EP3789553B1 - Prefabricated construction element and prefabricated system - Google Patents
Prefabricated construction element and prefabricated system Download PDFInfo
- Publication number
- EP3789553B1 EP3789553B1 EP20194545.8A EP20194545A EP3789553B1 EP 3789553 B1 EP3789553 B1 EP 3789553B1 EP 20194545 A EP20194545 A EP 20194545A EP 3789553 B1 EP3789553 B1 EP 3789553B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- concrete layer
- prefabricated
- prefabricated building
- prestressed
- elevations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title description 25
- 239000004567 concrete Substances 0.000 claims description 133
- 238000004873 anchoring Methods 0.000 claims description 36
- 239000004753 textile Substances 0.000 claims description 22
- 230000002787 reinforcement Effects 0.000 claims description 21
- 239000011324 bead Substances 0.000 claims description 10
- 239000011381 foam concrete Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 5
- 239000011209 textile-reinforced concrete Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000011150 reinforced concrete Substances 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/02—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
- E04B1/04—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
- E04B1/043—Connections specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/04—Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/044—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/32—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
- E04C2/322—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with parallel corrugations
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/07—Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/84—Walls made by casting, pouring, or tamping in situ
- E04B2/86—Walls made by casting, pouring, or tamping in situ made in permanent forms
Definitions
- the invention relates to a prefabricated building element and a prefabricated building system of lightweight construction, which is suitable for wall and ceiling construction.
- prefabricated components are assembled on the construction site in a short time to form a building.
- prefabricated components can be manufactured in solid construction or lightweight construction.
- Prefabricated building elements in solid construction such as reinforced concrete slabs, have the advantage that they can be used as load-bearing elements, while prefabricated building elements in lightweight construction, such as wood or plasterboard, usually only have a space-enclosing function.
- prefabricated building elements in solid construction have a high weight and are often not ecologically sustainable in their production and disposal, since they are difficult to recycle, for example.
- prefab elements in Lightweight constructions have a lower weight and are usually more environmentally friendly in their production and disposal, but have a shorter lifespan, poorer sound and heat insulation and also poorer strength and fire safety compared to prefabricated building elements in solid construction.
- the present invention is therefore based on the object of overcoming these disadvantages and providing a prefabricated component and a prefabricated system in lightweight construction which, despite their low mass, offer high load-bearing capacity, a long service life, high sound and heat insulation and also high fire safety.
- a prefabricated construction element according to the invention has a prestressed planar structure element made of textile-reinforced concrete, a concrete layer on top and/or a concrete layer underneath.
- the prestressed surface structure element is designed as a folded structure that has a fold or fold structure that is formed by elevations and/or depressions in the prestressed surface structure element.
- the concrete layer is formed on a surface of the prestressed surface structure element in the depressions and/or between the elevations of the fold in such a way that the concrete layer forms a flat surface which is aligned plane-parallel to the surface structure element.
- the top concrete layer can thus, for example, form an even, level base for a later floating screed.
- the sub-concrete layer is formed alone on a surface of the prestressed surface structure element or in addition to a concrete layer on a surface of the prestressed surface structure element arranged opposite the concrete layer in the depressions and/or between the elevations of the fold in such a way that the concrete layer below forms a flat surface which is aligned plane-parallel to the surface structure element is.
- the prefabricated element thus offers both the advantages of a solid concrete element and those of a lightweight element. It exhibits a high Load-bearing capacity, service life, sound and heat insulation and also a high level of fire safety, but can still be designed with low material thicknesses and consequently with a very low weight. In vertical applications, for example, this can increase the usable floor space of a building.
- the prefabricated element is therefore particularly suitable for large-format wall and/or ceiling elements.
- Textile-reinforced concrete typically consists of a concrete matrix and textile reinforcement, which is significantly lighter than comparable metallic reinforcement. Textile-reinforced concrete, which is prestressed with a tensile stress, can be used to form prestressed surface structure elements which, despite their low dead weight, give the prefabricated element a high load-bearing capacity due to their prestressing.
- an improved load-bearing capacity can also be achieved by folding the surface structure element and the top or bottom concrete layer.
- the folding of the surface structure element causes a folding reinforcement of the surface structure element, with which the compressive and bending strength of the prefabricated element can be increased.
