FR3018808A1 - INSTALLATION FOR THE PRODUCTION OF EXPLOSIVES BY MIXING WITH A GASIFICATION REAGENT - Google Patents
INSTALLATION FOR THE PRODUCTION OF EXPLOSIVES BY MIXING WITH A GASIFICATION REAGENT Download PDFInfo
- Publication number
- FR3018808A1 FR3018808A1 FR1452356A FR1452356A FR3018808A1 FR 3018808 A1 FR3018808 A1 FR 3018808A1 FR 1452356 A FR1452356 A FR 1452356A FR 1452356 A FR1452356 A FR 1452356A FR 3018808 A1 FR3018808 A1 FR 3018808A1
- Authority
- FR
- France
- Prior art keywords
- pipe
- matrix
- upstream
- explosive
- mixer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003153 chemical reaction reagent Substances 0.000 title claims abstract description 113
- 239000002360 explosive Substances 0.000 title claims abstract description 113
- 238000002309 gasification Methods 0.000 title claims abstract description 109
- 238000002156 mixing Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000009434 installation Methods 0.000 title claims description 29
- 239000011159 matrix material Substances 0.000 claims abstract description 105
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 73
- 238000012546 transfer Methods 0.000 claims abstract description 48
- 239000000839 emulsion Substances 0.000 claims abstract description 38
- 230000003068 static effect Effects 0.000 claims abstract description 29
- 238000011065 in-situ storage Methods 0.000 claims abstract description 6
- 239000000047 product Substances 0.000 claims description 118
- 238000000034 method Methods 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 25
- 238000004804 winding Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000011049 filling Methods 0.000 claims description 11
- 239000003921 oil Substances 0.000 claims description 9
- 238000004880 explosion Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 6
- 239000002480 mineral oil Substances 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 239000012071 phase Substances 0.000 claims description 6
- 239000008346 aqueous phase Substances 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 239000012263 liquid product Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 239000007800 oxidant agent Substances 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000011435 rock Substances 0.000 description 8
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 8
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 235000010288 sodium nitrite Nutrition 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010705 motor oil Substances 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 239000004280 Sodium formate Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
- C06B23/002—Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
- C06B23/004—Chemical sensitisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/34—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
- B65H75/38—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
- B65H75/40—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable
- B65H75/42—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles
- B65H75/425—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles attached to, or forming part of a vehicle, e.g. truck, trailer, vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/34—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
- B65H75/38—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
- B65H75/44—Constructional details
- B65H75/4457—Arrangements of the frame or housing
- B65H75/446—Arrangements of the frame or housing for releasably or permanently attaching the frame to a wall, on a floor or on a post or the like
- B65H75/4463—Swivelling attachment
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B47/00—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
- C06B47/14—Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
- C06B47/145—Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D1/00—Blasting methods or apparatus, e.g. loading or tamping
- F42D1/08—Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
- F42D1/10—Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/33—Hollow or hose-like material
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Accessories For Mixers (AREA)
Abstract
La présente invention concerne une installation de production in situ de produit explosif (10) par mélange (a) d'une matrice à base d'émulsion et d'un réactif de gazéification, comprenant au moins un premier réservoir (1-1) contenant la dite matrice, et un deuxième réservoir (1-2) contenant ledit réactif de gazéification, et un premier tuyau (61) au moins en partie flexible coopérant avec une première pompe (2-1) et une première vanne (V1), apte à transférer la dite matrice séparément jusqu'à un premier mélangeur, de préférence un premier mélangeur statique (7), et - un deuxième circuit (lb) de transfert de dit réactif de gazéification comprenant au moins un deuxième tuyau (62) au moins en partie flexible coopérant avec une deuxième pompe (2-2) et une deuxième vanne (V2), apte à transférer le dit réactif de gazéification séparément jusqu'au dit premier mélangeur (7), caractérisé en ce que le dit deuxième tuyau(62) est disposé entièrement à l'intérieur du premier tuyau (61) formant un ensemble (6) de tuyaux coaxiaux, ledit premier dispositif de mélange étant disposé à l'intérieur du premier tuyau à son extrémité avale (61f), ledit deuxième tuyau se terminant juste en amont dudit premier mélangeur.The present invention relates to an in situ production facility for explosive product (10) by mixing (a) an emulsion-based matrix and a gasification reagent, comprising at least a first reservoir (1-1) containing said matrix, and a second reservoir (1-2) containing said gasification reagent, and a first hose (61) at least partially flexible cooperating with a first pump (2-1) and a first valve (V1), suitable transferring said matrix separately to a first mixer, preferably a first static mixer (7), and - a second transfer circuit (1b) of said gasification reagent comprising at least a second pipe (62) at least one flexible part cooperating with a second pump (2-2) and a second valve (V2), able to transfer said gasification reagent separately to said first mixer (7), characterized in that said second pipe (62) is disposed entirely at the i an interior of the first pipe (61) forming an assembly (6) of coaxial pipes, said first mixing device being disposed inside the first pipe at its downstream end (61f), said second pipe terminating just upstream of said first mixer .
Description
INSTALLATION DE PRODUCTION D'EXPLOSIF PAR MELANGE AVEC UN REACTIF DE GAZEIFICATION La présente invention concerne le domaine de la préparation et mise en oeuvre des produits explosifs notamment des émulsions explosives utilisées dans l'industrie d'extraction de matière première et minière. Ces produits sont systématiquement constitués à partir d'une émulsion de base dite inverse ou « eau dans huile » aussi appelée « matrice » obtenue par un mélange de : - une phase continue organique, constituée mélange de divers combustibles tel que huiles minérales, gasoil, et - une phase aqueuse discontinue constituée de divers sels comburants en solution aqueuse. Les matières premières comburantes les plus fréquemment utilisées dans cette industrie sont : le nitrate d'ammonium, le nitrate de sodium, le nitrate de calcium. En ce qui concerne les combustibles il s'agit du gasoil soit pur soit en mélange avec des huiles minérales neuves ou usagées, notamment d'huile moteur recyclée. Pour conférer à ce mélange des caractéristiques de détonation améliorée, il faut, de manière connue, disperser en son sein de manière homogène des « porosités ». A ce jour, la méthode majoritairement employée dans l'industrie pour la sensibilisation des émulsions vrac ou en cartouches est la gazéification par voie chimique. Cela consiste à générer chimiquement et de manière la plus homogène possible des bulles de gaz dans le milieu. Les « porosités » ainsi obtenues vont former des points chauds, initiateurs de la détonation et ainsi contribuer à entretenir la propagation d'une onde de choc issue du système d'amorçage.The present invention relates to the field of the preparation and use of explosive products including explosive emulsions used in the extraction of raw material and mining industry. These products are systematically constituted from a so-called inverse base emulsion or "water in oil" also called "matrix" obtained by a mixture of: - an organic continuous phase, constituted mixture of various fuels such as mineral oils, gas oil, and a discontinuous aqueous phase consisting of various oxidizing salts in aqueous solution. The most frequently used oxidizing raw materials in this industry are: ammonium nitrate, sodium nitrate, calcium nitrate. With regard to fuels, it is gas oil that is either pure or mixed with new or used mineral oils, especially recycled motor oil. To give this mixture improved detonation characteristics, it is necessary, in known manner, to disperse homogeneously "porosities" within it. To date, the method mainly used in the industry for the sensitization of bulk or cartridge emulsions is chemical gasification. This consists in generating as chemically and as homogeneously as possible gas bubbles in the medium. The "porosities" thus obtained will form hot spots, initiators of the detonation and thus help maintain the propagation of a shock wave from the priming system.
Il existe d'autres moyens, bien connu pour créer ces « porosités » dans l'émulsion. On peut notamment disperser des corps creux de petite taille, comprise entre quelques dizaines et quelques centaines de microns. On peut citer parmi ceux-là les microbilles de verre, les billes de polymères thermoplastiques ou de polystyrène expansées. La présente invention concerne la fabrication de charges explosives à partir d'une émulsion ou matrice que l'on sensibilise par mélange avec des réactifs qui réagissent avec l'émulsion et génèrent une gazéification par voie chimique.There are other ways, well known to create these "porosities" in the emulsion. In particular, small hollow bodies ranging from a few tens to a few hundred microns can be dispersed. Among these, there may be mentioned glass microbeads, thermoplastic polymer beads or expanded polystyrene beads. The present invention relates to the manufacture of explosive charges from an emulsion or matrix that is sensitized by mixing with reagents that react with the emulsion and generate a chemical gasification.
Plus particulièrement, mais de manière non limitative, pour réagir avec de l'ammonium de la dite matrice émulsion (ci-après M), on met en oeuvre un réactif de gazéification (ci-après R) à base de nitrite de sodium ou équivalent en présence d'un catalyseur tel qu'un acide, notamment de l'acide acétique de la réaction chimique suivante : _1e NH4 + + NO2- -^ N2 + 2 H20 Cette réaction chimique génère de l'azote gazeux qui conduit à une diminution de la densité finale du produit de mélange obtenu. Généralement on passe d'une densité initiale di de la matrice M di=1 à 2 que l'on diminue à une valeur dj= 0.5 à 1.5 en fonction de la proportion de réactif R/M, typiquement di=1.4 et dj= 1.2 à 0.9. Dans la suite du texte on entend ici par matrice ou émulsion, l'émulsion elle-même complétée par un composant catalyseur et de préférence aussi de l'eau pour servir de lubrifiant faciliter le déplacement de l'émulsion visqueuse au sein de la conduite de chargement. En effet, la présente invention concerne plus particulièrement la mise en oeuvre de ces produits au sein d'un trou dans lequel on place une charge d'amorçage et un fil de détonateur et dans lequel les produits explosifs (mélange émulsion + réactif de gazéification) sont transférés à l'aide d'une conduite flexible de chargement.More particularly, but without limitation, to react with ammonium of said emulsion matrix (hereinafter M), a gasification reagent (hereinafter R) based on sodium nitrite or equivalent is used. in the presence of a catalyst such as an acid, especially acetic acid, of the following chemical reaction: NH 4 + + NO 2 - → N 2 + 2 H 2 O This chemical reaction generates nitrogen gas which leads to a reduction the final density of the mixture product obtained. Generally, we go from an initial density di of the matrix M di = 1 to 2 that we decrease to a value dj = 0.5 to 1.5 depending on the proportion of reagent R / M, typically di = 1.4 and dj = 1.2 at 0.9. In the rest of the text herein is understood to mean a matrix or emulsion, the emulsion itself supplemented with a catalyst component and preferably also water to serve as a lubricant to facilitate the displacement of the viscous emulsion within the pipeline. loading. Indeed, the present invention relates more particularly to the use of these products in a hole in which a priming charge and a detonator wire are placed and in which the explosive products (emulsion mixture + gasification reagent) are transferred using a flexible hose.
Dans EP338707, on décrit une installation dans laquelle on mélange les deux composants émulsion et réactif de gazéification au niveau d'une sorte de lance rigide ou pistolet que l'on introduit en petites quantités dans un trou. Il ne s'agit pas d'une installation dans laquelle les produits sont stockés à distance en plus grandes quantités dans un camion et transférées à l'aide de tuyau(x) déroulé(s) depuis un enrouleur jusqu'à un trou de charge. Ce type d'installation ne peut être utilisé que pour charger des trous de petits diamètres (inferieurs à 50mm) comme il est insisté à plusieurs reprises dans ce document.EP338707 describes an installation in which the two emulsion and gasification reagent components are mixed at a sort of rigid lance or gun which is introduced in small quantities into a hole. It is not an installation in which products are remotely stored in larger quantities in a truck and transferred using pipe (s) unwound (s) from a reel to a load hole . This type of installation can only be used to load holes of small diameter (less than 50mm) as it is insisted several times in this document.
Cette installation ne convient donc pas pour charger des trous avec des produits stockés à distance dans un camion et transférées au trou de charge à l'aide d'un tuyau déroulé depuis un enrouleur. En outre, les deux composants (émulsion et réactif de gazéification) sont introduits avec une pompe à deux corps et deux pistons laquelle ne permet pas de faire varier la proportion relative de deux composants dans le mélange en cours de remplissage du trou. La présente invention concerne plus particulièrement un procédé dans lequel on réalise le mélange de l'émulsion et des réactifs de porosité sur le site de mise en oeuvre de l'explosif et plus particulièrement dans un trou, notamment un trou de mine, que l'on alimente en charge explosive à l'aide d'une conduite de transfert depuis une installation où est fabriqué et/ou stockés la matrice émulsion à distance du trou. Typiquement le trou présente une profondeur de 5 à 30m et un diamètre de 5 à 50 cm.This installation is therefore not suitable for loading holes with products stored remotely in a truck and transferred to the charging hole using a pipe unrolled from a reel. In addition, the two components (emulsion and gasification reagent) are introduced with a pump with two bodies and two pistons which does not allow to vary the relative proportion of two components in the mixture during filling of the hole. The present invention relates more particularly to a process in which mixing of the emulsion and porosity reactants is carried out at the site of use of the explosive and more particularly in a hole, in particular a borehole, which the an explosive charge is supplied by means of a transfer line from an installation where the emulsion matrix is made and / or stored at a distance from the hole. Typically the hole has a depth of 5 to 30m and a diameter of 5 to 50 cm.
La matière première de base, la matrice émulsion, peut être produite sur site par une usine modulaire telle que décrite dans PCT/FR2014/050032 ou par l'intermédiaire d'installation mobile dénommée UMFE (Unité Mobile de Fabrication d'Explosif) donc des camions transportant des matériels utiles pour la fabrication qui se rendent sur le site d'utilisation (mines, carrières ou chantier de Travaux Publics) pour la production d'explosif.The basic raw material, the emulsion matrix, can be produced on site by a modular plant as described in PCT / FR2014 / 050032 or by mobile installation called UMFE (Mobile Explosive Manufacturing Unit) therefore trucks carrying materials useful for manufacturing that go to the site of use (mines, quarries or construction site) for the production of explosives.
Le transfert et le mélange des 2 composants, émulsion d'une part et réactif de gazéification d'autre part pose un certain nombre de difficultés suivantes. Habituellement, les réactifs et catalyseur sont introduits ensemble et mélangés avec la matrice émulsion dans un mélangeur statique en amont de la conduite de chargement dont l'extrémité avale est introduite dans le trou de mines pour y transférer par pompage le produit explosif. La raison en est qu'il est ainsi possible de véhiculer le mélange dans une seule conduite que l'on déroule à partir d'un tambour d'enroulement à son extrémité amont situé à distance du trou typiquement de 30 à 100 m. D'autre part , on évite ainsi de placer à l'intérieur du trou des pièces métalliques tel que le mélangeur statique lequel par l'encombrement qu'il génère, gênerait ou rendrait plus difficile les manipulations dans le trou et surtout pour éviter des chocs avec le massif rocheux de ma paroi du trou pouvant provoquer des étincelles à proximité de la charge d'amorçage et/ou pouvant au contact du fil de détonateur endommagé celui-ci. Dans US 5 524 523, on décrit une installation de transfert des composants jusque dans le trou avec un conduit 12 contenant 3 tuyaux disposés côte à côte, parallèlement, un premier le tuyau 16 d'alimentation en en émulsion de base déjà en mélange avec un réactif de gazéification dénommé « gassing solution » , les autres tuyaux servant à apporter d'autres additifs comme des produits dits de bourrage (« stemming »). Dans US 5 524 523, émulsion et réactif de gazéification sont donc transférés déjà en mélange (non séparément) dans le même conduit 16 avant d'être introduits dans un mélangeur statique situé en sortie à l'extrémité avale du conduit 20 au sein duquel le mélange et la réaction des deux composants est achevée. Cette introduction des deux composants ensemble (émulsion et 30 réactif de gazéification) en amont d'une même conduite présente cependant plusieurs inconvénients. La gazéification commence après l'introduction du réactif de gazéification et le mélange commence à être explosif à partir de l'introduction du réactif de gazéification donc dans la conduite de transfert ce qui crée des contraintes de montée en pression dans la conduite et des risques au regard de la sécurité car la conduite est remplie d'explosif. En outre, on ne peut pas faire varier la densité en temps réel en cours de remplissage du trou, car il y a une quantité relativement importante et indéterminable de façon fiable de produit contenue dans la conduite à prendre en compte. Et, de ce fait, si on veut faire varier la densité en temps réel du produit final arrivant dans le trou, en fonction de la puissance de l'explosion à produire, comme c'est le cas en pratique, il y a une quantité incertaine de réactif contenue dans la conduite difficile à estimer. Il n'est donc pas possible de contrôler la valeur de la densité du produit arrivant dans le trou à partir de la composition introduite du fait de la diminution de la densité dans la conduite.The transfer and mixing of the 2 components, emulsion on the one hand and gasification reagent on the other hand poses a number of difficulties. Usually, the reactants and catalyst are introduced together and mixed with the emulsion matrix in a static mixer upstream of the loading line, the downstream end of which is introduced into the borehole to pump the explosive product therein. The reason is that it is thus possible to convey the mixture in a single pipe that is unwound from a winding drum at its upstream end located at a distance from the hole typically 30 to 100 m. On the other hand, it avoids placing inside the hole metal parts such as the static mixer which by the size it generates, interfere or make it more difficult handling in the hole and especially to avoid shocks with the rock mass of my wall of the hole being able to cause sparks near the charge of priming and / or being in contact with the detonator wire damaged this one. In US Pat. No. 5,524,523, a component transfer installation is described in the hole with a pipe 12 containing 3 pipes arranged side by side, in parallel with a first one, the base emulsion feed pipe 16 already mixed with a pipe. gasification reagent called "gassing solution", the other pipes used to provide other additives such as stuffing products ("stemming"). In US Pat. No. 5,524,523, the emulsion and the gasification reagent are therefore already mixed (not separately) in the same duct 16 before being introduced into a static mixer located at the outlet end of the duct 20 in which the mixing and the reaction of the two components is complete. This introduction of the two components together (emulsion and gasification reagent) upstream of the same pipe, however, has several disadvantages. The gasification begins after the introduction of the gasification reagent and the mixture starts to be explosive from the introduction of the gasification reagent therefore in the transfer pipe which creates pressure increase constraints in the pipe and risks to look for safety because the pipe is filled with explosive. In addition, one can not vary the density in real time during filling of the hole, because there is a relatively large and reliably indeterminable product contained in the pipe to be taken into account. And, therefore, if we want to vary the density in real time of the final product arriving in the hole, depending on the power of the explosion to produce, as is the case in practice, there is a quantity unreliable reagent contained in the conduct difficult to estimate. It is therefore not possible to control the value of the density of the product arriving in the hole from the composition introduced due to the decrease in the density in the pipe.
