[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3946692A1 - Katalytisch aktives partikelfilter - Google Patents

Katalytisch aktives partikelfilter

Info

Publication number
EP3946692A1
EP3946692A1 EP19716102.9A EP19716102A EP3946692A1 EP 3946692 A1 EP3946692 A1 EP 3946692A1 EP 19716102 A EP19716102 A EP 19716102A EP 3946692 A1 EP3946692 A1 EP 3946692A1
Authority
EP
European Patent Office
Prior art keywords
oxide
filter
coating
oxygen storage
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19716102.9A
Other languages
English (en)
French (fr)
Inventor
Jan Schoenhaber
Naina DEIBEL
Martin Roesch
Joerg-Michael Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Publication of EP3946692A1 publication Critical patent/EP3946692A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen

Definitions

  • the present invention relates to a catalytically active particle filter which is particularly suitable for the removal of particles, carbon monoxide, hydrocarbons and nitrogen oxides from the exhaust gas of internal combustion engines operated with a stoichiometric air / fuel mixture.
  • Exhaust gases from internal combustion engines operated with a stoichiometric air / fuel mixture ie gasoline engines, are cleaned in conventional processes with the aid of three-way catalytic converters. These are able to convert the three essential gaseous pollutants of the engine, namely hydrocarbons, carbon monoxide and nitrogen oxides, into harmless components at the same time.
  • the exhaust gas from gasoline engines also contains extremely fine particles (PM), which result from the incomplete combustion of the fuel and which essentially consist of soot.
  • PM extremely fine particles
  • the particles in the exhaust gas of stoichiometrically operated internal combustion engines are very small and have an average particle size of less than 1 ⁇ m. Typical particle sizes are in the range from 10 to 200 nm.
  • the amount of particles emitted is very small and ranges from 2 to 4 mg / km.
  • the European emissions standard EU-6c is linked to a change in the limit value for such particles from the particulate mass limit value to a more critical particle number limit value of 6 x 10 11 / km (in the Worldwide Harmonized Light Vehicles Test Cycle - WLTP). This creates a need for exhaust gas cleaning concepts for stoichiometrically operated internal combustion engines that include effectively working devices for removing particles.
  • Wall-flow filters made of ceramic materials such as silicon carbide, aluminum titanate and cordierite have proven themselves in the area of cleaning exhaust gas from lean-burn engines, in particular diesel engines. These are made up of a large number of parallel channels that are formed by porous walls. The channels are mutually closed at one of the two ends of the filter, so that channels A are formed which are open on the first side of the filter and closed on the second side of the filter, and channels B which are closed on the first side of the filter and are open on the second side of the filter.
  • Exhaust gas flowing into channels A can only leave the filter via channels B, and for this purpose must flow through the porous walls between channels A and B. When the exhaust gas passes through the wall, the particles are retained and the exhaust gas is cleaned.
  • the wall flow filter is provided with catalytically active coatings that lower the ignition temperature of soot.
  • EP 1 657 410 A2 also already describes a combination of both types of coating, i.e. part of the catalytically active material is present in the porous walls and another part on the porous walls.
  • a wall flow filter carries two layers arranged one above the other, one in the porous wall and the other on the porous wall can be arranged.
  • porous filter walls contain a catalyst material of a three-way catalyst, while a catalyst material of a three-way catalyst is additionally applied to partial areas of the filter walls.
  • the present invention relates to a particle filter which comprises a wall flow filter of length L and two coatings Y and Z, which can preferably be completely identical, wherein the wall flow filter comprises channels E and A, which extend parallel between a first and a second end of the wall flow filter extend and which are separated by porous walls, the surfaces OE and OA form and wherein the channels E are closed at the second end and the channels A at the first end, and wherein the coatings Y and Z include the same oxygen storage components and the same carrier materials for precious metals , and the coating Y is located in the channels E on the surfaces OE and extends from the first end of the wall flow filter over 55 to 90% of the length L, and the coating Z is and is in the channels A on the surfaces OA extending from the second end of the wall flow filter over 55 to 90% of the length L, and
  • the coatings Y and Z are three-way catalytically active, especially at operating temperatures of 250 to 1,100 ° C. They usually contain one or more precious metals that are fixed on one or more carrier materials, as well as one or more oxygen storage components.
  • the coatings Y and Z comprise the same oxygen storage components and the same carrier materials for noble metals in different, but preferably in the same, amounts.
  • the coatings Y and Z also contain the same or different precious metals in the same or different amounts. Coatings Y and Z are particularly preferably completely identical.
  • noble metals are platinum, palladium and rhodium, palladium, rhodium or palladium and rhodium being preferred and palladium and rhodium being particularly preferred.
  • the proportion of rhodium in the total precious metal content is in particular greater than or equal to 10% by weight.
  • the porous walls of the particle filter according to the invention are preferably free of noble metals.
  • the noble metals are usually used in amounts of 0.15 to 5 g / l, based on the volume of the wall flow filter.
  • Suitable carrier materials for the noble metals are all materials familiar to the person skilled in the art for this purpose. Such materials are in particular metal oxides with a BET surface area of 30 to 250 m 2 / g, preferably 100 to 200 m 2 / g (determined according to DIN 66132).
  • Particularly suitable support materials for the noble metals are selected from the series consisting of aluminum oxide, doped aluminum oxide, silicon oxide, titanium dioxide and mixed oxides of one or more thereof.
  • Doped aluminum oxides are, for example, lanthanum oxide, zirconium oxide and / or titanium oxide-doped aluminum oxides.
  • Lanthanum-stabilized aluminum oxide is advantageously used, lanthanum being advantageously used in amounts of 1 to 10% by weight, preferably 3 to 6% by weight, calculated in each case as La 2 O 3 and based on the weight of the stabilized aluminum oxide .
  • Another suitable carrier material is lanthanum-stabilized aluminum oxide, the surface of which is coated with lanthanum oxide, barium oxide or strontium oxide.
  • Cerium / zirconium / rare earth metal mixed oxides are particularly suitable as oxygen storage components.
  • the term “cerium / zirconium / rare earth metal mixed oxide” in the context of the present invention excludes physical mixtures of cerium oxide, zirconium oxide and rare earth oxide. Rather, “cerium / zirconium / rare earth metal mixed oxides” are characterized by a largely homogeneous, three-dimensional crystal structure that is ideally free of phases of pure cerium oxide, zirconium oxide or rare earth oxide. Depending on the manufacturing process, however, products that are not completely homogeneous can also arise, which can usually be used without any disadvantage. Furthermore, the term rare earth metal or rare earth metal oxide in the context of the present invention does not include cerium or cerium oxide.
  • rare earth metal oxides in the cerium / zirconium / rare earth metal mixed oxides for example, lanthanum oxide, yttrium oxide, praseodymium oxide, neodymium oxide and / or Sa marium oxide come into consideration.
  • Lanthanum oxide, yttrium oxide and / or praseody oxide are preferred.
  • Lanthanum oxide and / or yttrium oxide are particularly preferred and lanthanum oxide and yttrium oxide, yttrium oxide and praseodymium oxide, such as lanthanum oxide and praseodymium oxide, are very particularly preferred.
  • the oxygen storage components are particularly preferably free from neodymium oxide.
  • the mass ratio of cerium oxide to zirconium oxide in the cerium / zirconium / rare earth metal mixed oxides can vary within wide limits. It is, for example, 0.1 to 1.5, preferably 0.2 to 1 or 0.3 to 0.5.
  • cerium / zirconium / rare earth metal mixed oxides contain yttrium oxide as the rare earth metal, its proportion in the mixed oxide is in particular 2 to 15% by weight, preferably 3 to 10% by weight.
  • cerium / zirconium / rare earth metal mixed oxides contain praseodic oxide as rare earth metal, its proportion is in particular 2 to 15% by weight, preferably 3 to 10% by weight.
  • cerium / zirconium / rare earth metal mixed oxides contain lanthanum oxide and yttrium oxide as rare earth metal, its mass ratio is in particular between 0.1 and 1, preferably 0.3 to 1.
  • cerium / zirconium / rare earth metal mixed oxides contain lanthanum oxide and praseodymium oxide as rare earth metal, its mass ratio is in particular 0.1 to 1, preferably 0.3 to 1.
  • the coatings Y and Z usually contain oxygen storage components in amounts of 15 to 120 g / l, based on the volume of the wall-flow filter.
  • the mass ratio of carrier materials and oxygen storage components in coatings Y and Z is usually 0.3 to 1.5, for example 0.4 to 1.3.
  • one or both of coatings Y and Z contain an alkaline earth compound such as e.g. Strontium oxide, barium oxide or barium sulfate.
  • the amount of barium sulfate per coating is in particular 2 to 20 g / l volume of the wall-flow filter.
  • one or both of the coatings Y and Z contain additives such as rare earth compounds such as lanthanum oxide and / or binders such as aluminum compounds. These additives are used in amounts which can vary within wide limits and which the person skilled in the art can determine with simple means in the specific case. These may help to improve the rheology of the coating.
  • coatings Y and Z comprise lanthanum-stabilized aluminum oxide, rhodium, palladium or palladium and rhodium and an oxygen storage component comprising zirconium oxide, cerium oxide, yttrium oxide and lanthanum oxide.
  • the coatings Y and Z comprise lanthanum-stabilized aluminum oxide, rhodium, palladium or palladium and rhodium and an oxygen storage component comprising zirconium oxide, cerium oxide, praseodymium oxide and lanthanum oxide.
  • the coatings Y and Z comprise lanthanum-stabilized aluminum oxide, rhodium, palladium or palladium and rhodium, a first oxygen storage component comprising zirconium oxide, ceria, yttrium oxide and lanthanum oxide, and a second zirconium oxide, cerium oxide, yttrium oxide and praseodymium oxide comprehensive oxygen storage component.
