[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4012088B1 - Nadelmaschine und vernadelungsverfahren - Google Patents

Nadelmaschine und vernadelungsverfahren Download PDF

Info

Publication number
EP4012088B1
EP4012088B1 EP21207747.3A EP21207747A EP4012088B1 EP 4012088 B1 EP4012088 B1 EP 4012088B1 EP 21207747 A EP21207747 A EP 21207747A EP 4012088 B1 EP4012088 B1 EP 4012088B1
Authority
EP
European Patent Office
Prior art keywords
needling
connecting rods
needles
needle machine
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21207747.3A
Other languages
English (en)
French (fr)
Other versions
EP4012088A1 (de
Inventor
Paul Michael Egener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Autefa Solutions Austria GmbH
Original Assignee
Autefa Solutions Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autefa Solutions Austria GmbH filed Critical Autefa Solutions Austria GmbH
Publication of EP4012088A1 publication Critical patent/EP4012088A1/de
Application granted granted Critical
Publication of EP4012088B1 publication Critical patent/EP4012088B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/02Needling machines with needles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling

Definitions

  • the invention relates to a needling machine and a needling method with the features in the independent claims.
  • Such a needling machine for a nonwoven fiber web is known from practice and figure 1 shown. It has a needling unit with oscillating needles for piercing, needling and solidifying the nonwoven fiber web.
  • the needling unit has a lifting drive and reversingly driven parallel, linearly guided drive rods for moving the needles.
  • the needles perform a straight and oscillating movement in the lifting direction.
  • the connecting rods also move in this lifting direction, which are aligned with their longitudinal axes parallel to the lifting direction.
  • the needles pierce perpendicularly to the nonwoven fiber web that is fed and moved transversely to the lifting direction.
  • a further developed variant of such a needle machine with lifting drive and crank mechanisms as well as a supporting beam for the needles, which is connected directly to the connecting rods in an articulated manner, is from WO 2009/127520 A1 known.
  • a link mechanism superimposes a horizontal movement on the vertical lifting movement of the supporting beam.
  • EP 2250308 B1 discloses a needling machine having a balancing mass associated with the crank drive of a vertical engine. This balancing mass is offset to an eccentric of the crank drive.
  • the invention solves this problem with the features in the main claim.
  • the claimed needling technique i.e. the needling machine and the needling process, have several advantages.
  • the needling unit of the needling machine has a supporting beam which is connected to the needles and extends in the direction of passage of the nonwoven fiber web and which is directly or indirectly connected to the needles.
  • the drive rods which are reversibly driven by the lifting drive and are linearly guided, are articulated to the supporting beam via a beam bearing.
  • One of the beam bearings has an additional degree of freedom of movement.
  • the lifting drive can have any constructive design and can drive the connecting rods reversingly in any way and allow them to execute an oscillating, preferably vertical, lifting movement.
  • the supporting beam can change its orientation and position relative to the parallel connecting rods.
  • it can be aligned at an angle to the connecting rods and their longitudinal axis and to the lifting direction parallel thereto.
  • This has advantages, particularly when the connecting rods are moved with a mutual phase offset ( ⁇ ) and are driven by the lifting drive.
  • phase offset
  • This allows the needles to move in the lifting direction with a superimposed additional needle movement in the direction of passage of the nonwoven fibrous web.
  • the superimposed needle movement in the throughput direction can support the transport of the nonwoven fiber web.
  • the needles in particular the needle tips, can in particular have an elliptical path of movement.
  • the needles can pierce the nonwoven fiber web upstream, viewed in the throughput direction, and then exit again downstream. This enables the needles to have a movement component in the throughput direction, which is favorable for the needles to pierce and extend the moving nonwoven fiber web with few collisions and disruptions. Disturbances in the fiber web structure, e.g. a moiree effect, can be avoided.
  • the quality of the bonded nonwoven fibrous web is very high.
  • the nonwoven fiber web can be formed from natural fibers or synthetic fibers or fiber mixtures. It can be, for example, a single-layer or multi-layer fiber fleece that is fed to the needling machine by a fleece lapper, in particular a cross-lapper.
  • the fleece layer can, for example, fold a fiber fleece produced by a pile producer, e.g. a card or card, an airlay or the like, into a multi-layer fiber fleece and place it on a discharge belt.
  • the construction and control costs of the needle machine are low and are lower than in the prior art mentioned at the outset.
  • a phase adjustment option on the lifting drive and/or on the connecting rods is sufficient.
  • the support beam with the needles then adjusts itself to the phase-shifted connecting rod movement. No additional horizontal drive and/or link gear is required for the desired movement of the supporting beam and the needles.
  • the parallel connecting rods arranged one behind the other in the direction of passage have the advantage that they can absorb and support the transverse forces that occur during operation particularly well. This can wear and tear happen with little disruption.
  • the formation of the articulated beam bearing between the drive rods and the support beam can be simplified and improved. The bearing loads can be kept low.
  • the beam bearing arranged downstream on the carrying beam in the direction of passage has the additional degree of freedom of movement.
  • the other beam bearing located upstream can be designed as a simple swivel joint. Together with the associated drive rod, this beam bearing can absorb the transverse forces that occur particularly well. This is particularly advantageous in the case of a phase shift, because the center of gravity of the mass of supporting beams, needle bed, etc. hanging on the connecting rods also moves on an elliptical path.
  • two drive rods and two beam bearings are arranged on the supporting beam.
  • the additional degree of freedom of movement can be rotational or translational.
  • the beam bearing in question can be designed, for example, as an eccentric bearing with an additional rotational degree of freedom of movement or as a sliding bearing with an additional translational degree of freedom of movement.
  • the translational degree of freedom of movement can be aligned in the longitudinal direction of the supporting beam or along the direction of passage of the nonwoven fiber web.
  • a straight and preferably upright guide, in particular a linear guide, is advantageous for the connecting rods.
  • the guide and the longitudinal axis of the connecting rods extend in the lifting direction. They are preferably aligned vertically.
  • the guide can be optimized to ensure that the connecting rods are guided securely and to absorb transverse forces, e.g. by using two or more separate bearing and guide points that are spaced apart in the longitudinal direction of the rod.
  • the needling unit can have two or more support beams with drive rods and said beam bearings, which are arranged one behind the other in a direction transverse to the direction of passage.
  • the lifting drive can be adapted to such a multiple arrangement.
  • the needles can be arranged directly or indirectly on the supporting beam. In an advantageous embodiment, they are arranged on a needle bed, which is preferably detachably mounted on a needle bar.
  • the needle bar and the needle board can extend transversely to the one or more support bars and transversely to the direction of travel. This design enables a particularly stable and torsion-free support structure for the needles.
  • the lifting drive can drive the connecting rods in the same direction in their direction of movement, with the phase offset ⁇ mentioned being able to exist.
  • the phase offset can be adjustable and adjustable.
  • a phase adjuster can be arranged on the lifting drive or at another point. There are various options for designing the lifting drive.
  • the lifting drive can each have its own drive mechanism for the connecting rods arranged one behind the other in the direction of passage.
  • This can be done in a advantageous embodiment be designed as a preferably revolving rotating crank mechanism.
  • a crank mechanism can have, for example, a rotating crankshaft with a disc-shaped eccentric and a connecting rod.
  • the connecting rod can be rotatably mounted at one end via a connecting rod bearing on the eccentric and connected at the other end via a joint to the associated connecting rod.
  • a crank mechanism can also have an offset crankshaft with connection of the connecting rod to the offset.
  • the lifting drive can each have its own drive motor for the engines. In another embodiment, it can have a common drive motor for several engines.
  • a transfer case or the like can transmit the driving force of the engine to the engines. If several supporting beams with connecting rods are arranged one behind the other transversely to the direction of passage, a separate engine can be present for each connecting rod, it being possible for the engines arranged one behind the other in the transverse direction to have a common crankshaft.
  • These common crankshafts can be coupled in the aforementioned way with their own motors or with a common motor.
  • Said motors can be designed in any suitable way, preferably as controllable electric motors, in particular AC or three-phase motors.
  • the needling machine can have several needling units arranged one behind the other in the throughput direction. These allow multi-stage needling and strengthening of the nonwoven fiber web. Alternatively or additionally, the needling machine can have several needling units arranged on both sides of the nonwoven fiber web. These can be arranged in particular above and below the nonwoven fiber web. They allow double-sided needling and strengthening of the nonwoven fiber web. To avoid collisions, the two-sided needling units can work out of phase and pierce the nonwoven fiber web with their needles.
  • one or more claimed needling units can be arranged at the entry area of the needling machine, viewed in the throughput direction.
  • One or more subsequent needling units can be designed in a conventional manner. In particular, you can work with a purely straight, in particular vertical, insertion and extension movement of the needles.
  • the claimed needling machine and the method for needling and strengthening a nonwoven fiber web can have the following configurations, which can be used individually or in any combination.
  • the connecting rods of the needling machine in particular of the needling unit, can each be guided straight and preferably upright.
  • the needling machine can have a straight and preferably upright guide for the drive rods.
  • the lifting drive of the needling unit can drive the connecting rods in the same direction.
  • the connecting rods can be moved up and down synchronously.
  • the lifting drive of the needling unit can drive the drive rods in phase or with a mutual phase offset ( ⁇ ).
  • the lifting drive of the needling unit can have a phase adjuster for setting and, if necessary, adjusting a mutual phase offset ( ⁇ ) of the drive rods exhibit.
  • the phase adjuster can be designed in different ways.
  • the lifting drive of the needling unit can each have its own drive unit for the connecting rods arranged one behind the other in the direction of passage of the nonwoven fiber web.
  • the drive mechanisms of the connecting rods can be designed as rotating crank mechanisms.
  • the drive mechanisms of the connecting rods can be driven to rotate in opposite directions.
  • the drive mechanisms of the connecting rods can be driven reversingly by a predetermined angle of rotation or revolving.
  • a needle bar with a needle board and needles there can be arranged on the support bar or bars of a needling unit.
  • the needle bar and, if necessary, the needle board can extend transversely to the direction of passage of the nonwoven fiber web.
  • the needling machine can have several needling units, which are arranged one behind the other in the direction of passage of the nonwoven fiber web.
  • the invention relates to a needling machine (1) and a needling method for needling and strengthening a nonwoven fiber web (2).
  • figure 1 shows a needling machine (1) according to the prior art for needling and strengthening a nonwoven fiber web (2), which is fed to the needling machine (1) in a throughput direction (3) and passed through the needling machine (1).
  • the needling machine (1) has at least one needling unit (5) with oscillating needles (11) for needling and solidifying the nonwoven fiber web (2).
  • the needling unit (5) comprises a lifting drive (6) which reversely drives two parallel connecting rods (15, 16) which are each guided straight in a linear guide (17).
  • the connecting rods (15,16) execute a synchronous oscillating, e.g. vertical, lifting movement.
  • the connecting rods (15, 16) are connected to the lifting drive (6) at one end, for example the upper end, and are connected to the needles (11) at their respective other end, in particular the lower end.
  • a needle bar (9) with a changeable, for example, one Needle bed (10) and needles (11) mounted there.
  • the needle bars (9) and the needles (11) extend across the nonwoven fiber web (2) and across the direction of passage (3).
  • the lifting movement and the piercing movement of the needles (11) are aligned perpendicularly to the nonwoven fiber web (2) and to the direction of passage (3).
  • the linear actuator (6) has according to figure 1 on two engines (22,23), which are each designed as a crank mechanism and have a rotatingly driven crankshaft (24) and an eccentric (25) mounted thereon.
  • the crank mechanisms each comprise a connecting rod (26) which is articulated at its one end, for example the lower end, via a joint (28) to the associated connecting rod (15, 16).