Dans WO/2008 039823, on décrit une installation dans laquelle on transfère les deux composants dans deux tuyaux séparés avec un tuyau externe hélicoïdal entourant le tuyau central principal de plus grand diamètre. L'extrémité avale du petit tuyau traverse la paroi et rejoint l'intérieur du plus grand tuyau de manière à ce que leurs extrémités avales coaxiales débouche dans une même buse. Ainsi on peut mélanger les deux composants le plus proche possible du trou dans une buse externe de mélange. Mais, ce mode de réalisation présente les inconvénients suivants. Tout d'abord, ce tuyau complexe à composante hélicoïdale est relativement couteux et fragile. En effet, en particulier, le tuyau externe contenant le produit le plus dangereux à savoir le réactif de gazéification est exposé en partie externe du tuyau laquelle subit fatigue et usure du fait de frottements contre les parois du trou, lors de son enroulement et déroulement et manipulation dans le trou. D'autre part, en pratique, on est amené à raccourcir régulièrement l'extrémité avale du tuyau laquelle se dégrade du fait frottements dans le trou lors des mises en place et retrait notamment par enroulement depuis un tambour d'enroulement à son extrémité amont. Or, l'arrivée du tuyau de transfert de réactif R à l'intérieur du tuyau d'amenée de la matrice M est incompatible avec le raccourcissement du tuyau à cette position. D'autre part encore, le réactif de gazéification doit être véhiculé sur un trajet hélicoïdal et donc sur une plus longue distance de tuyau que le tuyau central rectiligne de l'émulsion du fait de la disposition hélicoïdale du tuyau périphérique ce qui requiert des pertes de charge et donc force de pompage plus importantes. Enfin, aucune disposition n'est décrite dans la technique WO 2008/039823 pour gérer la quantité respective de réactif et d'émulsion de base ou matrice ni leur mélange intime dans un mélangeur statique qui ne soit pas exposé dans le trou. Un autre problème à la base de la présente invention concerne la mise en oeuvre de produits explosif de mélange de densités différentes au cours du remplissage selon la profondeur du trou ou entre des trous différents. En pratique, il est avantageux de pouvoir réaliser un produit de densité plus élevée, environ 1.2 dans le fond du trou et une densité allégée d'environ 0.8 au sommet de la colonne. En effet, le fond de trou est plus difficile à détruire et requiert davantage d'énergie volumique explosive que les parties supérieures, et une d'explosion optimale dans un trou de mine que l'énergie explosive en colonne. D'autre part, le massif rocheux à détruire varie dans sa composition et son volume entre le trou de mine et la surface libre, selon la profondeur et aussi du fait des déviations résultant de l'inclinaison du trou de forage sensiblement cylindrique, et d'un trou à l'autre du fait des inclinaisons différentes variables de 0 à 25° des dits trous et de l'hétérogénéité de la composition massif rocheux. La justification de faire un produit explosif plus faible en densité est aussi de diminuer le coût de revient du tir car si la densité diminue, 30 cela signifie qu'il y a moins de masse de produit et donc un cout moindre de produit explosif.In WO / 2008 039823, there is described an installation in which the two components are transferred into two separate pipes with a helical outer pipe surrounding the main central pipe of larger diameter. The downstream end of the small pipe passes through the wall and joins the inside of the larger pipe so that their coaxial down ends open into the same nozzle. Thus one can mix the two components as close as possible to the hole in an external mixing nozzle. But this embodiment has the following drawbacks. First, this complex helical component pipe is relatively expensive and fragile. In fact, in particular, the outer pipe containing the most dangerous product, namely the gasification reagent, is exposed in the outer part of the pipe which undergoes fatigue and wear due to friction against the walls of the hole, during its winding and unwinding and manipulation in the hole. On the other hand, in practice, it is necessary to regularly shorten the downstream end of the pipe which degrades due to friction in the hole during installation and withdrawal including winding from a winding drum at its upstream end. However, the arrival of the reagent transfer pipe R inside the supply pipe of the matrix M is incompatible with the shortening of the pipe at this position. On the other hand, the gasification reagent must be conveyed over a helical path and therefore over a longer distance of pipe than the straight central pipe of the emulsion because of the helical disposition of the peripheral pipe which requires losses of load and therefore greater pumping force. Finally, no provision is disclosed in the art WO 2008/039823 to manage the respective amount of reagent and emulsion base or matrix or their intimate mixture in a static mixer that is not exposed in the hole. Another problem underlying the present invention relates to the implementation of explosive mixing products of different densities during filling according to the depth of the hole or between different holes. In practice, it is advantageous to be able to produce a product of higher density, about 1.2 in the bottom of the hole and a lightened density of about 0.8 at the top of the column. In fact, the downhole is more difficult to destroy and requires more explosive volumetric energy than the upper parts, and an optimal explosion in a borehole than the explosive energy column. On the other hand, the rock mass to be destroyed varies in composition and volume between the borehole and the free surface, depending on the depth and also because of the deviations resulting from the inclination of the substantially cylindrical borehole, and from one hole to another because of the different inclinations varying from 0 to 25 ° of the said holes and the heterogeneity of the rock mass composition. The justification for making a lower density explosive product is also to reduce the cost of the shot because if the density decreases, this means that there is less mass of product and therefore a lower cost of explosive product.
Il est donc avantageux de pouvoir adapter l'énergie de l'explosif au massif rocheux de manière simple. Dans la technique antérieure, la production de lots produit explosif de densités différentes n'est pas possible sans sortir le tuyau et purger le tuyau de chargement véhiculant sur une longue distance de produit explosif mélangé en amont à une distance relativement importante du trou. Selon le procédé standard, il faut donc faire des remplissages successifs de produits ayant des densités différentes en sortant le tuyau du trou et en le purgeant entre deux procédures de remplissage dans le même trou pour évacuer le produit explosif ayant une densité différente avant de produire un produit de densité différente pour éviter les mélanges de produits de densité différentes. Ceci est trop contraignant en temps et donc ne peut pas en pratique être réalisé. Donc avec le dispositif mis en oeuvre classiquement, on réalise un produit à densité moyenne 1.2 pour toute la charge d'explosif. Il y a donc trop d'énergie volumique (produit de la densité et de l'énergie massique) consommée dans la colonne alors qu'une énergie explosive plus élevée au fond du trou et moins élevée en hauteur serait préférable.It is therefore advantageous to be able to adapt the energy of the explosive to the rock mass in a simple way. In the prior art, the production of explosive batches of different densities is not possible without removing the pipe and purging the loading pipe over a long distance of explosive product mixed upstream at a relatively large distance from the hole. According to the standard method, therefore, successive fillings of products having different densities must be made by removing the pipe from the hole and purging it between two filling procedures in the same hole to discharge the explosive product having a different density before producing a product of different density to avoid mixtures of products of different density. This is too time-consuming and therefore can not be realized in practice. Thus, with the device conventionally used, a medium density product 1.2 is produced for all the explosive charge. As a result, there is too much volumetric energy (the product of density and specific energy) consumed in the column, whereas higher explosive energy at the bottom of the hole and lower in height would be preferable.
Il est donc très avantageux de pouvoir faire varier la densité du produit dans un même cycle de production. Le but de la présente invention est donc de fournir une installation et un procédé de production de produit explosif améliorés comprenant la mise en oeuvre de conduites flexibles de chargement dans un trou qui soient plus adaptés et donc plus fiables, plus sécurisés et plus simples à réaliser et mettre en oeuvre d'une part et qui permettent de : - mettre les deux composants en contact optimal l'un avec l'autre pour mélanger au niveau d'un mélangeur statique dans le trou en aval de la conduite de transfert déroulée depuis un tambour enrouleur, - raccourcir sans difficultés les conduites de transfert lorsque leurs extrémités se dégrade par usure et frottement dans le trou, et - changer en temps réel la densité du produit final en cours de chargement et production en sortie de la conduite de transfert dans le trou en cours de remplissage du trou en continu sans avoir à purger et/ou sortir le tuyau du trou, et - tout en évitant les risques générer par la présence éventuelle de pièce métallique exposée non protégées dans le trou. Pour ce faire, la présente invention fournit une installation de production in situ de produit explosif par mélange (a) d'un produit visqueux, dénommé matrice, comprenant une émulsion inverse d'une phase aqueuse de comburant et phase huileuse de combustible et (b) un produit liquide contenant un composé chimique apte à réagir avec la dite matrice pour en augmenter le caractère explosif par gazéification, dénommé réactif de gazéification, la dite installation comprenant au moins : - un premier réservoir contenant la dite matrice à base de dite émulsion explosive, et - un deuxième réservoir contenant ledit réactif de gazéification, et - un premier circuit de transfert de dite matrice comprenant au moins un premier tuyau au moins en partie flexible coopérant avec une première pompe et une première vanne, apte à transférer la dite matrice séparément jusqu'à un premier mélangeur, de préférence un premier mélangeur statique, et - un deuxième circuit de transfert de dit réactif de gazéification comprenant au moins un deuxième tuyau au moins en partie flexible coopérant avec une deuxième pompe et une deuxième vanne, apte à transférer le dit réactif de gazéification séparément jusqu'au dit premier mélangeur, Caractérisé en ce que le dit deuxième tuyau est disposé entièrement à l'intérieur du premier tuyau formant un ensemble de tuyaux coaxiaux, ledit premier dispositif de mélange étant disposé à l'intérieur du premier tuyau à son extrémité avale, ledit deuxième tuyau se terminant juste en amont dudit premier mélangeur. On comprend que le diamètre externe du dit deuxième tuyau est inférieur au diamètre interne du dit premier tuyau de sorte que la dite matrice est véhiculée sans contact avec le réactif de gazéification, dans l'espace annulaire entre les deux tuyaux d'une part, et d'autre part le flux de matrice permet de disposé le deuxième tuyau sensiblement co- axialement au premier tuyau sans qu'il soit besoin de centraliseur, le réactif de gazéification étant véhiculé séparément sans contact avec la matrice jusqu'à ce qu'il débouche dans le mélangeur statique au sein duquel un mélange intime des deux produit est réalisé pour produire le produit explosif en sortie du mélangeur statique à l'extrémité avale du premier tuyau. Dans la présente description, on entend par « amont » et « aval », la position en référence au sens d'écoulement des fluides au sein des tuyaux depuis les réservoirs vers le premier mélangeur et vers la sortie débouchant dans le trou de dépose du produit explosif en sortie de premier mélangeur. On comprend que -en opération- l'extrémité aval de l'ensemble de tuyaux coaxiaux est inséré dans un trou destiné à être rempli de produit explosif sortant dudit premier mélangeur.It is therefore very advantageous to be able to vary the density of the product in the same production cycle. The object of the present invention is therefore to provide an improved installation and method of producing an explosive product comprising the implementation of flexible pipes for loading into a hole which are more suitable and therefore more reliable, more secure and simpler to produce. and implement on the one hand and which allow to: - put the two components in optimal contact with each other to mix at a static mixer in the hole downstream of the transfer pipe unwound from a winding drum, - shorten without difficulty the transfer lines when their ends are degraded by wear and friction in the hole, and - change in real time the density of the final product during loading and output of the transfer pipe in the hole being filled continuously without having to purge and / or remove the pipe from the hole, and - while avoiding the risks generated by the presence eventual metal parts exposed unprotected in the hole. To do this, the present invention provides an installation for producing explosive product in situ by mixing (a) a viscous product, called a matrix, comprising an inverse emulsion of an aqueous phase of oxidant and oily phase of fuel and (b) ) a liquid product containing a chemical compound capable of reacting with said matrix to increase its explosive character by gasification, called gasification reagent, said installation comprising at least: a first reservoir containing said matrix based on said explosive emulsion and a second reservoir containing said gasification reagent, and a first transfer circuit of said matrix comprising at least a first pipe at least partially flexible cooperating with a first pump and a first valve, able to transfer said matrix separately. to a first mixer, preferably a first static mixer, and - a second trans-circuit fermenting said gasification reagent comprising at least a second pipe at least partially flexible cooperating with a second pump and a second valve, adapted to transfer said gasification reagent separately to said first mixer, characterized in that said second pipe is disposed entirely within the first pipe forming a set of coaxial pipes, said first mixing device being disposed inside the first pipe at its downstream end, said second pipe terminating just upstream of said first mixer. It is understood that the outer diameter of said second pipe is smaller than the internal diameter of said first pipe so that said matrix is conveyed without contact with the gasification reagent, in the annular space between the two pipes on the one hand, and on the other hand, the matrix flow makes it possible to arrange the second pipe substantially coaxially with the first pipe without the need for a centralizer, the gasification reagent being conveyed separately without contact with the matrix until it opens in the static mixer in which an intimate mixture of the two products is produced to produce the explosive product at the outlet of the static mixer at the downstream end of the first pipe. In the present description, the term "upstream" and "downstream", the position in reference to the flow direction of the fluids in the pipes from the tanks to the first mixer and to the outlet opening into the dispensing hole of the product. explosive at the output of the first mixer. It is understood that in operation the downstream end of the coaxial pipe assembly is inserted into a hole to be filled with explosive material exiting said first mixer.
Ainsi, d'une part, seul le premier tuyau est en contact avec l'extérieur et notamment les parois du trou pendant les opérations protégeant les autres matériel et évitant notamment d'endommager le fil de détonateur entre autres ; et, d'autre part, on peut en contrôlant les débits relatifs de matrice et réactif de gazéification contrôler quasiment en temps réel la densité du produit explosif obtenu, au fur et à mesure du remplissage du trou en continu et donc faire varier la densité du produit explosif , à savoir sa puissance explosive selon la profondeur à laquelle il est disposé dans le trou ou d'un trou à l'autre dans différents trous comme explicité ci-après en liaison avec le procédé selon l'invention.Thus, on the one hand, only the first pipe is in contact with the outside and in particular the walls of the hole during operations protecting the other equipment and in particular avoiding damage to the detonator wire, among others; and, on the other hand, by controlling the relative flow rates of the matrix and the gasification reagent, controlling in almost real time the density of the explosive product obtained, as the hole is filled continuously and thus varying the density of the product. explosive product, namely its explosive power according to the depth at which it is arranged in the hole or from one hole to another in different holes as explained below in connection with the method according to the invention.