- the surface structure element and the concrete layer or sub-concrete layer can interlock in a form-fitting manner such that a shear connection can be formed between the surface structure element and the concrete layer or concrete layer on top, through which the rigidity of the prefabricated element can be additionally increased.
- a rigidity of the prefabricated component can be achieved that can be greater than the sum of the rigidities of the individual components of the prefabricated component.
- the top concrete or bottom concrete layer can also have a positive effect on the service life of the prefabricated component, since they protect the textile concrete of the surface structure element from detaching the concrete cover of the textile reinforcement.
- the depressions and / or elevations of the fold can preferably as linear depressions and/or elevations can be formed, which can be arranged parallel to one another in the fold.
- the depressions and/or elevations can be formed, for example, with a semicircular, rectangular, triangular and/or trapezoidal cross section. In particular, they can be designed as semi-circular beads, box beads, triangular beads and/or trapezoidal beads.
- the prestressed surface structure element can be used as a prestressed trapezoidal folded plate, e.g. B. be formed with equidistant parallel trapezoidal beads.
- the indentations and/or elevations can also be arranged and designed in such a way that locally differentiated forces or moments can be taken into account on the prefabricated component.
- This relates, for example, to the distances and shape of indentations and/or elevations, which can be defined locally changed in order to be able to take into account locally acting higher or smaller forces and moments.
- the prestressed tensile structure element is preferably formed from a prestressed textile concrete with an immediate bond.
- a prestressed textile concrete with an immediate bond is to be understood as a textile concrete in which a load-oriented, uniaxial or multiaxial prestressed textile reinforcement with a prestressing force for tension is connected to a concrete matrix in a material and non-positive manner and the prestressing force of the reinforcement is carried through after the concrete matrix has hardened the release of the prestress was transferred to the concrete matrix.
- Such prestressed surface structures have the advantage that they are already completely finished at the factory and can also be cut to size in length.
- the prestressed planar structure element of the prefabricated construction element can be formed in particular with at least one prestressed, textile reinforcement made of carbon, basalt and/or glass fibers.
- Such reinforcements can be designed, for example, in the form of rovings, ie fiber bundles, nets and/or mats, whereby the reinforcements can also be impregnated with plastics, in particular a resin, to improve their load-bearing behavior and/or can also be designed in multiple layers.
- the prestressed, textile reinforcement is particularly preferably formed with scrim strips made of carbon rovings, which are preferably arranged in the fold with their longitudinal axis along linear elevations and/or depressions of the fold are.
- Reinforcements of this type can be prestressed in a stressed bed and embedded in concrete in a particularly uncomplicated manner for the production of the folded structure.
- the textile reinforcement can also be in the form of a scrim mat, which is shaped to complement the folding of the folded structure and is arranged in the folded structure following the folding.
- the prefabricated element Since the prefabricated element is mainly made of concrete as the basic material, it has a higher level of fire safety and sound insulation compared to conventional lightweight elements made of wood or gypsum.
- the shape of the surface structure element i. H. the folding and also the closed surface of the surface structure element, in contrast to polyhedral formwork or frame structures, have a positive effect on the sound insulation and thus on the room acoustics.
- the textile reinforcement of the surface structure element and thus the prefabricated element conducts not only sound but also heat much worse than metallic reinforcement, so that thermal bridges and thus heat losses through the prefabricated element can be reduced.
- the top concrete layer and/or the bottom concrete layer are made of a lightweight concrete, in particular a foamed concrete or aerated lightweight concrete.
- Foamed or aerated lightweight concretes are concretes that are manufactured using foam or air-entraining agents. They generally have an air void content of >30% by volume and aggregates with a diameter of less than 2 mm and a density of less than 1000 kg/m 3 , preferably less than 200 kg/m 3 .
- the prefabricated building elements can be designed with particularly good heat and sound insulation properties and also a high level of fire resistance.
- anchors that are arranged in the top and/or in the sub-concrete layer or between the top and sub-concrete layer are protected by the top and/or sub-concrete layer, so that the risk of collapse in the event of fire is reduced for structures made of prefabricated building elements can be.
- the prefabricated elements can be formed very quickly and easily in the factory by foaming the surface structure element with foam or lightweight cellular concrete and steam curing the foam or lightweight cellular concrete.