  • the connecting rod (26) is rotatably connected to the eccentric (25) via a connecting rod bearing (27).
  • the connecting rods (26) each perform a lifting and lowering movement directed along the connecting rods (15, 16) and a superimposed pivoting movement.
  • the nonwoven fiber web (2) is preferably guided straight and, for example, horizontally between a perforated wiper (13) and a stitch pad (14).
  • the aforementioned components of the needling unit (5) are arranged in a machine frame (4) of the needling machine (1).
  • the needling unit (5) can also have several drive units (22, 23) which are arranged one behind the other on a common crankshaft (24) transversely to the direction of passage (3) and to the plane of the drawing and are jointly driven thereby.
  • FIG 2 to 7 a needling machine (1) according to the invention and a needling unit (5) are shown.
  • figure 2 shows a schematic front view and figure 4 a perspective view.
  • figure 5 is an elliptical trajectory of a needle point relative to the nonwoven fibrous web (2) shown.
  • Figure 6 and 7 illustrate a support beam (8) and its connection to connecting rods (15,16).
  • Figure 8 to 15 on the one hand and Figure 16 to Figure 23 on the other hand each show a movement cycle.
  • the needling machine (1) according to the invention can be parts of the needling machine (1).
  • figure 1 include, where matching components are denoted by the same reference numerals.
  • the needling machine (1) has a machine frame (4) with at least one needling unit (5) and a lifting drive (6) for the reversing drive of parallel drive rods (15, 16) linearly guided in a guide (17) for moving the needles (11) on.
  • the eg two parallel drive rods (15,16) are arranged one behind the other in the direction of passage (3).
  • the guide (17) can, for example, according to figure 2 have several, eg two, guide and bearing points which are arranged at a mutual distance in the longitudinal direction of the rod.
  • the needles (11) are moved up and down by the connecting rods (15, 16) in an oscillating manner, e.g.
  • the needles are available in large numbers, only a few needles (11) being shown in the drawings for reasons of clarity.
  • Figure 1 to 4 illustrate the arrangement of the stripper (13) with passage openings (29) for the penetrating needles (11).
  • the through openings (29) are according to figure 3 designed as oblong holes aligned in the direction of passage (3).
  • the arrangement of a stitch pad (14) is also shown, which also has openings, in particular oblong holes, for receiving the needles (11) as they pass through the nonwoven fiber web (2).
  • the drawings show a simplified design of the needling machine (1) with only one needling unit (5).
  • the needling machine (1) can be constructed in several stages and have several needling units (5) which are arranged one behind the other in the direction of passage (3). They can be located on the same machine frame (4).
  • the needling unit (5) shown is preferably located at the beginning of a multi-stage needling machine (1), viewed in the throughput direction (3), the supplied nonwoven fiber web (2) not yet being solidified or only slightly so.
  • subsequent needling units in a different way for example according to figure 1 , be educated. They can act on the already at least partially consolidated nonwoven fiber web (2) with a purely linear needle movement.
  • Such an arrangement with one or more needling units (5) can be present in the case of one-sided needling of the nonwoven fiber web (2) and one-sided piercing and exchanging of the needles (11), shown as an example. Said arrangement can also be used for needling on both sides.
  • the lifting drive (6) for the connecting rods (15, 16) can be designed in any way in the needling unit (5) according to the invention.
  • the needling unit (5) has, for example, at least two preferably straight connecting rods (15, 16) with linear guides (17) on the machine frame (4) arranged one behind the other in the throughput direction (3).
  • the lifting drive (6) includes, for example, a drive mechanism (22,23) for each connecting rod (15,16).
  • the engines (22,23) are of their own engine or a common engine and a Powered transfer case.
  • the motor is preferably designed as a controllable electric motor, in particular as an AC motor or a three-phase motor.
  • the engines (22,23) can, for example, according to figure 2 and 4 be designed as crank mechanisms and have a crankshaft (24) with an eccentric (25) and a connecting rod (26) which is articulated at its free end via a joint (28) to the associated connecting rod (15,16).
  • the design of the crank mechanisms can be the same as that described above figure 1 be.
  • crank mechanisms can also have an offset crankshaft (24), as shown in figure 2 is indicated.
  • the eccentric (25) is formed by the offset of the crankshaft (24).
  • the reversing drive of the connecting rods (15,16) with the lifting and lowering movement along the longitudinal axis of the rod and the guide (17) can take place in the same direction and in phase.
  • the connecting rods (15,16) are moved up and down synchronously. This can have the same kinematics as in figure 1 be.
  • a phase-shifted movement of the drive rods (15,16) with a phase angle ( ⁇ ) is possible, as shown in figure 8 and 16 is shown.
  • the phase angle can be up to 30° or more, for example.
  • Schematically indicated lifting drive (6) can have a phase adjuster (7) for setting and, if necessary, adjusting the phase angle ( ⁇ ).
  • the phase adjuster (7) can be designed in different ways. If there is a common drive motor with a transfer gear for the connecting rod arrangement, the phase adjuster (7) can be arranged, for example, on the transfer gear.
  • the distribution gear can be designed, for example, as a gear drive or as a toothed belt drive. In a gear transmission, for example, the Phase adjustment done by shifting a helical gear wheel. With a toothed belt drive, the toothed belt path between the engines (22, 23) can be changed.
  • phase adjuster (2) can be arranged in a controller for the drive motors and set or adjust their relative phase angle or phase offset. There are also other training opportunities.
  • Said drive rods (15,16) are articulated in the invention with a supporting beam (8) which extends in the direction of passage (3).
  • the connecting rods (15,16) and the supporting beam (8) are each connected via a beam bearing (18,19).
  • the beam bearings (18, 19) have at least one articulated component and allow the supporting beam (8) to pivot in relation to the respective drive rod (15, 16).
  • two connecting rods (15,16) are connected in an articulated manner to their associated supporting beam (8) via two beam bearings (18,19).
  • the beam bearings (18,19) are designed differently. They have a different number of degrees of freedom of movement.
  • One beam bearing (18) has at least one more degree of freedom of movement than the other beam bearing (19).
  • the beam bearing (18) equipped with more degrees of freedom of movement is preferably arranged downstream on the supporting beam (8) as seen in the direction of passage (3) and the other beam bearing (19) is arranged upstream.
  • One beam bearing (19) with the smaller range of degrees of freedom of movement is designed, for example, as a pivot bearing with a single rotational degree of freedom.
  • the bearing axis is arranged transversely to the throughput direction (3) and to the plane of the drawing.
  • the other beam bearing (18) with the greater range of degrees of freedom of movement has one more degree of freedom in the embodiments shown. It is in the embodiments of Figure 2 to 7 designed as a rotatable eccentric bearing (20) whose bearing axes are aligned transversely to the direction of passage (3) and parallel to the bearing axis of the other beam bearing (19).
  • the eccentric bearing (20) is formed, for example, by a bearing bolt of the beam bearing (18) and an eccentric disk arranged thereon, which is rotatably mounted at the lower end of the connecting rod.
  • figure 4 illustrates this arrangement with a support beam (8) shown transparent. With the supporting beam (8) connected to the bearing bolts of the beam bearing (18,19) according to figure 7 be of the same design and arranged at the same height on the supporting beam (8).
  • a different design of the eccentric bearing (20) is possible. Clarify with the movement cycles Figure 8 to 15 this version of the beam bearing (18) as an eccentric bearing (20).
  • the additional degree of freedom of the beam bearing (18) can also be a translational degree of freedom. This can be directed along the supporting beam (8) and the direction of passage (3).
  • the beam bearing (18) can be designed as a sliding bearing (21). Due to the slide bearing (21), the associated drive rod (15) is rotatable on the one hand and slidably connected to the supporting beam (8) on the other hand in the said degree of freedom direction.
  • Figure 16 to 23 illustrate this training schematically.
  • the needling unit (5) can have several support beams (8) arranged one behind the other transversely to the throughput direction (3), as well as pairs of connecting rods (15,16) and also drive units (22,23). figure 6 schematically illustrates such an arrangement. In a modification that is not shown, instead of the several narrow supporting beams (8) shown, there can be a single wide supporting beam (8) on which two or more pairs of connecting rods (15, 16) act.
  • the several pairs of connecting rods of parallel connecting rods (15,16) arranged one behind the other in the direction of passage (3) can be driven in rotation via a common drive motor or their own associated drive motors of the lifting drive (6).
  • the connecting rod pairs arranged one behind the other transversely to the direction of passage (3) can have a common crankshaft (24) or some other common drive means.
  • the needles (11) can be arranged directly on the supporting beam (8).
  • the supporting beam (8) can extend transversely across the nonwoven fiber web (2) and transversely to the direction of passage (3).
  • the needles (11) are connected indirectly to the supporting beam (8). They are eg according to Figure 6 and 7 mounted on a needle bed (10) which is rigidly or interchangeably connected to a needle bar (9).
  • the needle beam (9) is attached to the preferably several support beams (8) and extends, for example, across the nonwoven fiber web (2) and across the direction of passage (3).
  • This leading movement leads to an inclined position of the supporting beam (8).
  • the inclination of the supporting beam (8) changes during a movement cycle of the lifting drive (6), in particular a 360° rotation of the drive mechanisms (22, 23). This is from the movement sequences explained below Figure 8 to 15 and Figure 16 to 23 apparent.
  • the supporting beam (8) performs a pivoting movement about the bearing axis mentioned about the one beam bearing (19) with the smaller number of degrees of freedom.
  • the other beam bearing (18) compensates for the changing inclinations and also the changing distances of the coupling points of the connecting rods (15,16) on the supporting beam (8) due to the phase shift due to its additional degree of freedom of movement.
  • phase offset ( ⁇ ) for example, the drive rod (15) located downstream in the direction of passage (3) rushes ahead of the other drive rod (16) in the direction of movement by said phase angle ( ⁇ ).
  • the beam bearing (18) with the additional degree of freedom of movement is also preferably arranged on the leading connecting rod (15).
  • the engines (22, 23) rotate in opposite directions in the exemplary embodiments and movement cycles shown, which is advantageous for reasons of vibration.
  • the direction of rotation is selectable.
  • the leading engine (22) rotates clockwise and the other engine (23) rotates counterclockwise.
  • the direction of rotation can be reversed.
  • the engines (22, 23) can rotate in the same direction.
  • Other kinematic parameters can be changed, e.g. the directions of the phase offset or phase angle ( ⁇ ).
  • figure 8 shows the movement cycle with an eccentric bearing (20).
  • the starting position shown is that the engine (22) and the connecting rod (26) and the connecting rod (15) have already been moved by the angle ( ⁇ ) in the direction of rotation shown from the extended position of the connecting rod (26) and connecting rod (15).
  • the other connecting rod (16) and its connecting rod (26) are still in this extended position.
  • Figure 9 to 15 show the further movement phases with a turning and angular progression of 45° each.
  • Figure 16 to 23 illustrate the same movement cycle in the same 45 ° steps and illustrate the movements of the sliding bearing (21).
  • Figure 8 to 23 also illustrate a variant in the formation of the support beam (8), the needle beam (9) and the needle bed (10).
  • a single and common needle bar (9) with a needle bed (10) is shown.
  • FIG 3 and 5 illustrate the above motion cycles of Figure 8 to 23 running trajectory (12) of the needles (11).
  • the oscillating lifting and lowering movement along the lifting direction and the superimposed pivoting movement of the support beam (8) result in an elliptical path of movement (12) for the needle tips of the needles (11).
  • the needle tips Seen in the direction of passage (3), the needle tips pierce the preferably continuously moving nonwoven fiber web (2) upstream and reappear downstream from the nonwoven fiber web (2). Here they move along their movement path (12) in areas with little resistance together with the nonwoven fiber web (2) in the throughput direction (3).
  • the inclination of the needles (11) changes only slightly on the elliptical path of movement (12).
  • needling of the nonwoven fiber web (2) on both sides is possible.
  • a further needling unit (5) can be arranged on the other side, e.g. the underside, of the nonwoven fiber web (2).
  • the stitch pad (14) can be omitted and replaced by the additional needling unit (5) and its stripper (13).
  • the needling units (5) on both sides preferably work with a mutual phase offset of 180°, for example, so that the needles (11) of one needling unit (5) dip into the nonwoven fiber web (2) while the needles (11) of the other needling unit ( 5) already left or have left the nonwoven fibrous web (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