On entend ici, de manière connue de l'homme de l'art, par « mélangeur statique », un dispositif contenant des éléments mécaniques aptes à créer une modification dans le mouvement d'un fluide en mouvement le parcourant créant des mouvements tourbillonnaires permettant le mélange sans apport d'énergie pour déplacer lesdits éléments mécaniques autre que celle apportée par le mouvement du fluide. Le plus souvent les mélangeurs statiques consistent en tube contenant une ou plusieurs structures tridimensionnelles favorisant l'apparition de tourbillons lors du passage d'un flux de fluide dans la direction longitudinal du tube.The term "static mixer" is understood herein to mean, in a manner known to those skilled in the art, a device containing mechanical elements able to create a modification in the movement of a moving fluid traveling through it creating vortex movements allowing the mixing without adding energy to move said mechanical elements other than that provided by the movement of the fluid. Most often the static mixers consist of a tube containing one or more three-dimensional structures favoring the appearance of vortices during the passage of a flow of fluid in the longitudinal direction of the tube.
Plus particulièrement, l'ensemble de tuyaux coaxiaux est relié à un tambour enrouleur, et est enroulé au moins en partie ou apte à être enroulé sur ledit tambour enrouleur, l'extrémité avale de l'ensemble de tuyaux coaxiaux étant disposé dans ou au-dessus d'un trou pour explosion, de préférence un trou de forage sensiblement cylindrique dans lequel on a placé une charge d'amorçage d'explosif et un détonateur relié en surface par un fil de détonateur. Typiquement, on met en oeuvre un tambour enrouleur de 30 à 80cm de diamètre pour 10 tours d'enroulement de tuyaux de 30 à 100m de long avec des diamètres externes de premier tuyau de 30 à 50mm et diamètres internes de 25 à 40mm et diamètres externes de deuxième tuyau de 5 à 15 mm avec un diamètre internes de 3 à 10mm. Plus particulièrement, les dits premier et deuxième tuyaux sont connectés coaxialement l'un à l'autre à leurs extrémités amont par une première pièce de connexion comprenant un manchon à paroi cylindrique externe et une pièce coudée interne, la dite première pièce de connexion étant de préférence solidaire d'un tambour enrouleur sur lequel est enroulé au moins en partie ou apte à être enroulé le dit ensemble de tuyaux coaxiaux, la dite première pièce de connexion comprenant : - un premier orifice d'entrée, formant une ouverture amont dudit manchon et disposée axialement dans une direction longitudinale (XX') la paroi cylindrique dudit manchon, ledit premier orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit premier circuit de transfert de dite matrice, et - un deuxième orifice d'entrée, disposé latéralement au niveau de la paroi cylindrique dudit manchon, formant une ouverture amont de la dite pièce coudée traversant la paroi cylindrique dudit manchon et disposée perpendiculairement à la dite direction longitudinale (XX'), ledit deuxième orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit deuxième circuit de transfert de dit réactif de gazéification, et - un premier orifice de sortie, formant une ouverture avale dudit manchon et disposée axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, ledit premier orifice de sortie étant relié par un raccord à l'extrémité amont du dit premier tuyau de transfert de dite matrice, de préférence à une partie, de préférence une partie rigide dudit premier tuyau en amont d'un dit tambour enrouleur, d'une partie rigide dudit premier tuyau en amont d'un dit tambour enrouleur, et - un deuxième orifice de sortie, disposé axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, formant une ouverture avale de la dite pièce coudée à l'intérieur dudit manchon, ledit deuxième orifice de sortie étant relié par un raccord à l'extrémité amont du dit deuxième tuyau de transfert de dit réactif de gazéification.More particularly, the coaxial pipe assembly is connected to a reel drum, and is at least partially or coactably wound on said reel drum, the downstream end of the coaxial pipe assembly being disposed in or out of above an explosion hole, preferably a substantially cylindrical borehole having placed an explosive charge and a detonator connected to the surface by a detonator wire. Typically, a reel drum of 30 to 80 cm in diameter is used for 10 turns of winding of pipes 30 to 100m long with external diameters of first pipe of 30 to 50mm and internal diameters of 25 to 40mm and external diameters. second pipe from 5 to 15 mm with an internal diameter of 3 to 10mm. More particularly, said first and second pipes are connected coaxially to each other at their upstream ends by a first connecting piece comprising a sleeve with an external cylindrical wall and an internal bent piece, said first connecting piece being of preferably integral with a drum drum on which is wound at least in part or capable of being wound up said set of coaxial pipes, said first connecting piece comprising: a first inlet orifice, forming an upstream opening of said sleeve and disposed axially in a longitudinal direction (XX ') the cylindrical wall of said sleeve, said first inlet being connected to a portion, preferably a rigid portion, said first transfer circuit of said matrix, and - a second orifice of inlet, arranged laterally at the level of the cylindrical wall of said sleeve, forming an upstream opening of said bent piece through the cylindrical wall of said sleeve and disposed perpendicularly to said longitudinal direction (XX '), said second inlet being connected to a portion, preferably a rigid portion, of said second transfer circuit of said gasification reagent, and a first outlet opening, forming an opening downstream of said sleeve and disposed axially in said longitudinal direction (XX ') of the cylindrical wall of said sleeve, said first outlet being connected by a coupling to the upstream end of said first pipe; transferring said matrix, preferably to a portion, preferably a rigid portion of said first pipe upstream of said winding drum, a rigid portion of said first pipe upstream of said winding drum, and - a second orifice outlet, disposed axially in said longitudinal direction (XX ') of the cylindrical wall of said sleeve, forming an opening downstream of said bent piece in the said second sleeve, said second outlet being connected by a connector to the upstream end of said second transfer pipe of said gasification reagent.
On comprend qu'en amont de la dite première pièce de connexion les dits premier et deuxième circuits sont séparés et s'étendent depuis les dits premier et deuxième réservoirs dans des directions différentes et la dite première pièce assure la connexion coaxiale des deux premier et deuxième tuyaux en aval de celle-ci, les deux flux de dite matrice et dit réactif restant toutefois séparés jusqu'au premier mélangeur.It will be understood that, upstream of said first connecting piece, said first and second circuits are separated and extend from said first and second reservoirs in different directions and said first part provides the coaxial connection of the first and second two pipes downstream thereof, the two flows of said matrix and said reagent, however, remaining separated to the first mixer.
Plus particulièrement, la fixation des extrémités amont des dits premier et deuxièmes tuyaux sur les dits premier et deuxième orifices de sortie de la dite première pièce de connexion se fait par l'intermédiaire de deux premier et respectivement deuxième raccords à joints tournants autorisant chacun séparément la rotation sur elle-même par rapport audit axe longitudinal (XX') des extrémités amont des dits premier et respectivement deuxième tuyaux, les dits première pièce de connexion et dits raccords à joints tournants étant disposés en amont d'un dit tambour enrouleur de sorte que les dits les dits premier et deuxièmes orifice de sortie sont disposés dans l'axe de rotation du dit tambour. Cette caractéristique est particulièrement avantageuse car elle évite les torsions des dits premier et deuxième tuyaux lords des enroulements et déroulement de dits tuyaux sur ledit enrouleur lorsque les parties amont non enroulées des dits tuyaux sont entrainés en rotation par rapport audit axe de rotation dudit tambour. Les raccords du type dénommé « raccord à joints tournants » sont bien connus de l'homme de l'art, et sont constitués essentiellement de deux pièces reliées entre-elles par des joints toriques et des jeux de roulements à billes autorisant le mouvement rotatif de l'une d'elles par rapport à l'autre autour d'un axe commun, chaque pièce étant apte à être raccordée à un élément distinct. Ici, il s'agit d'une pièce tubulaire de raccord apte à être raccordée à des éléments tubulaires. On comprend que la fixation des extrémités des différents tuyaux sur la dite première pièce de connexion, éventuellement sur dits raccords à joints tournants, se fait par l'intermédiaire de raccord rigide.More particularly, the fixing of the upstream ends of said first and second pipes on said first and second outlets of said first connecting piece is via two first and second rotary joint couplings each allowing separately the rotation on itself with respect to said longitudinal axis (XX ') of the upstream ends of said first and second pipes respectively, said first connecting piece and said rotary joint fittings being arranged upstream of said winding drum so that said so-called first and second outlet ports are disposed in the axis of rotation of said drum. This feature is particularly advantageous because it avoids twisting of said first and second pipes lords windings and unwinding of said pipes on said winder when the upstream uncoiled portions of said pipes are rotated relative to said axis of rotation of said drum. Fittings of the type referred to as "rotary joint coupling" are well known to those skilled in the art, and consist essentially of two parts interconnected by O-rings and sets of ball bearings allowing the rotary movement of one of them relative to the other about a common axis, each part being adapted to be connected to a separate element. Here, it is a tubular connecting piece adapted to be connected to tubular elements. It is understood that the fixing of the ends of the various pipes on said first connecting piece, possibly on said joints with rotating joints, is via rigid connection.
Plus particulièrement, le dit deuxième tuyau comprend à son extrémité avale, à l'intérieur du dit premier tuyau, un clapet apte à s'ouvrir et laisser le flux de dit réactif de gazéification sous la pression dudit flux lorsque la deuxième pompe est actionnée et apte à rester fermer et empêcher des fuites de réactif de gazéification lorsque la deuxième pompe est désactivée. Cette caractéristique est importante pour permettre le contrôle et la variation en temps réel en cours de remplissage du trou de la densité du produit explosif obtenu par mélange de ladite matrice et du dit réactif de gazéification. Plus particulièrement, selon d'autres caractéristiques: - le dit premier tuyau comprend au moins une partie rigide coudée de premier tuyaux assemblée à une partie flexible de premier tuyau de manière étanche et réversible par un collie, disposée en amont du dit tambour et solidaire de celui-ci et apte à être entrainée en rotation autour de l'axe de rotation lorsque ledit tambour est actionné en rotation, ladite partie flexible de premier tuyau étant apte à être enroulée autour du dit tambour, et - ledit deuxième tuyau comprend deux parties flexibles reliées entre telles par un raccord étanche et réversible rigide du type à union double disposée, la partie flexible de dit deuxième tuyau disposée en amont du dit raccord du type union double étant plus courte que la partie flexible de dit deuxième tuyau disposée en aval, ledit raccord du type à union double étant de préférence à proximité du dit collier.More particularly, said second pipe comprises at its end downstream, inside said first pipe, a valve adapted to open and let the flow of said gasification reagent under the pressure of said flow when the second pump is actuated and able to remain closed and prevent gasification reagent leakage when the second pump is deactivated. This characteristic is important to allow control and variation in real time during filling of the hole of the density of the explosive product obtained by mixing said matrix and said gasification reagent. More particularly, according to other features: - said first pipe comprises at least a rigid portion bent first pipes assembled to a flexible portion of first pipe tightly and reversibly by a collie, disposed upstream of said drum and secured to it and adapted to be rotated about the axis of rotation when said drum is actuated in rotation, said flexible portion of first pipe being adapted to be wound around said drum, and - said second pipe comprises two flexible parts connected between such by a rigid and reversible connection of the double union type disposed, the flexible portion of said second pipe disposed upstream of said double union type connection being shorter than the flexible portion of said second pipe disposed downstream, said double union type connection being preferably close to said collar.
Ainsi, lorsque l'on veut raccourcir le dit deuxième tuyau du fait du raccourcissement réalisé à l'extrémité avale du premier tuyau lorsque celui-ci est usé et endommagée, il est aisé d'ouvrir le premier tuyau au niveau du dit collier en amont du tambour, de dérouler l'ensemble de tuyaux coaxiaux, et de sortir la partie avale de dit deuxième tuyau pour la raccourcir ; et ceci sans avoir à désaccoupler la partie amont du deuxième tuyau flexible au niveau du raccord à joint tournant ni sortir ledit premier mélangeur. On peut aussi- lorsque l'on veut faire fonctionner une installation sans variation de densité - sortir complètement le deuxième tuyau, obturer ledit deuxième, orifice d'entrée et connecter une dérivation du deuxième circuit d'arrivée de réactif de gazéification sur le dit premier circuit en amont d'un deuxième mélangeur en amont dudit tambour. Il n'y a plus dans ce cas de circulation coaxiale de matrice et réactif de gazéification.Thus, when it is desired to shorten said second pipe due to the shortening made at the downstream end of the first pipe when it is worn and damaged, it is easy to open the first pipe at the said collar upstream. drum, unwind the set of coaxial pipes, and take out the downstream portion of said second pipe to shorten it; and this without having to uncouple the upstream portion of the second flexible pipe at the joint with rotating joint and out of said first mixer. One can also - when one wants to operate an installation without variation of density - completely leave the second pipe, shut off said second, inlet orifice and connect a bypass of the second circuit of arrival of gasification reagent on the said first circuit upstream of a second mixer upstream of said drum. In this case, there is no more coaxial circulation of matrix and gasification reagent.
Les raccords du type dénommé à « union double » sont bien connus de l'homme de l'art, et sont constitués essentiellement de l'assemblage d'au moins trois paires de pièces de raccordement male/femelle fonctionnant par liaisons démontables. Plus particulièrement, une butée tubulaire creuse comprenant une ouverture centrale longitudinale est disposée de manière amovible à l'extrémité avale du premier tuyau pour retenir le dit premier mélangeur à l'intérieur du premier tuyau en laissant passer le produit explosif par l'ouverture centrale de la dite butée, un filetage sur une paroi externe cylindrique permettant de visser et ainsi fixer de manière amovible la dite butée contre la paroi interne dudit premier tuyau, de préférence à l'aide d'une clé de vissage apte à coopérer avec l'extrémité avale de ladite ouverture centrale longitudinale pour visser à l'intérieur dudit premier tuyau ou dévisser la dite butée pour la sortir dudit premier tuyau.Connections of the type called "double union" are well known to those skilled in the art, and consist essentially of the assembly of at least three pairs of male / female connection parts operating by removable links. More particularly, a hollow tubular abutment having a longitudinal central opening is removably disposed at the downstream end of the first pipe for retaining said first mixer within the first pipe allowing the explosive product to pass through the central opening of the first pipe. said stop, a thread on a cylindrical outer wall for screwing and thus removably fix said abutment against the inner wall of said first pipe, preferably using a screw wrench adapted to cooperate with the end swallowing said longitudinal central opening to screw inside said first pipe or unscrew said stop to remove it from said first pipe.