- Channels for later installations can already be formed at the factory in the top concrete layer and/or sub-concrete layer, as well as particularly flat surfaces of the top concrete layer and/or sub-concrete layer that are suitable for direct coating with spatula or paint without further preparation steps.
- the top concrete layer and/or bottom concrete layer can be separated from the tensile structure element and crushed into a homogeneous, reusable gravel, so that the prefabricated element can be easily recycled.
- the prefabricated component is therefore characterized by a very good ecological balance due to the simple production, the material and weight savings, the advantageous thermal insulation properties and also the recyclability.
- the prefabricated components can be formed with connecting elements, by means of which prefabricated components can be detachably connected to other components, but also to one another.
- the prefabricated elements with an appropriate joint design, individual room cells as well as multi-storey structures can be built, which can be dismantled very easily.
- the prefabricated components are therefore suitable, for example, as reusable prefabricated components for mobile buildings.
- the term “component” should be understood to mean all types of molded parts that can be used in construction.
- the prefabricated component preferably has a transverse yoke with at least one anchoring element on at least one outer end face, by means of which the prefabricated component can be connected to a component or to another prefabricated component.
- the transverse yoke can be cast at the same time as the trapezoidal slab is being manufactured or it can be glued to the trapezoidal slab afterwards.
- the prefabricated component can also have at least one anchoring element in the topping concrete layer, by means of which the prefabricated component can be connected to a component or another prefabricated element can be connected.
- the at least one anchoring element in the concrete layer can advantageously be arranged in the depressions and/or between the elevations of the fold.
- the anchoring elements can be designed, for example, as bolts or detachable screw elements that can also be cast into the transverse yoke or the topping concrete layer.
- the transverse yoke can preferably be formed in the respective end face in such a way that it forms a support for the component when the prefabricated component is connected to a component, d. H. the transverse yoke can be made so large that the contact surface between the component and the finished component, which is formed when the component is connected to the anchoring element of the transverse yoke, can be formed entirely with the transverse yoke. As a result, a uniform load application can be achieved in the prefabricated component, so that the prefabricated component can also absorb eccentric loads. If prefabricated components according to the invention are connected to one another, the contact surface between the prefabricated components can be formed with the transverse yokes of the respective prefabricated component. A particularly even load application can be achieved with cross beams that are made of reinforced concrete.
- the prefabricated elements can be designed as wall or ceiling elements.
- Prefabricated building elements which are designed as ceiling elements, should advantageously have at least one anchoring element in the topping concrete layer in the depressions and/or between the elevations of the fold of the prestressed planar structure element, by means of which the ceiling element can be connected to a structural element or another prefabricated building element.
- the concrete layer on the surface of the prestressed surface structure element is advantageously formed in the depressions and/or between the elevations of the fold of the prestressed surface structure element in such a way that the concrete layer forms a flat surface with the elevations and/or depressions of the fold, which is plane-parallel to the prestressed surface structure element is aligned.
- the folding structure can be a direct support surface for a component or another prefabricated component that is connected to the ceiling element can be connected by means of the anchoring element, form and relieve the concrete layer.
- the sub-concrete layer is advantageously formed on a surface of the prestressed surface structure element arranged opposite the topping concrete layer in the depressions and/or between the elevations of the fold of the prestressed surface structure element such that the sub-concrete layer covers the depressions and/or elevations of the fold and forms a flat surface, which is aligned plane-parallel to the prestressed surface structure element.
- the sub-concrete layer can thus be designed as a continuous surface that has good thermal insulation and fire safety and can be coated directly with spatula or paint.
- Prefabricated building elements which are designed as wall elements, should advantageously have a transverse yoke with at least one anchoring element on at least one outer end face, by means of which the wall element can be butt-joined to the end face or to a side surface of the wall element formed with the transverse yoke at a right angle to a component or another prefabricated element can be connected.
- the at least one anchoring element can be formed or aligned in the transverse yoke, for example perpendicularly or parallel to the respective end face of the wall element.