  • Die Erfindung betrifft eine Nadelmaschine und ein Vernadelungsverfahren mit den Merkmalen in den selbstständigen Ansprüchen.
  • Eine solche Nadelmaschine für eine Nonwoven-Faserbahn ist aus der Praxis bekannt und in Figur 1 dargestellt. Sie weist eine Vernadelungseinheit mit oszillierend bewegten Nadeln für das Einstechen, Vernadeln und Verfestigen der Nonwoven-Faserbahn auf. Die Vernadelungseinheit weist einen Hubantrieb und hiervon reversierend angetriebene parallele, linear geführte Treibstangen zum Bewegen der Nadeln auf. Die Nadeln führen dabei eine gerade und oszillierende Bewegung in Hubrichtung aus. In dieser Hubrichtung bewegen sich auch die Treibstangen, die dabei mit ihren Längsachsen parallel zur Hubrichtung ausgerichtet sind. Die Nadeln stechen dabei senkrecht zu der quer zur Hubrichtung zugeführten und bewegten Nonwoven-Faserbahn ein.
  • Aus der DE 196 50 697 A1 ist eine Nadelmaschine mit Kurbeltriebwerken und mit deren Pleuelstangen direkt verbundenen Nadelbalken bekannt, wobei der vertikalen Hubbewegung des Nadelbalkens eine Querbewegung durch einen zusätzlichen Horizontalantrieb überlagert wird.
  • Eine weiterentwickelte Variante einer solchen Nadelmaschine mit Hubantrieb und Kurbeltriebwerken sowie einem direkt gelenkig mit deren Pleuelstangen verbundenen Tragbalken für die Nadeln ist aus der WO 2009/127520 A1 bekannt. Der vertikalen Hubbewegung des Tragbalkens wird durch ein Lenkergetriebe eine Horizontalbewegung überlagert.
  • EP 2250308 B1 offenbart eine Nadelmaschine aufweisend eine Ausgleichsmasse, die dem Kurbelantrieb eines Vertikaltriebwerks zugeordnet ist. Diese Ausgleichsmasse ist zu einem Exzenter des Kurbelantriebs versetzt.
  • Es ist Aufgabe der vorliegenden Erfindung, eine verbesserte Vernadelungstechnik aufzuzeigen.
  • Die Erfindung löst diese Aufgabe mit den Merkmalen im Hauptanspruch.
  • Die beanspruchte Vernadelungstechnik, d.h. die Nadelmaschine und das Vernadelungsverfahren, haben verschiedene Vorteile.
  • Die Vernadelungseinheit der Nadelmaschine weist einen mit den Nadeln verbundenen und in der Durchlaufrichtung der Nonwoven-Faserbahn erstreckten Tragbalken auf, der mit den Nadeln direkt oder mittelbar verbunden ist. Die vom Hubantrieb reversierend angetriebenen sowie linear geführten Treibstangen sind mit dem Tragbalken jeweils über ein Balkenlager gelenkig verbunden. Eines der Balkenlager weist einen zusätzlichen Bewegungs-Freiheitsgrad auf. Der Hubantrieb kann eine beliebige konstruktive Ausbildung haben und kann die Treibstangen in beliebiger Weise reversierend antreiben und sie eine oszillierende, bevorzugt vertikale, Hubbewegung ausführen lassen.
  • Der Tragbalken kann dank des einen zusätzlichen Bewegungs-Freiheitsgrads am einen Balkenlager seine Ausrichtung und Lage relativ zu den parallelen Treibstangen verändern. Er kann sich insbesondere schräg zu den Treibstangen und ihrer Längsachse sowie zu der hierzu parallelen Hubrichtung ausrichten. Dies hat Vorteile, insbesondere wenn die Treibstangen mit einem gegenseitigen Phasenversatz (ϕ) bewegt und vom Hubantrieb angetrieben werden. Dies ermöglicht eine Bewegung der Nadeln in Hubrichtung mit einer überlagerten zusätzlichen Nadelbewegung in Durchlaufrichtung der Nonwoven-Faserbahn. Die überlagerte Nadelbewegung in Durchlaufrichtung kann den Transport der Nonwoven-Faserbahn unterstützen.
  • Die Nadeln, insbesondere die Nadelspitzen, können dabei insbesondere eine elliptische Bewegungsbahn haben. Die Nadeln können in Durchlaufrichtung gesehen stromaufwärts in die Nonwoven-Fasserbahn einstechen und dann stromabwärts wieder austreten. Dies ermöglicht den Nadeln eine Bewegungskomponente in Durchlaufrichtung, die für ein kollisions- und störungsarmes Einstechen und Ausfahren der Nadeln an der bewegten Nonwoven-Faserbahn günstig ist. Störungen in der Faserbahnstruktur, z.B. ein Moiree-Effekt, können vermieden werden. Die Qualität der verfestigten Nonwoven-Faserbahn ist sehr hoch.
  • Die Nonwoven-Faserbahn kann aus Naturfasern oder Kunstfasern oder Fasergemischen gebildet sein. Sie kann z.B. ein einlagiges oder mehrlagiges Faservlies sein, das von einem Vliesleger, insbesondere Kreuzleger, der Nadelmaschine zugeführt wird. Der Vliesleger kann z.B. einen von einem Florerzeuger, z.B. einer Karde oder Krempel, einer Airlay oder dgl., produzierten Faserflor zu einem mehrlagigen Faservlies umfalten und auf einem Abführband ablegen.
  • Der Bau- und Steueraufwand der Nadelmaschine ist gering und liegt niedriger als beim eingangs genannten Stand der Technik. Es genügt eine Phasenverstellmöglichkeit am Hubantrieb und/oder an den Treibstangen. Der Tragbalken mit den Nadeln stellt sich dann von selber auf die phasenverschobene Treibstangenbewegung ein. Für die gewünschte Bewegung des Tragbalkens und der Nadeln bedarf es keines zusätzlichen Horizontalantriebs und/oder Lenkergetriebes.
  • Andererseits haben die parallelen und in Durchlaufrichtung hintereinander angeordneten Treibstangen den Vorteil, dass sie die im Betrieb auftretenden Querkräfte besonders gut aufnehmen und abstützen können. Dies kann verschleiß- und störungsarm geschehen. Andererseits kann auch die Ausbildung der gelenkigen Balkenlager zwischen den Treibstangen und dem Tragbalken vereinfacht und verbessert werden. Die Lagerbelastungen können niedrig gehalten werden.
  • Vorteilhafterweise hat das am Tragbalken in Durchlaufrichtung stromabwärts angeordnete Balkenlager den zusätzlichen Bewegungs-Freiheitsgrad. Das andere stromaufwärts angeordnete Balkenlager kann als einfaches Drehgelenk ausgebildet werden. Diese Balkenlager kann zusammen mit der zugeordneten Treibstange die auftretenden Querkräfte besonders gut aufnehmen. Dies ist bei einem Phasenversatz besonders vorteilhaft, weil sich der Schwerpunkt der an den Treibstangen hängenden Masse von Tragbalken, Nadelbett etc. ebenfalls auf einer elliptischen Bahn bewegt. In einer vorteilhaften Ausführungsform sind am Tragbalken zwei Treibstangen und zwei Balkenlager angeordnet.
  • Für die Ausbildung des zusätzlichen Bewegungs-Freiheitsgrads am einen Balkenlager gibt es verschiedene Ausgestaltungsmöglichkeiten. Vorzugsweise ist nur ein einzelner zusätzlicher Bewegungs-Freiheitsgrad vorhanden. Alternativ können es mehrere sein.
  • Der zusätzliche Bewegungs-Freiheitsgrad kann rotatorisch oder translatorisch sein. Das betreffende Balkenlager kann z.B. als Exzenterlager mit einem zusätzlichen rotatorischen Bewegungs-Freiheitsgrad oder als Schiebelager mit einem zusätzlichen translatorischen Bewegungs-Freiheitsgrad ausgebildet sein. Der translatorische Bewegungs-Freiheitsgrad kann in Längsrichtung des Tragbalkens beziehungsweise entlang der Durchlaufrichtung der Nonwoven-Faserbahn ausgerichtet sein.
  • Für die Treibstangen ist eine jeweils gerade und bevorzugt aufrechte Führung, insbesondere eine Linearführung, vorteilhaft. Die Führung und die Längsachse der Treibstangen erstrecken sich in Hubrichtung. Sie sind vorzugsweise senkrecht ausgerichtet. Die Führung kann zum kippsicheren Führen der Treibstangen und für die Aufnahme der Querkräfte optimiert werden, z.B. durch zwei oder mehr getrennte und in Stangenlängsrichtung distanzierte Lager- und Führungsstellen.
  • Die Vernadelungseinheit kann zwei oder mehr Tragbalken mit Treibstangen und besagten Balkenlagern aufweisen, welche in einer Richtung quer zur Durchlaufrichtung hintereinander angeordnet sind. Der Hubantrieb kann an eine solche Mehrfachanordnung angepasst sein.
  • Die Nadeln können unmittelbar oder mittelbar am Tragbalken angeordnet sein. In einer vorteilhaften Ausführungsform sind sie an einem Nadelbett angeordnet, welches bevorzugt lösbar an einem Nadelbalken montiert ist. Der Nadelbalken und das Nadelbrett können sich quer zu den ein oder mehreren Tragbalken und quer zur Durchlaufrichtung erstrecken. Diese Gestaltung ermöglicht eine besonders stabile und verwindungsfreie Tragkonstruktion für die Nadeln.
  • Der Hubantrieb kann die Treibstangen in ihrer Bewegungsrichtung gleichsinnig antreiben, wobei der besagte Phasenversatz ϕ vorhanden sein kann. Der Phasenversatz kann einstellbar und verstellbar sein. Hierfür kann ein Phasensteller am Hubantrieb oder an anderer Stelle angeordnet sein. Für die Ausgestaltung des Hubantriebs gibt es verschiedene Möglichkeiten.
  • Der Hubantrieb kann für die in Durchlaufrichtung hintereinander angeordneten Treibstangen jeweils ein eigenes Triebwerk aufweisen. Dies kann in einer vorteilhaften Ausgestaltung als bevorzugt umlaufend rotierendes Kurbeltriebwerk ausgebildet sein. Ein solches Kurbeltriebwerk kann z.B. eine rotierende Kurbelwelle mit einem scheibenförmigen Exzenter und einer Pleuelstange aufweisen. Die Pleuelstange kann am einen Ende über ein Pleuellager am Exzenter drehbar gelagert sein und am anderen Ende über ein Gelenk mit der zugeordneten Treibstange verbunden sein. Andererseits kann ein Kurbeltriebwerk auch eine gekröpfte Kurbelwelle mit Anbindung der Pleuelstange an der Kröpfung aufweisen.