Cette caractéristique permet de protéger le mélangeur statique et surtout de pouvoir le sortir facilement pour couper l'extrémité avale du premier tuyau lorsque celle-ci est endommagée ou usée, avant de réintroduire le dit premier mélangeur puis la dite butée. Plus particulièrement, selon une caractéristique originale de 30 l'invention, le dit premier mélangeur est un mélangeur statique comprenant une pluralité d'ailettes présentant chacune une surface hélicoïdale, de préférence s'étendant dans sa direction axiale sur une longueur correspondant à un pas de la courbe hélicoïdale correspondante, les dites surfaces hélicoïdales étant supportées par une même tige de renfort à laquelle elles sont fixées de façon juxtaposées dans la direction longitudinale du dit premier tuyau, les dites surfaces hélicoïdales successives étant décalées angulairement en rotation par rapport à leur axe virtuel commun de surface hélicoïdale coïncidant sensiblement avec un axe longitudinale du dit premier tuyau d'axe coaxial au dit premier tuyau, le diamètre des dites surfaces hélicoïdales étant sensiblement identique ou juste suffisamment inférieur au diamètre interne du premier tuyau pour autoriser la rotation des dites ailettes sous l'effet de la pression des flux de matrice et réactif en mélange les traversant. Ce type de mélangeur fabriqué selon l'invention est plus fiable 15 mécaniquement et plus performant dans les conditions de mise en oeuvre selon l'invention. Plus particulièrement, une unité centrale de commande et contrôle automatisé comportant des moyens électroniques pilotés par un logiciel avec une clavier été/ou interface graphique, permet de commander et 20 contrôler les quantités et débits respectifs de dite matrice et/ou de préférence dit réactif de gazéification, et faire varier la densité du produit explosif obtenu, en commandant et contrôlant des première et/ou deuxième vannes et/ou contrôlant les vitesses des dites première et/ou deuxième pompes, de préférence la dite unité centrale étant 25 supporté sur un véhicule motorisé, de préférence encore ledit véhicule supportant les dits premier et deuxième réservoirs et dites première et deuxième pompe. La présente invention fournit aussi un procédé de production in situ de produit explosif à l'aide d'une installation selon l'invention 30 comprenant les étapes dans lesquels : 1) on transfère un produit visqueux de dite matrice, et un produit liquide de dit réactif de gazéification, dans des dits premier et respectivement deuxième tuyau coaxiaux, et 2) on mélange la dite matrice et le dit réactif de gazéification dans un dit premier mélangeur, et 3) on dépose ledit produit explosif en sortie du dit premier mélangeur, dans un trou pour explosion, de préférence un trou de forage sensiblement cylindrique dans lequel on a précédemment placé une charge d'amorçage d'explosif et un détonateur relié à un fil de détonateur remontant en surface. Le procédé selon l'invention consiste donc, selon une caractéristique originale de la présente invention, à faire varier les proportions respectives de réactif de gazéification et de matrice émulsion entrant dans le mélangeur pour changer en temps réel la densité du produit arrivant dans le trou et ce lors d'une seule et même procédure de remplissage. Ceci est rendu possible, entre autre, du fait que les réactifs R et matrice M sont mis en contact juste avant le mélangeur et que le produit explosif déposé dans le trou sort directement du dit mélangeur. Il est donc ainsi possible -selon l'invention- d'adapter automatiquement l'énergie de l'explosif au massif rocheux de manière simple en faisant un seul remplissage d'explosif en continu ou dans un même cycle de production, une seule séquence de pompage d'explosif , une seule séquence en continue signifiant ici que l'on met le tuyau de dépose dans le trou, puis actionne la pompe de transfert et dépose et ressort le tuyau une seule fois pour remplir le trou jusqu'au niveau souhaité. Le procédé selon l'invention permet donc de modifier quasiment en temps réel la densité du produit et donc de l'énergie massique de l'explosif, celle-ci étant inversement proportionnelle à sa densité, et 30 plus particulièrement, de faire varier la densité du produit permet d'avoir une densité élevée, dans le fond du trou et une densité allégée dans la colonne en hauteur. Typiquement, on réalise des trous de 5 à 30 m de profondeur et de diamètre de 5cm à 20 cm, et on définit au moins deux de préférence 4 quantités de produit explosifs pour 4 valeurs de densité correspondant à des énergies massique de 2 à 5 MJ/kg (1063/Kg), notamment des densités de 0.5 à 1.5. En pratique la quantité de produit explosif correspond sensiblement à la quantité de dite matrice car la quantité relative de réactif est de l'ordre de 0.1 à 2% seulement par rapport au poids de produit explosif obtenu. Plus particulièrement, on commande et contrôle les quantités et débits de dite matrice et de dits réactif de gazéification de manière à produire un dit produit explosif de densité de valeur déterminée en sortie de premier mélangeur. Plus particulièrement, on fait varier la densité du produit explosif obtenu en cours de remplissage selon la quantité de produit explosif déposé et/ou selon la profondeur à laquelle on dépose le produit explosif dans un même trou ou d'un trou à l'autre dans différents trous.This feature makes it possible to protect the static mixer and especially to be able to easily remove it to cut the downstream end of the first hose when it is damaged or worn, before reintroducing said first mixer then said stop. More particularly, according to an original feature of the invention, said first mixer is a static mixer comprising a plurality of fins each having a helical surface, preferably extending in its axial direction over a length corresponding to a pitch of the corresponding helical curve, said helical surfaces being supported by a same reinforcing rod to which they are juxtaposedly attached in the longitudinal direction of said first pipe, said successive helical surfaces being angularly offset in rotation with respect to their virtual axis common helical surface substantially coinciding with a longitudinal axis of said first pipe coaxial axis with said first pipe, the diameter of said helical surfaces being substantially the same or just sufficiently smaller than the inner diameter of the first pipe to allow the rotation of said fins under the effect of the pressure of the flows of matrix and reagent mixed through them. This type of mixer manufactured according to the invention is more mechanically reliable and more efficient under the conditions of implementation according to the invention. More particularly, an automated central control and control unit comprising electronic means controlled by software with a keyboard or graphic interface, makes it possible to control and control the respective quantities and flow rates of said matrix and / or preferably said reagent of gasification, and varying the density of the explosive product obtained, by controlling and controlling first and / or second valves and / or controlling the speeds of said first and / or second pumps, preferably said central unit being supported on a vehicle motorized, more preferably said vehicle supporting said first and second tanks and said first and second pump. The present invention also provides a method for in situ production of an explosive product using an installation according to the invention comprising the steps of: 1) transferring a viscous product from said matrix, and a liquid product of said a gasification reagent, in said first and second coaxial pipes, and 2) mixing said matrix and said gasification reagent in a said first mixer, and 3) depositing said explosive product at the outlet of said first mixer, in an explosion hole, preferably a substantially cylindrical borehole having previously placed an explosive charge and a detonator connected to a surface-mounted detonator wire. The process according to the invention therefore consists, according to an original characteristic of the present invention, in varying the respective proportions of gasification reagent and emulsion matrix entering the mixer to change in real time the density of the product arriving in the hole and this in one and the same filling procedure. This is made possible, among other things, by the fact that the reactants R and matrix M are brought into contact just before the mixer and that the explosive product deposited in the hole leaves directly from said mixer. It is thus possible, according to the invention, to automatically adapt the energy of the explosive to the rock mass in a simple manner by making a single filling of explosive continuously or in the same production cycle, a single sequence of explosive pumping, a single continuous sequence means here that the dispensing pipe is placed in the hole, then actuates the transfer pump and deposits and pulls out the pipe once to fill the hole to the desired level. The method according to the invention therefore makes it possible to modify, almost in real time, the density of the product and therefore of the mass energy of the explosive, the latter being inversely proportional to its density, and more particularly to varying the density. of the product allows to have a high density, in the bottom of the hole and a lightened density in the column in height. Typically, holes 5 to 30 m deep and 5 cm to 20 cm in diameter are formed, and at least two, preferably 4, amounts of explosive product are defined for 4 density values corresponding to mass energies of 2 to 5 MJ. / kg (1063 / kg), in particular densities of 0.5 to 1.5. In practice the amount of explosive product substantially corresponds to the amount of said matrix because the relative amount of reagent is of the order of 0.1 to 2% only relative to the weight of explosive product obtained. More particularly, the quantities and flow rates of said matrix and of said gasification reagent are controlled and controlled so as to produce an explosive product of determined value density at the outlet of the first mixer. More particularly, the density of the explosive product obtained during filling is varied according to the quantity of explosive product deposited and / or the depth at which the explosive product is deposited in the same hole or from one hole to another in different holes.
Plus particulièrement, on choisit et commande des quantités déterminées de produits explosifs ayant des valeurs de densité déterminées différentes respectivement à déposer successivement dans un trou en cours de remplissage, de préférence en continu. De préférence, on choisit parmi une pluralité de valeurs de 25 densité prédéterminées correspondant à des énergies explosive massique de 2 à 5 MJ/Kg (106 J/Kg), de préférence des densités entre 0.5 et 1.5.More particularly, selected quantities of explosive products having different specific density values are respectively selected and controlled to be successively deposited in a hole being filled, preferably continuously. Preferably, one chooses from a plurality of predetermined density values corresponding to mass explosive energies of 2 to 5 MJ / Kg (106 J / Kg), preferably densities between 0.5 and 1.5.
En pratique la quantité de produit explosif correspond sensiblement à la quantité de dite matrice dans la quantité relative de réactif est de l'ordre de 0.1 à 2%. Typiquement, pour des trous de 5 à 30 m de profondeur et de diamètre de 5cm à 20 cm, on définit 4 quantités de produit explosifs pour 4 valeurs de densité de 0.8 à 1.2. Plus particulièrement, à l'étape 1), on transfère séparément les dite matrice et dit réactif de gazéification depuis des dits premier et respectivement deuxième réservoirs dans des premier tuyau et respectivement deuxième tuyau coopérant avec une première pompe et une première vanne et respectivement une deuxième pompe et une deuxième vanne, et on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe et/ou l'ouverture de la dite première vanne, et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe et/ou l'ouverture de la dite deuxième vanne. Plus particulièrement, on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe à l'aide d'un capteur de vitesse de la dite première pompe, et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe à l'aide d'un débitmètre. En effet, de façon connue de l'homme de l'art, des abaques permettent pour une valeur de densité donnée, les débits respectifs de réactif de gazéification y et de dite matrice x varient linéairement selon une formule y= ax+b. Les valeurs d a et b dépendent de la composition des dits réactifs de porosité et dite matrice. Des abaques fournissent des graphiques de dits débits de réactif en L/min par rapport à des valeurs de débit de dite matrice en Kg/min. Ainsi, pour une valeur de débit de matrice d fixée, il suffit de faire varier le débit de réactif de gazéification.In practice the amount of explosive product substantially corresponds to the amount of said matrix in the relative amount of reagent is of the order of 0.1 to 2%. Typically, for holes 5 to 30 m deep and 5 cm to 20 cm in diameter, 4 quantities of explosive product are defined for 4 density values from 0.8 to 1.2. More particularly, in step 1), the said matrix and said gasification reagent are separately transferred from said first and second reservoirs respectively into first pipe and respectively second pipe cooperating with a first pump and a first valve and respectively a second pump and a second valve, and a constant flow rate of said matrix is controlled and controlled by controlling the speed of the first pump and / or the opening of said first valve, and the flow rate of said gasification reagent is varied in controlling the speed of the second pump and / or the opening of said second valve. More particularly, a constant flow rate of said matrix is controlled and controlled by controlling the speed of the first pump using a speed sensor of said first pump, and the flow rate of said gasification reagent is varied at controlling the speed of the second pump using a flow meter. Indeed, in a manner known to those skilled in the art, abacuses allow for a given density value, the respective rates of gasification reagent y and said matrix x vary linearly according to a formula y = ax + b. The values of a and b depend on the composition of said porosity reactants and said matrix. Charts provide graphs of said reactant flow rates in L / min relative to flow values of said matrix in Kg / min. Thus, for a set d matrix rate value, it is sufficient to vary the rate of gasification reagent.
D'autre part, du fait que le produit visqueux est plus difficilement contrôlable et qu'il est plus aisé de faire varier et contrôler le dédit d'un fluide liquide, il est avantageux de travailler à flux de matrice constant et en faisant varier le débit de réactif de gazéification.On the other hand, because the viscous product is more difficult to control and it is easier to vary and control the dedication of a liquid fluid, it is advantageous to work with a constant matrix flow and to vary the flow rate of gasification reagent.
Typiquement ; en pratique, pour produire un produit explosif de densité de 0.5 à 1.5, on met en oeuvre: - une dite matrice de densité de 1 à 1.7 d'une émulsion de base dite inverse ou « eau dans huile » obtenue par un mélange de (a) une phase continue organique, constituée mélange d'huiles minérales et gasoil, et (b) une phase aqueuse discontinue de divers sels comburants en solution aqueuse à base de nitrate d'ammonium et/ou nitrate de sodium et/ou nitrate de calcium, à un débit de 25 à 300 Kg/min. (min.=minute), de préférence de 100 à 150 kg/min., et - une solution dit réactif de gazéification de densité de 0.5 à 1.5 à base de nitrite de sodium et/ou thiocyanate de sodium, à un débit de 0.1 à 2 L/min ; - dans un ratio de débit de réactif/ matrice variant de de 0.1 à 2 L/ 100Kg de la proportion. Plus particulièrement, lorsque l'extrémité avale du premier tuyau est usée et/ou endommagée, on réalise les étapes suivantes : a) on retire le dit premier mélangeur du dit premier tuyau, b) on coupe l'extrémité avale du premier tuyau usée et/ou endommagée, c) on replace le dit premier mélangeur à l'intérieur du dit premier 25 tuyau, d) on désassemble l'extrémité amont de la partie flexible du dit premier tuyau, et on extrait une partie amont du dit deuxième tuyau et on désassemble une première partie amont de deuxième partie avale de deuxième tuyau flexible, et e) on sort du premier tuyau et on raccourcit la dite deuxième partie avale de deuxième tuyau flexible, puis on la replace dans le dit premier tuyau et on la raccorde à nouveau à la partie amont du deuxième tuyau restée à l'intérieur d'une partie amont rigide du premier tuyau. D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels : - la figure 1 représente une unité mobile de fabrication d'explosifs 1 (abrégée « UMFE ») à savoir un camion 1 transportant le matériel de l'installation selon la présente invention sur son châssis arrière la, et - la figure 1A représente le déploiement d'un ensemble de tuyaux coaxiaux 6 déroulés depuis un enrouleur 5 à l'arrière dudit camion, et - la figure 1B représente une vue en coupe d'un trou de forage 11 réalisé dans un massif rocheux 15 dans lequel est déposé du produit explosif 10, l'extrémité avale ouverte de l'ensemble de tuyaux coaxiaux 6 selon l'invention disposée dans le trou, et - la figure 2 représente un schéma de montage des matériels de l'installation selon la présente invention en vue de la mise en oeuvre du procédé selon l'invention, et - la figure 3 représente le détail d'une vue en perspective de l'enrouleur 5, et - la figure 3A représente une vue en coupe verticale au niveau de la première partie rigide 61a du tuyau externe 61 de l'ensemble de tuyaux coaxiaux 6, et - les figures 4A et 4B sont des vues en coupe d'une dite première pièce de connexion 3 et ensemble de deux raccords à joints tournants 41 et 42, et - la figure 4C est une vue montrant le montage dudit deuxième tuyau ou tuyau interne de transfert de réactif de gazéification 62 sur ladite première pièce de connexion 3 et le deuxième raccord à joint tournant 42, et - les figures 5A, 5B et 5C représentent différentes vues relatives à l'introduction du premier mélangeur statique 7 à l'intérieur et à l'extrémité avale du premier tuyau 61 en aval du clapet 64 de l'extrémité avale 64 du deuxième tuyau 62. Description détaillée Une installation 1 de production de produits explosifs 10 in situ c'est-à-dire sur le site d'utilisation de l'explosif, à savoir, plus 15 précisément au niveau d'un trou de forage 11 selon l'invention, comporte les matériels suivants agencés de la manière suivante : - un camion 1 supporte sur son châssis arrière la un premier réservoir 1-1 contenant un produit constitué principalement d'une émulsion explosive dénommée « matrice », et 20 - un deuxième réservoir 1-2 contenant un réactif de gazéification notamment à base de nitrite de sodium et de thiocyanate, et - un troisième réservoir 1-3 contenant un catalyseur de réaction, à savoir un acide notamment de l'acide acétique et destiné à catalyser la réaction de la matrice avec le réactif de gazéification pour dégager 25 un gaz comme décrit ci-après, et - un quatrième réservoir d'eau 1-4, et - un cinquième réservoir de nitrates 1-5.Typically; in practice, to produce an explosive product with a density of 0.5 to 1.5, use is made of: a said density matrix of 1 to 1.7 of a so-called inverse base emulsion or "water in oil" obtained by a mixture of ( a) an organic continuous phase consisting of a mixture of mineral oils and gas oil, and (b) a discontinuous aqueous phase of various oxidizing salts in aqueous solution based on ammonium nitrate and / or sodium nitrate and / or calcium nitrate at a flow rate of 25 to 300 Kg / min. (min = minute), preferably from 100 to 150 kg / min., and - a so-called gaseous reactive solution with a density of 0.5 to 1.5 based on sodium nitrite and / or sodium thiocyanate, at a flow rate of 0.1 at 2 L / min; in a reagent / matrix flow ratio varying from 0.1 to 2 L / 100 kg of the proportion. More particularly, when the downstream end of the first pipe is worn and / or damaged, the following steps are carried out: a) said first mixer is removed from said first pipe, b) the downstream end of the first used pipe is cut off and (c) replacing said first mixer within said first pipe, (d) disassembling said upstream end of said first pipe, and extracting an upstream portion of said second pipe and disassembling a first upstream portion of the second portion downstream of a second flexible hose, and e) exiting the first pipe and shortening said second downstream portion of the second flexible hose, then it is placed in said first pipe and connected to again to the upstream portion of the second pipe remained inside a rigid upstream portion of the first pipe. Other features and advantages of the present invention will emerge more clearly on reading the following description, given in an illustrative and nonlimiting manner, with reference to the appended drawings, in which: FIG. 1 represents a mobile manufacturing unit of explosives 1 (abbreviated "UMFE") namely a truck 1 carrying the equipment of the installation according to the present invention on its rear frame la, and - Figure 1A represents the deployment of a set of coaxial pipes 6 unwound from a reel 5 at the rear of said truck, and - Figure 1B shows a sectional view of a borehole 11 made in a rock mass 15 in which the explosive product 10 is deposited, the open down end of the assembly of coaxial pipes 6 according to the invention arranged in the hole, and - Figure 2 shows a diagram of the equipment of the installation according to the present invention for the implementation of the method according to the invention, and - Figure 3 shows the detail of a perspective view of the reel 5, and - Figure 3A shows a vertical sectional view at the first rigid portion 61a of the outer pipe 61 of the set of coaxial pipes 6, and - FIGS. 4A and 4B are sectional views of a said first connection piece 3 and two sets of rotary joint joints 41 and 42, and FIG. 4C is a view showing mounting said second gasification reagent transfer pipe 62 or inner pipe 62 to said first connecting piece 3 and the second rotating joint fitting 42, and FIGS. 5A, 5B and 5C show various views relating to the introduction of the first static mixer 7 inside and at the downstream end of the first pipe 61 downstream of the valve 64 of the downstream end 64 of the second pipe 62. Detailed description An installation 1 for the production of explosive products 10 in situ to di At the site of use of the explosive, namely, more precisely at a borehole 11 according to the invention, comprises the following equipment arranged in the following manner: a truck 1 supports on its chassis rearward the first tank 1-1 containing a product consisting mainly of an explosive emulsion called "matrix", and 20 - a second tank 1-2 containing a gasification reagent, especially based on sodium nitrite and thiocyanate, and a third reservoir 1-3 containing a reaction catalyst, namely an acid, especially acetic acid, for catalyzing the reaction of the matrix with the gasification reagent to release a gas as described below, and - a fourth water tank 1-4, and - a fifth tank of nitrates 1-5.
Le camion 1 supporte également sur son châssis la les différentes pompes suivantes : - une première pompe 2-1 disposée en sortie du premier réservoir 1-1 et destinée à transférer la matrice du premier réservoir 1-1 vers le trou de forage 11 par l'intermédiaire d'un premier circuit comprenant une canalisation de transfert de matrice la puis un ensemble de tuyaux coaxiaux 6 décrit ci-après, et - une deuxième pompe 2-2 disposée en sortie du deuxième réservoir 1-2 destinée à transférer le réactif de gazéification depuis son deuxième réservoir 1-2 dans un deuxième circuit comprenant une canalisation de transfert de réactif lb vers l'ensemble de tuyaux coaxiaux 6 tel que décrit ci-après, et - une troisième pompe 2-3 destinée à transférer le catalyseur depuis son réservoir 1-3 jusque dans le premier réservoir 1-1, et - une pompe 2-5 et/ou vis d'extraction destinée à transférer le nitrate du cinquième réservoir 1-5 vers ledit premier réservoir 2-1 - une pompe 2-4 destinée à transférer l'eau du quatrième réservoir 1-4 dans un circuit lc vers le premier circuit la de transfert de la matrice de façon à lubrifier le produit visqueux que constitue la matrice et faciliter son transfert au sein d'un premier tuyau de transfert 61 comme décrit ci-après. La jonction du circuit d'eau lc sur le premier circuit de matrice la se fait par une pièce ld dénommée « anneau injecteur d'eau de lubrification ». La fonction de l'eau est uniquement la lubrification de la matrice pour une diminution des pertes de charges. La canalisation constituant un premier circuit de transfert de matrice la relie le premier réservoir 1-1 à un premier tuyau flexible 61 externe de l'ensemble de tuyau 6 enroulé sur un enrouleur 5. Et, le deuxième circuit de transfert de réactif de gazéification lb comprend des canalisations depuis le deuxième réservoir 1-2 jusqu'à un deuxième tuyau 62 interne de transfert de réactif de gazéification de l'ensemble de tuyaux 6 enroulé sur l'enrouleur 5. Le deuxième tuyau 62 est disposé à l'intérieur du premier tuyau 61 et se positionne sensiblement de manière coaxiale à l'intérieur du tuyau 61 lorsque du fait du flux de matrice passant dans l'espace annulaire entre le premier tuyau 61 et le deuxième tuyau 62 lorsque l'on transfère ladite matrice vers le trou de forage 11. Le camion 1 supporte également un mélangeur statique dénommé « deuxième mélangeur » statique 2-6, en amont de l'ensemble de tuyau coaxiaux 6. Le camion 1 supporte également sur son châssis arrière la des vannes comprenant : - une première vanne V1 en sortie du réservoir 1-1 monté sur la première canalisation la de transfert de matrice, et - en aval de la première pompe 2-1, une deuxième vanne V2 en sortie du deuxième réservoir 1-2 de transfert de réactif de gazéification coopérant avec le deuxième circuit lb de transfert de réactif de gazéification en amont de la deuxième pompe 2-2, et - une vanne d'isolement 1-2a en amont du deuxième réservoir de réactif de gazéification 1-2, et - une troisième vanne V3, vanne trois voies permettant d'alimenter une canalisation de dérivation lb-1 du deuxième circuit lb de réactif de gazéification connecté à la première canalisation de transfert de matrice la en aval de la première vanne V1 mais en amont dudit deuxième mélangeur statique 2-6. En amont du deuxième mélangeur 2-6 se trouve connectée une dérivation d'injection d'air le, rejoignant le premier circuit la de matrice en aval de la première vanne Vl. On peut ainsi par envoi d'air comprimé, nettoyer l'ensemble du circuit en aval, à volonté, notamment entre deux utilisations. Le camion 1 supporte également sur son châssis arrière la une unité de commande centrale 9 comportant un clavier 9a et/ou une interface graphique 9b, coopérant avec un logiciel apte à commander l'actionnement des dites pompes et desdites vannes. En aval de la troisième vanne V3, le circuit de transfert de réactif de gazéification lb rejoint le premier circuit de transfert de matrice la en aval du deuxième mélangeur 2-6 au niveau d'une pièce de connexion dénommée première pièce de connexion 3 qui assure la connexion entre la première canalisation la et la deuxième canalisation lb juste en amont de l'ensemble de tuyaux coaxiaux 6 enroulés sur l'enrouleur 5, de manière à ce que le flux de réactif de gazéification soit transféré dans le deuxième tuyau interne 62 et le flux de matrice provenant du premier circuit la soit transféré à l'intérieur du premier tuyau 61 et à l'extérieur du deuxième tuyau 62 dans l'espace annulaire entre la paroi interne du premier tuyau61 et le deuxième tuyau 62, tel que décrit ci-après. La vanne V3 permet, en forçant la circulation du réactif de gazéification vers la dérivation lb-1 d'obtenir un premier mode de fonctionnement de l'installation selon un procédé traditionnel dans lequel on mélange le réactif de gazéification et la matrice au sein du mélangeur 2-6 en amont de l'ensemble de tuyaux de transfert 6 jusqu'au trou de forage 11. Dans ce mode de réalisation traditionnel, le produit explosif 10 produit au sein du mélangeur 2-6 est véhiculé sur une longue distance, c'est-à-dire tout le long d'un long tuyau rejoignant le trou de forage 11. Le châssis la du camion 1 supporte également en amont de la deuxième pompe 2-2 et en aval du deuxième réservoir 1-2 un filtre 2-5. Par ailleurs, le châssis la supporte également : - en aval de la deuxième pompe 2-2, un débitmètre 2-2a du type à section variable, tel que commercialisé par la société KROHNE (FR) sous la référence H250/RR/MXX/ESK, la deuxième pompe 2-2 étant du type à piston notamment telle que commercialisée par la société CAT PUMPS (USA) sous la référence CAT2XX, et - un capteur de vitesse 2-la du type compte tours monté sur le moteur hydraulique de la pompe tel que commercialisé par la société DANFOSS (FR) sous la référence 151-5662 indiquant la vitesse de rotation de la première pompe 2-1, la première pompe 2-1 étant une pompe volumétrique dite à cavité progressive entraînée par un moteur hydraulique du type commercialisé par la société DANFOSS sous la référence par exemple OMS160EM151F-3023. Plus particulièrement, La pompe envoie des signaux pulsés selon un nombre déterminé connu d'impulsion par tour au capteur de vitesse 2-la de sorte qu'on peut connaître la quantité de produit débité par la pompe, par étalonnage en fonction du nombre de tours de ladite première pompe.The truck 1 also supports on its chassis the following different pumps: a first pump 2-1 disposed at the outlet of the first tank 1-1 and intended to transfer the matrix of the first tank 1-1 towards the borehole 11 by the intermediate of a first circuit comprising a matrix transfer pipe la and a set of coaxial pipes 6 described below, and - a second pump 2-2 disposed at the outlet of the second tank 1-2 for transferring the reagent of gasification from its second reservoir 1-2 in a second circuit comprising a reagent transfer line lb to the set of coaxial pipes 6 as described below, and - a third pump 2-3 for transferring the catalyst from its reservoir 1-3 into the first reservoir 1-1, and - a pump 2-5 and / or extraction screw for transferring the nitrate of the fifth reservoir 1-5 to said first reservoir 2-1 - a pump 2-4 for transferring water from the fourth reservoir 1-4 in a circuit 1c to the first transfer circuit 1a of the matrix so as to lubricate the viscous product constituted by the matrix and facilitate its transfer within a first transfer pipe 61 as described below. The junction of the water circuit lc on the first matrix circuit la is by a piece ld called "lubrication water injector ring". The function of the water is only the lubrication of the matrix for a reduction of the losses of charges. The pipe constituting a first matrix transfer circuit connects the first tank 1-1 to a first external hose 61 of the hose assembly 6 wound on a reel 5. And the second gasification reagent transfer circuit 1b comprises pipes from the second reservoir 1-2 to a second internal gasification reagent transfer pipe 62 of the pipe assembly 6 wound on the reel 5. The second pipe 62 is disposed inside the first 61 and is positioned substantially coaxially inside the pipe 61 when due to the flow of matrix passing in the annular space between the first pipe 61 and the second pipe 62 when transferring said matrix to the hole of drilling 11. The truck 1 also supports a static mixer called "second mixer" static 2-6, upstream of the set of coaxial pipe 6. The truck 1 also supports on its chassi s back of the valves comprising: - a first valve V1 at the outlet of the tank 1-1 mounted on the first pipe transfer the matrix transfer, and - downstream of the first pump 2-1, a second valve V2 at the outlet of the second gasification reagent transfer tank 1-2 cooperating with the second gasification reagent transfer circuit lb upstream of the second pump 2-2, and - an isolation valve 1-2a upstream of the second reactant reservoir. gasification 1-2, and a third valve V3, a three-way valve for supplying a bypass line lb-1 of the second gasification reagent circuit lb connected to the first matrix transfer pipe 1a downstream of the first valve V1 but upstream of said second static mixer 2-6. Upstream of the second mixer 2-6 is connected an air injection bypass 1, joining the first circuit 1a of the matrix downstream of the first valve V1. It is thus possible, by sending compressed air, to clean the assembly. circuit downstream, at will, especially between two uses. The truck 1 also supports on its rear chassis the central control unit 9 comprising a keyboard 9a and / or a graphic interface 9b, cooperating with software capable of controlling the actuation of said pumps and said valves. Downstream of the third valve V3, the gasification reagent transfer circuit 1b joins the first matrix transfer circuit 1a downstream of the second mixer 2-6 at a connecting part referred to as the first connecting piece 3 which ensures the connection between the first pipe 1a and the second pipe 1b just upstream of the set of coaxial pipes 6 wound on the winder 5, so that the flow of gasification reagent is transferred into the second inner pipe 62 and the matrix flow from the first circuit is transferred inside the first pipe 61 and outside the second pipe 62 into the annular space between the inner wall of the first pipe 61 and the second pipe 62, as described herein. -after. The valve V3 makes it possible, by forcing the circulation of the gasification reagent to the shunt lb-1, to obtain a first mode of operation of the plant according to a traditional method in which the gasification reagent and the matrix are mixed within the mixer. 2-6 upstream of the set of transfer pipes 6 to the borehole 11. In this traditional embodiment, the explosive product 10 produced within the mixer 2-6 is conveyed over a long distance, that is to say along a long pipe joining the borehole 11. The chassis 1 of the truck 1 also supports upstream of the second pump 2-2 and downstream of the second tank 1-2 a filter 2- 5. Furthermore, the frame also supports it: downstream of the second pump 2-2, a flowmeter 2-2a of the variable section type, as sold by the company KROHNE (FR) under the reference H250 / RR / MXX / ESK, the second pump 2-2 being of the piston type in particular as sold by the company CAT PUMPS (USA) under the reference CAT2XX, and - a speed sensor 2-la of the rev counter type mounted on the hydraulic motor of the pump as sold by the company DANFOSS (FR) under the reference 151-5662 indicating the speed of rotation of the first pump 2-1, the first pump 2-1 being a so-called progressive cavity volumetric pump driven by a hydraulic motor of the type sold by Danfoss under the reference for example OMS160EM151F-3023. More particularly, the pump sends pulsed signals according to a known determined number of pulses per revolution to the speed sensor 2-la so that the quantity of product delivered by the pump can be known, by calibration according to the number of turns. of said first pump.
En aval de la première pompe 2-1, sont également montés sur le premier circuit 1-a différents capteurs à savoir, un capteur de pression du fluide de matrice la-1, un capteur de température la-2, et un capteur de détection d'absence de débit de flux de matrice la-3. En effet, la pression du flux de matrice dans la canalisation la ne doit pas dépasser 20 bars et de même la température doit rester inférieure à 70 °C pour des raisons de sécurité, au risque que l'émulsion explosive ne devienne trop sensible. En effet, l'émulsion explosive devient plus sensible à la décomposition rapide lorsque la pression et la température augmentent. Pour mieux appréhender ce risque, on a déterminé la pression limite de 20bar à l'aide d'un dispositif spécifique de sécurité appelé MBP (« Minimum Burning Pressure »). Un dispositif 2-2b coopérant avec la deuxième pompe 2-2 est une soupape de sécurité servant à faire baisser la pression lorsque la pression se situe au-delà d'un niveau seuil.Downstream of the first pump 2-1, are also mounted on the first circuit 1-a different sensors namely, a matrix fluid pressure sensor la-1, a temperature sensor la-2, and a detection sensor no flow rate of matrix flow la-3. In fact, the pressure of the matrix flow in the pipe 1a must not exceed 20 bars and the temperature must remain below 70 ° C for safety reasons, at the risk that the explosive emulsion becomes too sensitive. Indeed, the explosive emulsion becomes more sensitive to rapid decomposition when the pressure and the temperature increase. To better understand this risk, the limit pressure of 20bar was determined using a specific safety device called MBP ("Minimum Burning Pressure"). A device 2-2b cooperating with the second pump 2-2 is a safety valve used to lower the pressure when the pressure is above a threshold level.
Selon une caractéristique originale de la présente invention, un deuxième tuyau de transfert de réactif de gazéification est disposé à l'intérieur d'un premier tuyau 6-1 de transfert de matrice, pour former un ensemble de tuyau 6 selon la disposition suivante. Les deux canalisations indépendantes de transfert de matrice la et transfert de réactif de gazéification lb se rejoignent au niveau d'une première pièce de connexion 3 originale selon la présente invention décrite sur les figures 4A, 4B et 4C. La première pièce de connexion 3 comprend un manchon principal à paroi cylindrique externe 3a ouvert à ses extrémités amont 31a et aval 31b formant ainsi un premier orifice d'entrée 31a à section circulaire en amont et un premier orifice de sortie 31b en aval à section circulaire, disposés tous les deux selon un axe longitudinale XX' de ladite enveloppe 3a. Le premier orifice d'entrée 31a comporte un filetage 33a de sorte que l'extrémité filetée d'un raccord lai fileté à l'extrémité avale de la première canalisation la de transfert de matrice peut y être fixé par vissage. En extrémité avale de la première pièce de connexion 3 l'extrémité amont du premier tuyau 61 et l'extrémité amont du deuxième tuyau 62 sont montées de manière coaxiale sur des premier orifice de sortie 31b et respectivement deuxième orifice de sortie 32b coaxiaux à l'extrémité avale de ladite première pièce de connexion 3 via un premier raccord à joint tournant 41 et respectivement un deuxième raccord à joint tournant 42. Le premier orifice de sortie 31b comporte une surface externe filetée 33b à la surface externe de l'extrémité avale de la paroi d'enveloppe cylindrique 3a sur lequel on peut visser l'extrémité femelle d'un premier raccord à joint tournant 41 dont l'extrémité avale comporte un filetage périphérique externe 41c sur lequel sera vissé un raccord femelle 61c1 à l'extrémité amont d'une première partie rigide 6-la du premier tuyau 61.According to an original feature of the present invention, a second gasification reagent transfer pipe is disposed within a first die transfer pipe 6-1, to form a pipe assembly 6 according to the following arrangement. The two independent matrix transfer pipes 1a and transfer gasification reagent 1b meet at a first original connecting piece 3 according to the present invention described in FIGS. 4A, 4B and 4C. The first connecting piece 3 comprises a main sleeve with an outer cylindrical wall 3a open at its upstream ends 31a and downstream 31b thus forming a first inlet orifice 31a with a circular section upstream and a first outlet orifice 31b downstream with a circular section. , both arranged along a longitudinal axis XX 'of said envelope 3a. The first inlet port 31a has a thread 33a so that the threaded end of a threaded connection threaded at the downstream end of the first matrix transfer pipe 1a can be screwed into it. At the downstream end of the first connection piece 3, the upstream end of the first pipe 61 and the upstream end of the second pipe 62 are coaxially mounted on first coaxial outlet openings 31b and 32b respectively. downstream end of said first connecting piece 3 via a first rotary joint connection 41 and respectively a second rotary joint connection 42. The first outlet orifice 31b has a threaded outer surface 33b on the outer surface of the downstream end of the cylindrical casing wall 3a on which can be screwed the female end of a first rotary joint connection 41 whose downstream end comprises an external peripheral thread 41c on which a female connector 61c1 will be screwed to the upstream end of a first rigid portion 6-la of the first pipe 61.
Sur la figure 4B, on a représenté la structure connue de ce type de premier raccord à joint tournant 41 comportant des joints toriques d'étanchéité 41d et des roulements à billes 41e assurant la coopération entre deux pièces tubulaires 41a et 41b juxtaposés dans la direction axiale XX'. Ladite première pièce 41a comporte une extrémité femelle amont vissée sur le filetage externe 33b de l'extrémité mâle de la pièce 3 formant le premier orifice de sortie 31b. Une deuxième partie 41b avale du premier raccord à joint tournant 41 comprend à son extrémité avale, le filetage externe 41c coopérant avec le raccord d'extrémité 61d du premier tuyau 61. Les roulements à billes 41e et joints toriques 41d autorisent la rotation de la première partie rotative 41b du premier raccord joint tournant 41 autour de l'axe XX' commun de la première pièce de connexion 3 et du raccord tournant 41 par rapport à la première partie 41a fixe du raccord à joint tournant 41. Ainsi, l'extrémité amont du premier tuyau 61 peut tourner sur elle-même en cas de torsion lors de son enroulement sur l'enrouleur 5 comme décrit ci-après. La paroi d'enveloppe 3a contient une pièce coudée interne 3b comportant une première partie tubulaire s'étendant dans une direction perpendiculaire à l'axe longitudinal XX' de la paroi 3a et définissant un deuxième orifice d'entrée 32a traversant ladite paroi 3-a et sur lequel est vissé l'extrémité filetée d'un raccord terminal lb' de la deuxième canalisation lb d'amené de réactif de gazéification. La pièce coudée 3b comporte également une partie tubulaire disposée axialement dans l'intérieur de la pièce 3 et formant un deuxième orifice de sortie 32b sur lequel est vissé une première pièce fixe amont 42a d'un deuxième raccord à joint tournant 42 comprenant une deuxième pièce avale 42 rotative juxtaposée dans la direction longitudinale axiale XX'. Ladite première pièce amont 42a coopère avec la deuxième pièce avale 42b par des joints étanches et roulements à billes (non représentés), autorisant la rotation de ladite deuxième pièce 42b du deuxième rapport à joint tournant 42 autour de l'axe XX'.FIG. 4B shows the known structure of this type of first rotary joint coupling 41 comprising sealing O-rings 41d and ball bearings 41e ensuring the cooperation between two tubular pieces 41a and 41b juxtaposed in the axial direction. XX '. Said first piece 41a has an upstream female end screwed onto the external thread 33b of the male end of the part 3 forming the first outlet orifice 31b. A second part 41b of the first swivel joint coupling 41 comprises at its downstream end, the external thread 41c cooperating with the end fitting 61d of the first pipe 61. The 41e ball bearings 41d and O rings allow the rotation of the first rotary part 41b of the first rotary joint connection 41 around the common axis XX 'of the first connection piece 3 and the rotary coupling 41 with respect to the first fixed portion 41a of the rotary joint connection 41. Thus, the upstream end of the first pipe 61 can rotate on itself in case of torsion during its winding on the reel 5 as described below. The envelope wall 3a contains an internal bent piece 3b having a first tubular portion extending in a direction perpendicular to the longitudinal axis XX 'of the wall 3a and defining a second inlet orifice 32a passing through said wall 3-a and on which is screwed the threaded end of a terminal connector lb 'of the second conduit lb of gasification reagent feed. The bent part 3b also comprises a tubular part arranged axially in the interior of the part 3 and forming a second outlet orifice 32b on which is screwed a first upstream fixed part 42a of a second rotary joint fitting 42 comprising a second part Rotary swallow 42 juxtaposed in the axial longitudinal direction XX '. Said first upstream part 42a cooperates with the second downstream part 42b by seals and ball bearings (not shown), allowing the rotation of said second part 42b of the second rotary joint ratio 42 around the axis XX '.
L'extrémité amont du deuxième tuyau 62 est fixée sur ladite deuxième pièce rotative 42b du deuxième raccord à joint tournant 42, par l'intermédiaire d'une pièce raccord d'extrémité 62c. On peut utiliser des raccords à joint tournant de référence TP 1100M/F commercialisé par la société PACQUET INDUSTRIE (France). La première pièce de connexion 3 et les deux raccords à joints tournant 41 et 42 sont disposés juste en amont d'un tambour enrouleur 5 supportés par une structure ou poutre 5a. Sur le tambour enrouleur 5, on enroule une partie flexible avale 61b du premier tuyau 61 reliée à une partie rigide amont 61a par un collier amovible 61c. La partie rigide amont 61a du premier tuyau 61 solidaire à la fois de la première pièce de connexion 3 via le premier raccord à joint tournant 41 et solidaire également du tambour enrouleur 5 est donc entraînée en rotation avec le tambour enrouleur 5 autour de l'axe de rotation XX' commun du tambour enrouleur 5 et desdits raccords à joint tournant 41 et 42 et de la pièce de connexion 3. La partie rigide 61a présente différents coudes, de sorte que sa partie amont est disposée selon la direction axiale XX' de la première pièce de connexion 3 tandis que sa partie avale au niveau du collier 61c est disposée dans une direction tangentielle d'une partie cylindrique 51 du tambour enrouleur 5 sur laquelle peut s'enroule la deuxième partie flexible 61b du premier tuyau 61 lorsqu'on actionne en rotation le tambour enrouleur 5. Le deuxième tuyau 62 disposé à l'intérieur du premier tuyau 61 mais comporte deux parties flexibles 62a et 62b reliées entre-elles par un raccord à union double 63. Ce raccord à union double 63 est du type bien connu de l'homme de l'art tel que par exemple un raccord à union double de référence 55-400-6 commercialisé par la société SWAGELOK (USA) aussi dénommé sous l'appellation « tube fitting ». Ce type de raccord à union double 63 coopère avec des pièces de raccord d'extrémités 62d et 62e aux extrémités respectivement des premières parties flexibles amont 62a et aval 62b du deuxième tuyau 62. Le raccord union double 63 est disposé juste en aval du collier 61c de sorte que lorsque l'on ouvre et/ou retire le collier 61c pour séparer les deux parties de premier tuyau 61a et 61b, on peut extraire le deuxième tuyau 62 et désaccoupler les deux parties 62a et 62b de deuxième tuyau 62 et ainsi facilement raccourcir autant que de besoin la partie avale 62b lorsque l'on a précédemment été amené à raccourcir l'extrémité avale usée de la partie flexible 61b du premier tuyau 61 comme décrit ci-après.The upstream end of the second pipe 62 is fixed on said second rotary part 42b of the second rotary joint connection 42, via an end fitting piece 62c. It is possible to use rotary joint fittings of reference TP 1100M / F marketed by PACQUET INDUSTRIE (France). The first connecting piece 3 and the two rotary joint connections 41 and 42 are arranged just upstream of a drum drum 5 supported by a structure or beam 5a. On the winding drum 5, a downstream flexible portion 61b of the first pipe 61 is connected to an upstream rigid portion 61a by a removable collar 61c. The upstream rigid portion 61a of the first pipe 61 secured to both the first connecting piece 3 via the first rotary joint connection 41 and also integral with the winding drum 5 is thus rotated with the winding drum 5 about the axis. common rotation of the winding drum 5 and said joints with rotating joint 41 and 42 and the connection piece 3. The rigid portion 61a has different bends, so that its upstream portion is arranged in the axial direction XX 'of the first connecting part 3 while its downstream part at the collar 61c is arranged in a tangential direction of a cylindrical portion 51 of the drum drum 5 on which can be wound the second flexible portion 61b of the first pipe 61 when actuated in rotation the drum drum 5. The second pipe 62 disposed inside the first pipe 61 but has two flexible portions 62a and 62b connected to each other by a coupling to double union 63. This double union connection 63 is of the type well known to those skilled in the art such as for example a double union connection reference 55-400-6 marketed by the company SWAGELOK (USA) also called under the name "tube fitting". This type of double union connection 63 cooperates with end connection pieces 62d and 62e respectively at the ends of the first upstream and downstream flexible portions 62a and 62b of the second pipe 62. The double union 63 is located just downstream of the collar 61c so that when opening and / or removing the collar 61c to separate the two first pipe portions 61a and 61b, the second pipe 62 can be withdrawn and the two parts 62a and 62b of the second pipe 62 uncoupled and thus easily shortened as far as necessary the downstream portion 62b when it has previously been brought to shorten the worn down end of the flexible portion 61b of the first pipe 61 as described below.
L'extrémité avale du deuxième tuyau 62 comporte un clapet anti retour 64, par exemple du type commercialisé par la société SWAGELOK sous la référence SS-4-HC-1-4. Le clapet 64 se trouve situé le plus près techniquement possible de l'extrémité amont d'un premier mélangeur statique 7 disposée à l'extrémité avale du premier tuyau 61. Le clapet 64 s'ouvre sous la pression de réactif de gazéification parcourant le tuyau 62 quand la pompe 22 fonctionne; et le clapet 64 se ferme quand la deuxième pompe 2-2 s'arrête et que la pression de flux de réactif de gazéification cage à l'arrêt de la deuxième pompe 2-2. Comme représenté sur la figure 4C, le clapet 64 est relié à un raccord 62f à l'extrémité avale de la conduite interne 62 par un deuxième raccord à union double 64a. Pour la partie flexible 61b de premier tuyau 61, on peut utiliser un flexible thermoplastique de diamètre externe de 42 mm et de diamètre interne de 32 mm, de 30 à 100 m de long. Pour le deuxième tuyau 62, on utilisera des conduites thermoplastiques de diamètre externe de 13,2 mm et diamètre interne de 8.3 mm. Le premier mélangeur 7 est constitué de huit ailettes à surface hélicoïdale 7a fixées de manière juxtaposées dans la direction XiXi' du premier mélanger et du premier tuyau 61, sur une tige 7b. La tige 7b forme des ondulations de sorte que toute la surface de chaque ailette hélicoïdale se trouve fixée sur ladite tige dans la direction longitudinale X1X1' du premier tuyau 61 et du premier mélangeur 7 inséré à l'intérieur du premier tuyau 61. La tige 7b est donc ondulée de sorte à suivre le contour ou le = profil des éléments hélicoïdaux 7a. La tige 7b constitue donc un renfort de par ce type de fixation.The downstream end of the second pipe 62 comprises an anti-return valve 64, for example of the type marketed by Swagelok under the reference SS-4-HC-1-4. The valve 64 is located as close technically as possible to the upstream end of a first static mixer 7 disposed at the downstream end of the first pipe 61. The valve 64 opens under the pressure of gasification reagent passing through the pipe 62 when the pump 22 is running; and the valve 64 closes when the second pump 2-2 stops and the gasification reagent flow pressure ceases at the stop of the second pump 2-2. As shown in FIG. 4C, the valve 64 is connected to a fitting 62f at the downstream end of the inner pipe 62 by a second double union connection 64a. For the flexible portion 61b of first pipe 61, it is possible to use a thermoplastic hose with an external diameter of 42 mm and an internal diameter of 32 mm, 30 to 100 m long. For the second pipe 62, thermoplastic pipes of external diameter of 13.2 mm and internal diameter of 8.3 mm will be used. The first mixer 7 consists of eight helical surface fins 7a juxtaposed in the direction XiXi 'of the first mixer and the first hose 61, on a rod 7b. The rod 7b forms corrugations so that the entire surface of each helical fin is fixed on said rod in the longitudinal direction X1X1 'of the first pipe 61 and the first mixer 7 inserted inside the first pipe 61. The rod 7b is thus corrugated so as to follow the contour or the = profile of the helical elements 7a. The rod 7b thus constitutes a reinforcement of this type of fixation.
Les ailettes 7a sont juxtaposées les unes contre les autres dans la direction longitudinale X1X1', mais les différentes portions de surfaces hélicoïdales ne sont pas continues hélicoïdalement, c'est-à-dire sont qu'elles sont décalées angulairement de façon à optimiser les performances dudit mélangeur notamment décalés à 900 successivement par rapport à l'axe X1X1'. L'ajout de la tige 7b supportant les ailettes hélicoïdales 7a est une caractéristique originale de la présente invention car dans les conditions de mise en oeuvre à l'intérieur d'un tuyau de faible diamètre selon la présente invention, le mélangeur statique subit des pressions importantes. Et il a été constaté qu'en l'absence de tige support, un simple soudage aux extrémités des ailettes 7a pour les maintenir reliées entre-elles comme dans la technique antérieure est insuffisant. Plus précisément, les éléments hélicoïdaux présentent un diamètre de sensiblement 30mm, une épaisseur des surfaces hélicoïdales d'environ 2mm, une longueur d'environ 50mm et un décalage angulaire d'environ 90°, la longueur totale du mélangeur étant d'environ 400mm. Le flux de réactif de gazéification sortant du clapet 64 et le flux de matrice arrivant au niveau du clapet 64 à l'extérieur de celui-ci, peuvent se mélanger intimement au niveau du premier mélangeur 7, de par la forme hélicoïdale des ailettes dont le diamètre est juste inférieur au diamètre interne du premier tuyaux 61 . De préférence, les différents éléments hélicoïdaux sont à pas à sens inversé successivement. L'écoulement de matière à travers le mélangeur statique dans la direction longitudinale X1X1', devient laminaire et est divisé en courants partiels par un premier élément hélicoïdal 7a, puis redivisé au passage d'un élément hélicoïdal 7a suivant et ainsi de suite. La rotation du produit provoquée par la forme des modules hélicoïdaux 7a accentue les phénomènes de mélange. En principe, les éléments hélicoïdaux 7a ne sont pas eux-mêmes en mouvement et en tout état de cause, aucune source de puissance n'est requise autre que celle apportée par lesdites pompes pour vaincre la perte de charge induite par les chicanes que forment les successions de dits éléments hélicoïdaux 7a. Selon une caractéristique originale de la présente invention, l'extrémité avale du premier tuyau 61 en aval du premier mélangeur statique 7 est équipée d'une butée 8 comportant une surface externe fileté 8a apte à être vissée contre la paroi interne 61e de l'extrémité avale 61f du premier tuyau 61. Le fluide de produit explosif obtenu par mélange de la matrice et du réactif de gazéification au sein de premier mélangeur statique 7 peut s'écouler à travers un orifice cylindrique central 8b de la butée 8. Comme représenté sur la figure 5C, une clé 81 comportant des ergots 81a coopérant avec des encoches 8b1 à la périphérie de l'extrémité avale de la butée 8 ce qui permet de visser et dévisser la butée 8 à volonté. L'orifice central 8b de la pièce de de butée 8 permet le passage large du produit explosif et évite des effets indésirables pouvant résulter d'une augmentation de la pression de pompage ou de blocage intempestifs liés à l'accumulation de produits explosifs à ce niveau. En pratique, le diamètre interne de l'ouverture centrale de la pièce de butée 8 est d'environ 20 mm.The fins 7a are juxtaposed against each other in the longitudinal direction X1X1 ', but the different portions of helical surfaces are not helically continuous, that is to say they are angularly offset in order to optimize the performances said mixer in particular shifted at 900 successively relative to the axis X1X1 '. The addition of the rod 7b supporting the helical fins 7a is an original feature of the present invention because under the conditions of implementation inside a small diameter pipe according to the present invention, the static mixer is under pressure. important. And it has been found that in the absence of support rod, a simple welding at the ends of the fins 7a to keep them connected together as in the prior art is insufficient. Specifically, the helical elements have a diameter of substantially 30mm, a helical surface thickness of about 2mm, a length of about 50mm and an angular offset of about 90 °, the total length of the mixer being about 400mm. The flow of gasification reagent leaving the valve 64 and the flow of matrix arriving at the valve 64 outside thereof, can mix intimately at the first mixer 7, by the helical shape of the fins whose diameter is just smaller than the inner diameter of the first pipe 61. Preferably, the different helical elements are successively reversed. The flow of material through the static mixer in the longitudinal direction X1X1 'becomes laminar and is divided into partial streams by a first helical element 7a, then redivated to the passage of a next helical element 7a and so on. The rotation of the product caused by the shape of the helical modules 7a accentuates the mixing phenomena. In principle, the helical elements 7a are not themselves in motion and in any case, no source of power is required other than that provided by said pumps to overcome the pressure drop induced by the baffles that form the successions of said helical elements 7a. According to an original feature of the present invention, the downstream end of the first pipe 61 downstream of the first static mixer 7 is equipped with a stop 8 having a threaded outer surface 8a adapted to be screwed against the inner wall 61e of the end. downstream 61f of the first pipe 61. The explosive product fluid obtained by mixing the matrix and the gasification reagent within the first static mixer 7 can flow through a central cylindrical orifice 8b of the abutment 8. As shown in FIG. 5C, a key 81 having lugs 81a cooperating with notches 8b1 at the periphery of the downstream end of the abutment 8 which allows to screw and unscrew the abutment 8 at will. The central orifice 8b of the abutment piece 8 allows wide passage of the explosive product and avoids undesirable effects that may result from an increase in the nuisance pumping or blocking pressure related to the accumulation of explosive products at this level. . In practice, the inner diameter of the central opening of the abutment piece 8 is about 20 mm.
La butée 8 a pour fonction essentielle de retenir le mélangeur statique 7 au sein de l'extrémité avale du premier tuyau 61. Le dévissage de la butée 8 permet de sortir le premier mélangeur 7 de l'extrémité avale du premier tuyau 61 et ainsi de pouvoir couper l'extrémité avale du tuyau 61 lorsque celle-ci est endommagée après un certain nombre d'utilisations du fait que la surface externe de l'extrémité avale du tuyau 61 en contact avec les parois des trous de forage 11 constituées de massif rocheux 15 ont tendance à endommager l'extrémité avale du tuyau 61 pendant l'opération comme décrit ci-après. On peut également retirer le premier mélangeur 7, si on ne souhaite pas mettre en oeuvre un procédé selon l'invention faisant varier la densité du produit explosif produit en continu lors d'un cycle de production. Dans ce cas, on retire le deuxième tuyau 62 de l'intérieur du premier tuyau 61 en réalisant le désaccouplement au niveau du collier 1c comme décrit ci-dessus ou en déconnectant le conduit lb et en fermant ledit deuxième orifice d'entrée 32a par un bouchon et en orientant la vanne trois voies V3 de sorte que tout le réactif de gazéification passe par la canalisation 1b1 et se mélange au flux de matrice en amont du deuxième mélangeur 26. En sortie de deuxième mélangeur, le produit explosif est transféré via le conduit 61 à un trou de forage dans lequel l'extrémité avale 61f du tuyau 61 est disposée.The stop 8 has the essential function of holding the static mixer 7 within the downstream end of the first pipe 61. The unscrewing of the stop 8 makes it possible to remove the first mixer 7 from the downstream end of the first pipe 61 and thus to ability to cut the downstream end of the pipe 61 when it is damaged after a number of uses because the outer surface of the downstream end of the pipe 61 in contact with the walls of the drill holes 11 consist of rock mass 15 tend to damage the downstream end of the pipe 61 during the operation as described hereinafter. It is also possible to remove the first mixer 7, if it is not desired to implement a method according to the invention varying the density of the explosive product produced continuously during a production cycle. In this case, the second pipe 62 is removed from the inside of the first pipe 61 by uncoupling at the collar 1c as described above or by disconnecting the pipe 1b and closing said second inlet port 32a with a plugging and orienting the three-way valve V3 so that all the gasification reagent passes through the pipe 1b1 and mixes with the matrix flow upstream of the second mixer 26. At the outlet of the second mixer, the explosive product is transferred via the conduit 61 to a borehole in which the downstream end 61f of the pipe 61 is disposed.
Le mélangeur statique 7 en pratique s'étend sur une longueur de 0,5 à 1 mètre de sorte que le produit explosif produit se trouve en quantité réduite à l'intérieur du premier flexible 61. Ainsi, il est possible de faire varier la composition et donc la densité du produit explosif 10, quasiment en continu et en temps réel en sortie du tuyau 61 en adaptant les proportions relatives de débit et/ou de composition de réactif de gazéification et de matrice transférés dans lesdits premier et deuxième tuyaux, comme décrit dans le procédé de production de produit explosif décrit ci-après. Avantageusement, on met en oeuvre un procédé selon l'invention dans lequel on fait varier la densité du produit explosif produit en continu lors du remplissage d'un trou de forage 11 en un seul passage, c'est-à-dire, sans avoir à relever le tuyau 6 en cours de remplissage, comme décrit ci-après. L'émulsion est constituée de composants suivants : - huile minérale et/ou de vidange de moteur : 6,5 °/(:), - gasoil : environ 1%, - agents tensioactifs non ioniques: 1%, - nitrates d'ammonium et/ou de calcium et/ou sodium : environ 75%, - eau : environ 15 à 20 °h.The static mixer 7 in practice extends over a length of 0.5 to 1 meter so that the explosive product produced is in reduced quantity inside the first hose 61. Thus, it is possible to vary the composition. and therefore the density of the explosive product 10, almost continuously and in real time at the outlet of the pipe 61 by adapting the relative proportions of flow and / or composition of gasification reagent and matrix transferred in said first and second pipes, as described in the explosive product production process described hereinafter. Advantageously, a method according to the invention is used in which the density of the explosive product produced continuously is varied during the filling of a borehole 11 in a single pass, that is to say, without having to raise the pipe 6 during filling, as described below. The emulsion consists of the following components: - mineral oil and / or engine oil: 6.5 ° / (:), - gas oil: about 1%, - nonionic surfactants: 1%, - ammonium nitrate and / or calcium and / or sodium: about 75%, - water: about 15 to 20 ° h.
A l'émulsion ci-dessus ainsi obtenue, on ajoute des nitrates d'ammonium et/ou de calcium dans une proportion de 15 à 35% et un catalyseur par exemple d'acide acétique dans une proportion de 0,5 à 2%, auquel on peut également rajouter de l'aluminium (sous forme de poudre de granulométrie comprise entre environ 100pm et 2mm) dans une teneur de 1 à 10 °h en poids également. On obtient ainsi, ladite matrice selon la présente description au sein du premier réservoir 1-1. Un exemple de formulation de matrice est donc : - huile minérale et/ou de vidange moteur : 4.55%, - gasoil : 0.7% - agents tensio-actif : 0.7% - nitrate d'ammonium en solution : 52.5% - eau : 11.55% - nitrate d'ammonium solide en poudre : 30% A cette matrice, s'ajoute selon le procédé de la présente invention, un réactif de gazéification qui est ici notamment une solution aqueuse d'environ 20% de nitrite de sodium et 80% d'eau pouvant comprendre des catalyseurs tels que thiocyanate de sodium, formiate de sodium, nitrate de zinc et/ou nitrate de calcium. Le procédé de sensibilisation de la matrice consiste en une réaction chimique entre ledit réactif de gazéification et le nitrate d'ammonium contenu dans ladite matrice. Cette réaction chimique dégage un gaz, en l'espèce le nitrite réagi avec le nitrate pour former de l'azote gazeux, qui engendre une sensibilisation du produit par la création de « points chauds », c'est-à-dire d'interstices dans le produit de mélange permettant la propagation de l'onde de choc, donc la détonation du produit explosif. Le produit est donc rendu explosif du fait de cette sensibilisation. L'augmentation de la quantité de bulles de gaz diminue la masse volumique du produit et donc l'énergie explosive obtenue pour un volume constant de trou (énergie volumique). La densité de l'émulsion de base (non supplémentée) ci-dessus décrite est par exemple d'environ 1.4 à 1.6 et la densité de l'émulsion supplémentée définissant ladite matrice telle que décrite ci-dessus, avant mélange avec le réactif de gazéification est de 0.8 à 1.3. La densité du produit de mélange avant réaction de gazéification au sein dudit premier mélangeur est de 1,25 à 1,45 selon les proportions respectives de quantités et/ou débits de dite matrice et dit réactif de gazéification et la densité du produit explosif après gazéification est de 0,8 à 1,2. L'énergie moyenne d'un produit explosif 10 de densité 1.2 est de 3,7 MJ/kg soit 4,44 MJ/L. Ainsi, pour un produit explosif de densité de 0,5 à 1,5 l'énergie explosive sera de 1,85 à 5,55 MJ/L. Pour un débit Y de réactif de gazéification en L/min (produit/liquide) en fonction d'un débit de matrice X en kg/min de produit visqueux, la relation Y = aX + b est donnée par des abaques avec des valeurs de a et b différentes selon les valeurs de densité d du produit explosif obtenu après gazéification résultant de la réaction entre ladite matrice et le réactif de gazéification par mélange intime au sein du mélangeur statique. Ainsi, les valeurs différentes de a et b sont par exemple ici : - pour d = 0,8, Y = 0,0117X + 0,002, et - pour d = 0,9, Y = 0,0085X + 0,0012, et - pour d = 1, Y = 0,006X, et - pour d = 1,1, Y = 0,0039X + 0,0019, et - pour d = 1,2, Y = 0,0021X.To the above emulsion thus obtained, ammonium and / or calcium nitrates are added in a proportion of 15 to 35% and a catalyst for example of acetic acid in a proportion of 0.5 to 2%. which can also be added aluminum (in the form of powder particle size between about 100pm and 2mm) in a content of 1 to 10 ° by weight also. This matrix is thus obtained according to the present description within the first reservoir 1-1. An example of a matrix formulation is therefore: - mineral oil and / or motor oil: 4.55%, - gas oil: 0.7% - surfactants: 0.7% - ammonium nitrate in solution: 52.5% - water: 11.55% solid ammonium nitrate powder: 30% To this matrix, is added according to the process of the present invention, a gasification reagent which is here in particular an aqueous solution of about 20% of sodium nitrite and 80% of water may include catalysts such as sodium thiocyanate, sodium formate, zinc nitrate and / or calcium nitrate. The method of sensitizing the matrix consists of a chemical reaction between said gasification reagent and the ammonium nitrate contained in said matrix. This chemical reaction releases a gas, in this case nitrite reacted with nitrate to form nitrogen gas, which generates sensitization of the product by the creation of "hot spots", that is to say interstices in the mixture product allowing the propagation of the shock wave, therefore the detonation of the explosive product. The product is therefore explosive because of this sensitization. The increase in the quantity of gas bubbles decreases the density of the product and therefore the explosive energy obtained for a constant volume of hole (volume energy). The density of the basic emulsion (not supplemented) described above is for example about 1.4 to 1.6 and the density of the supplemented emulsion defining said matrix as described above, before mixing with the gasification reagent is 0.8 to 1.3. The density of the gasification reaction mixture product within said first mixer is from 1.25 to 1.45 according to the respective proportions of quantities and / or flow rates of said matrix and said gasification reagent and the density of the explosive product after gasification. is from 0.8 to 1.2. The average energy of an explosive product of density 1.2 is 3.7 MJ / kg, ie 4.44 MJ / L. Thus, for an explosive product with a density of 0.5 to 1.5, the explosive energy will be 1.85 to 5.55 MJ / L. For a Y gasification reagent rate in L / min (product / liquid) as a function of a matrix flow X in kg / min of viscous product, the relation Y = aX + b is given by charts with values of a and b different according to the density values d of the explosive product obtained after gasification resulting from the reaction between said matrix and the gasification reagent by intimate mixing within the static mixer. Thus, the different values of a and b are, for example, here: for d = 0.8, Y = 0.0117 × + 0.002, and for d = 0.9, Y = 0.0085 × 0.0012, and - for d = 1, Y = 0.006X, and - for d = 1.1, Y = 0.0039X + 0.0019, and - for d = 1.2, Y = 0.0021X.
Il existe donc une relation linéaire entre X et Y suivant la densité finale du produit explosif 10 résultant de la réaction par mélange intime des deux produits. L'unité de contrôle et commande automatisée 9 permet de contrôler les vannes proportionnelles V1 et V2 régulant les débits de matrice et de réactif de gazéification, et l'actionnement et vitesse des moteurs des pompes 2-1 et 2-2. Les débits X et Y sont fournis par étalonnage du capteur de vitesse 2-2a de la pompe 2-2 pour les valeurs de X (kg/min) et par le débitmètre 2-2a pour le débit Y de réactif de gazéification (L/min). En pratique, du fait que le réactif de gazéification R2 est en plus faible quantité et sous forme liquide il est plus facile d'en contrôler le débit de sorte qu'on opère avec un débit de matrice constant X = 125 kg/min.There is therefore a linear relationship between X and Y depending on the final density of the explosive product resulting from the reaction by intimate mixing of the two products. The automated control and control unit 9 makes it possible to control the proportional valves V1 and V2 regulating the flows of matrix and gasification reagent, and the actuation and speed of the motors of the pumps 2-1 and 2-2. The flow rates X and Y are provided by calibrating the pump 2-2 speed sensor 2-2 for the values of X (kg / min) and by the flow meter 2-2a for the gasification reagent Y flow (L / 2). min). In practice, since the gasification reagent R2 is in a smaller quantity and in liquid form it is easier to control the flow rate so that it operates with a constant matrix flow X = 125 kg / min.
