0 8.0 Carbonate 13.0 7.5 - 5.0 Bicarbonate - 7.5 - Percarbonate - 5.0 9.0 15.0 DTPMP 0.7 1.0 - QEA 1 0.4 1.2 0.5 2.0 QEA 2 0.4 - - SRP 1 1 0.3 0.2 - 0.1 MA/AA 2.0 1.5 2.0 1.0 CMC 0.8 0.4 0.4 - 0.2 Protease 0.8 1.0 0.5 0.5 Amylase 0.8 0.4 - 0.25 Lipase 0.2 0.06 0.25 0.1 Cellulase 0.15 0.05 - Photoactivated 70ppm 45ppm - 10ppm bleach (ppm) Brightener 1 0.2 0.2 0.08 0.2 PB1 6.0 2.0 - HEDP - - 2.3 TEAD 2.0 1.0 - Balance (Moisture and Miscellaneous) Example 9
The following laundry bar detergent compositions were prepared in accord with the invention.
FF GG | HH II JJ KK LL MM LAS - - 19.0 15.0 21.0 6.75 8.8 C28AS 30.0 13.5 5 - - - 15.75 11.2 22.5 Sodium laurate 2.5 9.0 - - - - - Zeolite A 2.0 1.25 - - - 1.25 1.25 1.25 Carbonate 20.0 3.0 13.0 8.0 10.0 15.0 15.0 10.0 Calcium 21.5 - - - - - - carbonate Sulfate 5.0 - - - - - - TSPP 5.0 - | 5.0 - 5.0 5.0 2.5 5.0 STPP 5.0 15.0 - - - 5.0 8.0 | 10.0 Bentonite clay - 10.0 - - 5.0 - - DTPMP - 0.7 0.6 - 0.6 0.7 0.7 0.7 MA/AA 0.4 1.0 - - 0.2 0.4 0.5 0.4 SRP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Protease - 0.12 - 0.08 0.08 - - 0.1 Lipase 0.07 0.1 0.15 0.1 0.2 0.5 0.1 0.1 Amylase - - 0.8 - - - 0.1 Cellulase - 0.15 - - 0.15 - - PEO - 0.2 - 0.2 0.3 - - 0.3 Perfume 1.6 - - - - - - Example 10
The following compact high density (0.96Kg/l) dishwashing detergent
compositions NN to SS were prepared in accord with the invention
and the abbreviated component identifications, used in the dish washing
detergent compositions, have the following meanings:
Metasilicate : Sodium metasilicate (SiO2:Na2O ratio = 1.0)
Nonionic : C13-C15 mixed ethoxylated/propoxylated fatty
alcohol with an average degree of ethoxylation
of 3.8 and an average degree of propoxylation
of 4.5 sold under the tradename Plurafac
LF404 by BASF GmbH (low foaming)
PAAC : Pentaamine acetate cobalt (III) salt
BzP . Benzoyl Peroxide
Paraffin Paraffin oil sold under the tradename Winog 70
by Wintershall.
BTA : Benzotriazole
Bismuth nitrate Bismuth nitrate salt
Terpolymer Terpolymer of average molecular weight
approx. 7,000, comprising acrylic: maleic : ethyl acrylic acid monomer units
at a weight ratio of 60:20:20 480N Random copolymer of 3:7 acrylic/methacrylic
acid, average molecular weight about 3,500
NN OO PP QQ RR SS STPP 24.80 24.80 25.00 28.39 28.50 20.00 Citrate - - - - 10.00 10.00 Carbonate - - 17.50 17.50 QEA 1 0.5 1.5 2.0 1.0 0.3 0.8 Silicate 20.36 20.36 14.81 14.81 14.81 - Metasilicate 2.50 2.50 2.50 - PB1 7.79 7.79 9.74 14.28 9.74 PB4 - - - Percarbonate - - - - - 6.70 Non-ionic 1.50 1.50 2.00 1.50 2.00 2.60 TAED 2.39 2.39 2.39 - 4.00 HEDP 0.46 0.46 1.00 0.83 DETPMP - - 0.65 PAAC 0.20 BzP - - - 4.44 Paraffin 0.50 0.50 0.50 0.50 - 0.20 Protease 2.20 2.20 2.20 2.20 2.00 0.50 Amylase 1.50 - 1.50 1.20 1.50 1.00 | 1.10 BTA 0.30 0.30 0.30 0.30 - Bismuth Nitrate - - 0.30 - lipase 0.5 0.3 1.0 1.4 0.8 0.6 Terpolymer - - - 4.00 480N 2.77 2.77 6.00 - 6.67 Sulphate 8.44 8.44 20.77 23.24 1.00 Misc inc moisture to balance pH (1% solution) 10.90 10.90 11.00 10.80 10.90 9.60
Claims (21)
1. A granular detergent composition or component thereof comprising (a) lipolytic enzyme, present on a 100KLU/gram basis.