  • the coatings Y and Z each comprise lanthanum-stabilized aluminum oxide in amounts of 20 to 70% by weight, particularly preferably 30 to 60% by weight, and the oxygen storage component in amounts of 30 to 80% by weight , particularly preferably 40 to 70% by weight, based in each case on the total weight of the coating Y or Z.
  • the coating Y preferably extends from the first end of the wall flow filter over 55 to 90%, particularly preferably over 57 to 80%, but very particularly preferably over 57 to 65% of the length L of the wall flow filter.
  • the loading of the wall-flow filter with coating Y is preferably 33 to 125 g / l, based on the volume of the wall-flow filter.
  • the coating Z preferably extends from the second end of the wall flow filter over 55 to 90%, in particular over 57 to 80%, but very particularly preferably over 67 to 65% of the length L of the wall flow filter.
  • the loading of the wall flow filter with coating Z is preferably 33 to 125 g / l, based on the volume of the wall flow filter.
  • a preferred embodiment relates to a wall flow filter with a coating Y with a length L of 57 to 80% starting from the first end of the wall flow filter and a coating Z with a length L of 57 to 80% starting from the second end of the wall flow filter.
  • the sum of the lengths of coating Y and coating Z is 1 10 to 160% of the length L, preferably 1 15 to 140% of the length L.
  • coatings Y and Z contain no zeolite and no molecular sieve.
  • the total loading of the particle filter according to the invention with the coatings Y and Z is in particular 40 to 150 g / l, based on the volume of the wall flow filter.
  • this relates to a particle filter comprising a wall flow filter of length L and two coatings Y and Z, the wall flow filter comprising channels E and A which extend in parallel between a first and a second end of the wall flow filter and which are separated by porous walls, which form the surfaces O E and OA, respectively, and wherein the channels E are closed at the second end and the channels A at the first end, and the coatings Y and Z include identical oxygen storage components and identical carrier materials for precious metals, characterized in that
  • Coating Y is located in the channels E on the surfaces O E and extends from the first end of the wall flow filter over 57 to 80% of the length L
  • coating Z is located in the channels A on the surfaces OA and starts from the second End of the wall flow filter over 57 to 80% of the length L it stretches
  • the coatings Y and Z aluminum oxide in an amount of 20 to 70 wt .-%, based on the total weight of the coating Y or Z, rhodium, palladium or palladium and rhodium and an oxygen storage component in an amount of 30 to 80 wt .-%, based on the total weight of the coating Y or Z
  • the oxygen storage component zirconium oxide, cerium oxide, lanthanum oxide and yttrium oxide or zirconium oxide, cerium oxide, lanthanum oxide and Praseody oxide or comprises a mixture of two oxygen storage components, one oxygen storage component being zirconium oxide, cerium oxide, lanthanum oxide and yttri
  • Wall flow filters that can be used in accordance with the present invention are known and are available on the market. They consist, for example, of silicon carbide, aluminum titanate or cordierite, have a cellularity of 200 to 400 cells per inch and usually a wall thickness between 6 and 12 mils, or 0.1524 and 0.305 millimeters. In the uncoated state, for example, they have porosities of 50 to 80, in particular 55 to 75%. Their average pore size in the uncoated state be, for example, 10 to 25 micrometers. As a rule, the pores of the wall flow filter are so-called open pores, i.e. they are connected to the channels. Furthermore, the pores are usually connected to one another. This enables on the one hand the light coating of the inner pore surfaces and on the other hand an easy passage of the exhaust gas through the porous walls of the wall flow filter.
  • the particle filter according to the invention can be produced by methods familiar to those skilled in the art, for example by applying a coating suspension, usually called a washcoat, to the wall-flow filter using one of the usual dip-coating processes or pump and suction coating processes. Thermal aftertreatment or calcination usually follow. Coatings Y and Z are obtained in separate and consecutive coating steps.
  • a coating suspension usually called a washcoat
  • the average pore size of the wall flow filter and the average particle size of the catalytically active materials must be coordinated with one another in order to achieve an on-wall coating or an in-wall coating.
  • the mean particle size of the catalytically active materials must be small enough to penetrate into the pores of the wall flow filter.
  • the mean particle size of the catalytically active materials must be large enough not to penetrate into the pores of the wall flow filter.
  • the particle filter according to the invention is ideal for removing particles, carbon monoxide, hydrocarbons and nitrogen oxides from the exhaust gas of internal combustion engines operated with a stoichiometric air / fuel mixture.
  • the present invention thus also relates to a method for removing particles, carbon monoxide, hydrocarbons and nitrogen oxides from the exhaust gas of internal combustion engines operated with a stoichiometric air / fuel mixture, which is characterized in that the exhaust gas is passed through a particle filter according to the invention.
  • the exhaust gas can be passed through a particle filter according to the invention in such a way that it enters the particle filter through channels E and leaves it again through channels A. But it is also possible that the exhaust gas enters the particulate filter through channels A and leaves it again through channels E.
  • the decisive factor for a low exhaust back pressure is not the degree of coverage of the filter walls, as originally assumed, but rather the layer thickness of the catalytic coating applied.
  • the coating By distributing the coating over a large area over at least 55% of the filter length per zone, the exhaust gas back pressure can be reduced and at the same time a high catalytic activity can be achieved. This was not to be expected based on the known state of the art.
  • Figure 1 shows a particle filter according to the invention, which comprises a wall flow filter of length L (1) with channels E (2) and channels A (3), which run parallel between a first end (4) and a second end (5) of the wall flow filter extend and which are separated by porous walls (6), the surfaces OE (7) and OA (8) and where the channels E (2) at the second end (5) and the channels A (3) at the first end ( 4) are closed.
  • Coating Y (9) is located in channels E (2) on the Surfaces O E (7) and coating Z (10) in channels A (3) on the surfaces
  • Aluminum oxide stabilized with lanthanum oxide was used together with a first oxygen storage component, which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide, in Suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, the coating being introduced into the porous filter wall over 100% of the substrate length.
  • the total loading of this filter was 75 g / l, the total noble metal loading was 1.27 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined. It is hereinafter referred to as VGPF1.
  • Aluminum oxide stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide.
  • the weight ratio of the alumina and the oxygen storage component was 56:44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring.
  • the resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate.
  • the coating suspension was coated onto the filter walls of the substrate, first in the inlet channels over a length of 60% of the filter length.
  • the loading of the inlet channel was 62.5 g / l, the noble metal loading 1.06 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter obtained in this way was dried and then calcined.
  • the outlet channels of the filter were then coated with the same coating suspension over a length of 60% of the filter length.
  • the coated filter thus obtained was dried again and then calcined.
  • the total loading of this filter was thus 75 g / l, the total precious metal loading 1.27 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as GPF1.
  • Aluminum oxide stabilized with lanthanum oxide was used together with a first oxygen storage component, which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide, suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring. The resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate.
  • a first oxygen storage component which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praseodymium oxide
  • a second oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yt
  • the coating suspension was coated onto the filter walls of the substrate, initially in the inlet channels over a length of 60% of the filter length.
  • the loading of the inlet channel was 62.5 g / l, the noble metal loading 1.06 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined.
  • the outlet channels of the filter were then coated with the same coating suspension over a length of 60% of the filter length.
  • the coated filter thus obtained was dried again and then calcined.
  • the total loading of this filter was thus 75 g / l, the total precious metal loading was 1.27 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as GPF2.
  • Table 1 shows the temperatures T o 5, in each of which 50% of the subject components are reacted.
  • the amplitude of l was ⁇ 3.4%.
  • Table 2 contains the conversion at the intersection of the CO and NOx conversion curves, as well as the associated HC conversion of the aged particle filters.
  • the particle filters GPF1 and GPF2 according to the invention show, compared to VGPF1 in the aged state, a significant improvement in the light-off behavior and in the dynamic CO / NOx conversion. Comparative example 2:
  • Aluminum oxide stabilized with lanthanum oxide was used together with a first oxygen storage component, which comprised 40% by weight of ceria, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of ceria, zirconium oxide, lanthanum oxide and yttrium oxide , suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly for coating a commercially available wall-flow filter substrate, the coating being introduced into the porous filter wall over 100% of the substrate length.
  • the total loading of this filter was 100 g / l, the noble metal loading 2.60 g / l with a ratio of palladium to rhodium of 60: 13.75.
  • the coated filter thus obtained was dried and then calcined.
  • Aluminum oxide stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praesodymium oxide. The weight ratio of aluminum oxide and oxygen storage component was 50:50.
  • the suspension obtained in this way was then mixed with a palladium nitrate solution and a rhodium nitrate solution with constant stirring.