- the top concrete layer on the surface of the prestressed surface structure element and the sub-concrete layer on a surface of the prestressed surface structure element arranged opposite the top concrete layer can be formed in the depressions and/or between the elevations of the fold of the prestressed surface structure element in such a way that the top concrete layer and the sub-concrete layer cover the depressions and/or or cover elevations of the fold and form flat surfaces that are aligned plane-parallel to the prestressed surface structure element.
- the top concrete layer and the bottom concrete layer can completely cover the surface of the surface structure element.
- the anchoring elements can be designed, for example, as bolts made of metal or glass fiber reinforced plastic, as dowels, compound anchors or screwing elements. You can, for example, by spreading, ie a plastic deformation of the anchoring element or be fixed by cutting a thread by means of the anchoring element in the prefabricated building element, so that the anchoring elements can be easily removed for recycling the prefabricated building elements.
- the anchoring elements can also be used with a binder, e.g. B. a grout, be fixed in the prefabricated element or be cast as inserts during the formation of the top concrete or sub-concrete layer or a transverse yoke in this.
- a prefabricated construction system has at least two prefabricated components according to the invention, which can be connected to one another as described by means of the anchoring elements on an outer end face or on the top concrete layer or the bottom concrete layer and can be designed as wall elements or ceiling elements.
- FIG 1 is shown in a schematic sectional representation of a front view and a side view of an example of a prefabricated component.
- the prefabricated element has a tension-prestressed planar structure element 1 made of textile-reinforced concrete, an upper concrete layer 2 and a lower concrete layer 3 .
- the prestressed planar structure element 1 is designed as a folded structure has a fold, which is formed by elevations and / or depressions in the prestressed surface structure element 1.
- the top concrete layer 2 is formed on a surface of the prestressed surface structure element 1 in the depressions and/or between the elevations of the fold in such a way that the top concrete layer 2 forms a flat surface which is aligned plane-parallel to the prestressed surface structure element 1 .
- the sub-concrete layer 3 is formed on a surface of the prestressed surface structure element 1 opposite the topping concrete layer 2 in the depressions and/or between the elevations of the fold in such a way that the sub-concrete layer 3 forms a flat surface which is aligned plane-parallel to the prestressed surface structure element 1 and against falling out is secured.
- the prefabricated element has a high load-bearing capacity, a long service life, high sound and heat insulation and also high fire safety.
- the prestressed planar structure element 1 of the prefabricated component is designed as a folded structure, which has a fold formed by linear, equidistant and parallel elevations and/or depressions.
- the elevations and/or depressions are designed in particular as trapezoidal beads, ie the folded structure is designed as a trapezoidal folded structure panel.
- the prestressed planar structure element 1 can be formed from a prestressed textile concrete with at least one textile reinforcement 4 with an immediate bond.
- the prestressed surface structure element 1 is formed from a prestressed textile concrete with an immediate bond, which has at least one textile reinforcement 4 made from carbon fiber bundles, so-called rovings.
- the textile reinforcement is designed as scrim strips which, in the example shown, are arranged with their longitudinal axis along the linear elevations and/or linear depressions of the folded structure.
- the textile reinforcement can also be formed from basalt and/or glass fiber bundles.
- the textile reinforcement can also be designed as a three-dimensional folded structure that is complementary to the fold of the planar structure element 1 and that follows the fold in the planar structure element 1 is arranged.
- the fibers can be embedded in concrete and/or a plastic.
- the top concrete layer 2 and / or the bottom concrete layer 3 are in the example shown figure 1 formed from a foam concrete or aerated lightweight concrete.
- the prefabricated component can be designed to be diffusion-open and yet thermally and sound-insulating and also fireproof.
- Foam concrete or aerated lightweight concrete also facilitate the manufacture of the prefabricated element.
- the top concrete layer 2 and/or the bottom concrete layer 3 can be formed in a short time and very evenly, so that untreated they are suitable for direct coating with spatula, paint or plaster.
- possible installations can already be embedded in the top concrete layer 2 and/or the bottom concrete layer 3 during production. Thanks to the foam concrete or aerated lightweight concrete, the prefabricated element is also recyclable, so that it has a very good ecological balance overall.
- the prefabricated element is formed on at least one outer end face with a transverse yoke 5, which can be formed, for example, from reinforced concrete.
- At least one anchoring element 6 (in Figure 4 and 5 shown) can be arranged, by means of which the prefabricated component can be connected to another component 7 or another prefabricated component.
- the anchoring element 6 can be formed in the transverse yoke 5, for example, perpendicularly or parallel to the respective outer face of the prefabricated component, so that the prefabricated component can be connected to a component 7 or another prefabricated element can be connected. Examples are in the Figures 4 and 5 shown.
- the transverse yoke 5 can be designed in particular as an intermediate support for the component 7 or the further prefabricated component to which the prefabricated component can be connected, i.e. the transverse yoke 5 can be designed so large that the contact surface that occurs when the prefabricated component is connected to the component 7 or another prefabricated element by means of the at least one anchoring element 6 of the transverse yoke 5 between the Prefabricated component and the component 7 or another prefabricated component is formed, is completely formed with the transverse yoke 5.
- a uniform load application can be achieved in the prefabricated component, so that the prefabricated component can also absorb off-centre stresses.
- the transverse yoke 5 can also be designed in particular in cantilevered prefabricated components as a support on the loaded surfaces of the collar end.
- anchoring elements 6 in transverse yokes 5 at least one anchoring element 6 in the topping concrete layer 2 (in figure 2 shown) and/or the lower concrete layer 3, by means of which the prefabricated component can be connected to the top concrete layer 2 and/or the lower concrete layer 3 with a further component 7.
- the prefabricated component can in particular be formed with at least one detachable anchoring element 6, so that corresponding constructions from the prefabricated components can be easily dismantled and reused.
- the number and arrangement of the transverse yokes 5 and anchoring elements 6 can be variably adapted to the respective dimensions, installation direction and loads of the prefabricated component.
- the prefabricated element can in particular also be designed as a wall or ceiling element.
- Such prefabricated components can typically be designed with a width in the range from 1.20 meters to 2.40 meters, a length between 3 meters and 8 meters and a wall or ceiling thickness of 15 cm to 40 cm and also intermediate yokes for intermediate levels and/or or have openings, for example for doors or windows.
- the transverse yokes and/or intermediate yokes can also have clamping channels through which the prefabricated components can be inserted, for example, to bridge openings with tendons, such as e.g. B. tie rods can be clamped together.
- the prefabricated components can be segmented, ie formed in sections, with the joints between the individual sections typically being formed perpendicular to the main bearing direction of the clamped sections with knobs on the respective yoke.
- the prefabricated components can therefore also be used for constructions in segment construction.
- the prefabricated components can also be designed with beams for load distribution.
- figure 2 shows a schematic side sectional view of an example of a prefabricated building element designed as a ceiling element. Recurring features are in this one figure 2 , as well as in the following figures, provided with identical reference numerals.
- the prefabricated element has at least one anchoring element 6, in the example shown a screw element, in the topping concrete layer 2 in the depressions and/or between the elevations of the fold, by means of which the ceiling element can be detachably connected to a structural element 7 or another prefabricated element.
- the concrete layer 2 on the surface of the prestressed surface structure element 1 is formed in the depressions and/or between the elevations of the fold in such a way that the concrete layer 2 forms a flat surface with the elevations and/or depressions of the fold, which is plane-parallel to the prestressed surface structure element 1 is aligned.
- the folding structure forms a direct support surface for the component 7 or for another prefabricated component, and the topping concrete layer 2 is relieved.
- the sub-concrete layer 3 is advantageously formed on a surface of the prestressed planar structure element 1 arranged opposite the top-concrete layer 2 in the depressions and/or between the elevations of the fold in such a way that the sub-concrete layer 3 covers the depressions and/or elevations of the fold and forms a flat surface, which is aligned plane-parallel to the prestressed surface structure element 1.
- FIG 3 is shown in a schematic lateral sectional view of an example of a wall element designed as a prefabricated element.
- the prefabricated element On at least one outer end face, the prefabricated element has a transverse yoke 5 with an anchoring element 6 (in Figure 4 and 5 shown), by means of which the prefabricated component can be connected to abutting the end face or to a side face of the prefabricated component formed with the transverse yoke 5 at a right angle to a component 7 or another prefabricated component.