(b) a water-soluble cationic compound
having clay soil removal/anti-redeposition properties, which is
selected from the group consisting of
1) ethoxylated cationic monoamines having the formula:
R2
R2 N±L X
R2
2) ethoxylated cationic diamines having the formula:
L L L L L
X X X X X
(R )d R
(X L )2 M-R-M-R
R2 wherein M1 is an N or N group; each M2 is an N or N group, and at least one M2 is an N+ group; 3) ethoxylated cationic polyamines having the formula:
(R3)d
R4 [(A1)q (R5)t M2 L X]p R2
4) mixtures thereof; wherein A is
0 0 0 O O
CO-,-OCO-,-OC-,-CNC- or -O
R
R is H or C1-C4 alkyl or hydroxyalkyl, R1 is C2-C12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene, or a C2-C3 oxyalkylene moiety having from 2 to about 20 oxyalkylene units provided that no O-N
bonds are formed; each R2 is C i -C4 alkyl or hydroxyalkyl, the moiety -L
X, or two R2 together form the moiety -(CH2)rA2-(CH2)-, wherein A2 is
O- or -CH2-, r is 1 or 2, s is 1 or 2 and r + s is 3 or 4; each R is C1-C8
alkyl or hydroxyalkyl, benzyl, the moiety L-X, or two R3 or one R2 and one
R3 together form the moiety -(CH2)r-A-(CH2)s-; R4 is a substituted C3 C12 alkyl, hydroxyalkyl, alkenyl, aryl or alkaryl group having p substitution
sites; RS is C I -C 12 alkenyl, hydroxyalkylene, alkenylene, arylene or
alkarylene, or a C2-C3 oxyalkylene moiety having from 2 to about 20
oxyalkylene units provided that no 0-0 or O-N bonds are formed; X is a nonionic group selected d from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof; L is a hydrophilic chain which contains the polyoxyalkylene moiety -[(R60)m(CH2CH20)n]-; wherein R6 is C3-C4 alkylene or hydroxyalkylene and m and n are numbers such that the moiety -(CH2CH2O)n- comprises at least about 50% by weight of said polyoxyalkylene moiety; d is 1 when M2 is N+ and is 0 when M2 is N; n is at least about 16 for said cationic monoamines, is at least about 6 for said cationic diarmnes and is at least about 3 for said cationic polyamines; p is from 3 to 8; q is 1 or 0; t is 1 or 0, provided that t is 1 when q is 1, and wherein the ratio of compound (a) to (b) is from 1:100 to 100:1.
2. A granular detergent composition or component thereof according to
Claim 1 wherein said ratio is from 1:10 to 10 :1.
3. A granular detergent composition according to Claims 1 or 2
wherein said cationic compound is present at a level of from 0.01% to 30% by weight of the detergent composition.
4. A granular detergent composition according to any of Claims 1 to 3
wherein said cationic compound is present at a level of from 0.2% to
3% by weight of the detergent composition.
5. A granular detergent composition or component thereof according to
any of Claims 1 to 4 wherein said cationic compound is an ethoxvlated cationic monoamine and is characterized in that one R2
is methyl, two R2 are the moiety L-X, m is 0 and n is at least about
20.
6 A granular detergent composition or component according to any of
Claims 1 to 4 wherein said cationic compound is an ethoxylated
cationic diamine and is characterized in that R1 is a C2-C6 alkylene.