  • the resulting coating suspension was used directly for coating the wall flow filter substrate obtained under a), the filter walls of the substrate being coated, specifically in the inlet channels over a length of 25% of the filter length.
  • the loading of the inlet channel was 58 g / l, the noble metal loading 2.30 g / l with a ratio of palladium to rhodium of 10: 3.
  • the coated filter thus obtained was dried and then calcined. c) Coating of the exit channels
  • Aluminum oxide stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide.
  • the weight ratio of alumina and oxygen storage component was 56:44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension thus obtained, with constant stirring.
  • the resulting coating suspension was used directly for coating the wall flow filter substrate obtained under b), the filter walls of the substrate being coated over a length of 25% of the filter length in the outlet channels.
  • the loading of the outlet channel was 59 g / l, the noble metal loading 1.06 g / l with a ratio of palladium to rhodium of 1: 2.
  • the coated filter thus obtained was dried and then calcined.
  • the total loading of this filter was thus 130 g / l, the total noble metal loading 3.44 g / l with a ratio of palladium to rhodium of 10: 3. It is referred to below as VGPF2.
  • Aluminum oxide stabilized with lanthanum oxide was used together with a first oxygen storage component, which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide, suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate, the coating being introduced into the porous filter wall over 100% of the substrate length.
  • the loading of this filter was 100 g / l, the noble metal loading 2.07 g / l with a ratio of palladium to rhodium of 45: 13.5.
  • the coated filter obtained in this way was dried and then calcined. b) Coating of the input channels
  • Aluminum oxide stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 40% by weight of cerium oxide, zirconium oxide, lanthanum oxide and praseous oxide. The weight ratio of aluminum oxide and oxygen storage component was 50:50.
  • the suspension obtained in this way was then stirred with a palladium nitrate solution and a rhodium nitrate solution is added.
  • the resulting coating suspension was used directly for coating the wall flow filter substrate obtained under a), the filter walls of the substrate being coated, specifically in the inlet channels over a length of 60% of the filter length.
  • the loading of the inlet channel was 90 g / l, the noble metal loading 2.30 g / l with a ratio of palladium to rhodium of 10: 3.
  • the coated filter thus obtained was dried and then calcined.
  • the total loading of this filter was thus 154 g / l, the total noble metal loading 3.44 g / l with a ratio of palladium to rhodium of 10: 3. It is referred to below as VGPF3.
  • the loading of the inlet channel was 83.33 g / l, the noble metal loading 2.87 g / l with a ratio of palladium to rhodium of 10: 3.
  • the coated filter thus obtained was dried and then calcined.
  • the outlet channels of the filter were then coated with the same coating suspension over a length of 60% of the filter length.
  • the coated filter thus obtained was dried again and then calcined.
  • the total loading of this filter was thus 100 g / l, the total precious metal loading 3.44 g / l with a ratio of palladium to rhodium of 10: 3. It is referred to below as GPF3.
  • Table 3 contains the temperatures T o 5, in each of which 50% of the subject components are reacted.
  • the amplitude of l was ⁇ 3.4%.
  • Table 4 contains the conversion at the intersection of the CO and NOx conversion curves, as well as the associated HC conversion of the aged particle filters.
  • the particle filter GPF3 according to the invention shows, compared to VGPF2 and VGPF3 in the aged state, a significant improvement in the light-off behavior and in the dynamic CO / NOx conversion. Comparative example 4:
  • Alumina stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide. The weight ratio of alumina and oxygen storage component was 56/44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate. Since the coating suspension was coated on the filter walls of the substrate in the inlet channels over a length of 50% of the filter length.
  • the loading of the inlet channel was 100 g / l, the noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5:
  • the resulting coating suspension was used directly for coating the wall-flow filter substrate obtained under a), the filter walls of the substrate being coated over a length of 50% of the filter length in the outlet channels.
  • the loading of the exhaust duct was 100 g / l, the noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined.
  • the total loading of this filter was thus 100 g / l, the total noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as VGPF4.
  • Alumina stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide.
  • the weight ratio of alumina and oxygen storage component was 56/44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate. Since the coating suspension was coated on the filter walls of the substrate in the inlet channels over a length of 55% of the filter length.
  • the loading of the inlet channel was 91 g / l, the noble metal loading 1.16 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined. Coating of the exit channels
  • Alumina stabilized with lanthanum oxide was combined with a first oxygen storage component, which comprised 40% by weight of ceria, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of ceria, zirconium oxide, lanthanum oxide and yttrium oxide, in Suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. The suspension obtained in this way was then with constant stirring a palladium nitrate solution and a rhodium nitrate solution are added.
  • the resulting coating suspension was used directly for coating the wall-flow filter substrate obtained under a), the filter walls of the substrate being coated over a length of 55% of the filter length in the outlet channels.
  • the loading of the outlet channel was 91 g / l, the noble metal loading 1.16 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined.
  • the total loading of this filter was thus 100 g / l, the total noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as GPF3.
  • Alumina stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide.
  • the weight ratio of alumina and oxygen storage component was 56/44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate. Since the coating suspension was coated on the filter walls of the substrate, namely in the inlet channels over a length of 60% of the filter length.
  • the loading of the inlet channel was 83.33 g / l, the noble metal loading 1.06 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter obtained in this way was dried and then calcined. Coating of the exit channels
  • Aluminum oxide stabilized with lanthanum oxide was combined with a first oxygen storage component, which comprised 40% by weight of ceria, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of ceria, zirconium oxide, lanthanum oxide and yttrium oxide, suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of the alumina and the oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat the wall-flow filter substrate obtained under a), the filter walls of the substrate being coated on a length of 60% of the filter length in the outlet channels.
  • the loading of the outlet channel was 83.33 g / l, the noble metal loading 1.06 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter thus obtained was dried and then calcined.
  • the total loading of this filter was thus 100 g / l, the total noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as GPF4.
  • Alumina stabilized with lanthanum oxide was suspended in water together with an oxygen storage component which comprised 24% by weight of cerium oxide, zirconium oxide, lanthanum oxide and yttrium oxide. The weight ratio of alumina and oxygen storage component was 56/44.
  • a palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly to coat a commercially available wall-flow filter substrate. Since the coating suspension was coated on the filter walls of the substrate in the input channels over a length of 80% Filter length.
  • the loading of the inlet channel was 62.5 g / l, the noble metal loading 0.79 g / l with a ratio of palladium to rhodium of 5:
  • Aluminum oxide stabilized with lanthanum oxide was combined with a first oxygen storage component, which comprised 40% by weight of ceria, zirconium oxide, lanthanum oxide and praseodymium oxide, and a second oxygen storage component, which comprised 24% by weight of ceria, zirconium oxide, lanthanum oxide and yttrium oxide, suspended in water. Both oxygen storage components were used in equal parts. The weight ratio of aluminum oxide and oxygen storage component was 30:70. A palladium nitrate solution and a rhodium nitrate solution were then added to the suspension obtained in this way, with constant stirring.
  • the resulting coating suspension was used directly for coating the wall-flow filter substrate obtained under a), the filter walls of the substrate being coated over a length of 80% of the filter length in the outlet channels.
  • the loading of the outlet channel was 62.5 g / l, the noble metal loading 0.79 g / l with a ratio of palladium to rhodium of 5: 1.
  • the coated filter obtained in this way was dried and then calcined.
  • the total loading of this filter was thus 100 g / l, the total noble metal loading 1.42 g / l with a ratio of palladium to rhodium of 5: 1. It is referred to below as GPF5.
  • the particulate filters VGPF4, GPF4, GPF5 and GPF6 were compared on a cold blow test bench with regard to the exhaust back pressure.
  • the following table 5 contains pressure loss data which were determined at an air temperature of 21 ° C and a volume flow of 600 m3 / h. The values have been standardized to VGPF4 for a better overview.
  • the filters GPF4, GPF5 and GPF6 according to the invention all surprisingly have a lower pressure loss than the comparative example VGPF4, although they cover a larger surface area of the filter walls. This is quite surprising, since one could actually assume that longer coatings cause a higher exhaust gas back pressure, since here more exhaust gas has to flow through the catalytic coatings, since as a result less exhaust gas can flow through the uncoated filter wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Partikelfilter, das ein Wandflussfilter der Länge L und zwei katalytisch aktive Beschichtungen Y und Z umfasst, wobei das Wandflussfilter Kanäle E und A umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken und die durch poröse Wände getrennt sind, die Oberflächen OE bzw. OA bilden und wobei die Kanäle E am zweiten Ende und die Kanäle A am ersten Ende verschlossen sind, und wobei die Beschichtungen Y und Z gleiche Sauerstoffspeicherkomponenten und gleiche Trägermaterialien für Edelmetalle umfassen, dadurch gekennzeichnet, dass sich Beschichtung Y in den Kanälen E auf den Oberflächen OE und Beschichtung Z in den Kanälen A auf den Oberflächen OA befindet.

