EP0934397A1 - Detergent compositions - Google Patents
Detergent compositionsInfo
- Publication number
- EP0934397A1 EP0934397A1 EP97909927A EP97909927A EP0934397A1 EP 0934397 A1 EP0934397 A1 EP 0934397A1 EP 97909927 A EP97909927 A EP 97909927A EP 97909927 A EP97909927 A EP 97909927A EP 0934397 A1 EP0934397 A1 EP 0934397A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- weight
- detergent composition
- formula
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/28—Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/835—Mixtures of non-ionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/86—Mixtures of anionic, cationic, and non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0069—Laundry bars
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/1273—Crystalline layered silicates of type NaMeSixO2x+1YH2O
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/143—Sulfonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/52—Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
- C11D1/525—Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/662—Carbohydrates or derivatives
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
Definitions
- the present invention relates to detergent compositions or components thereof containing a specific cationic surfactant for use under alkaline wash conditions, having a carefully selected counterion.
- the detergent compositions of the invention are for use in any field of detergency, including household cleaners but are generally for use in laundry and dish washing processes to provide enhanced greasy stain removal and cleaning benefits.
- GB 2040990A describes granular detergent compositions comprising cationic surfactants.
- EP-A- 121949 also describes cationic surfactants for use in laundry detergent compositions. This reference describes a broad class of cationic surfactants.
- the cationic compounds have been found to be particularly beneficial in detergent compositions which additionally comprise anionic surfactants.
- the Applicant believes that the particular cationic surfactants used in the detergent compositions of the present invention have surprisingly good solubility.
- they form an association in the presence of anionic components to produce surprisingly soluble anionic/cationic complexes which lead to unexpected performance benefits: the cationic surfactant rapidly and effectively contacts greasy stains and rapidly penetrates and breaks down the stain giving effective greasy stain removal.
- the cationic surfactants used in the present invention also form complexes with the fatty acids and any other negatively charged breakdown product produced, increasing their solubility and enhancing greasy, oily soil removal and overall cleaning performance.
- a detergent composition having a pH of at least 8.0 in an aqueous solution at a concentration of 0.5% by weight, or component thereof, which comprises a cationic surfactant of formula I:
- R' is a hydroxyalkyl group having no greater than 6 carbon atoms; each of R ⁇ and R-* is independently selected from C 1.4 alkyl or alkenyl; R ⁇ is a C5.1 1 alkyl or alkenyl; and X" is a counterion which does not substantially exchange with a hydroxide ion in a 0.5% by weight aqueous solution of the detergent composition at 20°C.
- the cationic surfactant comprises a mixture of cationic surfactants of formula I:
- R! is a hydroxyalkyl group having no greater than 6 carbon atoms; each of R ⁇ and R ⁇ is independently selected from C 1.4 alkyl or alkenyl; R ⁇ is a C5.1 1 alkyl or alkenyl; and X" is a counterion which does not substantially exchange with a hydroxide ion in a 0.5% by weight aqueous solution of the detergent composition at 20°C and wherein, in the mixture of cationic surfactants of formula I , at least 10%, preferably at least 20 % or even at least 50% by weight of the cationic surfactant has R 4 which is C5_9 alkyl or alkenyl.
- the cationic surfactant comprises a mixture of surfactants of formula I wherein there is a longer alkyl chain surfactant having R 4 with n carbon atoms where n is from 8 to 1 1 and a shorter alkyl chain surfactant having (n-2) carbon atoms.
- alkyl or alkenyl as used herein may be branched, linear or substituted.
- Substituents may be for example, aromatic groups, heterocyclic groups containing one or more N, S or O atoms, or halo substituents.
- Suitable counterions generally are counterions which are more electronegative than hydroxide ions.
- the cationic surfactant is generally present in the composition or component thereof in an amount no greater than 60% by weight, preferably no greater than 10% by weight, most preferably in an amount no greater than 4.5% or even 3% by weight.
- the maximum amount of cationic surfactant may even be as low as 1% by weight.
- the benefits of the invention are found even with very small amounts of the cationic surfactant of formula I. Generally there will be at. least 0.01% by weight, preferably at least 0.05% or at least 0.1 % by weight of the cationic surfactant in the detergent compositions of the invention.
- R' in formula I is a hydroxyalkyl group having no greater than 6 carbon atoms and preferably the — OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms.
- Preferred R ⁇ groups are — CH2CH2OH, — CH2CH2CH2OH, — CH 2 CH(CH 3 )OH and — CH(CH 3 )CH 2 OH.
- R ⁇ and R ⁇ are each selected from ethyl and methyl groups and most preferably both R ⁇ and R ⁇ are methyl groups.
- Preferred R 4 groups have at least 6 or even at least 7 carbon atoms.
- R 4 may have no greater than 9 carbon atoms, or even no greater than 8 or 7 carbon atoms.
- R 4 may be C5.9 or C 1 j
- Preferred R 4 groups are linear alkyl groups. Linear R 4 groups having from 8 to 1 1 carbon atoms, or from 7 to 9 carbon atoms are preferred.
- the counterion, X in formula I may be any counterion which does not substantially exchange with a hydroxide ion in a 0.5% by weight aqueous solution of the detergent composition at 20°C, so that formation of malodorous compounds is substantially avoided.
- Suitable counterions generally have greater electronegativity than hydroxide ions.
- Preferred examples are chloride, bromide and nitrate ions. Chloride is particularly preferred.
- mixtures of the cationic surfactants of formula I may be particularly effective, for example, surfactant mixtures in which R 4 may be a combination of Cg and C J linear alkyl groups, or Co and C ⁇ ⁇ alkyl groups.
- a mixture of cationic surfactants of formula I is present in the composition, the mixture comprising from a shorter alkyl chain surfactant of formula I and a longer alkyl chain surfactant of formula I.
- the longer alkyl chain cationic surfactant is preferably selected from the surfactants of formula I where R 4 is an alkyl group having n carbon atoms where n is from 8 to 1 1; the shorter alkyl chain surfactant is preferably selected from those of formula I where R 4 is an alkyl group having (n-2) carbon atoms.
- the mixed cationic surfactant systems generally there will be form 5 to 95% by weight of longer alkyl chain surfactants, preferably from 30 to 95%, more preferably form at least 50% by weight based on the total cationic surfactant.
- 5 to 95% by weight shorter alkyl chain surfactant preferably from 5 to 70T by weight, more preferably 35 to 65% by weight.
- the detergent compositions or components thereof in accordance with the present invention may also contain additional detergent components.
- additional detergent components The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component thereof, and the precise nature of the washing operation for which it is to be used.
- compositions or components thereof, of the invention preferably contain one or more additional detergent components selected from additional surfactants, builders, sequestrants, bleach, bleach precursors, bleach catalysts, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, additional soil suspension and anti-redeposition agents soil releasing agents, perfumes and corrosion inhibitors.
- additional detergent components selected from additional surfactants, builders, sequestrants, bleach, bleach precursors, bleach catalysts, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, additional soil suspension and anti-redeposition agents soil releasing agents, perfumes and corrosion inhibitors.
- the detergent compositions or components thereof in accordance with the invention preferably contain an additional surfactant selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
- ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
- the detergent compositions additionally comprise an anionic surfactant.
- anionic surfactant useful for detersive purposes is suitable. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
- anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated diesters of sulfosuccinate (especially saturated and unsaturated C,-C. . diesters), N-acyl sarcosinates.
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
- Anionic sulfate surfactants suitable for use in the compositions of the invention include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C ⁇ -C4 alkyl) and -N-(C ⁇ -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
- Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C9-C22 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C ⁇ ]-Cjg, most preferably C 1 j -C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
- a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
- Anionic sulfonate surfactant Anionic sulfonate surfactant
- Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, Cg-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
- compositions of the present invention additionally comprise an anionic surfactant, selected from alkyl sulfate and/or alkylbenzene sulphonate surfactants of formulae II and III, respectively:
- R ⁇ is a linear or branched alkyl or alkenyl moiety having from 9 to 22 carbon atoms, preferably C j 2 to C j g alkyl or as found in secondary alkyl sulfates;
- R" is Cjo-Cjg alkylbenzene, preferably C ⁇ 1-C13 alkylbenzene;
- M + and M + can vary independently and are selected frpm alkali metals, alkaline earths, alkanolammonium and ammonium.
- compositions of the invention comprise both an alkyl sulfate surfactant and an alkyl benzene surfactant, preferably in ratios of II to III of from 15:1 to 1:2, most preferably from 12:1 to 2:1.
- Amounts of the one or mixtures of more than one anionic surfactant in the preferred composition may be from 1% to 50%, however, preferably anionic surfactant is present in amounts of from 5% to 40% by weight of the composition.
- Preferred amounts of the alkyl sulfate surfactant of formula II are from 3% to 40%, or more preferably 6% to 30% by weight of the detergent composition.
- Preferred amounts of the alkyl benzene sulphonate surfactant of formula III in the detergent composition are from at least 1%, preferably at least 2%, or even at least 4% by weight. Preferred amounts of the alkyl benzene sulphonate surfactant are up to 23%, more preferably no greater than 20%, most preferably up to 15% or even 10%.
- compositions of the invention are particularly useful for longer carbon chain length anionic surfactants such as those having a carbon chain length of C 2 or greater, particularly of C 14/ 15 or even up to Ci g. j g carbon chain lengths.
- the detergent compositions of the invention comprising anionic surfactant there will be a significant excess of anionic surfactants, preferably a weight ratio of anionic to cationic surfactant of from 50: 1 to 2: 1 , most preferably 30: 1 to 8: 1.
- the ratio of cationic surfactant to anionic surfactant is substantially stoichiometric, for example from 3:2 to 4:3.
- the essential cationic surfactant of formula I is intimately mixed with some or all of one or more anionic surfactants prior to addition of the other detergent composition components to provide a readily soluble anionic/cationic complex. It may be preferred to intimately mix substantially stoichiometric amounts of anionic and cationic surfactant prior to addition to the other detergent components, including any additional anionic surfactant.
- Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
- Suitable alkyl ethoxy carboxylates include those with the formula RO C ⁇ C ⁇ O)* CH2COO" M + wherein R is a Cg to Ci 8 alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
- Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-0)-R3 wherein R is a Cg to Ci g alkyl group, x is from 1 to 25, R j and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
- Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
- Preferred secondary soap surfactants for use herein are water- soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l- undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2-butyl-l-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
- alkali metal sarcosinates of formula R-CON (R ⁇ ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R* is a C J-C4 alkyl group and M is an alkali metal ion.
- R is a C5-C17 linear or branched alkyl or alkenyl group
- R* is a C J-C4 alkyl group
- M is an alkali metal ion.
- alkoxylated nonionic surfactants are suitable herein.
- the ethoxylated and propoxylated nonionic surfactants are preferred.
- Linear or branched alkoxylated groups are suitable.
- Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
- the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
- Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R ⁇ CONR ⁇ Z wherein : Rl is H, C 1 -C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C 1 -C4 alkyl, more preferably C 1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5- C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain Cj 1-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
- Nonionic fatty acid amide surfactant Nonionic fatty acid amide surfactant
- Suitable fatty acid amide surfactants include those having the formula: R°CON(R ⁇ )2 wherein R° is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R ⁇ is selected from the group consisting of hydrogen, C 1 -C4 alkyl, C1-C4 hydroxyalkyl, and - (C2H4 ⁇ ) x H, where x is in the range of from 1 to 3.
- Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
- Preferred alkylpolyglycosides have the formula
- R ⁇ is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8.
- the glycosyl is preferably derived from glucose.
- Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
- Suitable amine oxides include those compounds having the formula wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R ⁇ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups.
- Preferred are C j o-C ig alkyl dimethylamine oxide, and C j Q- 18 acylamido alkyl dimethylamine oxide.
- a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc., Dayton, NJ.
- Zwitterionic surfactants can also be incorporated into the detergent compositions or components thereof in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
- Suitable betaines are those compounds having the formula R(R')2N + R2COO" wherein R is a c 6" c 18 hydrocarbyl group, each R 1 is typically C 1 -C3 alkyl, and R ⁇ - is a C1-C5 hydrocarbyl group.
- Preferred betaines are C ⁇ 2. ⁇ 8 dimethyl-ammonio hexanoate and the C 1 g_ 1 g acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
- Complex betaine surfactants are also suitable for use herein.
- compositions of the invention are preferably substantially free of quaternary ammonium compounds of formula I but wherein one or R', R ⁇ , R ⁇ or R 4 is an alkyl chain group longer than C 1 j .
- the composition should contain less than 1%, preferably less than 0.1% by weight or even less than 0.05% and most preferably less than 0.01% by weight of compounds of formula I having a linear (or even branched) alkyl group having 12 or more carbon atoms.
- cationic ester surfactants Another suitable group of cationic surfactants which can be used in the detergent compositions of the invention are cationic ester surfactants.
- the cationic ester surfactant is a compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
- Preferred cationic ester surfactants are water dispersible.
- Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents Nos. 4228042, 4239660 and 4260529.
- the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
- the atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain.
- spacer groups having, for example, -O-O- (i.e.
- spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2- linkages are included.
- the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
- an alkalinity system is present to provide a detergent composition having a pH of at least 8.0 or at least 8.5 at a concentration of 0.5% by weight detergent composition in aqueous solution.
- the detergent composition may be more sharply alkaline and may have a pH of at least 9.0 or even at least 9.5 or 10.0 in a 0.5% by weight aqueous solution.
- the alkalinity system comprises components capable of providing alkalinity species in solution. Examples of alkalinity species include carbonate, bicarbonate, hydroxide, the various silicate anions, percarbonate, perborates, perphosphates, persulfate and persilicate.
- alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline Jayered silicate, salts and percarbonate, perborates, perphosphates, persulfate and persilicate salts and any mixtures thereof are dissolved in water.
- alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline Jayered silicate, salts and percarbonate, perborates, perphosphates, persulfate and persilicate salts and any mixtures thereof are dissolved in water.
- Examples of carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
- Suitable silicates include the water soluble sodium silicates with an Si ⁇ 2:NA2 ⁇ ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred.
- the silicates may be in the form of either the anhydrous salt or a hydrated salt.
- Sodium silicate with an SiO2:Na2O ratio of 2.0 is the most preferred silicate.
- Preferred crystalline layered silicates for use herein have the general formula
- M is sodium or hydrogen
- x is a number from 1.9 to 4 and y is a number from 0 to 20.
- Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
- x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2.
- the most preferred material is ⁇ -Na2Si2 ⁇ 5, available from Hoechst AG as NaSKS-6.
- the detergent compositions in accordance with the present invention preferably contain a water- soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
- Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
- the carboxylate or polycarboxylate builder can be monomeric or oligo eric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
- Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, digiycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
- Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
- Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
- the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures . thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
- Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
- Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
- the detergent compositions or components thereof, of the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
- Examples of largely water insoluble builders include the sodium aluminosilicates.
- Suitable aluminosilicate zeolites have the unit cell formula Na z [(AlO2) z (SiO2)y]. XH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
- the aluminosilicate materials are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
- the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
- Zeolite X has the formula Nagg [(Al ⁇ 2)86(Si ⁇ 2)i06]- 276 H 2 O.
- zeolite MAP builder Another preferred aluminosilicate zeolite is zeolite MAP builder.
- the zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15% to 40%) by weight of the compositions.
- Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
- zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
- the zeolite MAP detergent builder has a particle size, expressed as a d5Q value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
- the d5Q value indicates that 50% by weight of the particles have a diameter smaller than that figure.
- the particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing d5 ⁇ values are disclosed in EP 384070 A. Heavy metal ion sequestrant
- the detergent compositions or components thereof in accordance with the present invention preferably contain as an optional component a heavy metal ion sequestrant.
- heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium cheiation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
- Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1%) to 10%), more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
- Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
- Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1 , 1 diphosphonate.
- Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
- Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133.
- iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein.
- EP-A-476,257 describes suitable amino based sequestrants.
- EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein.
- EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane- l,2,4-tricarboxylic acid are also suitable.
- Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
- a preferred feature of detergent compositions or component thereof in accordance with the invention is an organic peroxyacid bleaching system.
- the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
- the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
- Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
- a preformed organic peroxyacid is inco ⁇ orated directly into the composition.
- Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
- Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally inco ⁇ orated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
- inorganic perhydrate salts include perborate, percarbonate, pe ⁇ hosphate, persulfate and persilicate salts.
- the inorganic perhydrate salts are normally the alkali metal salts.
- the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
- the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product and/or delayed release of the perhydrate salt on contact of the granular product with water.
- Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
- Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB02H2U2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
- Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein.
- Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3-3H2 ⁇ 2, and is available commercially as a crystalline solid.
- Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
- Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
- peroxyacid bleach precursors may be represented as
- L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
- Peroxyacid bleach precursor compounds are preferably inco ⁇ orated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
- Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
- Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A- 1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1 147871, 2143231 and EP-A-0170386.
- L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
- R is an alkyl, aryl, or alkaryl group containing from 1 to 14
- R is an alkyl chain containing from 1 to 8 carbon atoms
- R is H or R
- R J is an alkenyl chain containing from 1 to 8 carbon atoms
- Y is H or a solubilizing group.
- R , R and R may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups.
- M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
- M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred
- X is a halide, hydroxide, methylsulfate or acetate anion.
- Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
- Preferred precursors of this type provide peracetic acid on perhydrolysis.
- Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N ⁇ N ⁇ tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
- TAED Tetraacetyl ethylene diamine
- alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyI hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
- Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
- R s an alkyl group with from 1 to 14 carbon atoms
- R2 is an alkylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
- Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
- Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
- Suitable O- acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
- Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole.
- Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
- Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
- cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group.
- Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
- the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
- the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
- Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
- Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
- Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
- Benzoxazin organic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP- A-332,294 and EP-A-482,807, particularly those having the formula:
- R. is H, alkyl, alkaryl, aryl, or arylalkyl.
- the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
- a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
- R ⁇ is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
- R is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
- Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
- organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioc acid.
- diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioc acid.
- Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
- compositions of the invention optionally contain a transition metal containing bleach catalyst.
- a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
- ethylenediaminetetraacetic acid ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
- bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include Mn ⁇ 2( u " 0)3( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(PFg)2, MnH ⁇ u-O) i (u-OAc)2( 1 ,4,7-trimethyl- l,4,7-triazacyclononane)2-(Cl ⁇ 4)2, Mn ⁇ 4(u-0)6(l,4,7-triazacyclononane)4-(Cl ⁇ 4)2, MnMlMn I ⁇ 4(u-0) ] (u-OAc)2.(l,4,7-trimethyl-l,4,7-triazacyclononane)2.(Cl ⁇ 4)3, and mixtures thereof.
- ligands suitable for use herein include l,5,9-trimethyl-l,5,9-triazacyclododecane, 2-methyl- 1 ,4,7-triazacyclononane, 2-methyl- l,4,7-triazacyclononane, 1,2,4,7-tetramethy 1- 1,4,7- triazacyclononane, and mixtures thereof.
- bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(l,4,7-trimethyl-l,4,7-triazacyciononane)(OCH3)3.(PF6).
- Still another type of bleach catalyst, as disclosed in U.S. Pat. 5, 1 14,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxyl compound having at least three consecutive C-OH groups.
- binuciear Mn complexed with tetra-N- dentate and bi-N-dentate ligands including ⁇ MnH ⁇ u-O ⁇ Mn'V ⁇ ) "1" and [Bipy2MnIH(u- 0) 2 MniVbipy 2 ]-(ClO 4 )3.
- bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-po ⁇ hyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,71 1,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat.
- compositions of the present invention may comprise one or more additional enzymes.
- Preferred additional enzymatic materials include the commercially available enzymes.
- Said enzymes include enzymes selected from lipases, cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, amylases, xylanases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ⁇ -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.
- a preferred combination of additional enzymes in a detergent composition of the invention includes a mixture of conventional applicable enzymes such as lipase, protease, amylase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes.
- Suitable enzymes are exemplified in US Patents 3,519,570 and 3,533,139.
- Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtilisin BPN and BPN').
- One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo.
- Other suitable proteases include ALCALASE®, DURAZYM® and SAVI ASE® from Novo and MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® (protein engineered Maxacal) from Gist- Brocades.
- Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A” herein.
- Protease C is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274.
- Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
- a preferred protease referred to as "Protease D” is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, + 101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 and in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes
- proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in W091/02792 and their variants described in WO 95/23221.
- protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo.
- Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo.
- a protease having decreased adso ⁇ tion and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble.
- a recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo.
- Other suitable proteases are described in EP 516 200 by Unilever.
- One or a mixture of proteolytic enzymes may be inco ⁇ orated in the detergent compositions of the present invention, generally at a level of from 0.0001% to 2%, preferably from 0.001% to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
- the lipolytic enzyme component is generally present at levels of from 0.00005%) to 2% of active enzyme by weight of the detergent composition, preferably 0.001% to 1% by weight, most preferably from 0.0002%) to 0.05% by weight active enzyme in the detergent composition.
- Suitable lipolytic enzymes for use in the present invention include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034.
- Suitable lipases include those which show a positive immunological cross-section with the antibody of the lipase produced by the microorganism Pseudomonas Hisorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co.
- Amano-P Lipase P
- Other suitable commercial lipases include Amano-CES, upases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Co ⁇ ., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
- lipases such as Ml Lipase ⁇ and Lipomax ⁇ (Gist-Brocades) and Lipolase ⁇ and Lipolase Ultra' Novo) which have found to be very effective when used in combination with the compositions of the present invention.
- lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.
- cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
- the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use in the present invention.
- Another preferred lipase for use in the present invention is D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa. Most preferably the Humicola lanuginosa strain DSM 4106 is used.
- D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 in which the native lipase ex Humicola lanuginosa has the aspartic acid (D) residue at position 96 changed to Leucine (L). According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L.
- D96L the standard LU assay may be used (Analytical method, internal Novo Nordisk number AF 95/6-GB 1991.02.07).
- a substrate for D96L was prepared by emulsifying glycerine tributyrate (Merck) using gum-arabic as emulsifier. Lipase activity is assayed at pH 7 using pH stat. method.
- the detergent compositions of the invention may also contain one or a mixture of more than one amylase enzyme ( ⁇ and/or ⁇ ).
- ⁇ and/or ⁇ amylase enzyme
- WO94/02597 Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which inco ⁇ orate mutant amylases. See also WO95/10603, Novo Nordisk A S, published April 20, 1995.
- Other amylases known for use in cleaning compositions include both ⁇ - and ⁇ -amylases.
- ⁇ -Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no.
- amylases are stability-enhanced amylases described in W094/18314, published August 18, 1994 and WO96/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, W095/26397 and W096/23873 (all by Novo Nordisk).
- ⁇ -amylases examples are Purafect Ox Am® from Genencor and Termamyl®, Ban® ,Fungamyl® and Duramyl®, all available from Novo Nordisk A/S Denmark.
- W095/26397 describes other suitable amylases : ⁇ -amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ - amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other preferred amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382.
- amylolytic enzymes if present are generally inco ⁇ orated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
- the detergent compositions of the invention may additionally inco ⁇ orate one or more cellulase enzymes.
- Suitable cellulases include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit).
- CEVU Cellulose Viscosity Unit
- Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and WO96/02653 which disclose fungal cellulases produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum.
- EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A- 2.095.275; DE-OS-2.247.832 and W095/26398.
- cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
- Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about SOKDa, an isoelectric point of 5.5 and containing 415 amino acids; and a ⁇ 43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91/17243.
- suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94/21801, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also W091/17244 and WO91/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, W096/ 17994 and W095/24471.
- Peroxidase enzymes may also be inco ⁇ orated into the detergent compositions of the invention.
- Peroxidasis are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
- oxygen sources e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
- Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase.
- Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO89/09813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991 and EP No. 96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.
- Preferred enhancers are substituted phenthiazine and phenoxasine 10- Phenothiazinepropionicacid (PPT), 10-ethylphenothiazine-4-carboxylic acid (EPC), 10- phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO 94/12621) and substituted syringates (C3-C5 substituted alkyl syringates) and phenols.
- Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
- Said cellulases and/or peroxidases are normally inco ⁇ orated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
- Said additional enzymes when present, are normally inco ⁇ orated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
- the additional enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc. containing one enzyme ) or as mixtures of two or more enzymes ( e.g. cogranulates )•
- Enzyme Oxidation Scavengers Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
- a range of enzyme materials and means for their inco ⁇ oration into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their inco ⁇ oration into such formulations, are disclosed in U.S. 4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques.
- Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
- Organic polymeric compounds are preferred additional components of the detergent compositions or components thereof of the present invention, and are preferably present as components of any particulate component of the detergent composition where they may act such as to bind the particulate component together.
- organic polymeric compound is meant any polymeric organic compound commonly used as dispersants, anti-redeposition or soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
- Such an organic polymeric compound is generally inco ⁇ orated in the detergent compositions of the invention at a level of from 0.1 % to 30%, preferably from 0.5% to 15%, most preferably from 1%) to 10%) by weight of the compositions.
- organic polymeric compounds include the water soluble organic homo- or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB-A- 1,596,756.
- Examples of such salts are polyacrylic acid or polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
- Polymaleates or polymaleic acid polymers and salts thereof are also suitable examples.
- Polyamino compounds useful herein include those derived from aspartic acid including polyaspartic acid and such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
- Te ⁇ olymers containing monomer units selected from maleic acid, acrylic acid, aspartic acid and vinyl alcohol or acetate, particularly those having an average molecular weight of from 1,000 to 30,000, preferably 3,000 to 10,000, are also suitable for inco ⁇ oration into the compositions of the present invention.
- organic polymeric compounds suitable for inco ⁇ oration in the detergent compositions of the present invention include cellulose derivatives such as methylcellulose, carboxymethylcellulose. hydroxypropylmethylcellulose, ethylhydroxyethylcellulose and hydroxyethylcellulose.
- organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000 to 10000, more particularly 2000 to 8000 and most preferably about 4000.
- the detergent composition or components thereof of the invention may comprise water-soluble cationic ethoxylated amine compounds with particulate soil/clay-soil removal and/or anti- redeposition properties.
- cationic compounds are described in more detail in EP-B- 1 1 1965, US 4659802 and US 4664848.
- Particularly preferred of these cationic compounds are ethoxylated cationic monoamines, diamines or tria ines.
- X is a nonionic group selected from the group consisting of H, C1 -C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof
- a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene)
- b is 2, 1 or 0;
- n is preferably at least 16, with a typical range of from 20 to 35;
- cationic diamines or triamines n is preferably at least about 12 with a typical range of from about 12 to about 42.
- These compounds where present in the composition are generally present in an amount of from 0.01 to 30% by weight, preferably 0.05 to 10% by weight.
- the detergent compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to
- Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-aIkyl alcanol antifoam compounds.
- antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
- Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
- silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
- Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
- Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
- the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
- high molecular weight fatty esters e.g. fatty acid triglycerides
- fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
- a preferred suds suppressing system comprises
- antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
- silica at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound
- silica/silicone antifoam compound is inco ⁇ orated at a level of from 5% to 50%, preferably 10% to 40% by weight;
- a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight;
- a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Corning under the tradename DC0544;
- an inert carrier fluid compound most preferably comprising a C ⁇ g-C ⁇ g ethoxylated alcohol with a degree of ethoxy lation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
- a highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms.
- EP-A- 0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
- the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
- the detergent compositions herein may also comprise from 0.01% to 10 %, preferably from
- the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers or combinations thereof, whereby these polymers can be cross-linked polymers.
- Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
- A is - C -N - , -N -C - , CO, C, - O - , — S - , -N - ;
- x is 0 or l;
- R! is H or C ⁇ . linear or branched alkyl; or may form a heterocyclic group with R;
- R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-0 group is part of these groups.
- the N-O group can be represented by the following general structures : O
- Rl, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
- the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
- Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
- R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
- One class of said polyamine N-oxides comprises the group of polyamine N- oxides wherein the nitrogen of the N-O group forms part of the R-group.
- Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, N-substituted pyrrole, imidazole, N-substituted pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
- polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
- a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
- R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
- R is a heterocyclic compound such as pyridine, N-substituted pyrrole, imidazole and derivatives thereof.
- the polyamine N-oxides can be obtained in almost any degree of polymerisation.
- the degree of polymerisation is not critical provided the material has the desired water-solubility and dye- suspending power.
- the average molecular weight is within the range of 500 to 1000,000.
- Suitable herein are copolymers of N-vinylimidazole and N-vinylpyrrolidone having a preferred average molecular weight range of from 5,000 to 100,000, or 5,000 to 50,000.
- the preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2.
- the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
- PVP polyvinylpyrrolidone
- Suitable polyvinylpyrrolidones are commercially available from ISP Co ⁇ oration, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
- PVP K-15 is also available from ISP Co ⁇ oration.
- Other suitable polyvinylpyrrolidones which are commercially available from BASF Co ⁇ oration include Sokalan HP 165 and Sokalan HP 12.
- the detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents.
- Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
- the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
- Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
- the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
- Hydrophilic optical brighteners useful herein include those having the structural formula:
- R] is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, mo ⁇ hilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
- Rj is anilino
- R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
- the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]- 2,2'-stilbenedisulfonic acid and disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Co ⁇ oration. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
- the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba- Geigy Co ⁇ oration.
- R] is anilino
- R2 is mo ⁇ hilino
- M is a cation such as sodium
- the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
- SRA polymeric soil release agents
- compositions typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
- Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
- Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being
- Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric or polymeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
- ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1,2-propylene glycol (“PG”) in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water.
- DMT dimethyl terephthalate
- PG 1,2-propylene glycol
- SRA's include the nonionic end-capped 1,2- propylene/polyoxyethylene terephthalate polyesters of U.S.
- Gosselink et al. for example those produced by transesterification oligomerization of poly- (ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG").
- SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG”), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
- Gosselink for example produced from DMT, methyl (Me)-capped PEG and EG and or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
- SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S.
- methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution.
- Such materials are available as METOLOSE SMI 00 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
- Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S.
- compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
- compositions in accordance with the invention can take a variety of physical forms including granular, tablet, flake, pastille and bar and liquid forms.
- Liquids may be aqueous or non-aqueous and may be in the form of a gel.
- the compositions may be pre-treatment compositions or may be conventional washing detergents.
- the compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
- Such granular detergent compositions or components thereof in accordance with the present invention can be made via a variety of methods, including spray-drying, dry-mixing, extrusion, agglomerating and granulation.
- the cationic quaternised surfactant can be added to the other detergent components by mixing, agglomeration (preferably combined with a carrier material), granulation or as a spray-dried component.
- compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
- the mean particle size of the components of granular compositions in accordance with the invention should preferably be such that no more than 15% of the particles are greater than 1.8mm in diameter and not more than 15% of the particles are less than 0.25mm in diameter.
- the mean particle size is such that from 10% to 50% of the particles has a particle size of from 0.2mm to 0.7mm in diameter.
- mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of sieves, preferably Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
- At last 80%, preferably at least 90%) by weight of the composition comprises particles of mean particle size at least 0.8 mm, more preferably at least 1.0 mm and most preferably from 1.0, or 1.5 to 2.5 mm. Most preferably at least 95% of the particles will have such a mean particle size.
- Such particles are preferably prepared by an extrusion process.
- the bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 400, preferably at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre.
- Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel.
- the funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base.
- the cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
- the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup.
- the filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge.
- the filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
- Compacted solids may be manufactured using any suitable compacting process, such as tabletting, briquetting or extrusion, preferably tabletting.
- tablets for use in dish washing processes are manufactured using a standard rotary tabletting press using compression forces of from 5 to 13 KN/cm2, more preferably from 5 to 1 lKN/cm2 so that the compacted solid has a minimum hardness of 176N to 275N, preferably from 195N to 245N, measured by a C100 hardness test as supplied by I. Holland instruments.
- This process may be used to prepare homogeneous or layered tablets of any size or shape.
- Preferably tablets are symmetrical to ensure the uniform dissolution of the tablet in the wash solution.
- Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
- an effective amount of the detergent composition it is meant from lOg to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods. Dosage is dependent upon the particular conditions such as water hardness and degree of soiling of the soiled laundry.
- the detergent composition may be dispensed for example, from the drawer dispenser of a washing machine or may be sprinkled over the soiled laundry placed in the machine.
- a dispensing device is employed in the washing method.
- the dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
- the dispensing device containing the detergent product is placed inside the drum before the commencement of the wash, before, simultaneously with or after the washing machine has been loaded with laundry.
- water is introduced into the drum and the drum periodically rotates.
- the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
- the device may possess a number of openings through which the product may pass.
- the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
- the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
- Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
- Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A- 0288346.
- An article by J. Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette”.
- Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent Application No. W094/1 1562.
- Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
- the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
- the support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
- the dispensing device may be a flexible container, such as a bag or pouch.
- the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
- it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 001 1500, 0011501, 0011502, and 0011968.
- a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
- Machine dishwashing method Any suitable methods for machine dishwashing or cleaning soiled tableware, particularly soiled silverware are envisaged.
- a preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention.
- an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
- R2 C j 1 linear alkyl
- Soap Sodium linear alkyl carboxylate derived from an
- TFAA C 1 g-C 18 alkyl N-methyl glucamide
- Citric acid Anhydrous citric acid
- Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
- Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425 ⁇ m and 850 ⁇ m
- MA/AA Copolymer of 1 :4 maleic/acrylic acid, average molecular weight about 70,000
- Cellulose ether Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals
- Protease Proteolytic enzyme of activity 4KNPU/g sold by
- Alcalase Proteolytic enzyme of activity 3AU/g sold by
- Cellulase Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the tradename Carezyme
- Amylase Amylolytic enzyme of activity 120KNU/g sold by
- Termamyl 120T Lipase Lipolytic enzyme of activity lOOKLU/g sold by NOVO Industries A/S under the tradename Lipolase Endolase : Endoglucanase enzyme of activity 3000 CEVU/g sold by NOVO Industries A/S PB4 : Sodium perborate tetrahydrate of nominal formula
- Mn catalyst Mn IV 2(m-0)3(l,4,7-trimethyI- 1,4,7- triazacyclononane)2(PFg)2, as described in U.S. Pat. Nos. 5,246,621 and 5,244,594.
- DTPA Diethylene triamine pentaacetic acid
- DTPMP Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename Dequest 2060 Photoactivated bleach Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyry)biphenyl
- Brightener 2 Disodium 4,4'-bis(4-anilino-6-mo ⁇ holino- 1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP 1,1-hydroxyethane diphosphonic acid
- PEO Polyethylene oxide, with a molecular weight of 50,000
- PVNO Polyvinylpyridine N-oxide PVPVI Copolymer of polyvinylpyrolidone and vinyl imidazole
- SR 1 Sulfobenzoyl and capped esters with oxyethylene oxy and terephtaloyl backbone
- Formulation N is particularly suitable for usage under Japanese machine wash conditions.
- Formulations O to S are particularly suitable for use under US machine wash conditions.
- Example 5 The following granular detergent formulations are examples of the present invention.
- Formulations W and X are of particular utility under US machine wash conditions.
- Y is of particular utility under Japanese machine wash conditions
- laundry bar detergent compositions are examples of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9621799A GB2318363A (en) | 1996-10-18 | 1996-10-18 | Detergent compositions |
GB9621799 | 1996-10-18 | ||
GB9621791A GB2318362A (en) | 1996-10-18 | 1996-10-18 | Detergent compositions |
GB9621791 | 1996-10-18 | ||
GB9705801 | 1997-03-20 | ||
GB9705801A GB2323375A (en) | 1997-03-20 | 1997-03-20 | Detergent compositions |
PCT/US1997/017749 WO1998017777A1 (en) | 1996-10-18 | 1997-10-02 | Detergent compositions |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0934397A1 true EP0934397A1 (en) | 1999-08-11 |
EP0934397A4 EP0934397A4 (en) | 2000-02-23 |
EP0934397B1 EP0934397B1 (en) | 2004-05-06 |
Family
ID=27268540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97909927A Expired - Lifetime EP0934397B1 (en) | 1996-10-18 | 1997-10-02 | Detergent compositions |
Country Status (13)
Country | Link |
---|---|
EP (1) | EP0934397B1 (en) |
JP (1) | JP3739409B2 (en) |
CN (1) | CN1203165C (en) |
AR (1) | AR010518A1 (en) |
AT (1) | ATE266080T1 (en) |
BR (1) | BR9712536A (en) |
CA (1) | CA2268651C (en) |
DE (1) | DE69728990T2 (en) |
ES (1) | ES2221042T3 (en) |
IN (1) | IN215028B (en) |
MX (1) | MX206679B (en) |
PH (1) | PH11997058121B1 (en) |
WO (1) | WO1998017777A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60024233T2 (en) * | 2000-05-16 | 2006-07-20 | Clariant International Limited | Use of cationic compounds |
JP5225543B2 (en) * | 2005-06-29 | 2013-07-03 | 株式会社Adeka | Detergent composition for automatic dishwasher |
GB201103974D0 (en) * | 2011-03-09 | 2011-04-20 | Reckitt Benckiser Nv | Composition |
CN104818156B (en) * | 2015-04-10 | 2018-08-07 | 广州立白企业集团有限公司 | A kind of tableware immersion compound powder improving low temperature greasy dirt cleaning effect |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235759A (en) * | 1978-06-07 | 1980-11-25 | The Lion Fat & Oil Co., Ltd. | Liquid detergent compositions |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
US5466394A (en) * | 1994-04-25 | 1995-11-14 | The Procter & Gamble Co. | Stable, aqueous laundry detergent composition having improved softening properties |
US5622925A (en) * | 1994-04-25 | 1997-04-22 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
WO1997019155A1 (en) * | 1995-11-17 | 1997-05-29 | The Procter & Gamble Company | Laundry detergent compositions containing lipolytic enzyme and selected quaternary ammonium compounds |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3591510A (en) * | 1968-09-30 | 1971-07-06 | Procter & Gamble | Liquid hard surface cleaning compositions |
US3591509A (en) * | 1968-09-30 | 1971-07-06 | Procter & Gamble | Liquid hard surface cleaning compositions |
JPS609557B2 (en) * | 1978-10-13 | 1985-03-11 | ライオン油脂株式会社 | Novel liquid cleaning composition |
US4372869A (en) * | 1981-05-15 | 1983-02-08 | Johnson & Johnson Baby Products Company | Detergent compositions |
US4806260A (en) * | 1986-02-21 | 1989-02-21 | Colgate-Palmolive Company | Built nonaqueous liquid nonionic laundry detergent composition containing acid terminated nonionic surfactant and quarternary ammonium softener and method of use |
EP0495258A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and softening clays |
US5409705A (en) * | 1991-05-20 | 1995-04-25 | Kao Corporation | Phosphobetaine and detergent and cosmetic containing the same |