7. A granular detergent composition or component thereof according to
Claim 6 wherein said ethoxylated cationic diamine is characterized
in that R1 is hexamethylene.
8. A detergent composition or component thereof according to any of
Claims I to 4 wherein said cationic compound is an ethoxylated
cationic polyamine and is characterized in that R4 is a substituted
C3-C6 alkyl, hydroxyalkyl or aryl group; Al is
0
CN
H
and p is from 3 to 6.
9. A granular detergent composition or component thereof according to
any of Claims 6 to 8, wherein the cationic compounds is
characterized in that each R2 is methyl or the moiety -L-X, each R3
is methyl and M1 and each M2 are an N+ group.
10. A granular detergent composition or component thereof according to
any of Claims 6 to 9 wherein m is 0 and n is at least 12.
1 1 A granular detergent composition or component thereof according to
Claims 6 or 7 wherein m is 0 and n is at least 20.
12. A granular detergent composition according to any of Claims 1 to 11
wherein said lipolytic enzyme is present at a level of from 0.01% to 3.0% by weight of the detergent composition on a 1 0OKLU/gram basis.
13. A granular detergent composition according to any of Claims 1 to 12
wherein said lipolytic enzyme is present at a level of from 0.03% to 1.0% by weight of the detergent composition on a 100KLU/gram
basis.
14. A granular detergent composition or component thereof according to
any of Claims 1 to 13 wherein a cationic clay-soil removal/ anti
redeposition polymer is present characterised in that it has a
backbone, at least 2M groups and at least one L-X group, wherein M
is a cationic group attached to or integral with the backbone and
contains an N+ positively charged centre; and L connects groups M
and X or connects group X to the polymer backbone; X is a
nonionic group selected from the group consisting of H, C 1 -C4 alkyl
or hydroxyalkyl ester or ether groups, and mixtures thereof; and L is
a hydrophilic chain which contains the polyoxyalkylene moiety [(R6O)(CH2CH20)]-;
15. A granular detergent composition or component thereof according to
Claim 14 wherein said cationic polymer is an ethoxylated cationic
polymer which has a backbone, selected from the group consisting of
the polyurethanes, the polyesters, the polyethers, the polyimides, the
polyalkyleneimines and mixtures thereof.
16. A granular detergent composition according to any of Claims 1 to 15
wherein the composition is formulated in such a manner as to provide
a wash pH of from 8.0 to 10.5.
17. A granular detergent composition according to any of Claims 1 to 16
wherein a heavy metal ion sequestrant is present at a level of from 0.1 % to 10% by weight of the detergent composition.
18. A granular detergent composition or component thereof according to
any of Claims 1 to 17 wherein an organic peroxyacid bleaching
system is present, containing a hydrogen peroxide source and an
organic peroxyacid bleach precursor compound.
19. A granular detergent composition or component thereof according to
any of Claims 1 to 18 wherein a surfactant is present, selected from
the group consisting of anionic, nonionic, cationic, ampholytic,
amphoteric and zwitterionic surfactants and mixtures thereof.
20. A method of washing laundry in a domestic washing machine wherein
an effective amount of a granular detergent composition according to
any of Claims 1 to 19 is introduced into the drum of the washing
machine, preferably before the commencement of the wash by use of
a dispensing device which permits progressive release of said granular
detergent composition into the wash liquor during the wash.