  • Der Hubantrieb kann für die Triebwerke jeweils einen eigenen Antriebsmotor aufweisen. In einer anderen Ausführung kann er einen gemeinsamen Antriebsmotor für mehrere Triebwerke haben. Ein Verteilgetriebe oder dergleichen kann die Antriebskraft des Motors an die Triebwerke übertragen. Wenn mehrere Tragbalken mit Treibstangen quer zur Durchlaufrichtung hintereinander angeordnet sind, kann für jede Treibstange ein eigenes Triebwerk vorhanden sein, wobei die in Querrichtung hintereinander angeordneten Triebwerke eine gemeinsame Kurbelwelle haben können. Diese gemeinsamen Kurbelwellen können in der vorgenannten Art mit eigenen Motoren oder mit einem gemeinsamen Motor gekoppelt sein. Die besagten Motoren können in beliebig geeigneter Weise ausgebildet sein, vorzugsweise als steuerbare Elektromotoren, insbesondere Wechselstrom- oder Drehstrommotoren.
  • Die Nadelmaschine kann mehrere in Durchlaufrichtung hintereinander angeordnete Vernadelungseinheiten aufweisen. Diese erlauben eine mehrstufige Vernadelung und Verfestigung der Nonwoven-Faserbahn. Alternativ oder zusätzlich kann die Nadelmaschine mehrere beidseits der Nonwoven-Faserbahn angeordnete Vernadelungseinheiten aufweisen. Diese können insbesondere über und unter der Nonwoven-Faserbahn angeordnet sein. Sie erlauben ein beidseitiges Vernadeln und Verfestigen der Nonwoven-Faserbahn. Die beidseitigen Vernadelungseinheiten können zur Vermeidung von Kollisionen phasenversetzt arbeiten und mit ihren Nadeln an der Nonwoven-Faserbahn einstechen.
  • Bei einer mehrstufigen Nadelmaschine können eine oder mehrere beanspruchte Vernadelungseinheiten in Durchlaufrichtung gesehen am Eingangsbereich der Nadelmaschine angeordnet sein. Eine oder mehrere folgende Vernadelungseinheiten können in konventioneller Weise ausgebildet sein. Sie können insbesondere mit einer rein geraden, insbesondere vertikalen, Einstich- und Ausfahrbewegung der Nadeln arbeiten.
  • In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung angegeben.
  • Die beanspruchte Nadelmaschine und das Verfahren zum Vernadeln und Verfestigen einer Nonwoven-Faserbahn können folgende Ausgestaltungen aufweisen, die einzeln oder in beliebiger Kombination benutzt werden können.
  • Die Treibstangen der Nadelmaschine, insbesondere der Vernadelungseinheit, können jeweils gerade und bevorzugt aufrecht geführt werden. Die Nadelmaschine kann eine gerade und bevorzugt aufrechte Führung für die Treibstangen aufweisen.
  • Der Hubantrieb der Vernadelungseinheit kann die Treibstangen gleichsinnig antreiben. Die Treibstangen können werden dabei synchron auf und ab bewegt werden.
  • Der Hubantrieb der Vernadelungseinheit kann die Treibstangen phasengleich oder mit einem gegenseitigen Phasenversatz (ϕ) antreiben.
  • Der Hubantrieb der Vernadelungseinheit kann einen Phasensteller zur Einstellung und ggf. zur Verstellung eines gegenseitigen Phasenversatzes (ϕ) der Treibstangen aufweisen. Der Phasensteller kann unterschiedlich ausgebildet sein.
  • Der Hubantrieb der Vernadelungseinheit kann für die in Durchlaufrichtung der Nonwoven-Faserbahn hintereinander angeordneten Treibstangen jeweils ein eigenes Triebwerk aufweisen.
  • Die Triebwerke der Treibstangen können als rotierende Kurbeltriebwerke ausgebildet sein.
  • Die Triebwerke der Treibstangen können gegenläufig rotierend angetrieben sein.
  • Die Triebwerke der Treibstangen können reversierend um einen vorbestimmten Drehwinkel oder umlaufend angetrieben sein.
  • An dem oder den Tragbalken einer Vernadelungseinheit kann ein Nadelbalken mit einem Nadelbrett und dortigen Nadeln angeordnet sein.
  • Der Nadelbalken und ggf. das Nadelbrett können sich quer zur Durchlaufrichtung der Nonwoven-Faserbahn erstrecken.
  • Die Nadelmaschine kann mehrere Vernadelungseinheiten aufweisen, die in Durchlaufrichtung der Nonwoven-Faserbahn hintereinander angeordnet sind.
  • Die Erfindung ist in den Zeichnungen beispielhaft und schematisch dargestellt. Im Einzelnen zeigen:
  • Figur 1:
    eine Nadelmaschine nach dem Stand der Technik,
    Figur 2:
    eine schematischen Frontansicht einer erfindungsgemäßen Nadelmaschine mit Hubantrieb, Treibstangen, Tragbalken und einem Balkenlager mit einem zusätzlichen Bewegungs-Freiheitsgrad in einer ersten Betriebsstellung,
    Figur 3:
    den Tragbalken und die Treibstangen nebst Nadeln in einer anderen Betriebsstellung mit Phasenversatz der Treibstangen sowie elliptischer Bewegungsbahn der Nadeln,
    Figur 4:
    eine perspektivische Ansicht der Anordnung von Figur 2,
    Figur 5:
    eine vergrößerte Darstellung einer elliptischen Bewegungsbahn der Nadelspitzen mit Darstellung der Nadelausrichtung,
    Figur 6:
    eine schematische Darstellung von mehreren quer zueinander in Durchlaufrichtung angeordneten Tragbalken und Treibstangen,
    Figur 7:
    eine vergrößerte Frontansicht eines Tragbalkens mit einem als Exzenterlager mit einem zusätzlichen Bewegungs-Freiheitsgrad ausgebildeten Balkenlager,
    Figur 8 bis 15:
    einen Bewegungszyklus der Vernadelungseinheit mit einem als Exzenterlager ausgebildeten Balkenlager in mehreren Winkelstellungen des Hubantriebs und
    Figur 16 bis 23:
    einen Bewegungszyklus mit einer Variante eines als Schiebelager ausgebildeten Balkenlagers.
  • Die Erfindung betrifft eine Nadelmaschine (1) und ein Vernadelungsverfahren zum Vernadeln und Verfestigen einer Nonwoven-Faserbahn (2).
  • Figur 1 zeigt eine Nadelmaschine (1) nach dem Stand der Technik zum Vernadeln und Verfestigen einer Nonwoven-Faserbahn (2), die in einer Durchlaufrichtung (3) der Nadelmaschine (1) zugeführt und durch die Nadelmaschine (1) hindurchgeführt wird.
  • Die Nadelmaschine (1) weist zumindest eine Vernadelungseinheit (5) mit oszillierend bewegten Nadeln (11) für das Vernadeln und Verfestigen der Nonwoven-Faserbahn (2) auf. Die Vernadelungseinheit (5) umfasst einen Hubantrieb (6), der reversierend zwei parallele und jeweils in einer linearen Führung (17) gerade geführte Treibstangen (15,16) reversierend antreibt. Die Treibstangen (15,16) führen eine synchrone oszillierende, z.B. vertikale, Hubbewegung aus.
  • Die Treibstangen (15,16) sind am einen und z.B. oberen Ende mit dem Hubantrieb (6) verbunden und sind an ihrem jeweiligen anderen und insbesondere unteren Ende mit den Nadeln (11) verbunden. In der gezeigten Ausführungsform ist dabei an den besagten Enden der Treibstangen (15,16) jeweils ein Nadelbalken (9) mit einem z.B. wechselbaren Nadelbett (10) und dort montierten Nadeln (11) angeordnet. Die Nadelbalken (9) und die Nadeln (11) erstrecken sich quer über die Nonwoven-Faserbahn (2) und quer zur Durchlaufrichtung (3). Die Hubbewegung und die Einstichbewegung der Nadeln (11) ist senkrecht zur Nonwoven-Faserbahn (2) und zur Durchlaufrichtung (3) ausgerichtet.
  • Der Hubantrieb (6) weist gemäß Figur 1 zwei Triebwerke (22,23) auf, die jeweils als Kurbeltriebwerk ausgebildet sind und eine rotierend angetriebene Kurbelwelle (24) und einen hierauf montierten Exzenter (25) aufweisen. Ferner umfassen die Kurbeltriebwerke jeweils eine Pleuelstange (26), die an ihrem einen und z.B. unteren Ende über ein Gelenk (28) mit der zugeordneten Treibstange (15,16) gelenkig verbunden ist. Am anderen Ende ist die Pleuelstange (26) über ein Pleuellager (27) mit dem Exzenter (25) drehbar verbunden. Bei einer Drehbewegung der Kurbelwelle (24) und des Exzenters (25) führen die Pleuelstangen (26) jeweils eine längs der Treibstangen (15,16) gerichtete Hebe- und Senkbewegung sowie eine überlagerte Schwenkbewegung aus. Die Nonwoven-Faserbahn (2) ist bevorzugt gerade und z.B. horizontal zwischen einem gelochten Abstreifer (13) und einer Stichunterlage (14) geführt. Die vorgenannten Komponenten der Vernadelungseinheit (5) sind in einem Maschinengestell (4) der Nadelmaschine (1) angeordnet. Die Vernadlungseinheit (5) kann ferner mehrere Triebwerke (22,23) aufweisen, die quer zur Durchlaufrichtung (3) und zur Zeichenebene hintereinander an einer gemeinsamen Kurbelwelle (24) angeordnet sind und hiervon gemeinsam angetrieben werden.
  • In Figur 2 bis 7 ist eine erfindungsgemäße Nadelmaschine (1) sowie Vernadelungseinheit (5) dargestellt. Figur 2 zeigt eine schematische Frontansicht und Figur 4 eine perspektivische Ansicht. In Figur 5 ist eine elliptische Bewegungsbahn einer Nadelspitze mit Bezug zur Nonwoven-Faserbahn (2) dargestellt. Figur 6 und 7 verdeutlichen einen Tragbalken (8) und dessen Anbindung an Treibstangen (15,16). Figur 8 bis 15 einerseits und Figur 16 bis Figur 23 andererseits zeigen jeweils einen Bewegungszyklus.
  • Die erfindungsgemäße Nadelmaschine (1) kann Teile der Nadelmaschine (1) von Figur 1 beinhalten, wobei übereinstimmende Komponenten mit gleichen Bezugsziffern bezeichnet sind.
  • Die erfindungsgemäße Nadelmaschine (1) weist ein Maschinengestell (4) mit zumindest einer Vernadelungseinheit (5) und einem Hubantrieb (6) für den reversierenden Antrieb von parallelen und in einer Führung (17) linear geführten Treibstangen (15,16) zum Bewegen der Nadeln (11) auf. Die z.B. zwei parallelen Treibstangen (15,16) sind in Durchlaufrichtung (3) hintereinander angeordnet. Die Führung (17) kann z.B. gemäß Figur 2 mehrere, z.B. zwei, Führungs- und Lagerstelle aufweisen, die mit einem gegenseitigen Abstand in Stangenlängsrichtung angeordnet sind.
  • Die Nadeln (11) werden von den Treibstangen (15,16) oszillierend in einer z.B. vertikalen Hubrichtung auf und ab bewegt und stechen in eine in Durchlaufrichtung (3) zugeführte Nonwoven-Faserbahn (2) ein. Die Nadeln sind in großer Zahl vorhanden, wobei aus Übersichtsgründen in den Zeichnungen nur wenige Nadeln (11) dargestellt sind.
  • Figur 1 bis 4 verdeutlichen die Anordnung des Abstreifers (13) mit Durchgangsöffnungen (29) für die durchtauchenden Nadeln (11). Die Durchgangsöffnungen (29) sind gemäß Figur 3 als Langlöcher mit Ausrichtung in Durchlaufrichtung (3) ausgebildet. Ferner ist die Anordnung einer Stichunterlage (14) gezeigt, die ebenfalls Öffnungen, insbesondere Langlöcher, zur Aufnahme der Nadeln (11) beim Durchtritt durch die Nonwoven-Faserbahn (2) aufweist.
  • In den Zeichnungen ist eine vereinfachte Ausbildung der Nadelmaschine (1) mit nur einer Vernadelungseinheit (5) dargestellt. In einer anderen und nicht gezeigten Variante kann die Nadelmaschine (1) mehrstufig aufgebaut sein und mehrere Vernadelungseinheiten (5) aufweisen, die in Durchlaufrichtung (3) hintereinander angeordnet sind. Sie können sich am gleichen Maschinengestell (4) befinden.
  • Die gezeigte Vernadelungseinheit (5) befindet sich bevorzugt in Durchlaufrichtung (3) gesehen am Anfangsbereich einer mehrstufigen Nadelmaschine (1), wobei die zugeführte Nonwoven-Faserbahn (2) noch nicht oder nur geringfügig verfestigt ist. In Durchlaufrichtung (3) nachfolgende Vernadelungseinheiten können in anderer Weise, z.B. gemäß Figur 1, ausgebildet sein. Sie können mit einer rein linearen Nadelbewegung an der bereits zumindest teilverfestigten Nonwoven-Faserbahn (2) einwirken.
  • Eine solche Anordnung mit einer oder mehreren Vernadelungseinheiten (5) kann bei einem beispielhaft gezeigten einseitigen Vernadeln der Nonwoven-Faserbahn (2) und einem einseitigen Einstechen und Austauchen der Nadeln (11) vorhanden sein. Die besagte Anordnung kann auch bei einem beidseitigen Vernadeln eingesetzt werden.
  • Der Hubantrieb (6) für die Treibstangen (15,16) kann bei der erfindungsgemäßen Vernadelungseinheit (5) in beliebiger Weise ausgebildet sein. Die Vernadelungseinheit (5) weist z.B. zumindest zwei in Durchlaufrichtung (3) jeweils hintereinander angeordnete, bevorzugt gerade Treibstangen (15,16) mit linearen Führungen (17) am Maschinengestell (4) auf. Der Hubantrieb (6) umfasst z.B. jeweils ein Triebwerk (22,23) für jede Treibstange (15,16). Die Triebwerke (22,23) werden von einem eigenen Motor oder von einem gemeinsamen Motor und einem Verteilgetriebe angetrieben. Der Motor ist bevorzugt als steuerbarer Elektromotor ausgebildet, insbesondere als Wechselstrommotor oder Drehstrommotor.
  • Die Triebwerke (22,23) können z.B. gemäß Figur 2 und 4 als Kurbeltriebwerke ausgebildet sein und weisen eine Kurbelwelle (24) mit einem Exzenter (25) sowie einer Pleuelstange (26) auf, die an ihrem freien Ende über ein Gelenk (28) gelenkig mit der zugeordneten Treibstange (15,16) verbunden ist. Die Ausbildung der Kurbeltriebwerke kann die gleiche wie in der vorbeschriebenen Figur 1 sein.
  • Alternativ können die Kurbeltriebwerke auch eine gekröpfte Kurbelwelle (24) aufweisen, wie sie in Figur 2 angedeutet ist. Der Exzenter (25) wird dabei von der Kröpfung der Kurbelwelle (24) gebildet.
  • Der reversierende Antrieb der Treibstangen (15,16) mit der Hebe- und Senkbewegung entlang der Stangenlängsachse und der Führung (17) kann gleichsinnig und gleichphasig erfolgen. Die Treibstangen (15,16) werden dabei synchron auf und ab bewegt. Dies kann die gleiche Kinematik wie in Figur 1 sein. Andererseits ist eine phasenversetzte Bewegung der Treibstangen (15,16) mit einem Phasenwinkel (ϕ) möglich, wie er in Figur 8 und 16 dargestellt ist. Der Phasenwinkel kann z.B. bis zu 30° oder mehr betragen.
  • Der in Figur 2 schematisch angedeutete Hubantrieb (6) kann einen Phasensteller (7) zur Einstellung und bedarfsweisen Verstellung des Phasenwinkels (ϕ) aufweisen. Der Phasensteller (7) kann in unterschiedlicher Weise ausgebildet sein. Wenn ein gemeinsamer Antriebsmotor mit einem Verteilgetriebe für die Treibstangenanordnung vorhanden ist, kann der Phasensteller (7) z.B. am Verteilgetriebe angeordnet sein. Das Verteilgetriebe kann z.B. als Zahnradgetriebe oder auch als Zahnriemengetriebe ausgebildet sein. Bei einem Zahnradgetriebe kann z.B. die Phasenverstellung durch Verschiebung eines schräg verzahnten Zwischenrads erfolgen. Bei einem Zahnriemengetriebe kann der Zahnriemenweg zwischen den Triebwerken (22,23) verändert werden.
  • Wenn die Triebwerke (22,23) direkt über einen jeweils eigenen Antriebsmotor angetrieben werden, kann der Phasensteller (2) in einer Steuerung der Antriebsmotoren angeordnet sein und deren relativen Phasenwinkel bzw. Phasenversatz einstellen oder verstellen. Daneben gibt es weitere Ausbildungsmöglichkeiten.
  • Die besagten Treibstangen (15,16) sind bei der Erfindung mit einem Tragbalken (8) gelenkig verbunden, der sich in Durchlaufrichtung (3) erstreckt. Die Verbindung der Treibstangen (15,16) und des Tragbalkens (8) erfolgt jeweils über ein Balkenlager (18,19). Die Balkenlager (18,19) haben zumindest eine Gelenkkomponente und ermöglichen eine Schwenkbewegung des Tragbalkens (8) gegenüber der jeweiligen Treibstange (15,16). In den gezeigten Ausführungsformen sind z.B. jeweils zwei Treibstangen (15,16) mit ihrem zugehörigen Tragbalken (8) über zwei Balkenlager (18,19) gelenkig verbunden.
  • Die Balkenlager (18,19) sind unterschiedlich ausgebildet. Sie haben eine unterschiedliche Zahl an Bewegungs-Freiheitsgraden. Das eine Balkenlager (18) hat zumindest einen Bewegungs-Freiheitsgrad mehr als das andere Balkenlager (19). Das mit mehr Bewegungs-Freiheitsgraden ausgestattete Balkenlager (18) ist vorzugsweise am Tragbalken (8) in Durchlaufrichtung (3) gesehen stromabwärts angeordnet und das andere Balkenlager (19) ist stromaufwärts angeordnet.
  • Das eine Balkenlager (19) mit dem geringeren Umfang an Bewegungs-Freiheitsgraden ist z.B. als Drehlager mit einem einzelnen rotatorischen Freiheitsgrad ausgebildet. Die Lagerachse ist quer zur Durchlaufrichtung (3) sowie zur Zeichnungsebene angeordnet.
  • Das andere Balkenlager (18) mit dem größeren Umfang an Bewegungs-Freiheitsgraden hat in den gezeigten Ausführungsformen einen Freiheitsgrad mehr. Es ist in den Ausführungsbeispielen von Figur 2 bis 7 als drehbares Exzenterlager (20) ausgebildet, dessen Lagerachsen quer zur Durchlaufrichtung (3) und parallel zur Lagerachse des anderen Balkenlagers (19) ausgerichtet sind. Das Exzenterlager (20) wird z.B. von einem Lagerbolzen des Balkenlagers (18) und einer daran angeordneten Exzenterscheibe gebildet, welche am unteren Ende der Treibstange drehbar gelagert ist. Figur 4 verdeutlicht diese Anordnung mit einem transparent dargestellten Tragbalken (8). Die mit dem Tragbalken (8) verbundenen Lagerbolzen der Balkenlager (18,19) können gemäß Figur 7 gleichartig ausgebildet und am Tragbalken (8) in gleicher Höhe angeordnet sein. Alternativ ist eine andere Ausbildung des Exzenterlagers (20) möglich. Bei den Bewegungszyklen verdeutlichen Figur 8 bis 15 diese Ausführung des Balkenlagers (18) als Exzenterlager (20).
  • Andererseits kann der zusätzliche Freiheitsgrad des Balkenlagers (18) auch ein translatorischer Freiheitsgrad sein. Dieser kann längs des Tragbalkens (8) und der Durchlaufrichtung (3) gerichtet sein. Bei einer solchen Gestaltung kann das Balkenlager (18) als Schiebelager (21) ausgebildet sein. Durch das Schiebelager (21) ist die zugeordnete Treibstange (15) einerseits drehbar und andererseits in der besagten Freiheitsgrad-Richtung verschieblich mit dem Tragbalken (8) verbunden und gelagert. Figur 16 bis 23 verdeutlichen schematisch diese Ausbildung.
  • Die erfindungsgemäße Vernadelungseinheit (5) kann mehrere quer zur Durchlaufrichtung (3) hintereinander angeordnete Tragbalken (8) sowie Treibstangenpaarungen (15,16) und auch Triebwerke (22,23) aufweisen. Figur 6 verdeutlicht schematisch eine solche Anordnung. In einer nicht dargestellten Abwandlung kann statt der gezeigten mehreren schmalen Tragbalken (8) ein einzelner breiter Tragbalken (8) vorhanden sein, an dem zwei oder mehr Paarungen von Treibstangen (15,16) angreifen.
  • Die mehreren Treibstangenpaarungen von parallelen und jeweils in Durchlaufrichtung (3) hintereinander angeordneten Treibstangen (15,16) können über einen gemeinsamen Antriebsmotor oder jeweils eigene zugeordnete Antriebsmotoren des Hubantriebs (6) drehend angetrieben werden. Die quer zur Durchlaufrichtung (3) hintereinander angeordneten Treibstangenpaarungen können dabei eine gemeinsame Kurbelwelle (24) oder ein anderes gemeinsames Antriebsmittel aufweisen.
  • Bei der erfindungsgemäßen Nadelmaschine (1) und im Vernadelungsverfahren können die Nadeln (11) direkt am Tragbalken (8) angeordnet sein. Der Tragbalken (8) kann sich quer über die Nonwoven-Faserbahn (2) und quer zur Durchlaufrichtung (3) erstrecken. In der gezeigten und bevorzugten Ausführungsform sind die Nadeln (11) mittelbar mit dem Tragbalken (8) verbunden. Sie sind z.B. gemäß Figur 6 und 7 an einem Nadelbett (10) montiert, welches starr oder wechselbar mit einem Nadelbalken (9) verbunden ist. Der Nadelbalken (9) ist an den bevorzugt mehreren Tragbalken (8) befestigt und erstreckt sich z.B. quer über die Nonwoven-Faserbahn (2) und quer zur Durchlaufrichtung (3) .
  • Der zusätzliche Bewegungs-Freiheitsgrad des einen Balkenlagers (18) wird bei einem Phasenversatz (ϕ) des reversierenden Antriebs und der oszillierenden Bewegung der Treibstangen (15,16) wirksam. Bei einem Phasenversatz (ϕ) sind die Bewegungen der Treibstangen (15,16) im Wesentlichen bis auf die Umkehrphasen gleichgerichtet, wobei eine Treibstange gegenüber der anderen voreilt.
  • In der gezeigten Ausführungsform eilt z.B. die in Durchlaufrichtung (3) stromabwärts liegende Treibstange (15) der stromaufwärts gelegenen Treibstange (16) vor. Diese voreilende Bewegung führt zu einer Schrägstellung des Tragbalkens (8). Diese ist z.B. in Figur 3 schematisch dargestellt mit einer durch Pfeil angedeuteten voreilenden Aufwärtsbewegung der Treibstange (15). Die Schrägstellung des Tragbalkens (8) verändert sich während eines Bewegungszyklus des Hubantriebs (6), insbesondere einer 360°-Drehung der Triebwerke (22,23). Dies ist aus den nachfolgend erläuterten Bewegungsabfolgen von Figur 8 bis 15 und Figur 16 bis 23 ersichtlich.
  • Bei diesen Zyklen führt der Tragbalken (8) um das eine Balkenlager (19) mit der geringeren Zahl von Freiheitsgraden eine Schwenkbewegung um die erwähnte Lagerachse aus. Das andere Balkenlager (18) gleicht durch seinen zusätzlichen Bewegungs-Freiheitsgrad die sich verändernden Schrägstellungen und auch die durch den Phasenversatz sich ändernden Abstände der Koppelstellen der Treibstangen (15,16) am Tragbalken (8) aus.
  • Bei dem besagten Phasenversatz (ϕ) eilt z.B. die in Durchlaufrichtung (3) stromabwärts gelegene Treibstange (15) um den besagten Phasenwinkel (ϕ) der anderen Treibstange (16) in Bewegungsrichtung voraus. An der voreilenden Treibstange (15) ist auch vorzugsweise das Balkenlager (18) mit dem zusätzlichen Bewegungs-Freiheitsgrad angeordnet.
  • Die Triebwerke (22,23) rotieren in den gezeigten Ausführungsbeispielen und Bewegungszyklen gegensinnig, was aus Schwingungsgründen vorteilhaft ist. Die Drehrichtung ist wählbar. Das voreilende Triebwerk (22) rotiert z.B. im Uhrzeigersinn und das andere Triebwerk (23) gegen den Uhrzeigersinn. Die Drehrichtung kann vertauscht werden.
  • In einer anderen kinematischen Variante können die Triebwerke (22,23) gleichsinnig rotieren. Veränderbar sind weitere Kinematik-Parameter, z.B. die Richtungen des Phasenversatzes bzw. Phasenwinkels (ϕ).
  • Figur 8 zeigt den Bewegungszyklus mit einem Exzenterlager (20). In der in Figur 8 gezeigten Ausgangsstellung sind das Triebwerk (22) und die Pleuelstange (26) sowie die Treibstange (15) bereits um den Winkel (ϕ) in der gezeigten Drehrichtung aus der Streckstellung von Pleuelstange (26) und Treibstange (15) bewegt. Die andere Treibstange (16) und ihre Pleuelstange (26) nehmen noch diese Streckstellung ein. Figur 9 bis 15 zeigen die weiteren Bewegungsphasen mit einem Dreh- und Winkelfortschritt von jeweils 45°.
  • In der Anfangsposition von Figur 8 nimmt der Tragbalken (8) bereits eine geringfügige Schräglage gegenüber seiner normalen parallelen Ausrichtung zur Durchlaufrichtung (3) ein. Über den weiteren Antriebs- und Kurbelweg der Figuren 9 bis 11 verändert und vergrößert sich die Schrägstellung, wobei der Tragbalken (8) in Durchlaufrichtung (3) gesehen abwärts zur Nonwoven-Faserbahn (2) geneigt ist. Das stromabwärtige Ende des Tragbalkens (8) und die Treibstange (15) eilen beim Abwärtshub vor und sind näher an der Nonwoven-Faserbahn (2) als das stromaufwärtige Tragbalkenende und die Treibstange (16). Figur 10 zeigt das Einstechen in der Nonwoven-Faserbahn (2).
  • Je nach Dreh- oder Winkelstellung wird die Schrägstellung allmählich größer und dann wieder kleiner. Nach einem Dreh- und Antriebswinkel von ca. 180° kehrt sich die Schrägstellung gemäß Figur 12 bis 15 um, wobei der Tragbalken (8) gegenüber der Durchlaufrichtung (3) schräg nach oben gerichtet ist. Ab dieser Umkehr eilt die Treibstange (15) in der Aufwärtsbewegung der anderen Treibstange (16) vor. Am Zyklusende von Figur 15 ist der Tragbalken (8) wieder im Wesentlichen parallel zur Durchlaufrichtung (3) und zur gerad geführten Nonwoven-Faserbahn (2) ausgerichtet.
  • Figur 16 bis 23 verdeutlichen den gleichen Bewegungszyklus in den gleichen 45°-Schritten und verdeutlichen dabei die Bewegungen des Schiebelagers (21).
  • Figur 8 bis 23 verdeutlichen außerdem eine Variante bei der Ausbildung des Tragbalkens (8), des Nadelbalkens (9) und des Nadelbetts (10). An dem die Treibstangen (15,16) verbindenden Tragbalken (8) sind an der von den Treibstangen (15,16) wegweisenden Seite, insbesondere Unterseite, zwei Nadelbalken (9) mit jeweils einem Nadelbett (10) in Durchlaufrichtung (3) hintereinander angeordnet. In der Variante von Figur 6 und 7 ist ein einzelner und gemeinsamer Nadelbalken (9) mit Nadelbett (10) dargestellt.
  • Figur 3 und 5 verdeutlichen die bei den vorgenannten Bewegungszyklen von Figur 8 bis 23 ausgeführte Bewegungsbahn (12) der Nadeln (11). Durch die oszillierende Hebe- und Senkbewegung entlang der Hubrichtung und der überlagerten Schwenkbewegung des Tragbalkens (8) ergibt sich eine ellipsenförmige Bewegungsbahn (12) der Nadelspitzen der Nadeln (11). Die Nadelspitzen stechen in Durchlaufrichtung (3) gesehen stromaufwärts in die bevorzugt kontinuierlich bewegte Nonwoven-Faserbahn (2) ein und treten stromabwärts wieder aus der Nonwoven-Faserbahn (2) aus. Hierbei bewegen sie sich auf ihrer Bewegungsbahn (12) bereichsweise widerstandsarm zusammen mit der Nonwoven-Faserbahn (2) in Durchlaufrichtung (3). Auf der ellipsenförmigen Bewegungsbahn (12) ändert sich die Neigung der Nadeln (11) nur geringfügig.
  • Alternativ oder zusätzlich ist ein beidseitiges Vernadeln der Nonwoven-Faserbahn (2) möglich. In diesem Fall kann eine weitere Vernadelungseinheit (5) auf der anderen Seite, z.B. Unterseite, der Nonwoven-Faserbahn (2) angeordnet sein. Die Stichunterlage (14) kann dadurch entfallen und durch die weitere Vernadelungseinheit (5) und deren Abstreifer (13) ersetzt werden. Die beidseitigen Vernadelungseinheiten (5) arbeiten vorzugsweise mit einem gegenseitigen Phasenversatz von z.B. 180°, so dass die Nadeln (11) der einen Vernadelungseinheit (5) in die Nonwoven-Faserbahn (2) eintauchen, während die Nadeln (11) der anderen Vernadelungseinheit (5) die Nonwoven-Faserbahn (2) bereits verlassen oder verlassen haben.
  • Abwandlungen der gezeigten und beschriebenen Ausführungsbeispiele sind in verschiedener Weise möglich. Die auf die Durchlaufrichtung (3) bezogene Anordnung der Balkenlager (18,19) kann vertauscht sein, wobei das stromaufwärts gelegene Balkenlager (19) den zusätzlichen Bewegungs-Freiheitsgrad erhält. Auch die Phasenverschiebung (ϕ) zwischen den Treibstangen (15,16) kann verändert und z.B. vertauscht werden, wobei z.B. die stromaufwärts gelegene Treibstange (16) der stromabwärts gelegenen Treibstange (15) voreilt.
  • Weiter Variationsmöglichkeiten betreffen die Ausbildung des Hubantriebs (6). Statt des gezeigten rotatorischen Antriebs der oszillierenden Treibstangen (15,16) kann ein translatorischer Antrieb vorhanden sein. Daneben gibt es weitere Gestaltungsmöglichkeiten für den Hubantrieb (6).
  • BEZUGSZEICHENLISTE
  • 1
    Nadelmaschine
    2
    Faserbahn, Vlies
    3
    Durchlaufrichtung
    4
    Maschinengestell
    5
    Vernadelungseinheit
    6
    Hubantrieb
    7
    Phasensteller
    8
    Tragbalken
    9
    Nadelbalken
    10
    Nadelbrett
    11
    Nadel
    12
    Bewegungsbahn
    13
    Abstreifer
    14
    Stichunterlage
    15
    Treibstange
    16
    Treibstange
    17
    Führung
    18
    Balkenlager
    19
    Balkenlager
    20
    Exzenterlager
    21
    Schiebelager
    22
    Triebwerk, Kurbeltriebwerk
    23
    Triebwerk, Kurbeltriebwerk
    24
    Kurbelwelle
    25
    Exzenter
    26
    Pleuelstange
    27
    Pleuellager
    28
    Gelenk
    29
    Durchgangsöffnung

Claims (15)

  1. Nadelmaschine für eine in einer Durchlaufrichtung (3) zugeführte Nonwoven-Faserbahn (2), wobei die Nadelmaschine (1) eine Vernadelungseinheit (5) mit oszillierend bewegten Nadeln (11) für das Vernadeln und Verfestigen der Nonwoven-Faserbahn (2) aufweist, wobei die Vernadelungseinheit (5) einen Hubantrieb (6) und hiervon reversierend angetriebene parallele, linear geführte Treibstangen (15,16) zum Bewegen der Nadeln (11) aufweist, wobei die Vernadelungseinheit (5) einen mit den Nadeln (11) verbundenen und in Durchlaufrichtung (3) erstreckten Tragbalken (8) aufweist, wobei die in Durchlaufrichtung (3) hintereinander angeordneten Treibstangen (15) mit dem Tragbalken (8) jeweils über ein Balkenlager (18,19) gelenkig verbunden sind und eines der in Durchlaufrichtung (3) hintereinander angeordneten Balkenlager (18) einen zusätzlichen Bewegungs-Freiheitsgrad aufweist.
  2. Nadelmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das am Tragbalken (8) in Durchlaufrichtung (3) stromabwärts angeordnete Balkenlager (18) den zusätzlichen Bewegungs-Freiheitsgrad aufweist.
  3. Nadelmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Balkenlager (18) mit dem zusätzlichen Bewegungs-Freiheitsgrad als Exzenterlager (20) oder als Schiebelager (20) ausgebildet ist.
  4. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Tragbalken (8) mit zwei parallelen Treibstangen (15,16) über zwei Balkenlager (18,19) verbunden ist.
  5. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hubantrieb (6) die Treibstangen (15,16) gleichsinnig und bevorzugt mit einem gegenseitigen Phasenversatz (ϕ) antreibt, wobei der Hubantrieb (6) vorzugsweise einen Phasensteller (7) zur Einstellung und ggf. Verstellung des Phasenversatzes (ϕ) aufweist.
  6. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hubantrieb (6) für die in Durchlaufrichtung (3) hintereinander angeordneten Treibstangen (15,16) jeweils ein eigenes Triebwerk (22,23) aufweist, wobei die Triebwerke (22,23) insbesondere als rotierende, bevorzugt gegenläufig rotierend angetriebene, Kurbeltriebwerke ausgebildet sind.
  7. Nadelmaschine nach Anspruch 6, dadurch gekennzeichnet, dass der Hubantrieb (5) für die Triebwerke (22,23) einen gemeinsamen Antriebsmotor oder jeweils einen eigenen Antriebsmotor aufweist.
  8. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vernadelungseinheit (5) zwei oder mehr Tragbalken (8) und jeweils angetriebene Paare von Treibstangen (15,16) aufweist, die quer zur Durchlaufrichtung (3) hintereinander angeordnet sind.
  9. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an dem oder den Tragbalken (8) ein Nadelbalken (9) mit einem Nadelbrett (10) und dortigen Nadeln (11) angeordnet ist.
  10. Nadelmaschine nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass der Tragbalken (8) bei einem Phasenversatz (ϕ) eine Taumelbewegung um das eine Balkenlager (19) ausführt.
  11. Nadelmaschine nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass die Nadeln (11) bei einem Phasenversatz (ϕ) eine eliptische Bewegungsbahn (12) haben.
  12. Nadelmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nadelmaschine (1) mehrere Vernadelungseinheiten (5) aufweist, die beidseits der Nonwoven-Faserbahn (2), insbesondere über und unter der Nonwoven-Faserbahn (2), angeordnet sind.
  13. Verfahren zum Vernadeln und Verfestigen einer Nonwoven-Faserbahn (2), die einer Nadelmaschine (1) in einer Durchlaufrichtung (3) zugeführt wird, wobei die Nadelmaschine (1) eine Vernadelungseinheit (5) mit oszillierend bewegten Nadeln (11) für das Vernadeln und Verfestigen der Nonwoven-Faserbahn (2) aufweist, wobei die Vernadelungseinheit (5) einen Hubantrieb (6) und hiervon reversierend angetriebene parallele, linear geführte Treibstangen (15,16) zum Bewegen der Nadeln (11) aufweist, wobei die Vernadelungseinheit (5) einen mit den Nadeln (11) verbundenen Tragbalken (8) aufweist, der sich in Durchlaufrichtung (3) erstreckt, wobei die in Durchlaufrichtung (3) hintereinander angeordneten Treibstangen (15) mit dem Tragbalken (8) jeweils über ein Balkenlager (18,19) gelenkig verbunden sind und eines der in Durchlaufrichtung (3) hintereinander angeordneten Balkenlager (18) einen zusätzlichen Bewegungs-Freiheitsgrad aufweist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Hubantrieb (6) die Treibstangen (15,16) mit einem gegenseitigen Phasenversatz (ϕ) antreibt, wobei der Tragbalken (8) bei dem Phasenversatz (ϕ) eine Taumelbewegung um das eine Balkenlager (19) ohne den zusätzlichen Bewegungs-Freiheitsgrad ausführt.
  15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Hubantrieb (6) die Treibstangen (15,16) mit einem gegenseitigen Phasenversatz (ϕ) antreibt, wobei die Nadeln (11) bei einem Phasenversatz (ϕ) eine eliptische Bewegungsbahn (12) haben.
EP21207747.3A 2020-11-16 2021-11-11 Nadelmaschine und vernadelungsverfahren Active EP4012088B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202020106554.8U DE202020106554U1 (de) 2020-11-16 2020-11-16 Nadelmaschine

Publications (2)

Publication Number Publication Date
EP4012088A1 EP4012088A1 (de) 2022-06-15
EP4012088B1 true EP4012088B1 (de) 2023-04-12

Family

ID=78598929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21207747.3A Active EP4012088B1 (de) 2020-11-16 2021-11-11 Nadelmaschine und vernadelungsverfahren

Country Status (5)

Country Link
US (1) US11639568B2 (de)
EP (1) EP4012088B1 (de)
KR (1) KR20220066853A (de)
CN (1) CN114575043A (de)
DE (1) DE202020106554U1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115538041B (zh) * 2022-10-25 2024-09-10 苏州奥欣复合材料有限公司 一种h型针刺机
CN117488485B (zh) * 2023-11-14 2024-06-07 甘肃郝氏碳素新材料有限公司 用于碳毡的针刺机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698386B1 (fr) 1992-11-23 1995-01-06 Asselin Aiguilleteuse et procédé d'aiguilletage s'y rapportant.
AT400152B (de) * 1994-04-28 1995-10-25 Fehrer Textilmasch Vorrichtung zum nadeln eines vlieses
DE19650697A1 (de) 1996-12-06 1998-06-10 Voith Turbo Kg Verfahren zur Kühlung einer Wechselstrommaschine, insbesondere Transversalflußmaschine und Wechselstrommaschine
AT408235B (de) 1999-10-29 2001-09-25 Fehrer Textilmasch Vorrichtung zum nadeln eines vlieses
GB2408517B (en) 2003-11-27 2007-07-11 Fehrer Textilmasch An apparatus for needling a non-woven material
FR2862988B1 (fr) * 2003-11-28 2007-11-09 Fehrer Textilmasch Dispositif d'aiguilletage d'un matelas de fibres
DE102004043890B3 (de) * 2004-09-08 2006-04-20 Oskar Dilo Maschinenfabrik Kg Nadelmaschine
FR2887563B1 (fr) * 2005-06-22 2009-03-13 Asselin Soc Par Actions Simpli "procede et installation pour aiguilleter une nappe de fibres mettant en oeuvre deux planches a aiguilles"
FR2887564B1 (fr) * 2005-06-22 2007-10-26 Asselin Soc Par Actions Simpli Appareil d'aiguilletage pour consolider une nappe de fibres
EP2158348B1 (de) * 2007-06-15 2010-12-01 Oerlikon Textile GmbH & Co. KG Vorrichtung zum vernadeln einer vliesbahn
CN101960065B (zh) * 2008-03-03 2012-03-14 欧瑞康纺织有限及两合公司 用于对纤维网进行针刺的设备
CN101981243A (zh) 2008-04-17 2011-02-23 欧瑞康纺织有限及两合公司 用于对纤维网进行针刺的设备
WO2011029487A1 (de) * 2009-09-09 2011-03-17 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum vernadeln einer faserbahn
DE202012100066U1 (de) * 2012-01-09 2013-02-08 Hi Tech Textile Holding Gmbh Triebwerkschutz
EP3372716B1 (de) * 2017-03-09 2019-09-04 Oskar Dilo Maschinenfabrik KG Nadelmaschine
EP3412819B1 (de) * 2017-06-08 2019-12-25 Oskar Dilo Maschinenfabrik KG Nadelmaschine
FR3109586B1 (fr) * 2020-04-23 2022-05-13 Andritz Asselin Thibeau Aiguilleteuse elliptique à carter étanche et pot de guidage de traversée basculant
FR3109588B1 (fr) * 2020-04-23 2022-10-14 Andritz Asselin Thibeau Aiguilleteuse elliptique à carter étanche et pot de guidage de traversée

Also Published As

Publication number Publication date
KR20220066853A (ko) 2022-05-24
US11639568B2 (en) 2023-05-02
CN114575043A (zh) 2022-06-03
EP4012088A1 (de) 2022-06-15
US20220154376A1 (en) 2022-05-19
DE202020106554U1 (de) 2022-02-17

Similar Documents

Publication Publication Date Title
EP2158348B1 (de) Vorrichtung zum vernadeln einer vliesbahn
EP2021539B1 (de) Vorrichtung zum vernadeln einer vliesbahn
EP2173936B1 (de) Vorrichtung zum vernadeln einer faserbahn
DE19910945B4 (de) Vorrichtung zum Nadeln eines Vlieses
EP4012088B1 (de) Nadelmaschine und vernadelungsverfahren
DE19730532A1 (de) Nadelmaschine
DE19615697B4 (de) Nadelbalkenantrieb einer Nadelmaschine
AT408235B (de) Vorrichtung zum nadeln eines vlieses
EP2475814B1 (de) Vorrichtung zum vernadeln einer faserbahn
AT411272B (de) Vorrichtung zum nadeln eines vlieses
EP2258488A2 (de) Antriebsanordnung für einen länglichen Schwingkörper
EP2265757B1 (de) Vorrichtung zum vernadeln einer faserbahn
DE102005012265B4 (de) Vorrichtung zum Nadeln eines Vlieses
DE10215037B4 (de) Vorrichtung zum Nadeln eines Vlieses
DE19547930B4 (de) Rundflechtmaschine
DE10149289A1 (de) Vorrichtung zum Nadeln eines Vlieses
DE102004043890B3 (de) Nadelmaschine
EP2907909A1 (de) Anlage zur kontinuierlichen Herstellung einer Spinnvliesbahn
DE10355590B4 (de) Vorrichtung zum Nadeln eines Vlieses
EP2201164B1 (de) Vorrichtung zum vernadeln einer faserbahn
AT413386B (de) Vorrichtung zum nadeln eines vlieses
DE69505005T2 (de) Nadelmaschine mit zwei nadelbetten
EP3039178B1 (de) Schiffchenstickmaschine
AT142122B (de) Langsiebpartie für Papier-, Karton- u. dgl. Maschinen.
AT413823B (de) Vorrichtung zum nadeln eines vlieses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220915

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221116

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EGENER, PAUL MICHAEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000570

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1559845

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000570

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 3

Ref country code: FR

Payment date: 20231129

Year of fee payment: 3

Ref country code: DE

Payment date: 20231214

Year of fee payment: 3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231111

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130