Ainsi, l'opérateur conduisant l'installation choisi les densités successives de produit explosif 10 souhaitées ainsi que les quantités correspondantes pour chaque densité en fonction de son analyse des besoins dans le trou de forage concerné compte tenu de l'environnement de massif rocheux 15 autour du trou à abattre. X étant constant, Y le débit de réactif de gazéification est déterminé automatiquement à partir de l'abaque en fonction de la densité souhaitée. En pratique, pour chaque trou de mine 11, l'opérateur choisira jusqu'à quatre densités différentes appelées dl, d2, d3 et d4. Les densités dl à d4 de produits explosifs à réaliser et les quantités correspondantes sont entrées au niveau de l'unité centrale 9 via un clavier tactile 9a apparaissant à l'écran de l'interface graphique 9b. L'opérateur peut alors lancer un cycle de pompage. L'unité de commande centralisée et automatisée 9 commande alors automatiquement la régulation du flux et donc du débit de réactif R2 pour un débit de matrice M donné. Ainsi, par exemple, le cycle de production d'un trou cylindrique de 20 m de profondeur et 115mm de diamètre suivant sera réalisé comme suit pour une matrice supplémentée présentant une densité, dans l'exemple ci-après, d'environ 1,3 : - on charge 20 kg de produits explosifs de densité 1,2 à une 5 valeur de 0,21 L/min avec par exemple un débit de réactif de gazéification de 0,21 L/min, et - on change de consigne et on donne l'ordre de charger 25 kg de produit explosif 10 de densité 1 qui viendront donc se déposer pardessus les 20 kg de produits explosifs de densité 1,2 précédemment 10 déposés au fond du trou depuis l'extrémité avale du tuyau 61, en mettant en oeuvre par exemple un débit de réactif de gazéification de 0,60 L/min ; puis - on charge 50 kg de produits explosifs à densité de 0,9, pardessus le produit explosif précédemment déposé, en mettant en oeuvre 15 par exemple un débit de réactif de gazéification de 0,80 L/min, puis - on charge au sommet de la colonne, 30 kg de produit explosif 10 de densité d = 0,8, obtenu en transférant par exemple un débit de réactif de gazéification de 0,90 L/min. L'unité centrale automatisée 9 permet donc de commander et 20 contrôler les valeurs de débit de réactif de gazéification comme décrit ci-dessus, simplement en réglant la vitesse du moteur hydraulique de la deuxième pompe 2-2 transférant le réactif de gazéification, et en maintenant un débit sensiblement constant de 125 kg/min de dite matrice. Un tel contrôle et régulation de débit du réactif de 25 gazéification permet de faire varier, quasiment en temps réel la valeur de densité de produit obtenu en sortie de premier mélangeur statique 7 et déversé directement dans le trou de forage, du fait de l'automatisation du contrôle et de la régulation du débit de réactif de gazéification par l'unité centrale 9.Thus, the operator driving the selected plant will select the desired explosive product densities as well as the corresponding quantities for each density based on his needs analysis in the relevant borehole given the surrounding rock mass environment. the hole to be felled. X being constant, the flow rate of gasification reagent is determined automatically from the chart according to the desired density. In practice, for each blast hole 11, the operator will choose up to four different densities called dl, d2, d3 and d4. The densities d1 to d4 of explosive products to be produced and the corresponding quantities are entered at the level of the central unit 9 via a touch pad 9a appearing on the screen of the graphic interface 9b. The operator can then start a pumping cycle. The centralized and automated control unit 9 then automatically controls the regulation of the flow and therefore the flow rate of reagent R2 for a given matrix flow M. Thus, for example, the production cycle of a cylindrical hole 20 m deep and 115 mm in diameter will be performed as follows for a supplemented matrix having a density, in the example below, of about 1.3 20 kg of explosive products of density 1.2 are charged at a value of 0.21 L / min with, for example, a gasification reagent flow rate of 0.21 L / min, and the set point is changed and ordered to load 25 kg of explosive product 10 of density 1 which will therefore be deposited on top of the 20 kg of 1.2 density explosives previously deposited at the bottom of the hole from the downstream end of the pipe 61, putting for example, a gasification reagent flow rate of 0.60 L / min; 50 kg of explosive products with a density of 0.9, above the explosive product previously deposited, using for example a gasification reagent flow rate of 0.80 l / min, then loaded at the top. of the column, 30 kg of explosive product 10 of density d = 0.8, obtained by transferring, for example, a gasification reagent flow rate of 0.90 L / min. The automated central unit 9 thus makes it possible to control and control the gasification reagent flow rate values as described above simply by adjusting the speed of the hydraulic motor of the second pump 2-2 transferring the gasification reagent, and now a substantially constant flow rate of 125 kg / min of said matrix. Such control and flow regulation of the gasification reagent makes it possible to vary, almost in real time, the product density value obtained at the outlet of the first static mixer 7 and discharged directly into the borehole, because of the automation. the control and regulation of the flow of gasification reagent by the central unit 9.
L'unité centrale 9 peut offrir des fonctions supplémentaires avantageuses telles que l'importation et l'exportation des données, de consignes et de résultats en termes de quantité, débit et densité. Le procédé selon l'invention est aussi avantageux en ce qu'il engendre une amélioration au niveau de la sécurité, le produit de mélange ne devenant explosif uniquement au bout du tuyau flexible 61, évitant donc le transport sur une longue distance de produit dangereux au sein du tuyau. Le système d'introduction coaxiale du réactif de gazéification pour l'amener au contact de ladite matrice favorise un mélange intime plus rapide et plus efficace des deux composants ce qui induit, non seulement : - la possibilité de faire varier en temps réel de façon optimale la densité du produit obtenu en mélange avec la matrice, mais aussi - l'amélioration de la sécurité du procédé et enfin, - une plus grand fiabilité mécanique de l'installation dans la mesure où aucun matériel n'est requis à l'extérieur du tuyau de dépose du produit explosif pouvant être en contact avec les autres composants nécessaires pour générer l'explosion que sont la charge d'amorçage 12, le détonateur 13 et surtout le fil de détonateur 14 qui est souvent source d'accident en cas de choc de produits métalliques à proximité. En ce qui concerne la variation de la densité du produit obtenu quasiment en temps réel, il y a lieu d'observer que la quantité de produit contenu au sein de l'extrémité avale du tuyau 61 se limite au produit explosif produit gazéifié dans la deuxième partie avale du mélangeur statique, soit pour un mélangeur de 50 cm de long dans un tuyau 61 de 32 mm de diamètre interne, une quantité inférieure à 0.5kg d'une valeur relativement négligeable par rapport aux quantités de produits explosifs de différentes densités qu'il y a lieu d'introduire, on peut donc considérer que la variation de densité est ainsi obtenue quasiment en temps réel par modification des ratios de débit de réactif de gazéification et de matrice. La mesure de la densité peut s'effectuer par pesée à l'air libre dans un pot calibré de volume connu.The CPU 9 may offer additional advantageous features such as the import and export of data, instructions and results in terms of quantity, throughput and density. The method according to the invention is also advantageous in that it generates an improvement in terms of safety, the mixture product becoming explosive only at the end of the flexible hose 61, thus avoiding the transport over a long distance of dangerous product to the inside the pipe. The coaxial introduction system of the gasification reagent to bring it into contact with said matrix promotes a faster and more efficient intimate mixing of the two components, which induces, not only: the possibility of optimally varying in real time the density of the product obtained in mixture with the matrix, but also - the improvement of the safety of the process and finally, - a greater mechanical reliability of the installation insofar as no material is required outside the explosive product removal pipe may be in contact with the other components necessary to generate the explosion that is the ignition charge 12, the detonator 13 and especially the detonator wire 14 which is often a source of accident in case of shock metal products nearby. With regard to the variation of the density of the product obtained almost in real time, it should be observed that the quantity of product contained within the downstream end of the pipe 61 is limited to the explosive product produced gasified in the second downstream portion of the static mixer, or for a mixer 50 cm long in a pipe 61 32 mm in internal diameter, an amount less than 0.5 kg of a relatively negligible value compared to the amounts of explosive products of different densities that it is necessary to introduce, one can thus consider that the variation of density is thus obtained almost in real time by modification of the ratios of flow of reagent of gasification and matrix. The measurement of the density can be carried out by weighing in the open air in a calibrated pot of known volume.
Le procédé de production de produit explosif à densité variable selon la présente invention, consiste donc à faire varier la gazéification du produit explosif dans le trou de mine, de façon quasiment instantanées afin d'obtenir une différenciation de la densité de produit explosif dans la colonne au sein du trou de mine, tout en ne réalisant qu'une seule passe de chargement.The process for producing a variable density explosive product according to the present invention therefore consists in varying the gasification of the explosive product in the blasthole, in a manner that is almost instantaneous in order to obtain a differentiation of the density of explosive product in the column. within the borehole, while performing only one loading pass.
Claims (17)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1452356A FR3018808B1 (en) | 2014-03-21 | 2014-03-21 | INSTALLATION FOR THE PRODUCTION OF EXPLOSIVES BY MIXING WITH A GASIFICATION REAGENT |
PCT/FR2015/050645 WO2015140461A1 (en) | 2014-03-21 | 2015-03-17 | Facility for producing an explosive by mixing with a gasification reagent |
PL15719775T PL3119735T3 (en) | 2014-03-21 | 2015-03-17 | Facility for producing an explosive by mixing with a gasification reagent |
ES15719775T ES2731580T3 (en) | 2014-03-21 | 2015-03-17 | Installation of explosive production by mixing with a gasification reagent |
PT15719775T PT3119735T (en) | 2014-03-21 | 2015-03-17 | Facility for producing an explosive by mixing with a gasification reagent |
EP15719775.7A EP3119735B1 (en) | 2014-03-21 | 2015-03-17 | Facility for producing an explosive by mixing with a gasification reagent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1452356A FR3018808B1 (en) | 2014-03-21 | 2014-03-21 | INSTALLATION FOR THE PRODUCTION OF EXPLOSIVES BY MIXING WITH A GASIFICATION REAGENT |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3018808A1 true FR3018808A1 (en) | 2015-09-25 |
FR3018808B1 FR3018808B1 (en) | 2017-07-21 |
Family
ID=51483514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1452356A Expired - Fee Related FR3018808B1 (en) | 2014-03-21 | 2014-03-21 | INSTALLATION FOR THE PRODUCTION OF EXPLOSIVES BY MIXING WITH A GASIFICATION REAGENT |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3119735B1 (en) |
ES (1) | ES2731580T3 (en) |
FR (1) | FR3018808B1 (en) |
PL (1) | PL3119735T3 (en) |
PT (1) | PT3119735T (en) |
WO (1) | WO2015140461A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR116643A1 (en) * | 2018-10-15 | 2021-05-26 | Tradestar Corp | CONTROLLERS AND METHODS FOR BULK EXPLOSIVE CHARGING SYSTEMS |
WO2022099356A1 (en) | 2020-11-10 | 2022-05-19 | Dyno Nobel Asia Pacific Pty Limited | Systems and methods for determining water depth and explosive depth in blastholes |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2131329A5 (en) * | 1971-01-18 | 1972-11-10 | Ici Australia Ltd | |
US4066093A (en) * | 1975-10-01 | 1978-01-03 | Nitro Nobel Ab | Hose feeding winch |
EP0612971A1 (en) * | 1993-02-25 | 1994-08-31 | Nitro Nobel Ab | Method and apparatus for charging bore-holes with explosive |
US5524523A (en) * | 1993-04-08 | 1996-06-11 | Aeci Limited | Loading of boreholes with flowable explosives |
WO1997005361A1 (en) * | 1995-07-25 | 1997-02-13 | Nowsco Well Service, Inc. | Safeguarded method and apparatus for fluid communication using coiled tubing, with application to drill stem testing |
WO1997024298A1 (en) * | 1995-12-29 | 1997-07-10 | Orica Australia Pty Ltd | Process and apparatus for the manufacture of emulsion explosive compositions |
WO1999014554A1 (en) * | 1997-09-12 | 1999-03-25 | Dyno Industrier Asa | Method for loading slurry explosives in blast holes or cartridges |
US20030029346A1 (en) * | 2001-05-25 | 2003-02-13 | Dyno Nobel Inc. | Reduced energy blasting agent and method |
WO2014123562A1 (en) * | 2013-02-07 | 2014-08-14 | Dyno Nobel Inc. | Systems for delivering explosives and methods related thereto |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4099542A (en) * | 1976-06-09 | 1978-07-11 | Fmc Corporation | Marine loading arm jumper assembly |
MW1689A1 (en) | 1988-04-21 | 1989-12-13 | Aeci Ltd | Loading of boreholes with exploves |
US5411105A (en) * | 1994-06-14 | 1995-05-02 | Kidco Resources Ltd. | Drilling a well gas supply in the drilling liquid |
JP2003325536A (en) | 2002-05-09 | 2003-11-18 | Showa Ika Kohgyo Co Ltd | Implant screw |
US7861745B2 (en) | 2006-09-26 | 2011-01-04 | Parker-Hannifin Corporation | Mine blender hose |
CN203212502U (en) * | 2013-04-18 | 2013-09-25 | 湖南长斧众和科技有限公司 | Emulsion explosive charging machine |
-
2014
- 2014-03-21 FR FR1452356A patent/FR3018808B1/en not_active Expired - Fee Related
-
2015
- 2015-03-17 ES ES15719775T patent/ES2731580T3/en active Active
- 2015-03-17 WO PCT/FR2015/050645 patent/WO2015140461A1/en active Application Filing
- 2015-03-17 PT PT15719775T patent/PT3119735T/en unknown
- 2015-03-17 EP EP15719775.7A patent/EP3119735B1/en active Active
- 2015-03-17 PL PL15719775T patent/PL3119735T3/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2131329A5 (en) * | 1971-01-18 | 1972-11-10 | Ici Australia Ltd | |
US4066093A (en) * | 1975-10-01 | 1978-01-03 | Nitro Nobel Ab | Hose feeding winch |
EP0612971A1 (en) * | 1993-02-25 | 1994-08-31 | Nitro Nobel Ab | Method and apparatus for charging bore-holes with explosive |
US5524523A (en) * | 1993-04-08 | 1996-06-11 | Aeci Limited | Loading of boreholes with flowable explosives |
WO1997005361A1 (en) * | 1995-07-25 | 1997-02-13 | Nowsco Well Service, Inc. | Safeguarded method and apparatus for fluid communication using coiled tubing, with application to drill stem testing |
WO1997024298A1 (en) * | 1995-12-29 | 1997-07-10 | Orica Australia Pty Ltd | Process and apparatus for the manufacture of emulsion explosive compositions |
WO1999014554A1 (en) * | 1997-09-12 | 1999-03-25 | Dyno Industrier Asa | Method for loading slurry explosives in blast holes or cartridges |
US20030029346A1 (en) * | 2001-05-25 | 2003-02-13 | Dyno Nobel Inc. | Reduced energy blasting agent and method |
WO2014123562A1 (en) * | 2013-02-07 | 2014-08-14 | Dyno Nobel Inc. | Systems for delivering explosives and methods related thereto |
Also Published As
Publication number | Publication date |
---|---|
PT3119735T (en) | 2019-06-24 |
PL3119735T3 (en) | 2019-09-30 |
ES2731580T3 (en) | 2019-11-18 |
EP3119735B1 (en) | 2019-03-27 |
WO2015140461A1 (en) | 2015-09-24 |
EP3119735A1 (en) | 2017-01-25 |
FR3018808B1 (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3119736B1 (en) | Method for producing an explosive by mixing with a gasification reagent | |
US20250003722A1 (en) | Systems for delivering explosives and methods related thereto | |
EP0201398B1 (en) | Composition for oriented drilling | |
EP1606490B1 (en) | Device for heating and thermally insulating at least one undersea pipeline | |
EP0326492B1 (en) | Device and method for carrying out operations and/or interventions in a well | |
US6772840B2 (en) | Methods and apparatus for a subsea tie back | |
EP2286056B1 (en) | Bed-to-surface connector installation of a rigide tube with a flexible duct having positive flotation | |
EP2844820B1 (en) | Installation comprising seabed-to-surface connections of the multi-riser hybrid tower type, including positive-buoyancy flexible pipes | |
EP3119735B1 (en) | Facility for producing an explosive by mixing with a gasification reagent | |
SE505963C2 (en) | Method for loading boreholes with explosives | |
EP3231786B1 (en) | Static mixer with a shearing device and method for producing explosive | |
FR3016802A1 (en) | MODULAR INSTALLATION AND METHOD FOR LIQUID / GAS SEPARATION, PARTICULARLY LIQUID AND GAS PHASES OF A CRUDE OIL. | |
EP3334898B1 (en) | Underwater facility for gas/liquid separation | |
WO2019037958A1 (en) | Method and facility for concreting an underground site | |
JP4587049B2 (en) | Tunnel excavation method | |
RU2723791C1 (en) | Mixing-charging system | |
FR3014475B1 (en) | INJECTION OF A FLUID IN A HYDROCARBON RESERVOIR | |
EP3265642B1 (en) | Facility comprising at least two bottom-surface links comprising vertical risers connected by bars | |
FR2643939A1 (en) | Method and device for directional drilling using rotating connectors with a hydraulic evolution cycle | |
EP4401937A1 (en) | System for extruding building material enriched with aggregates and/or steel fibres for the additive manufacturing of architectural structures | |
WO2023209079A1 (en) | Underground storage system for fluid storage | |
FR2850631A1 (en) | PROCESS FOR RECOVERING A CARGO OF POLLUTANT LIQUIDS ON BOARD A SHAVING | |
WO2017025689A1 (en) | Underwater method and facility for gas/liquid separation | |
OA18412A (en) | Installation comprising at least two bottom-surface connections comprising vertical risers connected by bars | |
OA19947A (en) | Modular installation and process for liquid / gas separation, in particular of the liquid and gas phases of crude oil. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
ST | Notification of lapse |
Effective date: 20201109 |