WO1993016158A1 (en) * | 1992-02-18 | 1993-08-19 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
JPH06108094A (en) * | 1992-06-25 | 1994-04-19 | Daicel Chem Ind Ltd | Liquid cleaner |
-
1997
- 1997-10-02 BR BR9712536-9A patent/BR9712536A/en not_active IP Right Cessation
- 1997-10-02 AT AT97909927T patent/ATE266080T1/en not_active IP Right Cessation
- 1997-10-02 DE DE69728990T patent/DE69728990T2/en not_active Expired - Fee Related
- 1997-10-02 WO PCT/US1997/017749 patent/WO1998017777A1/en active IP Right Grant
- 1997-10-02 CA CA002268651A patent/CA2268651C/en not_active Expired - Fee Related
- 1997-10-02 JP JP51938898A patent/JP3739409B2/en not_active Expired - Fee Related
- 1997-10-02 CN CNB971806314A patent/CN1203165C/en not_active Expired - Fee Related
- 1997-10-02 EP EP97909927A patent/EP0934397B1/en not_active Expired - Lifetime
- 1997-10-02 ES ES97909927T patent/ES2221042T3/en not_active Expired - Lifetime
- 1997-10-06 PH PH58121A patent/PH11997058121B1/en unknown
- 1997-10-06 IN IN2847DE1997 patent/IN215028B/en unknown
- 1997-10-17 AR ARP970104793A patent/AR010518A1/en unknown
-
1999
- 1999-04-19 MX MX9903687A patent/MX206679B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235759A (en) * | 1978-06-07 | 1980-11-25 | The Lion Fat & Oil Co., Ltd. | Liquid detergent compositions |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
US5466394A (en) * | 1994-04-25 | 1995-11-14 | The Procter & Gamble Co. | Stable, aqueous laundry detergent composition having improved softening properties |
US5622925A (en) * | 1994-04-25 | 1997-04-22 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
WO1997019155A1 (en) * | 1995-11-17 | 1997-05-29 | The Procter & Gamble Company | Laundry detergent compositions containing lipolytic enzyme and selected quaternary ammonium compounds |
Non-Patent Citations (1)
Title |
---|
See also references of WO9817777A1 * |
Also Published As
Publication number | Publication date |
---|---|
MX9903687A (en) | 1999-09-30 |
WO1998017777A1 (en) | 1998-04-30 |
CA2268651C (en) | 2004-02-24 |
IN1997DE02847A (en) | 2005-12-23 |
JP2000504066A (en) | 2000-04-04 |
CA2268651A1 (en) | 1998-04-30 |
PH11997058121B1 (en) | 2003-08-05 |
ATE266080T1 (en) | 2004-05-15 |
JP3739409B2 (en) | 2006-01-25 |
EP0934397A4 (en) | 2000-02-23 |
DE69728990D1 (en) | 2004-06-09 |
AR010518A1 (en) | 2000-06-28 |
MX206679B (en) | 2002-02-11 |
IN215028B (en) | 2008-03-07 |
DE69728990T2 (en) | 2005-04-07 |
ES2221042T3 (en) | 2004-12-16 |
CN1240473A (en) | 2000-01-05 |
BR9712536A (en) | 2002-01-15 |
EP0934397B1 (en) | 2004-05-06 |
CN1203165C (en) | 2005-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0934389B1 (en) | Detergent compositions | |
US6103685A (en) | Detergent compositions | |
WO1998035002A1 (en) | Cleaning compositions | |
US6127329A (en) | Detergent compositions | |
EP0934378B1 (en) | Detergent compositions comprising a mixture of cationic, anionic and nonionic surfactants | |
EP0970169B1 (en) | Detergent compositions comprising a mixture of quaternary ammonium cationic surfactant and alkyl sulfate anionic surfactant | |
US6087314A (en) | Detergent composition with low-odor cationic surfactant | |
WO1998017769A1 (en) | Detergent compositions | |
EP0934397B1 (en) | Detergent compositions | |
GB2323371A (en) | Detergent compositions | |
WO1998017751A1 (en) | Detergent compositions | |
EP0934391B1 (en) | Detergent composition comprising lipase enzyme and cationic surfactant | |
EP0934377A1 (en) | Detergent compositions | |
GB2323385A (en) | Detergent compositions | |
EP0934388A1 (en) | Detergent compositions | |
WO1998017753A1 (en) | Detergent compositions containing alkyl polysaccharide and cationic surfactants | |
GB2323382A (en) | Detergent compositions | |
GB2323375A (en) | Detergent compositions | |
WO1998017752A1 (en) | Detergent compositions | |
GB2323376A (en) | Detergent compositions | |
GB2323373A (en) | Detergent compositions | |
GB2323370A (en) | Detergent compositions | |
GB2323378A (en) | Detergent compositions | |
GB2323381A (en) | Detergent compositions | |
GB2323379A (en) | Detergent compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20000111 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7C 11D 1/62 A, 7C 11D 1/65 B, 7C 11D 1/86 B, 7C 11D 1/14 - |
|
17Q | First examination report despatched |
Effective date: 20021216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040506 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040506 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040506 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040506 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040506 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69728990 Country of ref document: DE Date of ref document: 20040609 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040806 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040806 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2221042 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050208 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060921 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20061024 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061031 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20071031 Year of fee payment: 11 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061003 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20071003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071031 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071002 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140925 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151002 |