21. The use of a granular detergent composition or composition thereof
according to any of Claims 1 to 20 in a dish washing process.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9619927A GB2317393A (en) | 1996-09-24 | 1996-09-24 | Detergent compositions |
PCT/US1997/016716 WO1998013463A1 (en) | 1996-09-24 | 1997-09-22 | A detergent composition comprising cationic amines and lipase enzymes |
CA002265803A CA2265803A1 (en) | 1996-09-24 | 1997-09-22 | A detergent composition comprising cationic amines and lipase enzymes |
JP10515748A JP2000503712A (en) | 1996-09-24 | 1997-09-22 | Detergent composition comprising a cationic amine and a lipase enzyme |
AU43565/97A AU4356597A (en) | 1996-09-24 | 1997-09-22 | A detergent composition comprising cationic amines and lipase enzymes |
BR9713217-9A BR9713217A (en) | 1996-09-24 | 1997-09-22 | A detergent composition comprising cationic amines and lipase enzymes |
EP97941712A EP0929637A4 (en) | 1996-09-24 | 1997-09-22 | A detergent composition comprising cationic amines and lipase enzymes |
CN 97199989 CN1238802A (en) | 1996-09-24 | 1997-09-22 | Detergent composition comprising cationic amines and lipase enzymes |
ARP970104402 AR010475A1 (en) | 1996-09-24 | 1997-09-24 | GRANULAR DETERGENT COMPOSITION, METHOD OF WASHING IN A WASHING MACHINE FOR DOMESTIC USE AND USE OF A DETERGENT COMPOSITION IN A WASHING PROCESS. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9619927A GB2317393A (en) | 1996-09-24 | 1996-09-24 | Detergent compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
GB9619927D0 GB9619927D0 (en) | 1996-11-06 |
GB2317393A true GB2317393A (en) | 1998-03-25 |
Family
ID=10800426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB9619927A Withdrawn GB2317393A (en) | 1996-09-24 | 1996-09-24 | Detergent compositions |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0929637A4 (en) |
JP (1) | JP2000503712A (en) |
CN (1) | CN1238802A (en) |
AR (1) | AR010475A1 (en) |
AU (1) | AU4356597A (en) |
BR (1) | BR9713217A (en) |
CA (1) | CA2265803A1 (en) |
GB (1) | GB2317393A (en) |
WO (1) | WO1998013463A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000018877A1 (en) * | 1998-09-25 | 2000-04-06 | The Procter & Gamble Company | Granular detergent compositions having homogenous particles and process for producing same |
US6906022B1 (en) | 1998-09-25 | 2005-06-14 | The Procter & Gamble Company | Granular detergent compositions having homogenous particles and process for producing same |
EP2135934A1 (en) * | 2008-06-16 | 2009-12-23 | Unilever PLC | Use of a laundry detergent composition |
AU2009259498B2 (en) * | 2008-06-16 | 2013-02-21 | Unilever Plc | Improvements relating to fabric cleaning |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2767579B1 (en) * | 2013-02-19 | 2018-07-18 | The Procter and Gamble Company | Method of laundering a fabric |
CN106488977B (en) * | 2014-07-11 | 2019-04-16 | 宝洁公司 | Structured particles comprising alkoxylated polyalkyleneimine and the granular laundry detergent comprising the structured particles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0111965A2 (en) * | 1982-12-23 | 1984-06-27 | THE PROCTER & GAMBLE COMPANY | Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties |
WO1995033031A1 (en) * | 1994-06-01 | 1995-12-07 | The Procter & Gamble Company | Detergent composition containing oleoyl sarcosinate and anionic surfactants in optimum ratios |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101457A (en) * | 1975-11-28 | 1978-07-18 | The Procter & Gamble Company | Enzyme-containing automatic dishwashing composition |
US4664848A (en) * | 1982-12-23 | 1987-05-12 | The Procter & Gamble Company | Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties |
US4659802A (en) * | 1982-12-23 | 1987-04-21 | The Procter & Gamble Company | Cationic compounds having clay soil removal/anti-redeposition properties useful in detergent compositions |
US4861512A (en) * | 1984-12-21 | 1989-08-29 | The Procter & Gamble Company | Sulfonated block polyesters useful as soil release agents in detergent compositions |
US4713194A (en) * | 1986-04-15 | 1987-12-15 | The Procter & Gamble Company | Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions |
US4711730A (en) * | 1986-04-15 | 1987-12-08 | The Procter & Gamble Company | Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents |
US4861502A (en) * | 1988-02-08 | 1989-08-29 | The Procter & Gamble Company | Conditioning agent containing amine ion-pair complexes and composiitons thereof |
HUP9902631A3 (en) * | 1996-05-17 | 2001-11-28 | Procter & Gamble | Detergent composition |
-
1996
- 1996-09-24 GB GB9619927A patent/GB2317393A/en not_active Withdrawn
-
1997
- 1997-09-22 CN CN 97199989 patent/CN1238802A/en active Pending
- 1997-09-22 JP JP10515748A patent/JP2000503712A/en active Pending
- 1997-09-22 WO PCT/US1997/016716 patent/WO1998013463A1/en not_active Application Discontinuation
- 1997-09-22 BR BR9713217-9A patent/BR9713217A/en unknown
- 1997-09-22 CA CA002265803A patent/CA2265803A1/en not_active Abandoned
- 1997-09-22 AU AU43565/97A patent/AU4356597A/en not_active Abandoned
- 1997-09-22 EP EP97941712A patent/EP0929637A4/en not_active Withdrawn
- 1997-09-24 AR ARP970104402 patent/AR010475A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0111965A2 (en) * | 1982-12-23 | 1984-06-27 | THE PROCTER & GAMBLE COMPANY | Detergent compositions containing cationic compounds having clay soil removal/anti-redeposition properties |
WO1995033031A1 (en) * | 1994-06-01 | 1995-12-07 | The Procter & Gamble Company | Detergent composition containing oleoyl sarcosinate and anionic surfactants in optimum ratios |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000018877A1 (en) * | 1998-09-25 | 2000-04-06 | The Procter & Gamble Company | Granular detergent compositions having homogenous particles and process for producing same |
US6906022B1 (en) | 1998-09-25 | 2005-06-14 | The Procter & Gamble Company | Granular detergent compositions having homogenous particles and process for producing same |
EP2135934A1 (en) * | 2008-06-16 | 2009-12-23 | Unilever PLC | Use of a laundry detergent composition |
AU2009259498B2 (en) * | 2008-06-16 | 2013-02-21 | Unilever Plc | Improvements relating to fabric cleaning |
US9150993B2 (en) | 2008-06-16 | 2015-10-06 | Conopco, Inc. | Methods and compositions for fabric cleaning |
Also Published As
Publication number | Publication date |
---|---|
EP0929637A1 (en) | 1999-07-21 |
GB9619927D0 (en) | 1996-11-06 |
CA2265803A1 (en) | 1998-04-02 |
JP2000503712A (en) | 2000-03-28 |
EP0929637A4 (en) | 2000-01-05 |
AU4356597A (en) | 1998-04-17 |
AR010475A1 (en) | 2000-06-28 |
CN1238802A (en) | 1999-12-15 |
BR9713217A (en) | 2000-12-05 |
WO1998013463A1 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0934389A1 (en) | Detergent compositions | |
EP0934379A1 (en) | Detergent compositions | |
CA2255011A1 (en) | Detergent composition | |
EP0929627A1 (en) | Detergent particle | |
EP0929626A1 (en) | Detergent composition or component | |
EP0934378A1 (en) | Detergent compositions comprising a mixture of cationic, anionic and nonionic surfactants | |
EP0970169A1 (en) | Detergent compositions comprising a mixture of quaternary ammonium cationic surfactant and alkyl sulfate anionic surfactant | |
GB2317393A (en) | Detergent compositions | |
GB2317390A (en) | Detergent compositions | |
GB2317392A (en) | Detergent compositions | |
GB2317394A (en) | Detergent compositions | |
EP0968269A1 (en) | Detergent compositions | |
GB2317395A (en) | Detergent compositions | |
WO1998017751A1 (en) | Detergent compositions | |
EP0934397A1 (en) | Detergent compositions | |
EP0929625A1 (en) | Detergent compositions | |
GB2323385A (en) | Detergent compositions | |
WO1998017766A1 (en) | Detergent compositions | |
WO1998017753A1 (en) | Detergent compositions containing alkyl polysaccharide and cationic surfactants | |
GB2323382A (en) | Detergent compositions | |
WO1998017768A1 (en) | Detergent composition comprising lipase enzyme and cationic surfactant | |
GB2318799A (en) | Detergent compositions | |
GB2319038A (en) | Detergent particle | |
GB2323376A (en) | Detergent compositions | |
MXPA99002818A (en) | A detergent composition comprising cationic amines and lipase enzymes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |