ES2354631T3 - Botón del nivel de energía combinado. - Google Patents
Botón del nivel de energía combinado. Download PDFInfo
- Publication number
- ES2354631T3 ES2354631T3 ES07009025T ES07009025T ES2354631T3 ES 2354631 T3 ES2354631 T3 ES 2354631T3 ES 07009025 T ES07009025 T ES 07009025T ES 07009025 T ES07009025 T ES 07009025T ES 2354631 T3 ES2354631 T3 ES 2354631T3
- Authority
- ES
- Spain
- Prior art keywords
- button
- electrosurgical energy
- activation switch
- surgical
- guide groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1402—Probes for open surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
- A61B2018/00928—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device by sending a signal to an external energy source
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
- A61B2018/0094—Types of switches or controllers
- A61B2018/00946—Types of switches or controllers slidable
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Un instrumento quirúrgico (200, 200a, 200b, 200c), que comprende: un alojamiento (210) que tiene un conmutador de activación (100) dispuesto en el mismo, en el que el conmutador de activación está adaptado para acoplarse a una fuente de energía electro-quirúrgica, incluyendo el conmutador de activación un botón (110) deslizable por una ranura de guía (120) definida en el alojamiento, en el que la ranura de guía comprende una pluralidad de posiciones discretas (122), siendo el botón deslizable entre la pluralidad de posiciones discretas; y siendo el conmutador de activación movible de manera selectiva en una primera dirección en la ranura de quía para establecer el nivel deseado de energía electro-quirúrgica, en el que el conmutador de activación se puede mover de manera selectiva en una segunda dirección para activar la fuente de energía electro-quirúrgica, y se puede utilizar para establecer el nivel de intensidad de energía electro-quirúrgica antes de que la energía electro-quirúrgica se active; en el que el conmutador de activación coopera mecánicamente con una red de división de voltaje (140) para ajustar los niveles de energía, caracterizado porque: el botón incluye una protuberancia (130) que sobresale de una superficie inferior del mismo, la protuberancia está configurada para hacer contacto selectivamente con la red de división de voltaje (140) al mover el botón con relación al alojamiento. la red de división de voltaje incluye una pluralidad de tiras (150) dispuestas encima de una base o substrato (160), y la intensidad de la energía electro-quirúrgica depende de dónde se sitúe el botón en la ranura de guía, que corresponde con un resorte de la pluralidad, tal que: cuando el botón se sitúa de manera selectiva en la ranura de guía, el botón se puede presionar para activar la energía electro-quirúrgica, y la pulsación del botón actúa sobre una de la pluralidad de tiras para activar el instrumento con una intensidad electro-quirúrgica particular, mediante lo cual la energía electro-quirúrgica es activada cuando una de las tiras es actuada y hace contacto con una porción del substrato.
Description
ANTECEDENTES
La presente invención se refiere a un instrumento quirúrgico, preferiblemente unas pinzas electro-quirúrgicas y, más particularmente, la presente invención se refiere a un conmutador en el instrumento quirúrgico que puede ajustar los niveles de energía electro-quirúrgica y activar energía 5 electro-quirúrgica.
Campo Técnico
En el transcurso de diferentes tipos de cirugía, tanto doctores como cirujanos utilizan diferentes tipos de instrumentos quirúrgicos. Muchos de estos instrumentos quirúrgicos realizan varias funciones diferentes. Cada función puede ser realizada al accionar un determinado elemento de control, como un 10 conmutador, un botón, un disparador, una corredera o similar, localizado en el instrumento quirúrgico. Por tanto, no es poco frecuente que un instrumento quirúrgico incluya varios elementos de control diferentes.
Los documentos US 2004/0092927 y US 4.936.842 y WO 2005/004734 fueron citados como documentos pertinentes de referencia de la técnica durante el examen de esta patente. El preámbulo de la reivindicación 1 está basado en US 2004/0092927. 15
SUMARIO
La invención es como se define en el conjunto de reivindicaciones anexas.
La presente invención se refiere a un instrumento quirúrgico como se define en la reivindicación 1 para su uso en varios procesos quirúrgicos. El instrumento quirúrgico (por ejemplo: pinzas de tipo abierto, pinzas de tipo en línea, o lápiz electro-quirúrgico) incluye un alojamiento con un conmutador de 20 activación. El conmutador de activación está adaptado para conectarse a una fuente de energía electro-quirúrgica e incluye un botón. El botón puede deslizar por una ranura de guía en el alojamiento y puede estar cargado hacia una posición inactiva. El conmutador de activación se puede mover de forma selectiva en una primera dirección por la ranura de guía para establecer un nivel deseado de energía electro-quirúrgica. El conmutador de activación se puede también mover de forma selectiva en una 25 segunda dirección para activar la fuente de energía electro-quirúrgica y está diseñado y configurado para establecer el nivel de intensidad de energía electro-quirúrgica antes de la activación de la energía electro-quirúrgica.
El conmutador de activación está configurado para cooperar electromecánicamente con una red de división de voltaje para ajustar o controlar la intensidad o los niveles de energía del instrumento 30 quirúrgico.
La ranura de quía está dimensionada para incluir una pluralidad de posiciones discretas. En una realización así, el botón se puede deslizar por la ranura de guía entre la pluralidad de posiciones discretas. En una realización, se proporciona respuesta táctil al usuario cuando el botón se desliza entre la pluralidad de posiciones discretas. 35
La presente descripción también se refiere a un sistema electro-quirúrgico que utiliza el instrumento quirúrgico descrito. Presionar el botón puede activar la energía electro-quirúrgica y deslizar el botón a lo largo de la ranura de guía puede establecer la intensidad de energía electro-quirúrgica.
En otra realización de acuerdo con la presente descripción, el botón puede estar cargado hacia 40 una primera posición de pulsación donde no se activa la energía electro-quirúrgica. Pulsar el botón hasta una segunda posición de pulsación activa la energía electro-quirúrgica y soltar el botón causará que el botón vuelva a su primera posición de pulsación, desactivando por tanto la energía electro-quirúrgica.
La presente invención también se refiere a un sistema electro-quirúrgico para realizar electro-cirugía en pacientes e incluye un generador electro-quirúrgico que suministra energía electro-quirúrgica al 45 instrumento quirúrgico. El instrumento quirúrgico incluye un electrodo activo que transmite energía electro-quirúrgica al paciente y un electrodo electro-quirúrgico de retorno que devuelve la energía electro-quirúrgica al generador electro-quirúrgico.
Para una mejor comprensión de la presente descripción y para mostrar cómo puede llevarse a la práctica, se hace ahora referencia a modo de ejemplo a los dibujos que se anexan. 50
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Varias realizaciones de la presente descripción se describen aquí con referencia a los dibujos, en los que:
La Figura 1 es una vista en perspectiva de unas pinzas endoscópicas que comprenden un conmutador de activación de acuerdo con una realización de la presente invención; 5
La Figura 2 es una vista superior de las pinzas endoscópicas de la Figura 1;
La Figura 3 es una vista lateral de las pinzas endoscópicas de la Figura 1;
La Figura 4 es una vista lateral agrandada del conmutador de activación ilustrado en unas pinzas endoscópicas; 10
La Figura 5A es una vista en sección transversal esquemática del conmutador de activación en una posición inactiva;
La Figura 5B es una vista en sección transversal esquemática del conmutador de activación en una posición activada;
La Figura 6 es una vista en perspectiva de unas pinzas de tipo abierto que tienen un conmutador 15 de activación;
La Figura 7 es una vista en perspectiva de un lápiz electro-quirúrgico con partes separadas que tiene un conmutador de activación; y
La Figura 8 es una vista en perspectiva de unas pinzas tipo en línea que tienen un conmutador de activación. 20
DESCRIPCIÓN DETALLADA
Se describen a continuación realizaciones del conmutador de activación aquí expuesto y el método de uso del mismo (un método no constituye una realización de la presente invención) con referencia a las figuras anexas, en las cuales las mismas referencias numéricas identifican elementos similares o idénticos. En la siguiente descripción, no se describen en detalle funciones o construcciones 25 bien conocidas para evitar oscurecer dicha descripción con detalles innecesarios. Como aquí se utiliza y como es tradicional, el término “distal” hace referencia a la porción que está más lejos del usuario, mientras que el término “proximal” hace referencia a la porción que estás más cerca del usuario.
En general, las diversas figuras ilustran un conmutador de activación 100 que se presenta en una variedad de diferentes instrumentos quirúrgicos. Específicamente, las Figuras 1-4 ilustran el conmutador 30 de activación 100 en unas pinzas endoscópicas 200; la Figura 6 ilustra el conmutador de activación 100 en unas pinzas de tipo abierto 200a; la Figura 7 ilustra el conmutador de activación 100 en un lápiz electro-quirúrgico 200b; y la Figura 8 ilustra el conmutador de activación 100 en unas pinzas de tipo en línea 200c. Otros tipos apropiados de instrumentos quirúrgicos, que no se muestran, pueden incluir el conmutador de activación 100 que aquí se concibe. El conmutador de activación 100 puede estar 35 configurado para activar un modo monopolar de energía, un modo bipolar de energía o una combinación de ambos. Como puede apreciarse, uno o más conmutadores de activación 100 pueden ser dispuestos en un instrumento quirúrgico 200 (por ejemplo, sobre el alojamiento 210 y/o el conjunto del mango 230) para activar un tipo distinto de energía, por ejemplo, tres conmutadores de activación 100, 100a y 100b se ilustran en la Figura 4. 40
Haciendo inicialmente referencia a las Figuras 1-4 y 6-8, se muestran ilustraciones de un instrumento quirúrgico endoscópico que incluye el conmutador de activación 100 y que en general se designa mediante la referencia numérica 200. El instrumento quirúrgico 200 puede incluir un alojamiento 210, un vástago 220 que define el eje “A-A”, el conmutador de activación 100, un conjunto de extremo de actuación 240, un conjunto de mango 230, un conjunto de rotación 250 y un conjunto de disparador 260. 45
Mejor ilustrado en la Figura 4, el conmutador de activación 100 se dispone al menos parcialmente sobre el alojamiento 210 e incluye un botón 110 y una ranura de guía 120. El botón 110 del conmutador de activación 100 se apoya sobre la ranura de guía 120 para deslizar y se utiliza para activar la energía electro-quirúrgica y para establecer la intensidad de los niveles de energía electro-quirúrgica en instrumentos quirúrgicos 200. Por ejemplo, deslizando el botón 110 a lo largo de la ranura de guía 120 se 50 establece la intensidad deseada de la energía electro-quirúrgica y presionando o moviendo de otra forma el botón 110 con relación a o a lo largo del alojamiento se activa la energía electro-quirúrgica. En una realización ejemplar como se ilustra en las Figuras 1-4, el botón 110 está cargado hacia una primera posición inactiva. Presionando el botón 110 hacia una segunda posición de pulsación (es decir, hacia
dentro con relación al alojamiento) se activa la energía electro-quirúrgica. Soltar el botón 110 causará que el botón 110 vuelva a la primera posición inactiva. Se pueden incluir indicaciones 125 sobre el instrumento quirúrgico 200 que correspondan con un nivel de intensidad de energía electro-quirúrgica cuando el botón 110 se active.
Con referencia a las Figuras 5A y 5B, se describen detalles de una realización de la operación 5 del conmutador de activación 100. El botón 110 incluye una protuberancia 130 que sobresale de una superficie inferior del mismo. La protuberancia 130 está configurada para hacer contacto de forma selectiva con una red de división de voltaje 140 mediante el movimiento del botón 110 con relación al alojamiento 210 (véase la flecha B). La red de división de voltaje 140 incluye una pluralidad de tiras 150 dispuestas encima de una base o sustrato 160. Cuando el botón 110 se sitúa de forma selectiva sobre la 10 ranura de guía 120 (a lo largo de la flecha C), el botón 110 se presiona para activar la energía electro-quirúrgica. Más en particular, y como mejor se muestra en la Figura 5B, la pulsación del botón 110 actúa sobre una tira de la pluralidad 150 (en este caso la tira 150b) para activar el instrumento con una intensidad electro-quirúrgica concreta. Por ejemplo, cuando se actúa sobre la tira 150b y esta hace contacto con una porción del sustrato 160 (ilustrado en la Figura 5B), se activa la energía electro-15 quirúrgica. En concreto, la intensidad de energía electro-quirúrgica depende de dónde se sitúe el botón 110 en la ranura de guía 120, lo que corresponde con una tira de la pluralidad 150. La red de división de voltaje 140 puede estar conectada eléctricamente a una fuente de energía electro-quirúrgica y puede controlar la intensidad de la energía electro-quirúrgica.
El conmutador de activación 100 puede funcionar como un potenciómetro de deslizamiento, que 20 desliza sobre y a lo largo de la red de división de voltaje 140. En una realización ejemplar mostrada en la Figura 4, un conmutador momentáneo está acoplado al potenciómetro de deslizamiento. El conmutador de activación 100 tiene una primera posición en la que el botón 110 está en una posición más proximal (más próxima a las indicaciones 125a más pequeñas) que corresponde con un ajuste de intensidad nula, una segunda posición en la cual el botón 110 se encuentra en una posición más distal (más próxima a las 25 indicaciones 125b más grandes) que corresponde a un ajuste de intensidad relativamente elevada, y una pluralidad de posiciones intermedias en las que el botón 110 se sitúa entre posiciones más distales y posiciones más proximales que corresponden a diversos ajustes intermedios de intensidad. Como se puede apreciar, los ajustes de intensidad desde el extremo proximal hasta el extremo distal pueden ser invertidos. 30
Con referencia de nuevo a la Figura 4, la ranura de guía 120 está dispuesta con una serie de posiciones discretas que cooperan o posiciones de bloqueo 122 que definen una serie de posiciones que permiten una fácil selección de la intensidad de salida desde el ajuste de baja intensidad al ajuste de intensidad elevada. Estas posiciones 122 se ilustran en la Figura 4 en la ranura de guía 120. En una alternativa que no constituye una realización de la invención, también se concibe que el botón 110 incluya 35 posiciones 122. En una realización ejemplar, las posiciones 122 permiten que el botón 110 encaje por salto elástico en una posición de la ranura de guía 120 en posiciones en las que el botón 110 se alinea con las tiras 150.
La serie de posiciones discretas cooperantes o las posiciones de bloqueo 122 pueden proporcionar al cirujano cierto grado de respuesta táctil. De acuerdo con esto, al utilizarse, cuando el 40 botón 110 se desliza de forma distal y proximal, la respuesta táctil puede ser proporcionada al usuario para informarle cuándo el botón 110 ha sido situado en el ajuste de intensidad deseado. Un nivel visual de respuesta táctil puede ser incorporado en el conmutador de activación 100. Como tal, el botón 110 puede mover un componente de color (no mostrado explícitamente) bajo el alojamiento 210, que podría ser visible a través de aberturas (no mostradas explícitamente) en el alojamiento 210. Cada abertura puede 45 corresponder a un nivel concreto de energía o una tira 150. También se concibe que las posiciones 122 (u otro elemento de las pinzas endoscópicas 200) o el generador proporcionen respuesta auditiva.
El conmutador de activación 100 puede ser utilizado para ajustar los parámetros de potencia (por ejemplo, voltaje, potencia y/o intensidad de corriente) y/o la forma de la curva de potencia frente a impedancia para modificar la intensidad de salida percibida. Por ejemplo, y con respecto en particular al 50 lápiz electro-quirúrgico mostrado en la Figura 7, cuanto más se desplace el botón 110 en una dirección distal, mayor será el nivel de los parámetros de potencia transmitidos al conjunto del actuador extremo 240. Se concibe que las intensidades de corriente estén en un margen entre aproximadamente 60 mA y aproximadamente 240 mA cuando se utiliza un conjunto de actuador extremo 240 y se tiene una impedancia típica de tejido de aproximadamente 2K Ohms. Un nivel de intensidad de 60 mA proporciona 55 ligeros y/o mínimos efectos hemostáticos, de corte o disección, mientras que un nivel de intensidad de 240 mA proporcionaría unos efectos hemostáticos, de corte o disección agresivos. De acuerdo con esto, el margen de intensidad de corriente puede variar desde aproximadamente 100 mA hasta aproximadamente 200 mA con 2K Ohms.
Los ajustes de intensidad pueden ser predeterminados y seleccionados a partir de una tabla de 60
consulta basada en las opciones de instrumentos / accesorios electro-quirúrgicos, los efectos quirúrgicos deseados, la especialidad quirúrgica y/o las preferencias del cirujano. La selección puede ser realizada automática o manualmente por el usuario.
En operación, y dependiendo de la función electro-quirúrgica particular que se desea, el cirujano mueve el botón 110 a un nivel deseado y presiona el botón 110, que a su vez presiona una de las tiras 5 150a-150c correspondientes (véanse Figuras 5A y 5B) a contacto con la plataforma 160, transmitiéndose de ese modo una señal característica correspondiente o el nivel de voltaje a un generador electro-quirúrgico. Por ejemplo, el cirujano puede presionar la tira 150a para realizar una función de corte y/o disección, la tira 150b para realizar una función de unión, o la tira 150c para realizar una función hemostática. A su vez, un generador transmite al conjunto de actuador extremo 240 una forma de onda 10 de salida apropiada.
Para variar la intensidad de los parámetros de potencia del instrumento quirúrgico 200, el cirujano mueve el botón 110. Como se mencionó anteriormente, en una realización, la intensidad puede variarse desde aproximadamente 60 mA para un efecto ligero hasta aproximadamente 240 mA para un efecto más agresivo. Cuando el botón 110 del conmutador de activación 100 se sitúa en el extremo más 15 proximal de la ranura de guía 120, la red de división de voltaje 140 se ajusta a una posición nula y abierta, que corresponde con un nivel de intensidad nula.
Puede suministrarse una línea de radiofrecuencia (no mostrada explícitamente) para transmitir energía de radiofrecuencia a un electrodo y puede estar directamente conectada eléctricamente a un receptáculo de electrodo. En una realización así, puesto que la línea de radiofrecuencia está conectada 20 directamente al receptáculo del electrodo, la línea de radiofrecuencia elude la red de división de voltaje 140 y por tanto aísla la red de división de voltaje 140. Tal disposición puede reducir el riesgo de que la red de división de voltaje 140 se sobrecaliente.
Con referencia específica a la Figura 4, se muestra una vista agrandada del conmutador de activación 100 dispuesto en unas pinzas endoscópicas 200. Como se muestra en la Figura 4, el 25 conmutador de activación 100 puede estar situado en al menos una de diversas posiciones adecuadas en las pinzas endoscópicas 200. En la realización de la Figura 4, el conmutador de activación 100 es ilustra en tres posiciones diferentes: alojamiento 210, mango fijo 232 y mango móvil 234.
Se explican elementos adicionales del instrumento quirúrgico 200 con referencia a las pinzas endoscópicas 200 de las Figuras 1-4. Como puede apreciarse, los instrumentos quirúrgicos que se 30 ilustran en las figuras restantes pueden también ser utilizados con el conmutador de activación 100 y son parte de esta descripción. Como se mencionó anteriormente y como se muestra en la Figura 4, el instrumento quirúrgico 200 puede incluir un alojamiento 210, un vástago 220, un conmutador de activación 100, un conjunto de actuador extremo 240, un conjunto de mango 230, un conjunto de rotación 250 y un disparador 260. El conjunto de mango 230 de las pinzas endoscópicas 200 incluye un mango fijo 35 232 y un mango móvil 234. El mango fijo 232 está asociado integralmente con el alojamiento 210 y el mango móvil 234 es movible con relación al mango fijo 232. El mango móvil 234 puede acoplarse al alojamiento 210 y al mango fijo 232. Adicionalmente, el conjunto de mango 230 puede incluir un par de pestañas superiores que cooperan con el conjunto de mango 230 para actuar sobre el conjunto de accionamiento. Más en particular, la pestaña superior puede también incluir una pestaña de actuación de 40 fuerza o pestaña de accionamiento, que se apoya en el conjunto de accionamiento de forma que el giro del mango móvil 234 fuerza la pestaña de actuación contra el conjunto de accionamiento que, a su vez, cierra los miembros de mordaza 242 y 244.
El conjunto de rotación 250 puede estar integralmente asociado con el alojamiento 210 y puede rotar aproximadamente 180 grados en ambos sentidos alrededor del eje “A-A”. El conjunto de rotación 45 250 puede estar situado en una pluralidad de posiciones sobre el alojamiento 210. Un ejemplo de dos de dichas posiciones se ilustra en las Figuras 1 y 4.
Un extremo proximal 222 del vástago 220 coopera mecánicamente con el alojamiento 210. El conjunto de actuador extremo 240 se conecta a un extremo distal 224 del vástago 220 e incluye un par de miembros de mordaza opuestos 242 y 244. El mango móvil 234 del conjunto de mango 230 se conecta 50 finalmente a un conjunto de accionamiento junto al que coopera mecánicamente para mover los miembros de mordaza 242 y 244 desde una posición abierta, en la que los elementos de mordaza 242 y 244 están espaciados entre sí (Figuras 1 y 3), a una posición cerrada o de sujeción (Figura 2), en la que los miembros de mordaza 242 y 244 cooperan para sujetar el tejido que hay entre los mismos. Cuando los miembros de mordaza 242 y 244 están completamente comprimidos alrededor del tejido, las pinzas 55 endoscópicas 200 están preparadas para la aplicación selectiva de energía electro-quirúrgica y la subsiguiente separación del tejido. Más en particular, cuando se transfiere la energía de forma selectiva al conjunto de actuación extremo 240, a través de los elementos de mordaza 242 y 244 y a través del tejido, se produce un sellado del tejido resultando dos mitades de tejido aisladas. En este punto, el usuario
puede cortar el sellado del tejido mediante el conjunto de disparador 260.
Como se muestra en las Figuras 1 y 3, las pinzas endoscópicas 200 pueden incluir también un cable electro-quirúrgico 270 que conecta las pinzas endoscópicas 200 a una fuente de energía electro-quirúrgica, por ejemplo un generador (no mostrado explícitamente). Generadores como los que comercializa Valleylab – una división de Tyco Healthcare L.P, situada en Boulder, Colorado, pueden ser 5 utilizados como fuente de energía electro-quirúrgica, por ejemplo el generador electro-quirúrgico FORCE EZTM, el generador electro-quirúrgico FORCE FXTM, FORCE 1CTM, el generador FORCE 2TM, SurgiStatTM II.
El generador puede incluir varias características de seguridad y de actuación incluidas una salida aislada y accesorios independientes de activación. El generador electro-quirúrgico puede incluir 10 características tecnológicas Instant ResponseTM de Valleylab que proporcionan un sistema avanzado de respuesta que detecta cambios en el tejido doscientas veces por segundo y ajusta el voltaje y la corriente para mantener la potencia adecuada. Se cree que la tecnología Instant ResponseTM proporciona al proceso quirúrgico uno o más de los siguientes beneficios:
- Efecto clínico consistente a través de todo tipo de tejidos; 15
- Dispersión térmica y riesgo de daño colateral del tejido reducidos;
- Menor necesidad de elevar la potencia del generador; y
- Estar diseñado para un entorno mínimamente invasivo.
El cable electro-quirúrgico 270 puede ser internamente dividido en cables de conexión que transmiten energía electro-quirúrgica por sus respectivas trayectorias de alimentación a través de las 20 pinzas endoscópicas 200 hasta el conjunto de actuación extremo 240. El alojamiento 210, el conjunto de rotación 250, el conmutador de activación 100, el conjunto de mango 230, el conjunto de disparador 260 y sus respectivas partes componentes que cooperan entre sí junto con el vástago 220 y el conjunto de actuación extremo 240 pueden ser ensamblados en su totalidad durante el proceso de fabricación para formar unas pinzas endoscópicas 200 parcial y/o completamente desechables. Por ejemplo, el vástago 25 220 y/o el conjunto de actuación extremo 240 pueden ser desechables y, por tanto, aplicables de manera selectiva y extraíble al alojamiento 210 y al conjunto de rotación 250 para formar unas pinzas endoscópicas 200 parcialmente desechables y/o las pinzas endoscópicas 200 que pueden ser totalmente desechadas después de su uso.
El método de la presente descripción (un método no constituye una realización de la presente 30 invención) incluye el uso del instrumento quirúrgico 200 para administrar energía electro-quirúrgica a un paciente. El método incluye los pasos de proporcionar un instrumento quirúrgico 200 que incluye un conmutador de activación 100, como se ha descrito anteriormente, hacer deslizar el botón 110 en una ranura de guía 120 para establecer la intensidad de la energía electro-quirúrgica, y oprimir el botón 110 para activar la energía electro-quirúrgica. 35
La presente descripción también incluye un sistema electro-quirúrgico para realizar electro-cirugía en un paciente. El sistema electro-quirúrgico incluye un generador electro-quirúrgico que proporciona energía electro-quirúrgica, un electrodo activo que suministra energía al paciente, un electrodo electro-quirúrgico de retorno que devuelve energía electro-quirúrgica al generador electro-quirúrgico, y el instrumento quirúrgico 200 que tiene un conmutador de activación 100, como se ha 40 descrito anteriormente.
Aunque en los dibujos se muestran varias realizaciones de esta descripción, no se pretende que la descripción se limite a las mismas, ya que se pretende que la descripción tenga un alcance tan amplio como permita la técnica y que la memoria sea así entendida. Por tanto, la descripción anterior no debería ser interpretada como limitativa, sino como meros ejemplos de varias realizaciones. Los versados en la 45 técnica podrán concebir otras modificaciones dentro del alcance de las reivindicaciones que aquí se anexan.
Claims (9)
- REIVINDICACIONES
- 1. Un instrumento quirúrgico (200, 200a, 200b, 200c), que comprende:
un alojamiento (210) que tiene un conmutador de activación (100) dispuesto en el mismo, en el que el conmutador de activación está adaptado para acoplarse a una fuente de energía electro-quirúrgica, incluyendo el conmutador de activación un botón (110) deslizable por una ranura de guía (120) definida 5 en el alojamiento, en el que la ranura de guía comprende una pluralidad de posiciones discretas (122), siendo el botón deslizable entre la pluralidad de posiciones discretas; y siendo el conmutador de activación movible de manera selectiva en una primera dirección en la ranura de quía para establecer el nivel deseado de energía electro-quirúrgica, en el que el conmutador de activación se puede mover de manera selectiva en una segunda dirección para activar la fuente de energía electro-quirúrgica, y se 10 puede utilizar para establecer el nivel de intensidad de energía electro-quirúrgica antes de que la energía electro-quirúrgica se active; en el que el conmutador de activación coopera mecánicamente con una red de división de voltaje (140) para ajustar los niveles de energía, caracterizado porque:el botón incluye una protuberancia (130) que sobresale de una superficie inferior del mismo,la protuberancia está configurada para hacer contacto selectivamente con la red de división de 15 voltaje (140) al mover el botón con relación al alojamiento.la red de división de voltaje incluye una pluralidad de tiras (150) dispuestas encima de una base o substrato (160), yla intensidad de la energía electro-quirúrgica depende de dónde se sitúe el botón en la ranura de guía, que corresponde con un resorte de la pluralidad, tal que: 20cuando el botón se sitúa de manera selectiva en la ranura de guía, el botón se puede presionar para activar la energía electro-quirúrgica, y la pulsación del botón actúa sobre una de la pluralidad de tiras para activar el instrumento con una intensidad electro-quirúrgica particular, mediante lo cual la energía electro-quirúrgica es activada cuando una de las tiras es actuada y hace contacto con una porción del substrato. 25 -
- 2. El instrumento quirúrgico de acuerdo con la reivindicación 1, en el que el botón está cargado hacia una posición inactiva.
-
- 3. El instrumento quirúrgico de acuerdo con la reivindicación 2, en el que el botón se puede presionar hasta una posición oprimida para activar la energía electro-quirúrgica y que al soltarlo, el botón vuelve a su posición inactiva desactivando la energía electro-quirúrgica. 30
-
- 4. El instrumento quirúrgico de acuerdo con cualquiera de las anteriores reivindicaciones, en el que se proporciona respuesta táctil al usuario cuando el botón se desliza entre la pluralidad de posiciones discretas sobre la ranura de guía.
-
- 5. El instrumento quirúrgico de acuerdo con cualquiera de las anteriores reivindicaciones, en el que el instrumento es un lápiz electro-quirúrgico (200b). 35
-
- 6. El instrumento quirúrgico de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que el instrumento lo constituyen unas pinzas de tipo abierto (200a)
-
- 7. El instrumento quirúrgico de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que el instrumento lo constituyen unas pinzas de tipo en línea (200c).
-
- 8. El instrumento quirúrgico de acuerdo con cualquiera de las anteriores reivindicaciones, 40 configurado para que al presionar el botón se active la energía electro-quirúrgica y al hacer deslizar el botón a lo largo de la ranura de guía se establezca el nivel de intensidad de energía electro-quirúrgica.
-
- 9. Un sistema electro-quirúrgico para realizar electro-cirugía en pacientes, que comprende:
una fuente de energía electro-quirúrgica que proporciona energía electro-quirúrgica;un electrodo activo que suministra energía electro-quirúrgica al paciente; 45un electrodo electro-quirúrgico de retorno que devuelve energía electro-quirúrgica a la fuente de energía electro-quirúrgica; yel instrumento quirúrgico de cualquiera de las anteriores reivindicaciones.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/418,878 US20070260238A1 (en) | 2006-05-05 | 2006-05-05 | Combined energy level button |
US418878 | 2006-05-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2354631T3 true ES2354631T3 (es) | 2011-03-16 |
Family
ID=38440166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES07009025T Active ES2354631T3 (es) | 2006-05-05 | 2007-05-04 | Botón del nivel de energía combinado. |
Country Status (7)
Country | Link |
---|---|
US (2) | US20070260238A1 (es) |
EP (1) | EP1852078B1 (es) |
JP (1) | JP2007296370A (es) |
AU (1) | AU2007202007A1 (es) |
CA (1) | CA2587353A1 (es) |
DE (1) | DE602007010203D1 (es) |
ES (1) | ES2354631T3 (es) |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726686B2 (en) | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6228083B1 (en) | 1997-11-14 | 2001-05-08 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US7582087B2 (en) | 1998-10-23 | 2009-09-01 | Covidien Ag | Vessel sealing instrument |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
US10849681B2 (en) | 2001-04-06 | 2020-12-01 | Covidien Ag | Vessel sealer and divider |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
JP4394881B2 (ja) | 2001-04-06 | 2010-01-06 | コヴィディエン アクチェンゲゼルシャフト | 隣接する組織に対する付随的損傷を減少させる電気外科器具 |
EP1656901B1 (en) | 2001-04-06 | 2009-09-02 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
JP2005533607A (ja) | 2002-07-25 | 2005-11-10 | シャーウッド・サービシーズ・アクチェンゲゼルシャフト | 引きずり検知能を有する電気外科用ペンシル |
US7270664B2 (en) | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7276068B2 (en) | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
ES2300746T3 (es) | 2003-02-20 | 2008-06-16 | Covidien Ag | Detector del movimiento para controlar la salida electroquirurgica. |
AU2003223284C1 (en) | 2003-03-13 | 2010-09-16 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
WO2004098383A2 (en) | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
AU2004241092B2 (en) | 2003-05-15 | 2009-06-04 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US7857812B2 (en) | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
USD956973S1 (en) * | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7131970B2 (en) | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US7500975B2 (en) | 2003-11-19 | 2009-03-10 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US7503917B2 (en) | 2003-11-20 | 2009-03-17 | Covidien Ag | Electrosurgical pencil with improved controls |
US7156842B2 (en) | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7780662B2 (en) | 2004-03-02 | 2010-08-24 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7686827B2 (en) | 2004-10-21 | 2010-03-30 | Covidien Ag | Magnetic closure mechanism for hemostat |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US7909823B2 (en) | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US7500974B2 (en) | 2005-06-28 | 2009-03-10 | Covidien Ag | Electrode with rotatably deployable sheath |
US7837685B2 (en) | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US7828794B2 (en) | 2005-08-25 | 2010-11-09 | Covidien Ag | Handheld electrosurgical apparatus for controlling operating room equipment |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7789878B2 (en) | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
CA2561638C (en) | 2005-09-30 | 2015-06-30 | Sherwood Services Ag | Insulating boot for electrosurgical forceps |
CA2561034C (en) | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US7846158B2 (en) | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20070260240A1 (en) | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Soft tissue RF transection and resection device |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US7731717B2 (en) | 2006-08-08 | 2010-06-08 | Covidien Ag | System and method for controlling RF output during tissue sealing |
US8597297B2 (en) | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US8235992B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US8236025B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US8251996B2 (en) | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US8235993B2 (en) | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US8221416B2 (en) | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US9023043B2 (en) | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8235987B2 (en) * | 2007-12-05 | 2012-08-07 | Tyco Healthcare Group Lp | Thermal penetration and arc length controllable electrosurgical pencil |
US8764748B2 (en) | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US9192427B2 (en) * | 2008-03-11 | 2015-11-24 | Covidien Lp | Bipolar cutting end effector |
EP2268221B1 (en) * | 2008-03-31 | 2018-10-03 | Covidien LP | Electrosurgical pencil including improved controls |
US8597292B2 (en) | 2008-03-31 | 2013-12-03 | Covidien Lp | Electrosurgical pencil including improved controls |
US8591509B2 (en) * | 2008-03-31 | 2013-11-26 | Covidien Lp | Electrosurgical pencil including improved controls |
US8636733B2 (en) | 2008-03-31 | 2014-01-28 | Covidien Lp | Electrosurgical pencil including improved controls |
US8162937B2 (en) | 2008-06-27 | 2012-04-24 | Tyco Healthcare Group Lp | High volume fluid seal for electrosurgical handpiece |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US8162973B2 (en) | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US8317787B2 (en) | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US8784417B2 (en) | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
CN102149338B (zh) | 2008-09-12 | 2015-07-22 | 伊西康内外科公司 | 指尖控制的超声装置 |
US9107688B2 (en) | 2008-09-12 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US8968314B2 (en) | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8535312B2 (en) | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9375254B2 (en) | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8636761B2 (en) | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US8486107B2 (en) | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8231620B2 (en) | 2009-02-10 | 2012-07-31 | Tyco Healthcare Group Lp | Extension cutting blade |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8246618B2 (en) | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
US8647343B2 (en) | 2010-06-23 | 2014-02-11 | Covidien Lp | Surgical forceps for sealing and dividing tissue |
US8663270B2 (en) | 2010-07-23 | 2014-03-04 | Conmed Corporation | Jaw movement mechanism and method for a surgical tool |
EP2417925B1 (en) | 2010-08-12 | 2016-12-07 | Immersion Corporation | Electrosurgical tool having tactile feedback |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US8888771B2 (en) | 2011-07-15 | 2014-11-18 | Covidien Lp | Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
AU2013200917A1 (en) * | 2012-03-22 | 2013-10-10 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
CN104248463B (zh) * | 2013-06-26 | 2016-12-28 | 瑞奇外科器械(中国)有限公司 | 超声刀及其调节装置 |
WO2015017992A1 (en) | 2013-08-07 | 2015-02-12 | Covidien Lp | Surgical forceps |
US20160038224A1 (en) | 2014-08-11 | 2016-02-11 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
US20160038220A1 (en) | 2014-08-11 | 2016-02-11 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
US9987078B2 (en) | 2015-07-22 | 2018-06-05 | Covidien Lp | Surgical forceps |
WO2017031712A1 (en) | 2015-08-26 | 2017-03-02 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10470790B2 (en) * | 2015-12-16 | 2019-11-12 | Ethicon Llc | Surgical instrument with selector |
US20170172614A1 (en) | 2015-12-17 | 2017-06-22 | Ethicon Endo-Surgery, Llc | Surgical instrument with multi-functioning trigger |
US9748057B2 (en) * | 2016-01-04 | 2017-08-29 | Gyrus Acmi, Inc. | Device with movable buttons or switches |
EP3435902A1 (en) * | 2016-03-31 | 2019-02-06 | Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) | Disengagement mechanism for electrosurgical forceps |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
US11896285B2 (en) | 2018-03-14 | 2024-02-13 | Gyrus Acmi, Inc. | Device with movable buttons or switches and visual indicator |
US11361918B2 (en) | 2019-03-25 | 2022-06-14 | Gyrus Acmi, Inc. | Device with movable buttons or switches and tactile identifier |
US11399888B2 (en) | 2019-08-14 | 2022-08-02 | Covidien Lp | Bipolar pencil |
US11564732B2 (en) | 2019-12-05 | 2023-01-31 | Covidien Lp | Tensioning mechanism for bipolar pencil |
WO2022248970A1 (en) * | 2021-05-28 | 2022-12-01 | Covidien Lp | Electrosurgical forceps with smart energy delivery system |
CN114366282A (zh) * | 2021-12-31 | 2022-04-19 | 杭州诺生医疗科技有限公司 | 穿刺系统及其控制手柄 |
Family Cites Families (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1090689A (en) * | 1913-04-28 | 1914-03-17 | Edwin W Grove | Lath. |
US2031682A (en) * | 1932-11-18 | 1936-02-25 | Wappler Frederick Charles | Method and means for electrosurgical severance of adhesions |
US2279753A (en) * | 1940-03-25 | 1942-04-14 | Knapp Monarch Co | Switch |
US2668538A (en) * | 1952-01-30 | 1954-02-09 | George P Pilling & Son Company | Surgical clamping means |
US3073311A (en) * | 1958-11-07 | 1963-01-15 | Nat Res Dev | Sewing device |
US3866610A (en) * | 1967-08-28 | 1975-02-18 | Harold D Kletschka | Cardiovascular clamps |
US3636943A (en) * | 1967-10-27 | 1972-01-25 | Ultrasonic Systems | Ultrasonic cauterization |
US3643663A (en) * | 1968-10-16 | 1972-02-22 | F L Fischer | Coagulating instrument |
DE2030776A1 (de) * | 1970-06-23 | 1971-12-30 | Siemens Ag | Handstück für Hochfrequenz-Elektroden |
GB1365225A (en) * | 1972-05-26 | 1974-08-29 | Stanley Tools Ltd | Retractable blade knife |
CA1018419A (en) * | 1973-07-04 | 1977-10-04 | Gerald Turp | Instrument for laparoscopic tubal cauterization |
US4005714A (en) * | 1975-05-03 | 1977-02-01 | Richard Wolf Gmbh | Bipolar coagulation forceps |
US4074718A (en) * | 1976-03-17 | 1978-02-21 | Valleylab, Inc. | Electrosurgical instrument |
US4076028A (en) * | 1976-10-07 | 1978-02-28 | Concept Inc. | Forceps spacing device |
US4187420A (en) * | 1978-05-17 | 1980-02-05 | Eaton Corporation | Rocker switch with selective lockout means shiftable transversely of the pivotal axis |
US4311145A (en) * | 1979-07-16 | 1982-01-19 | Neomed, Inc. | Disposable electrosurgical instrument |
USD263020S (en) * | 1980-01-22 | 1982-02-16 | Rau Iii David M | Retractable knife |
US4370980A (en) * | 1981-03-11 | 1983-02-01 | Lottick Edward A | Electrocautery hemostat |
US4375218A (en) * | 1981-05-26 | 1983-03-01 | Digeronimo Ernest M | Forceps, scalpel and blood coagulating surgical instrument |
US4493320A (en) * | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US4492231A (en) * | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4655215A (en) * | 1985-03-15 | 1987-04-07 | Harold Pike | Hand control for electrosurgical electrodes |
US4936842A (en) | 1987-05-08 | 1990-06-26 | Circon Corporation | Electrosurgical probe apparatus |
JPS63304538A (ja) * | 1987-06-03 | 1988-12-12 | Canon Inc | 操作装置 |
US5084057A (en) * | 1989-07-18 | 1992-01-28 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
US4868354A (en) * | 1988-09-23 | 1989-09-19 | Emhart Industries, Inc. | Slide switch with light guide |
DE3917328A1 (de) * | 1989-05-27 | 1990-11-29 | Wolf Gmbh Richard | Bipolares koagulationsinstrument |
US5078716A (en) * | 1990-05-11 | 1992-01-07 | Doll Larry F | Electrosurgical apparatus for resecting abnormal protruding growth |
US5282799A (en) * | 1990-08-24 | 1994-02-01 | Everest Medical Corporation | Bipolar electrosurgical scalpel with paired loop electrodes |
US5391183A (en) * | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5190541A (en) * | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
US5085659A (en) * | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
US5122627A (en) * | 1991-03-04 | 1992-06-16 | John Fluke Mfg. Co., Inc. | Asymmetrical electrical switch actuator |
US5396900A (en) * | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5484436A (en) * | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5391166A (en) * | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5176695A (en) * | 1991-07-08 | 1993-01-05 | Davinci Medical, Inc. | Surgical cutting means |
DE59204778D1 (de) * | 1991-07-23 | 1996-02-01 | Karlsruhe Forschzent | Chirurgisches nähinstrument |
US5196009A (en) * | 1991-09-11 | 1993-03-23 | Kirwan Jr Lawrence T | Non-sticking electrosurgical device having nickel tips |
US5366477A (en) * | 1991-10-17 | 1994-11-22 | American Cyanamid Company | Actuating forces transmission link and assembly for use in surgical instruments |
US5433725A (en) * | 1991-12-13 | 1995-07-18 | Unisurge, Inc. | Hand-held surgical device and tools for use therewith, assembly and method |
US5282826A (en) * | 1992-03-05 | 1994-02-01 | Quadtello Corporation | Dissector for endoscopic and laparoscopic use |
US5277201A (en) * | 1992-05-01 | 1994-01-11 | Vesta Medical, Inc. | Endometrial ablation apparatus and method |
US5389098A (en) * | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
US5601641A (en) * | 1992-07-21 | 1997-02-11 | Tse Industries, Inc. | Mold release composition with polybutadiene and method of coating a mold core |
US5275615A (en) * | 1992-09-11 | 1994-01-04 | Anthony Rose | Medical instrument having gripping jaws |
US5282800A (en) * | 1992-09-18 | 1994-02-01 | Edward Weck, Inc. | Surgical instrument |
US5601224A (en) * | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5383897A (en) * | 1992-10-19 | 1995-01-24 | Shadyside Hospital | Method and apparatus for closing blood vessel punctures |
US5389104A (en) * | 1992-11-18 | 1995-02-14 | Symbiosis Corporation | Arthroscopic surgical instruments |
US5807393A (en) * | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5496347A (en) * | 1993-03-30 | 1996-03-05 | Olympus Optical Co., Ltd. | Surgical instrument |
US5817093A (en) * | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5709680A (en) * | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US5478344A (en) * | 1993-10-08 | 1995-12-26 | United States Surgical Corporation | Surgical suturing apparatus with loading mechanism |
US5620453A (en) * | 1993-11-05 | 1997-04-15 | Nallakrishnan; Ravi | Surgical knife with retractable blade and depth of cut control |
US5597107A (en) * | 1994-02-03 | 1997-01-28 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5480409A (en) * | 1994-05-10 | 1996-01-02 | Riza; Erol D. | Laparoscopic surgical instrument |
US5383875A (en) * | 1994-05-31 | 1995-01-24 | Zimmer, Inc. | Safety device for a powered surgical instrument |
US6024743A (en) * | 1994-06-24 | 2000-02-15 | Edwards; Stuart D. | Method and apparatus for selective treatment of the uterus |
US5480406A (en) * | 1994-10-07 | 1996-01-02 | United States Surgical Corporation | Method of employing surgical suturing apparatus to tie knots |
US5603723A (en) * | 1995-01-11 | 1997-02-18 | United States Surgical Corporation | Surgical instrument configured to be disassembled for cleaning |
US5603711A (en) * | 1995-01-20 | 1997-02-18 | Everest Medical Corp. | Endoscopic bipolar biopsy forceps |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US6179837B1 (en) * | 1995-03-07 | 2001-01-30 | Enable Medical Corporation | Bipolar electrosurgical scissors |
US5647871A (en) * | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US5624452A (en) * | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US5569300A (en) * | 1995-04-12 | 1996-10-29 | Redmon; Henry A. | Dilating surgical forceps having illumination means on blade inner surface |
US6602248B1 (en) * | 1995-06-07 | 2003-08-05 | Arthro Care Corp. | Methods for repairing damaged intervertebral discs |
US5707369A (en) * | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5720744A (en) * | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US7115123B2 (en) * | 1996-01-05 | 2006-10-03 | Thermage, Inc. | Handpiece with electrode and non-volatile memory |
US6126656A (en) * | 1996-01-30 | 2000-10-03 | Utah Medical Products, Inc. | Electrosurgical cutting device |
US5882567A (en) * | 1996-02-16 | 1999-03-16 | Acushnet Company | Method of making a golf ball having multiple layers |
US5725536A (en) * | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US5893877A (en) * | 1996-04-10 | 1999-04-13 | Synergetics, Inc. | Surgical instrument with offset handle |
AUPO044596A0 (en) * | 1996-06-14 | 1996-07-11 | Skop Gmbh Ltd | Improved electrical signal supply |
FR2759165A1 (fr) * | 1997-01-31 | 1998-08-07 | Canon Kk | Procede et dispositif de determination de la quantite de produit present dans un reservoir, reservoir de produit et dispositif de traitement de signaux electriques destines a un tel dispositif de determination |
US6017358A (en) * | 1997-05-01 | 2000-01-25 | Inbae Yoon | Surgical instrument with multiple rotatably mounted offset end effectors |
US6096037A (en) * | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US6102909A (en) * | 1997-08-26 | 2000-08-15 | Ethicon, Inc. | Scissorlike electrosurgical cutting instrument |
US6024744A (en) * | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US5891141A (en) * | 1997-09-02 | 1999-04-06 | Everest Medical Corporation | Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures |
US6267761B1 (en) * | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
AU739648B2 (en) * | 1997-09-10 | 2001-10-18 | Covidien Ag | Bipolar instrument for vessel fusion |
US6171316B1 (en) * | 1997-10-10 | 2001-01-09 | Origin Medsystems, Inc. | Endoscopic surgical instrument for rotational manipulation |
US6178628B1 (en) * | 1997-10-22 | 2001-01-30 | Aavid Thermalloy, Llc | Apparatus and method for direct attachment of heat sink to surface mount |
US6352536B1 (en) * | 2000-02-11 | 2002-03-05 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6050996A (en) * | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US20030014052A1 (en) * | 1997-11-14 | 2003-01-16 | Buysse Steven P. | Laparoscopic bipolar electrosurgical instrument |
US6010516A (en) * | 1998-03-20 | 2000-01-04 | Hulka; Jaroslav F. | Bipolar coaptation clamps |
US6030384A (en) * | 1998-05-01 | 2000-02-29 | Nezhat; Camran | Bipolar surgical instruments having focused electrical fields |
US6514252B2 (en) * | 1998-05-01 | 2003-02-04 | Perfect Surgical Techniques, Inc. | Bipolar surgical instruments having focused electrical fields |
US6508815B1 (en) * | 1998-05-08 | 2003-01-21 | Novacept | Radio-frequency generator for powering an ablation device |
US6027522A (en) * | 1998-06-02 | 2000-02-22 | Boston Scientific Corporation | Surgical instrument with a rotatable distal end |
US6679882B1 (en) * | 1998-06-22 | 2004-01-20 | Lina Medical Aps | Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue |
DE19833600A1 (de) * | 1998-07-25 | 2000-03-02 | Storz Karl Gmbh & Co Kg | Medizinische Zange mit zwei unabhängig voneinander beweglichen Maulteilen |
US6021693A (en) * | 1998-09-21 | 2000-02-08 | Chang Feng-Sing | Method of manufacturing blades for scissors |
US7267677B2 (en) * | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US6511480B1 (en) * | 1998-10-23 | 2003-01-28 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
EP2072017B1 (en) * | 1998-10-23 | 2018-04-18 | Covidien AG | Endoscopic bipolar electrosurgical forceps |
US6221039B1 (en) * | 1998-10-26 | 2001-04-24 | Scimed Life Systems, Inc. | Multi-function surgical instrument |
DE19858512C1 (de) * | 1998-12-18 | 2000-05-25 | Storz Karl Gmbh & Co Kg | Bipolares medizinisches Instrument |
US20030171747A1 (en) * | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6174309B1 (en) * | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6506196B1 (en) * | 1999-06-22 | 2003-01-14 | Ndo Surgical, Inc. | Device and method for correction of a painful body defect |
US6692445B2 (en) * | 1999-07-27 | 2004-02-17 | Scimed Life Systems, Inc. | Biopsy sampler |
US6685724B1 (en) * | 1999-08-24 | 2004-02-03 | The Penn State Research Foundation | Laparoscopic surgical instrument and method |
WO2001066026A2 (en) * | 2000-03-06 | 2001-09-13 | Tissuelink Medical, Inc. | Fluid delivery system and controller for electrosurgical devices |
US6689131B2 (en) * | 2001-03-08 | 2004-02-10 | Tissuelink Medical, Inc. | Electrosurgical device having a tissue reduction sensor |
US6358268B1 (en) * | 2000-03-06 | 2002-03-19 | Robert B. Hunt | Surgical instrument |
US6458128B1 (en) * | 2001-01-24 | 2002-10-01 | Ethicon, Inc. | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
US20020111624A1 (en) * | 2001-01-26 | 2002-08-15 | Witt David A. | Coagulating electrosurgical instrument with tissue dam |
US6682527B2 (en) * | 2001-03-13 | 2004-01-27 | Perfect Surgical Techniques, Inc. | Method and system for heating tissue with a bipolar instrument |
US20030229344A1 (en) * | 2002-01-22 | 2003-12-11 | Dycus Sean T. | Vessel sealer and divider and method of manufacturing same |
EP1656901B1 (en) * | 2001-04-06 | 2009-09-02 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
CA2442960C (en) * | 2001-04-06 | 2011-03-22 | Sherwood Services Ag | Vessel sealing instrument |
US7101371B2 (en) * | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US6726068B2 (en) * | 2001-04-09 | 2004-04-27 | Dennis J. Miller | Elastomeric thimble |
US6676676B2 (en) * | 2001-05-02 | 2004-01-13 | Novare Surgical Systems | Clamp having bendable shaft |
US20030018332A1 (en) * | 2001-06-20 | 2003-01-23 | Schmaltz Dale Francis | Bipolar electrosurgical instrument with replaceable electrodes |
US6994709B2 (en) * | 2001-08-30 | 2006-02-07 | Olympus Corporation | Treatment device for tissue from living tissues |
US6652514B2 (en) * | 2001-09-13 | 2003-11-25 | Alan G. Ellman | Intelligent selection system for electrosurgical instrument |
US6527771B1 (en) * | 2001-09-28 | 2003-03-04 | Ethicon, Inc. | Surgical device for endoscopic vein harvesting |
US7011657B2 (en) * | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US7083619B2 (en) * | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6676660B2 (en) * | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
US20040030330A1 (en) * | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US7033356B2 (en) * | 2002-07-02 | 2006-04-25 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US6987244B2 (en) * | 2002-07-31 | 2006-01-17 | Illinois Tool Works Inc. | Self-contained locking trigger assembly and systems which incorporate the assembly |
US20040064151A1 (en) * | 2002-09-27 | 2004-04-01 | Starion Instruments Corporation | Ultrasonic forceps |
US7276068B2 (en) * | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7270664B2 (en) * | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7244257B2 (en) | 2002-11-05 | 2007-07-17 | Sherwood Services Ag | Electrosurgical pencil having a single button variable control |
US7314471B2 (en) * | 2002-11-18 | 2008-01-01 | Trevor John Milton | Disposable scalpel with retractable blade |
US7033354B2 (en) * | 2002-12-10 | 2006-04-25 | Sherwood Services Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
US7169146B2 (en) * | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
WO2004080278A2 (en) * | 2003-03-06 | 2004-09-23 | Tissuelink Medical, Inc. | Fluid -assisted medical devices, systems and methods |
US7160299B2 (en) * | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
WO2004098383A2 (en) * | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
WO2004098385A2 (en) * | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Method and system for programing and controlling an electrosurgical generator system |
EP1633264B1 (en) | 2003-06-13 | 2010-08-11 | Covidien AG | Vessel sealer and divider for use with small trocars and cannulas |
US7156846B2 (en) * | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7344268B2 (en) * | 2003-07-07 | 2008-03-18 | Xenonics, Inc. | Long-range, handheld illumination system |
US6981628B2 (en) * | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
US7232440B2 (en) * | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7367976B2 (en) * | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7811283B2 (en) * | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7500975B2 (en) * | 2003-11-19 | 2009-03-10 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US7156842B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US8157795B2 (en) * | 2004-02-03 | 2012-04-17 | Covidien Ag | Portable argon system |
US7628787B2 (en) * | 2004-02-03 | 2009-12-08 | Covidien Ag | Self contained, gas-enhanced surgical instrument |
US7342754B2 (en) * | 2004-03-02 | 2008-03-11 | Eaton Corporation | Bypass circuit to prevent arcing in a switching device |
JP4249070B2 (ja) * | 2004-03-26 | 2009-04-02 | 有限会社東京医科電機製作所 | 電気メス装置 |
JP2006059766A (ja) * | 2004-08-24 | 2006-03-02 | Tokai Denso Kk | スライドスイッチ |
US7195631B2 (en) * | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
US7540872B2 (en) * | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US20060060919A1 (en) * | 2004-09-21 | 2006-03-23 | Hsi-Ming Chang | Low temperature polysilicon thin film transistor and method of fabricating lightly doped drain thereof |
USD535027S1 (en) * | 2004-10-06 | 2007-01-09 | Sherwood Services Ag | Low profile vessel sealing and cutting mechanism |
US7628792B2 (en) * | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
USD564662S1 (en) * | 2004-10-13 | 2008-03-18 | Sherwood Services Ag | Hourglass-shaped knife for electrosurgical forceps |
US7837685B2 (en) * | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US7628791B2 (en) * | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
JP2006068537A (ja) * | 2005-09-26 | 2006-03-16 | Olympus Corp | 手術具 |
US7789878B2 (en) * | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US7922953B2 (en) * | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
CA2561638C (en) * | 2005-09-30 | 2015-06-30 | Sherwood Services Ag | Insulating boot for electrosurgical forceps |
CA2561034C (en) * | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
US8734443B2 (en) * | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US7776037B2 (en) * | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US20080015575A1 (en) * | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US7744615B2 (en) * | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US20080033428A1 (en) * | 2006-08-04 | 2008-02-07 | Sherwood Services Ag | System and method for disabling handswitching on an electrosurgical instrument |
US8597297B2 (en) * | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
US20090024126A1 (en) * | 2007-07-19 | 2009-01-22 | Ryan Artale | Tissue fusion device |
-
2006
- 2006-05-05 US US11/418,878 patent/US20070260238A1/en not_active Abandoned
-
2007
- 2007-05-04 DE DE602007010203T patent/DE602007010203D1/de active Active
- 2007-05-04 CA CA002587353A patent/CA2587353A1/en not_active Abandoned
- 2007-05-04 EP EP07009025A patent/EP1852078B1/en not_active Not-in-force
- 2007-05-04 ES ES07009025T patent/ES2354631T3/es active Active
- 2007-05-04 AU AU2007202007A patent/AU2007202007A1/en not_active Abandoned
- 2007-05-07 JP JP2007122841A patent/JP2007296370A/ja active Pending
-
2009
- 2009-03-05 US US12/398,674 patent/US20090187188A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP1852078B1 (en) | 2010-11-03 |
US20070260238A1 (en) | 2007-11-08 |
JP2007296370A (ja) | 2007-11-15 |
DE602007010203D1 (de) | 2010-12-16 |
AU2007202007A1 (en) | 2007-11-22 |
EP1852078A1 (en) | 2007-11-07 |
CA2587353A1 (en) | 2007-11-05 |
US20090187188A1 (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2354631T3 (es) | Botón del nivel de energía combinado. | |
EP2368504B1 (en) | Clamp and scissor forceps | |
ES2381560T3 (es) | Funda aislante para fórceps electroquirúrgicos | |
ES2442241T3 (es) | Sistema electroquirúrgico con un mecanismo de conmutación | |
US8968305B2 (en) | Surgical forceps with external cutter | |
US9579145B2 (en) | Flexible endoscopic catheter with ligasure | |
ES2378547T3 (es) | Fórceps bipolar con extensión monopolar | |
AU2010212496B2 (en) | Bipolar forceps having monopolar extension | |
ES2297579T3 (es) | Forceps con conjunto de accionador extremo cargado por resorte. | |
US6371956B1 (en) | Monopolar electrosurgical end effectors | |
US7384421B2 (en) | Slide-activated cutting assembly | |
US7879035B2 (en) | Insulating boot for electrosurgical forceps | |
US11596467B2 (en) | Articulating tip for bipolar pencil | |
US11864817B2 (en) | Low profile single pole tip for bipolar pencil | |
US11684413B2 (en) | Smoke mitigation assembly for bipolar pencil | |
AU2012254931B2 (en) | Insulating boot for electrosurgical forceps | |
AU2005205747A1 (en) | Handheld electrosurgical apparatus for controlling operating room equipment |