Description

Katalytisch aktives Partikelfilter
Die vorliegende Erfindung betrifft ein katalytisch aktives Partikelfilter, das sich insbe sondere für die Entfernung von Partikeln, Kohlenmonoxid, Kohlen-wasserstoffen und Stickoxiden aus dem Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betrie benen Verbrennungsmotoren eignet.
Abgase von mit stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungs motoren, also Benzinmotoren, werden in herkömmlichen Verfahren mit Hilfe von Drei- wege-Katalysatoren gereinigt. Diese sind in der Lage, die drei wesentlichen gasförmi gen Schadstoffe des Motors, nämlich Kohlenwasserstoffe, Kohlenmonoxid und Stick oxide, gleichzeitig zu unschädlichen Komponenten umzusetzen.
Neben diesen gasförmigen Schadstoffen enthält das Abgas von Benzinmotoren aber auch feinste Partikel (PM), die aus der unvollständigen Verbrennung des Kraftstoffs re sultieren und im Wesentlichen aus Ruß bestehen. Im Unterschied zur Partikelemission von Dieselmotoren sind die Partikel im Abgas stöchiometrisch betriebener Verbren nungsmotoren sehr klein und weisen eine durchschnittliche Partikelgröße kleiner 1 pm auf. Typische Partikelgrößen liegen im Bereich 10 bis 200 nm. Des Weiteren ist die emittierte Partikelmenge sehr gering und bewegt sich im Bereich von 2 bis 4 mg/km.
Mit der europäischen Abgasnorm EU-6c ist eine Umstellung des Grenzwertes für sol che Partikel vom Partikelmassengrenzwert auf einen kritischeren Partikelzahlgrenzwert von 6 x 1011/km (im Worldwide harmonized Light vehicles Test Cycle - WLTP) verbun den. Damit entsteht Bedarf nach Abgasreinigungskonzepten für stöchiometrisch betrie bene Verbrennungs-motoren, die effektiv arbeitende Einrichtungen zur Entfernung von Partikeln umfassen.
Im Bereich der Reinigung von Abgas von mager betriebenen Motoren, also insbeson dere von Dieselmotoren, haben sich Wandflussfilter aus keramischen Materialien, wie z.B. Siliciumcarbid, Aluminiumtitanat und Cordierit bewährt. Diese sind aus einer Viel zahl von parallelen Kanälen aufgebaut, die durch poröse Wände gebildet werden. Die Kanäle sind wechselseitig an einem der beiden Enden des Filters verschlossen, so dass Kanäle A gebildet werden, die an der ersten Seite des Filters offen und auf der zweiten Seite des Filters verschlossen sind, sowie Kanäle B, die an der ersten Seite des Filters verschlossen und auf der zweiten Seite des Filters offen sind. Das beispiels- weise in die Kanäle A einströmende Abgas kann den Filter nur über die Kanäle B wie der verlassen, und muss zu diesem Zweck durch die porösen Wände zwischen den Kanälen A und B durchfließen. Beim Durchtritt des Abgases durch die Wand werden die Partikel zurückgehalten und das Abgas gereinigt.
Die so zurückgehaltenen Partikel müssen nachfolgend abgebrannt bzw. oxidiert wer den, um ein Verstopfen des Filters bzw. einen inakzeptablen Anstieg des Gegendrucks des Abgassystems zu verhindern. Zu diesem Zweck wird beispielsweise das Wand flussfilter mit katalytisch aktiven Beschichtungen versehen, die die Zündtemperatur von Ruß herabsetzen.
Es ist bereits bekannt, solche Beschichtungen auf die porösen Wände zwischen den Kanälen aufzubringen (sogenannte auf-Wand-Beschichtung) oder in die porösen Wände einzubringen (sogenannte in-Wand-Beschichtung). Die EP 1 657 410 A2 be schreibt auch bereits eine Kombination beider Beschichtungsarten, d.h. ein Teil des ka talytisch aktiven Materials liegt in den porösen Wänden und ein anderer Teil auf den porösen Wänden vor.
Das Konzept, Partikel mittels Wandflussfiltern aus dem Abgas zu entfernen, ist bereits auf die Reinigung von Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betrie benen Verbrennungsmotoren übertragen worden, siehe zum Beispiel die EP 2042226 A2. Gemäß deren Lehre trägt ein Wandflussfilter zwei übereinander angeordnete Schichten, wobei eine in der porösen Wand und die andere auf der porösen Wand an geordnet sein kann.
Ein ähnliches Konzept verfolgt die DE 10201 1050788 A1. Dort enthalten die porösen Filterwände ein Katalysatormaterial eines Drei-Wege-Katalysators, während zusätzlich ein Katalysatormaterial eines Drei-Wege-Katalysators auf Teilbereiche der Filterwände aufgebracht ist.
Weitere Dokumente, die mit katalytisch aktiven Beschichtungen versehene Filtersub strate beschreiben, sind EP 3205388 A1 , EP 3207977 A1 , EP 3207978 A1 , EP 3207987 A1 , EP 3207989 A1 , EP 3207990 A1 und EP 3162428 A1.
Es besteht weiter Bedarf nach katalytisch aktiven Partikelfiltern, die die Funktionalitäten eines Partikelfilters und eines Dreiwegekatalysators vereinen und dabei die künftig gel tenden Grenzwerte einzuhalten erlauben. Die vorliegende Erfindung betrifft einen Partikelfilter, das ein Wandflussfilter der Länge L und zwei Beschichtungen Y und Z, welche bevorzugt komplett gleich sein können, umfasst, wobei das Wandflussfilter Kanäle E und A umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken und die durch poröse Wände getrennt sind, die Oberflächen OE bzw. OA bilden und wobei die Kanäle E am zweiten Ende und die Kanäle A am ersten Ende verschlossen sind, und wobei die Beschichtungen Y und Z gleiche Sauerstoffspeicherkomponenten und gleiche Trä germaterialien für Edelmetalle umfassen, sowie die Beschichtung Y sich in den Kanä len E auf den Oberflächen OE befindet und sich ausgehend vom ersten Ende des Wandflussfilters über 55 bis 90 % der Länge L erstreckt, und die Beschichtung Z sich in den Kanälen A auf den Oberflächen OA befindet und sich ausgehend vom zweiten Ende des Wandflussfilters über 55 bis 90 % der Länge L erstreckt, und wobei die Be schichtungen Y und Z Aluminiumoxid in einer Menge von 20 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z, Rhodium, Palladium oder Palla dium und Rhodium und eine oder mehrere Sauerstoffspeicherkomponenten in einer Menge von 30 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z enthält..
Die Beschichtungen Y und Z sind Dreiwegekatalytisch aktiv, insbesondere bei Be triebstemperaturen von 250 bis 1 100 °C. Sie enthalten üblicherweise ein oder mehrere Edelmetalle, die auf einem oder mehreren Träger-materialien fixiert sind, sowie ein o- der mehrere Sauerstoffspeicher-komponenten. Die Beschichtungen Y und Z umfassen gleiche Sauerstoffspeicherkomponenten und gleiche Trägermaterialien für Edelmetalle in verschiedenen, bevorzugt aber in gleichen Mengen. Die Beschichtungen Y und Z enthalten daneben gleiche oder verschiedene Edelmetalle in gleichen oder verschiede nen Mengen. Besonders bevorzugt sind die Beschichtungen Y und Z komplett gleich.
Als Edelmetalle kommen insbesondere Platin, Palladium und Rhodium in Frage, wobei Palladium, Rhodium oder Palladium und Rhodium bevorzugt und Palladium und Rho dium besonders bevorzugt sind. Bezogen auf das erfindungsgemäße Partikelfilter ist der Anteil von Rhodium am gesamten Edelmetallgehalt insbesondere größer oder gleich 10 Gew.-%. Die porösen Wände des erfindungsgemäßen Partikelfilters sind be vorzugt frei von Edelmetallen. Die Edelmetalle werden üblicherweise in Mengen von 0,15 bis 5 g/l, bezogen auf das Volumen des Wandflussfilters eingesetzt. Als Trägermaterialien für die Edelmetalle kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Solche Materialien sind insbesondere Me talloxide mit einer BET-Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g (bestimmt nach DIN 66132).
Besonders geeignete Trägermaterialien für die Edelmetalle sind ausgewählt aus der Reihe bestehend aus Aluminiumoxid, dotiertes Aluminiumoxid, Siliziumoxid, Titandioxid und Mischoxiden aus einem oder mehreren davon.
Dotierte Aluminiumoxide sind beispielsweise Lanthanoxid-, Zirkoniumoxid- und/oder Ti tanoxid-dotierte Aluminiumoxide. Mit Vorteil wird Lanthan-stabilisiertes Aluminiumoxid eingesetzt, wobei vorteilhaft Lanthan in Mengen von 1 bis 10 Gew.-%, bevorzugt 3 bis 6 Gew.-%, jeweils berechnet als La203 und bezogen auf das Gewicht des stabilisierten Aluminiumoxides, verwendet wird. Ein weiteres geeignetes Trägermaterial ist Lanthan stabilisiertes Aluminiumoxid, dessen Oberfläche mit Lanthanoxid, mit Bariumoxid oder mit Strontiumoxid beschichtet ist.
Als Sauerstoffspeicherkomponente kommen insbesondere Cer/Zirkonium/ Seltenerd- metall-Mischoxide in Frage. Der Begriff„Cer/Zirkonium/ Seltenerdmetall-Mischoxid“ im Sinne vorliegender Erfindung schließt physikalische Mischungen aus Ceroxid, Zirkoni umoxid und Seltenerdoxid aus. Vielmehr sind„Cer/Zirkonium/Seltenerdmetall- Mischoxide“ durch eine weitgehend homogene, dreidimensionale Kristallstruktur ge kennzeichnet, die idealerweise frei ist von Phasen aus reinem Ceroxid, Zirkoniumoxid bzw. Seltenerdoxid. Je nach Herstellungsverfahren können aber auch nicht vollständig homogene Produkte entstehen, die in der Regel ohne Nachteil verwendet werden kön nen. Im Übrigen umfasst der Begriff Seltenerdmetall bzw. Seltenerdmetalloxid im Sinne vorliegender Erfindung kein Cer bzw. kein Ceroxid.
Als Seltenerdmetalloxide in den Cer/Zirkonium/Seltenerdmetall-Mischoxiden kommen beispielsweise Lanthanoxid, Yttriumoxid, Praseodymoxid, Neodymoxid und/oder Sa mariumoxid in Betracht. Bevorzugt sind Lanthanoxid, Yttriumoxid und/oder Praseody moxid. Besonders bevorzugt sind Lanthanoxid und/oder Yttriumoxid und ganz beson ders bevorzugt sind Lanthanoxid und Yttriumoxid, Yttriumoxid und Praseodymoxid, so wie Lanthanoxid und Praseodymoxid. In Ausführungsformen der vorliegenden Erfin dung sind die Sauerstoffspeicherkomponenten besonders bevorzugt frei von Neody moxid. Erfindungsgemäß kann das Masseverhältnis von Ceroxid zu Zirkoniumoxid in den Cer/Zirkonium/Seltenerdmetall-Mischoxiden in weiten Grenzen variieren. Es beträgt beispielsweise 0,1 bis 1 ,5, bevorzugt 0,2 bis 1 oder 0,3 bis 0,5.
Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Yttriumoxid enthalten, so ist dessen Anteil im Mischoxid insbesondere 2 bis 15 Gew.-%, vorzugs weise 3 bis 10 Gew.-%.
Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Praseody moxid enthalten, so ist dessen Anteil insbesondere 2 bis 15 Gew.-%, vorzugsweise 3 bis 10 Gew.-%.
Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Lanthanoxid und Yttriumoxid enthalten, so ist dessen Massenverhältnis insbesondere zwischen 0,1 bis 1 , bevorzugt 0, 3 bis 1 .
Sofern die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetall Lanthanoxid und Praseodymoxid enthalten, so ist dessen Massenverhältnis insbesondere 0,1 bis 1 , bevorzugt 0, 3 bis 1 .
Üblicherweise enthalten die Beschichtungen Y und Z Sauerstoffspeicherkomponenten in Mengen von 15 bis 120 g/l, bezogen auf das Volumen des Wandflussfilters.
Das Masseverhältnis von Trägermaterialien und Sauerstoffspeicher-komponenten in den Beschichtungen Y und Z beträgt üblicherweise 0,3 bis 1 ,5, beispielsweise 0,4 bis 1 ,3.
In Ausführungsformen der vorliegenden Erfindung enthalten eine oder beide der Be schichtungen Y und Z eine Erdalkaliverbindung wie z.B. Strontium-oxid, Bariumoxid oder Bariumsulfat. Die Menge an Bariumsulfat je Beschichtung beträgt insbesondere 2 bis 20 g/l Volumen des Wandfluss-filters.
In weiteren Ausführungsformen der vorliegenden Erfindung enthalten eine oder beide der Beschichtungen Y und Z Additive wie Seltenerdverbindungen wie z.B. Lanthanoxid und/oder Binder, wie z.B. Aluminiumverbindungen. Diese Additive werden in Mengen verwendet, die in weiten Grenzen variieren können und die der Fachmann im konkre ten Fall mit einfachen Mitteln bestimmen kann. Diese helfen ggf. die Rheologie der Be schichtung zu verbessern. In Ausführungsformen der vorliegenden Erfindung umfassen die Beschichtungen Y und Z Lanthan-stabilisiertes Aluminiumoxid, Rhodium, Palladium oder Palladium und Rho dium und eine Zirkoniumoxid, Ceroxid, Yttriumoxid und Lanthanoxid umfassende Sau erstoffspeicherkomponente.
In anderen Ausführungsformen der vorliegenden Erfindung umfassen die Beschichtun gen Y und Z Lanthan-stabilisiertes Aluminiumoxid, Rhodium, Palladium oder Palladium und Rhodium und eine Zirkoniumoxid, Ceroxid, Praseodymoxid und Lanthanoxid um fassende Sauerstoffspeicherkomponente.
In anderen Ausführungsformen der vorliegenden Erfindung umfassen die Beschichtun gen Y und Z Lanthan-stabilisiertes Aluminiumoxid, Rhodium, Palladium oder Palladium und Rhodium, eine erste Zirkoniumoxid, Ceroxid, Yttriumoxid und Lanthanoxid umfas sende Sauerstoffspeicherkomponente, sowie eine zweite Zirkoniumoxid, Ceroxid, Yttri umoxid und Praseodymoxid umfassende Sauerstoffspeicher-komponente.
Die Beschichtungen Y und Z umfassen in Ausführungsformen jeweils Lanthan-stabili siertes Aluminiumoxid in Mengen von 20 bis 70 Gew.-%, besonders bevorzugt 30 bis 60 Gew.-%, sowie die Sauerstoffspeicher-komponente in Mengen von 30 bis 80 Gew.- %, besonders bevorzugt 40 bis 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z.
In Ausführungsformen der vorliegenden Erfindung erstreckt sich die Beschichtung Y vorzugsweise ausgehend vom ersten Ende des Wandflussfilters über 55 bis 90 %, ins besondere bevorzugt über 57 bis 80 %, jedoch ganz besonders bevorzugt über 57 bis 65% der Länge L des Wandflussfilters. Die Beladung des Wandflussfilters mit Be schichtung Y beträgt bevorzugt 33 bis 125 g/l, bezogen auf das Volumen des Wand flussfilters.
In Ausführungsformen der vorliegenden Erfindung erstreckt sich die Beschichtung Z vorzugsweise ausgehend vom zweiten Ende des Wandflussfilters über 55 bis 90 %, insbesondere über 57 bis 80 %, jedoch ganz besonders bevorzugt über 67 bis 65 % der Länge L des Wandflussfilters. Die Beladung des Wandflussfilters mit Beschichtung Z beträgt bevorzugt 33 bis 125 g/l, bezogen auf das Volumen des Wandflussfilters.
Eine bevorzugte Ausführungsform betrifft ein Wandflussfilter mit einer Beschichtung Y mit einer Länge L von 57 bis 80 % ausgehend vom ersten Ende des Wandflussfilters und einer Beschichtung Z mit einer Länge L von 57 bis 80 % ausgehend vom zweiten Ende des Wandflussfilters.
In Ausführungsformen der vorliegenden Erfindung beträgt die Summe der Längen von Beschichtung Y und Beschichtung Z 1 10 bis 160 % der Länge L, bevorzugt 1 15 bis 140 % der Länge L.
In Ausführungsformen der vorliegenden Erfindung enthalten die Beschichtungen Y und Z keinen Zeolithen und kein Molsieb.
Die Gesamtbeladung des erfindungsgemäßen Partikelfilters mit den Beschichtungen Y und Z beträgt insbesondere 40 bis 150 g/l, bezogen auf das Volumen des Wandflussfil ters.
In einer mehr bevorzugten Ausführungsform der vorliegenden Erfindung betrifft diese ein Partikelfilter, das ein Wandflussfilter der Länge L und zwei Beschichtungen Y und Z umfasst, wobei das Wandflussfilter Kanäle E und A umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken und die durch poröse Wände getrennt sind, die Oberflächen OE bzw. OA bilden und wobei die Kanäle E am zweiten Ende und die Kanäle A am ersten Ende verschlossen sind, und wobei die Beschichtungen Y und Z gleiche Sauerstoffspeicherkomponenten und gleiche Trä germaterialien für Edelmetalle umfassen, dadurch gekennzeichnet, dass
Beschichtung Y sich in den Kanälen E auf den Oberflächen OE befindet und sich aus gehend vom ersten Ende des Wandflussfilters über 57 bis 80 % der Länge L erstreckt, Beschichtung Z sich in den Kanälen A auf den Oberflächen OA befindet und sich aus gehend vom zweiten Ende des Wandflussfilters über 57 bis 80 % der Länge L er streckt, und die Beschichtungen Y und Z Aluminiumoxid in einer Menge von 20 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z, Rhodium, Palla dium oder Palladium und Rhodium und eine Sauerstoffspeicherkomponente in einer Menge von 30 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z enthält, wobei die Sauerstoffspeicherkomponente Zirkoniumoxid, Ceroxid, Lan thanoxid und Yttriumoxid oder Zirkoniumoxid, Ceroxid, Lanthanoxid und Praseody moxid oder eine Mischung aus zwei Sauerstoffspeicherkomponenten umfasst, wobei eine Sauerstoffspeicherkomponente Zirkoniumoxid, Ceroxid, Lanthanoxid und Yttri- umoxid und die andere Zirkoniumoxid, Ceroxid, Lanthanoxid und Praseodymoxid ent hält. Ganz bevorzugt sind beide Beschichtung Y und Z komplett gleich. Die vorgehend erläuterten Ausführungsformen gelten ebenfalls in Bezug auf diese hier genannte.
Wandflussfilter, die gemäß vorliegender Erfindung verwendet werden können, sind be kannt und am Markt erhältlich. Sie bestehen beispielsweise aus Silicium-Carbid, Alumi- nium-Titanat oder Cordierit, haben beispielsweise eine Zelligkeit von 200 bis 400 Zel len pro Inch und üblicherweise eine Wandstärke zwischen 6 und 12 Mil, bzw. 0,1524 und 0,305 Millimeter. Sie weisen in unbeschichtetem Zustand beispielsweise Porositä ten von 50 bis 80, insbesondere 55 bis 75% auf. Ihre durchschnittliche Porengröße be trägt in unbeschichtetem Zustand beispielsweise 10 bis 25 Mikrometer. In der Regel sind die Poren des Wandflussfilters sogenannte offene Poren, das heißt sie haben eine Verbindung zur den Kanälen. Des Weiteren sind die Poren in der Regel untereinander verbunden. Dies ermöglicht einerseits die leichte Beschichtung der inneren Porenober flächen und andererseits eine leichte Passage des Abgases durch die porösen Wände des Wandflussfilters.
Die Herstellung des erfindungsgemäßen Partikelfilters kann nach dem Fachmann ge läufigen Methoden erfolgen, so etwa dadurch, dass eine Beschichtungssuspension, die üblicherweise Washcoat genannt wird, mittels eines der üblichen Tauchbeschichtungs verfahren bzw. Pump- und Saug-Beschichtungsverfahren auf das Wandflussfilter appli ziert wird. Thermische Nachbehandlung bzw. Kalzination schließen sich üblicherweise an. Die Beschichtungen Y und Z werden in getrennten und aufeinander-folgenden Be schichtungsschritten erhalten.
Dem Fachmann ist bekannt, dass die durchschnittliche Porengröße des Wandflussfil ters und die mittlere Teilchengröße der katalytisch aktiven Materialien aufeinander ab gestimmt werden müssen, um eine auf-Wand-Beschichtung oder eine in-Wand-Be- schichtung zu erzielen. In Fall der in-Wand-Beschichtung muss die mittlere Teilchen größe der katalytisch aktiven Materialien klein genug sein, um in die Poren des Wand flussfilters einzudringen. Dagegen muss im Fall der auf-Wand-Beschichtung die mitt lere Teilchengröße der katalytisch aktiven Materialien groß genug sein, um nicht in die Poren des Wandflussfilters einzudringen. In Ausführungsformen der vorliegenden Erfindung werden die Beschichtungssuspensi onen zur Herstellung der Beschichtungen Y und Z bis zu einer Partikelgrößenverteilung von döo = 4 bis 8 pm und dg9 = 22 bis 16 pm gemahlen.
Das erfindungsgemäße Partikelfilter eignet sich hervorragend zur Entfernung von Parti keln, Kohlenmonoxid, Kohlenwasserstoffen und Stickoxiden aus dem Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren.
Die vorliegende Erfindung betrifft somit auch ein Verfahren zur Entfernung von Parti keln, Kohlenmonoxid, Kohlenwasserstoffen und Stickoxiden aus dem Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren, das dadurch gekennzeichnet ist, dass das Abgas über ein erfindungsgemäßes Partikelfilter geleitet wird.
Dabei kann das Abgas so über ein erfindungsgemäßes Partikelfilter geleitet werden, dass es durch die Kanäle E in das Partikelfilter eintritt und es durch Kanäle A wieder verlässt. Es ist aber auch möglich, dass das Abgas durch die Kanäle A in das Partikel filter eintritt und es durch Kanäle E wieder verlässt.
Überraschenderweise hat sich gezeigt, dass es vorteilhaft ist die katalytische Beschich tung auf eine größtmögliche Oberfläche der porösen Filterwand zu verteilen.
Maßgeblich für einen niedrigen Abgasgegendruck ist den Experimenten zur Folge nicht, wie ursprünglich angenommen, der Bedeckungsgrad der Filterwände, sondern vielmehr die Schichtdicke der aufgebrachten katalytischen Beschichtung. Durch eine großflächige Verteilung der Beschichtung auf mindestens 55 % der Filterlänge je Zone kann der Abgasgegendruck reduziert und zugleich eine hohe katalytische Aktivität er zielt werden. Dies war auf Basis des bekannten Standes der Technik so nicht zu erwar ten.
Figur 1 zeigt ein erfindungsgemäßes Partikelfilter, das ein Wandflussfilter der Länge L (1 ) mit Kanälen E (2) und Kanälen A (3) umfasst, die sich parallel zwischen einem ers ten Ende (4) und einem zweiten Ende (5) des Wandflussfilters erstrecken und die durch poröse Wände (6) getrennt sind, die Oberflächen OE (7) bzw. OA (8) bilden und wobei die Kanäle E (2) am zweiten Ende (5) und die Kanäle A (3) am ersten Ende (4) verschlossen sind. Beschichtung Y (9) befindet sich in den Kanälen E (2) auf den Oberflächen OE (7) und Beschichtung Z (10) in den Kanälen A (3) auf den Oberflächen
OA (8). Die Erfindung wird in den nachstehenden Beispielen näher erläutert.
Vergleichsbeispiel 1
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase- odymoxid umfasste, und einer zweiten Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher-komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultie rende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt, wobei die Beschichtung über 100% der Substrat länge in die poröse Filterwand eingebracht wurde. Die Gesamtbeladung dieses Filters betrug 75 g/l, die Gesamtedelmetallbeladung 1 ,27 g/l mit einem Verhältnis von Palla- dium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Er wird nachstehend als VGPF1 bezeichnet.
Beispiel 1
Beschichtung der Eingangs- und Ausgangskanäle:
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauer stoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttri umoxid umfasste, in Wasser suspendiert. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56:44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rho- dium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt. Dabei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar zuerst in den Eingangskanälen auf eine Länge von 60 % der Filterlänge. Die Beladung des Einlasskanals betrug 62,5 g/l, die Edelmetallbeladung 1 ,06 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Anschließend wurden die Ausgangska näle des Filters auf eine Länge von 60 % der Filterlänge mit der gleichen Beschich tungssuspension beschichtet. Der so erhaltene beschichtete Filter wurde erneut ge trocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 75 g/l, die Gesamtedelmetall-beladung 1 ,27 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als GPF1 bezeichnet.
Beispiel 2
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase odymoxid umfasste, und einer zweiten Sauerstoff-speicherkomponente, die 24 Gew.- % Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher-komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultie rende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt. Dabei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar zuerst in den Eingangskanälen auf eine Länge von 60 % der Filter-Iänge. Die Beladung des Einlasskanals betrug 62,5 g/l, die Edelmetall-beladung 1 ,06 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalzi niert. Anschließend wurden die Ausgangskanäle des Filters auf eine Länge von 60 % der Filterlänge mit der gleichen Beschichtungssuspension beschichtet. Der so erhal tene beschichtete Filter wurde erneut getrocknet und anschließend kalziniert. Die Ge samtbeladung dieses Filters betrug somit 75 g/l, die Gesamtedelmetallbeladung 1 ,27 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als GPF2 bezeichnet.
Katalytische Charakterisierung
Die Partikelfilter VGPF1 , GPF1 und GPF2 wurden zusammen in einer Motor-prüfstand- salterung gealtert. Diese besteht aus einer Schubabschaltungs-alterung mit 950°C Ab gastemperatur vor Katalysatoreingang (Maximale Betttemperatur 1030°C). Die Alte rungszeit betrug 19 Stunden (siehe Motortechnische Zeitschrift, 1994, 55, 214-218). Anschließend wurden die katalytisch aktiven Partikelfilter im gealterten Zustand an ei nem Motorprüfstand im sogenannten„Light-off Test“ und im„lambda Sweeptest“ getes tet. Bei dem Light-off Test wird das Anspringverhalten bei stöchiometrischer Abgaszu sammensetzung mit konstanter mittlerer Luftzahl l bestimmt (l =0,999 mit ±3,4% Amplitude).
Die nachfolgende Tabelle 1 enthält die Temperaturen T5o, bei denen jeweils 50% der betrachteten Komponenten umgesetzt werden.
Tabelle 1
Das dynamische Umsatzverhalten der Partikelfilter im lambda Sweeptest wurde in ei nem Bereich von l = 0,99 - 1 ,01 bei einer konstanten Temperatur von 510°C bestimmt. Die Amplitude von l betrug dabei ±3,4%. Tabelle 2 enthält den Umsatz am Schnitt punkt der CO- und der NOx-Umsatzkurven, sowie den zugehörigen HC-Umsatz der gealterten Partikelfilter.
Tabelle 2
Die erfindungsgemäßen Partikelfilter GPF1 und GPF2 zeigen gegenüber VGPF1 im gealterten Zustand eine deutliche Verbesserung beim Anspringverhalten und beim dy namischen CO/NOx-Umsatz. Vergleichsbeispiel 2:
a) Aufbringen der Inwandbeschichtung:
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase- odymoxid umfasste, und einer zweiten Sauerstoff-speicherkomponente, die 24 Gew.- % Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher-komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultie rende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt, wobei die Beschichtung über 100% der Substrat länge in die poröse Filterwand eingebracht wurde. Die Gesamtbeladung dieses Filters betrug 100 g/l, die Edelmetallbeladung 2,60 g/l mit einem Verhältnis von Palladium zu Rhodium von 60 : 13,75. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert.
b) Beschichtung der Eingangskanäle
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Pra seodymoxid umfasste, in Wasser suspendiert. Das Gewichtsverhältnis von Alumini umoxid und Sauerstoffspeicherkomponente betrug 50:50. Die so erhaltene Suspen sion wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats einge setzt, wobei auf die Filterwände des Substrats beschichtet wurde und zwar in den Ein gangskanälen auf eine Länge von 25 % der Filterlänge. Die Beladung des Eingangs kanals betrug 58 g/l, die Edelmetallbeladung 2,30 g/l mit einem Verhältnis von Palla- dium zu Rhodium von 10 : 3. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. c) Beschichtung der Ausgangskanäle
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauer- Stoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttri umoxid umfasste, in Wasser suspendiert. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56:44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rho- dium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter b) erhaltenen Wandflussfiltersubstrats eingesetzt, wobei auf die Filterwände des Substrats beschichtet wurde und zwar in den Ausgangskanä len auf eine Länge von 25 % der Filterlänge. Die Beladung des Auslasskanals betrug 59 g/l, die Edelmetallbeladung 1 ,06 g/l mit einem Verhältnis von Palladium zu Rhodium von 1 : 2. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kal ziniert. Die Gesamtbeladung dieses Filters betrug somit 130 g/l, die Gesamtedelmetall beladung 3,44 g/l mit einem Verhältnis von Palladium zu Rhodium von 10 : 3. Er wird nachstehend als VGPF2 bezeichnet.
Vergleichsbeispiel 3:
a) Aufbringen der Inwandbeschichtung:
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase odymoxid umfasste, und einer zweiten Sauerstoff-speicherkomponente, die 24 Gew.- % Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher-komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultie rende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt, wobei die Beschicht-ung über 100% der Substrat länge in die poröse Filterwand eingebracht wurde. Die Beladung dieses Filters betrug 100 g/l, die Edelmetallbeladung 2,07 g/l mit einem Verhältnis von Palladium zu Rho dium von 45 : 13,5. Der so erhaltene beschichtete Filter wurde getrocknet und an schließend kalziniert. b) Beschichtung der Eingangskanäle
Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauer stoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Prase odymoxid umfasste, in Wasser suspendiert. Das Gewichtsverhältnis von Alumini umoxid und Sauerstoffspeicherkomponente betrug 50:50. Die so erhaltene Suspen sion wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats einge setzt, wobei auf die Filterwände des Substrats beschichtet wurde und zwar in den Ein gangskanälen auf eine Länge von 60 % der Filterlänge. Die Beladung des Eingangs- kanals betrug 90 g/l, die Edelmetallbeladung 2,30 g/l mit einem Verhältnis von Palla dium zu Rhodium von 10 : 3. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 154 g/l, die Gesamtedel-metallbeladung 3,44 g/l mit einem Verhältnis von Palladium zu Rho dium von 10 : 3. Er wird nachstehend als VGPF3 bezeichnet.
Beispiel 3
Beschichtung der Eingangskanäle
a) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauer stoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttri- umoxid umfasste, in Wasser suspendiert. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56:44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rho dium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung eines handelsüblichen Wandflussfiltersubstrats eingesetzt. Dabei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar in den Eingangskanälen auf eine Länge von 60 % der Filterlänge. Die Bela dung des Einlasskanals betrug 83,33 g/l, die Edelmetallbeladung 2,87 g/l mit einem Verhältnis von Palladium zu Rhodium von 10 : 3. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Anschließend wurden die Ausgangska- näle des Filters auf eine Länge von 60 % der Filterlänge mit der gleichen Beschicht ungssuspension beschichtet. Der so erhaltene beschichtete Filter wurde erneut ge trocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 100 g/l, die Gesamtedelmetallbeladung 3,44 g/l mit einem Verhältnis von Palladium zu Rhodium von 10 : 3. Er wird nachstehend als GPF3 bezeichnet.
Katalytische Charakterisierung
Die Partikelfilter VGPF2, VGF3 und GPF3 wurden zusammen in einer Motor-prüfstand- salterung gealtert. Diese besteht aus einer Schubabschaltungs-alterung mit 950°C Ab gastemperatur vor Katalysatoreingang (Maximale Betttemperatur 1030°C). Die Alte- rungszeit betrug 76 Stunden (siehe Motortechnische Zeitschrift, 1994, 55, 214-218). Anschließend wurden die katalytisch aktiven Partikelfilter im gealterten Zustand an ei nem Motorprüfstand im sogenannten„Light-off Test“ und im„lambda Sweeptest“ getes tet. Bei dem Light-off Test wird das Anspringverhalten bei stöchiometrischer Abgaszu sammensetzung mit konstanter mittlerer Luftzahl l bestimmt (l =0,999 mit ±3,4% Amplitude).
Die nachfolgende Tabelle 3 enthält die Temperaturen T5o, bei denen jeweils 50% der betrachteten Komponenten umgesetzt werden.
Tabelle 3
Das dynamische Umsatzverhalten der Partikelfilter im lambda Sweeptest wurde in ei nem Bereich von l = 0,99 - 1 ,01 bei einer konstanten Temperatur von 510°C bestimmt. Die Amplitude von l betrug dabei ±3,4%. Tabelle 4 enthält den Umsatz am Schnitt punkt der CO- und der NOx-Umsatzkurven, sowie den zugehörigen HC-Umsatz der gealterten Partikelfilter.
Tabelle 4 Der erfindungsgemäße Partikelfilter GPF3 zeigt gegenüber VGPF2 und VGPF3 im ge alterten Zustand eine deutliche Verbesserung beim Anspringverhalten und beim dyna mischen CO/NOx-Umsatz. Vergleichsbeispiel 4:
Beschichtung der Eingangskanäle
a) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lan thanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Das Gewichts verhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56/44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Be schichtung eines handelsüblichen Wandflussfilter-substrats eingesetzt. Da bei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar in den Eingangskanälen auf eine Länge von 50 % der Filterlänge. Die Beladung des Einlasskanals betrug 100 g/l, die Edelmetall beladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 :
1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Beschichtung der Ausgangskanäle
b) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauerstoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirko noxid, Lanthanoxid und Praseodymoxid umfasste, und einer zweiten Sauer- stoff-speicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats eingesetzt, wobei auf die Filter wände des Substrats beschichtet wurde und zwar in den Ausgangskanälen auf eine Länge von 50 % der Filterlänge. Die Beladung des Auslasskanals betrug 100 g/l, die Edelmetallbeladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 100 g/l, die Gesamtedel-metallbeladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als VGPF4 bezeichnet.
Beispiel 4
Beschichtung der Eingangskanäle
a) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lan thanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Das Gewichts verhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56/44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Be schichtung eines handelsüblichen Wandflussfilter-substrats eingesetzt. Da bei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar in den Eingangskanälen auf eine Länge von 55 % der Filterlänge. Die Beladung des Einlasskanals betrug 91 g/l, die Edelmetallbe ladung 1.16 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Beschichtung der Ausgangskanäle
b) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauerstoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Praseodymoxid umfasste, und einer zweiten Sauerstoff speicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats eingesetzt, wobei auf die Filter wände des Substrats beschichtet wurde und zwar in den Ausgangskanälen auf eine Länge von 55 % der Filterlänge. Die Beladung des Auslasskanals betrug 91 g/l, die Edelmetallbeladung 1.16 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 100 g/l, die Gesamtedel-metallbeladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als GPF3 bezeichnet.
Beispiel 5
Beschichtung der Eingangskanäle
a) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lan thanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Das Gewichts verhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56/44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Be schichtung eines handelsüblichen Wandflussfilter-substrats eingesetzt. Da bei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar in den Eingangskanälen auf eine Länge von 60 % der Filterlänge. Die Beladung des Einlasskanals betrug 83.33 g/l, die Edelme tallbeladung 1.06 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschlie ßend kalziniert. Beschichtung der Ausgangskanäle
b) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauerstoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Praseodymoxid umfasste, und einer zweiten Sauerstoff- Speicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30:70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats eingesetzt, wobei auf die Filter wände des Substrats beschichtet wurde und zwar in den Ausgangskanälen auf eine Länge von 60 % der Filterlänge. Die Beladung des Auslasskanals betrug 83.33 g/l, die Edelmetallbeladung 1.06 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 100 g/l, die Gesamtedel-metallbeladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als GPF4 bezeichnet.
Beispiel 6
Beschichtung der Eingangskanäle
a) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer Sauerstoffspeicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lan thanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Das Gewichts verhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 56/44. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodium-nitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Be schichtung eines handelsüblichen Wandflussfilter-substrats eingesetzt. Da bei wurde die Beschichtungssuspension auf die Filterwände des Substrats beschichtet und zwar in den Eingangskanälen auf eine Länge von 80 % der Filterlänge. Die Beladung des Einlasskanals betrug 62.5 g/l, die Edelmetall beladung 0.79 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 :
1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert.
Beschichtung der Ausgangskanäle
b) Mit Lanthanoxid stabilisiertes Aluminiumoxid wurde zusammen mit einer ersten Sauerstoffspeicherkomponente, die 40 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Praseodymoxid umfasste, und einer zweiten Sauerstoff- Speicherkomponente, die 24 Gew.-% Ceroxid, Zirkonoxid, Lanthanoxid und Yttriumoxid umfasste, in Wasser suspendiert. Beide Sauerstoffspeicher komponenten wurden zu gleichen Teilen eingesetzt. Das Gewichtsverhältnis von Aluminiumoxid und Sauerstoffspeicherkomponente betrug 30 : 70. Die so erhaltene Suspension wurde anschließend unter ständigem Rühren mit einer Palladiumnitrat-Lösung und einer Rhodiumnitrat-Lösung versetzt. Die resultierende Beschichtungssuspension wurde direkt zur Beschichtung des unter a) erhaltenen Wandflussfiltersubstrats eingesetzt, wobei auf die Filter wände des Substrats beschichtet wurde und zwar in den Ausgangskanälen auf eine Länge von 80 % der Filterlänge. Die Beladung des Auslasskanals betrug 62.5 g/l, die Edelmetallbeladung 0.79 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Der so erhaltene beschichtete Filter wurde getrocknet und anschließend kalziniert. Die Gesamtbeladung dieses Filters betrug somit 100 g/l, die Gesamtedel-metallbeladung 1.42 g/l mit einem Verhältnis von Palladium zu Rhodium von 5 : 1. Er wird nachstehend als GPF5 bezeichnet.
Katalytische Charakterisierung
Die Partikelfilter VGPF4, GPF4, GPF5 und GPF6 wurden an einem Kaltblas prüfstand bezüglich des Abgasgegendrucks verglichen.
Die nachfolgende Tabelle 5 enthält Druckverlustdaten die bei einer Lufttemperatur von 21 °C und einem Volumenstrom von 600 m3/h bestimmt wurden. Die Werte wurden zur besseren Übersicht auf VGPF4 normiert.
Tabelle 5
Die erfindungsgemäßen Filter GPF4, GPF5 und GPF6 weisen allesamt überra schenderweise einen geringeren Druckverlust auf, als das Vergleichsbeispiel VGPF4, obwohl diese eine größere Oberfläche der Filterwände bedecken. Dies ist durchaus überraschend, da man eigentlich davon ausgehen konnte, dass längere Beschichtungen einen höheren Abgasgegendruck verursachen, da hier mehr Abgas durch die katalytischen Beschichtungen strömen muss, da dadurch weniger Abgas durch die ohne Beschichtung versehene Filterwand strömen kann.
Des Weiteren wurde systematisch untersucht, welches die Haupteffekte sind, die für einen möglichst geringen Abgasgegendruck verantwortlich sind . Hierbei wurden verschiedene Filter mit unterschiedlichen Zonenlängen (Faktor A) und Washcoatschichtdicken (Faktor B) präpariert und gegenei- nander verglichen. Alle Filter hatten dieselbe Gesamtwashcoatbeladung und den gleichen Edelmetallgehalt.
Tabelle 6 Die statistische Auswertung zeigt, dass es besonders vorteilhaft ist, den Washcoat auf einer möglichst großen Oberfläche auf den Filterwänden mit einer dadurch einherge henden geringen Schichtdicke zu verteilen, anstatt nur eine geringe Oberfläche mit ei ner hohen Schichtdicke zu bedecken, da eine hohe Schichtdicke als Hauptursache für einen hohen Abgasgegendruck anzusehen ist (Figur 2). Zudem wurden die Partikelfil- ter zusammen in einer Motorprüfstandsalterung gealtert. Diese besteht aus einer Schubabschaltungsalterung mit 950°C Abgastemperatur vor Katalysatoreingang (Maxi male Betttemperatur 1030°C). Die Alterungszeit betrug 19 Stunden (siehe Motortechni sche Zeitschrift, 1994, 55, 214-218).
Anschließend wurden die katalytisch aktiven Partikelfilter im gealterten Zustand an ei- nem Motorprüfstand im sogenannten„Lambda Sweeptest“ getestet. Überraschender weise zeigt die statistische Auswertung der Testergebnisse auch einen signifikanten Vorteil im Lambda Sweeptest, wenn die katalytische Beschichtung mit einer geringen Schichtdicke auf einer möglichst großen Oberfläche aufgebracht wird (Figur 3). Zusätzlich wurde untersucht inwieweit sich eine Ausführungsform bestehend aus einer kurzen und einer langen Zone von einer Ausführungsform bestehend aus zwei langen Zonen unterscheidet. Hierfür wurde ein erfindungsgemäßer Filter mit Zonenlängen von jeweils 60% der Filterlänge gegen einen Vergleichsfilter mit Zonenlängen von 90% im Einlasskanal und 30% im Auslasskanal verglichen. In dem Light-off Test, bei dem das Anspringverhalten bei stöchiometrischer Abgaszusammensetzung mit konstanter mitt lerer Luftzahl l bestimmt wird (l =0,999 mit ±3,4% Amplitude), zeigt sich, dass der er findungsgemäße Filter mit Zonenlängen von jeweils 60% die entsprechenden Abgas komponenten bei niedrigeren Temperaturen konvertieren kann als der nicht erfin dungsgemäße Filter mit Zonenlängen von 90% und 30%. Die nachfolgende Tabelle 7 enthält die Temperaturen T5o, bei denen jeweils 50% der betrachteten Komponenten umgesetzt werden.
Tabelle 7

Claims

Patentansprüche
1. Partikelfilter, das ein Wandflussfilter der Länge L und zwei Beschichtungen Y und Z umfasst, wobei das Wandflussfilter Kanäle E und A umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken und die durch poröse Wände getrennt sind, die Oberflächen OE bzw. OA bilden und wobei die Kanäle E am zweiten Ende und die Kanäle A am ersten Ende verschlossen sind, und wobei die Beschichtungen Y und Z gleiche Sauerstoffspeicherkomponenten und gleiche Trä germaterialien für Edelmetalle umfassen,
dadurch gekennzeichnet, dass
Beschichtung Y sich in den Kanälen E auf den Oberflächen OE befindet und sich aus gehend vom ersten Ende des Wandflussfilters über 55 bis 90 % der Länge L erstreckt, Beschichtung Z sich in den Kanälen A auf den Oberflächen OA befindet und sich aus gehend vom zweiten Ende des Wandflussfilters über 55 bis 90 % der Länge L er streckt,
und die Beschichtungen Y und Z Aluminiumoxid in einer Menge von 20 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z, Rhodium, Palladium oder Palladium und Rhodium und eine oder mehrere Sauerstoffspeicherkomponenten in ei ner Menge von 30 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung Y bzw. Z enthält.
2. Partikelfilter gemäß Anspruch 1 , dadurch gekennzeichnet, dass sich die Beschich tung Y ausgehend vom ersten Ende des Wandflussfilters auf 57 bis 80 % der Länge L des Wandflussfilters erstreckt.
3. Partikelfilter gemäß Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass sich die Beschichtung Z ausgehend vom zweiten Ende des Wandflussfilters auf 57 bis 80 % der Länge L des Wandflussfilters erstreckt.
4. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekenn zeichnet, dass die Beschichtungen Y und Z jeweils ein oder mehrere Edelmetalle, die auf einem oder mehreren Trägermaterialien fixiert sind, sowie ein oder mehrere Sauer stoffspeicherkomponenten enthalten.
5. Partikelfilter gemäß Anspruch 4, dadurch gekennzeichnet, dass die Trägermateria lien für die Edelmetalle ausgewählt sind aus der Reihe bestehend aus Aluminiumoxid, dotiertes Aluminiumoxid, Siliziumoxid, Titandioxid und Mischoxiden aus einem oder mehreren davon.
6. Partikelfilter gemäß einem Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Trägermaterialien für die Edelmetalle Metalloxide mit einer BET-Oberfläche von 30 bis 250 m2/g (bestimmt nach DIN 66132) sind.
7. Partikelfilter gemäß einem oder mehreren der Ansprüche 4 bis 6, dadurch gekenn zeichnet, dass die Beschichtungen Y und Z als Sauerstoffspeicher-komponente ein Cer/Zirkonium/Seltenerdmetall-Mischoxide enthalten.
8. Partikelfilter gemäß Anspruch 7, dadurch gekennzeichnet, dass die Cer/Zirko- nium/Seltenerdmetall-Mischoxide als Seltenerdmetalloxid Lanthanoxid, Yttriumoxid,
Praseodymoxid, Neodymoxid und/oder Samariumoxid enthalten
9. Partikelfilter gemäß Anspruch 7 und/oder 8, dadurch gekennzeichnet, dass die Cer/Zirkonium/Seltenerdmetall-Mischoxide als Seltenerdmetalloxid Lanthanoxid und Yttriumoxid, Yttriumoxid und Praseodymoxid oder Lanthanoxid und Praseodymoxid enthalten.
10. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekenn zeichnet, dass die Beschichtungen Y und Z beide Lanthan-stabilisiertes Alumini- umoxid, Rhodium, Palladium oder Palladium und Rhodium und eine Zirkoniumoxid,
Ceroxid, Yttriumoxid und Lanthanoxid umfassende Sauerstoffspeicherkomponente um fassen.
1 1. Partikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch ge- kennzeichnet, dass die Beschichtungen Y und Z beide Lanthan-stabilisiertes Alumini umoxid, Rhodium, Palladium oder Palladium und Rhodium und eine Zirkoniumoxid, Ceroxid, Praseodymoxid und Lanthanoxid umfassende Sauerstoffspeicherkomponente umfassen.
12. Verfahren zur Entfernung von Partikeln, Kohlenmonoxid, Kohlenwasserstoffen und Stickoxiden aus dem Abgas von mit stöchiometrischem Luft/Kraftstoff-Gemisch betrie benen Verbrennungsmotoren, dadurch gekennzeichnet, dass das Abgas über ein Par tikelfilter gemäß einem oder mehreren der Ansprüche 1 bis 11 geleitet wird.
EP19716102.9A 2019-03-29 2019-03-29 Katalytisch aktives partikelfilter Pending EP3946692A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/057989 WO2020200394A1 (de) 2019-03-29 2019-03-29 Katalytisch aktives partikelfilter

Publications (1)

Publication Number Publication Date
EP3946692A1 true EP3946692A1 (de) 2022-02-09

Family

ID=66092312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19716102.9A Pending EP3946692A1 (de) 2019-03-29 2019-03-29 Katalytisch aktives partikelfilter

Country Status (4)

Country Link
US (1) US20220176364A1 (de)
EP (1) EP3946692A1 (de)
CN (1) CN113412145A (de)
WO (1) WO2020200394A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021118801A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118803A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118802A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907860B2 (ja) 2004-11-11 2012-04-04 株式会社キャタラー フィルタ触媒
JP4669353B2 (ja) * 2005-09-07 2011-04-13 三菱自動車工業株式会社 パティキュレートフィルタ
DE102007046158B4 (de) 2007-09-27 2014-02-13 Umicore Ag & Co. Kg Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
DE502007002874D1 (de) * 2007-09-28 2010-04-01 Umicore Ag & Co Kg Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
DE102011050788A1 (de) 2011-06-01 2012-12-06 Ford Global Technologies, Llc. Abgasnachbehandlungsvorrichtung und -verfahren für einen Ottomotor
JP6564637B2 (ja) 2014-10-09 2019-08-21 株式会社キャタラー 排ガス浄化装置
WO2016056573A1 (ja) * 2014-10-09 2016-04-14 株式会社キャタラー 排ガス浄化装置
WO2016060050A1 (ja) 2014-10-16 2016-04-21 株式会社キャタラー 排ガス浄化用触媒
US10159935B2 (en) 2014-10-16 2018-12-25 Cataler Corporation Exhaust gas purification catalyst
CN115155668A (zh) 2014-10-16 2022-10-11 株式会社科特拉 废气净化用催化剂
JP6293638B2 (ja) 2014-10-17 2018-03-14 株式会社キャタラー 排ガス浄化装置
JP6279448B2 (ja) 2014-10-17 2018-02-14 株式会社キャタラー 排ガス浄化装置
EP3271070A4 (de) * 2015-03-19 2018-11-21 BASF Corporation Autokatalysatoren mit in einer aluminiumfreien schicht geträgertem palladium
GB2546164A (en) * 2015-09-30 2017-07-12 Johnson Matthey Plc Gasoline particulate filter
JP6594163B2 (ja) 2015-10-30 2019-10-23 株式会社キャタラー 排ガス浄化装置
CN105964253B (zh) * 2016-05-13 2019-04-23 无锡威孚环保催化剂有限公司 一种汽油车颗粒捕集催化剂及其制备方法
WO2018172299A1 (de) * 2017-03-23 2018-09-27 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3505246B1 (de) * 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
CN108295851B (zh) * 2018-01-25 2020-12-01 无锡威孚环保催化剂有限公司 汽油车颗粒捕集器催化剂及其制备方法

Also Published As

Publication number Publication date
CN113412145A (zh) 2021-09-17
US20220176364A1 (en) 2022-06-09
WO2020200394A1 (de) 2020-10-08

Similar Documents

Publication Publication Date Title
EP3501648B1 (de) Katalytisch aktives partikelfilter
EP3601755B1 (de) Katalytisch aktives partikelfilter
EP3737491B1 (de) Katalytisch aktives partikelfilter
EP3505246B1 (de) Katalytisch aktives partikelfilter
EP2181749B2 (de) Dieselpartikelfilter mit verbesserten Staudruckeigenschaften
EP3505245B1 (de) Katalytisch aktives partikelfilter
DE112016004452T5 (de) Benzinpartikelfilter
EP1974810A1 (de) Palladium-Rhodium Einfachschicht Katalysator
DE102019100099B4 (de) Verfahren zur Herstellung von katalytisch aktiven Wandflussfiltern, katalytisch aktiver Wandflussfilter und dessen Verwendung
WO2022129027A1 (de) Katalytisch aktiver partikelfilter mit hoher filtrationseffizienz
WO2020200394A1 (de) Katalytisch aktives partikelfilter
WO2020200397A1 (de) Katalytisch aktives partikelfilter
WO2022129023A1 (de) Katalytisch aktiver partikelfilter mit hoher filtrationseffizienz
DE202017007047U1 (de) Katalytisch aktives Partikelfilter
DE202017007046U1 (de) Katalytisch aktives Partikelfilter
EP4313376A1 (de) Partikelfilter für benzinmotorenabgas
WO2023052580A1 (de) Katalytisch aktiver partikelfilter mit hoher filtrationseffizienz
EP4313366A1 (de) Verfahren zur erhöhung der frischfiltration von benzinpartikelfiltern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UMICORE AG & CO. KG