- top concrete layer 2 on the surface of the prestressed surface structure element 1 and the sub-concrete layer 3 on a surface of the prestressed surface structure element 1 arranged opposite the top concrete layer 2 are in such a way in the depressions and/or between the elevations of the fold of the prestressed surface structure element 1 designed in such a way that the top concrete layer 2 and the bottom concrete layer 3 each cover the depressions and/or elevations of the fold and each form flat surfaces which are aligned plane-parallel to the prestressed surface structure element 1 .
- the Figures 4 and 5 show examples of prefabricated construction systems in schematic sectional views.
- Prefabricated building systems have at least two prefabricated building elements that can be connected to one another by means of the anchoring elements 6 .
- the anchoring elements 6 can be arranged in the topping concrete layer 2 or in the transverse yoke 5 of the respective prefabricated component.
- the Figures 4 and 5 each show prefabricated systems with more than two prefabricated elements, the person skilled in the art can use the examples Figures 4 and 5 , as well as the example of figure 2 However, also see how prefabricated systems can be designed with only two prefabricated elements.
- figure 4 shows an example of a prefabricated building system in which three prefabricated building elements can be connected to one another in a T-shape.
- the anchoring elements 6 are each formed in the transverse yokes 5 perpendicular or parallel to the end face of the prefabricated components, so that the prefabricated components on surfaces which are each formed by a transverse yoke 5 with an anchoring element 6 arranged perpendicular to the end face and a transverse yoke 5 with an anchoring element arranged parallel to the end face 6 are formed, can be connected to each other at a right angle.
- a prefabricated construction system in which four prefabricated building elements can be connected to one another in the shape of a cross.
- the anchoring elements 6 are each arranged perpendicularly to the end faces of the prefabricated components in the transverse yokes 5 of the prefabricated components, so that two oppositely arranged prefabricated components can be connected to one another at the respective end faces and two further prefabricated components can be connected to one another at a right angle on the side surfaces, which extend from the Transverse yokes 5 of the two butt-connected prefabricated components are formed, each opposite to the butt-connected prefabricated components can be connected to them.
- the prefabricated components connected to each other at their end faces can be designed, for example, as ceiling elements, while the prefabricated components that are perpendicular are connected to these prefabricated elements connected to the butt joint, can be designed as wall elements.
- the transverse yokes 5 can also, as in figure 5 shown schematically, be designed as intermediate supports, ie the transverse yokes 5 can each be designed on or as contact surfaces or force transmission surfaces between the prefabricated components.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Panels For Use In Building Construction (AREA)
Description
Die Erfindung betrifft ein Fertigbauelement und ein Fertigbausystem in Leichtbauweise, das für den Wand- und Deckenbau geeignet ist.The invention relates to a prefabricated building element and a prefabricated building system of lightweight construction, which is suitable for wall and ceiling construction.
Aufgrund geringerer Bauzeiten werden zunehmend mehr Gebäude in Fertigbauweise bzw. Systembauweise hergestellt. Dabei werden werksseitig vorgefertigte Bauelemente, sogenannte Fertigbauelemente, auf der Baustelle in kurzer Zeit zu einem Gebäude zusammengefügt. Solche Fertigbauelemente können in Massivbauweise oder Leichtbauweise gefertigt sein. Fertigbauelemente in Massivbauweise, wie beispielsweise Stahlbetonplatten, haben den Vorteil, dass sie als tragende Elemente eingesetzt werden können, während Fertigbauelemente in Leichtbauweise, wie beispielsweise Holz- oder Gipswerkplatten, meist nur eine raumabschließende Funktion haben. Fertigbauelemente in Massivbauweise weisen allerdings ein hohes Gewicht auf und sind häufig in ihrer Herstellung und Entsorgung ökologisch nicht nachhaltig, da sie beispielsweise nur schwer recycelt werden können. Fertigbauelemente in Leichtbauweise haben ein geringeres Gewicht und sind in ihrer Herstellung und Entsorgung meist umweltverträglicher, weisen jedoch im Vergleich zu Fertigbauelemente in Massivbauweise eine kürzere Lebensdauer, eine schlechtere Schall- und Wärmedämmung und auch eine schlechtere Festigkeit und Brandschutzsicherheit auf.Due to shorter construction times, more and more buildings are being manufactured in prefabricated or modular construction. Here, factory-prefabricated components, so-called prefabricated components, are assembled on the construction site in a short time to form a building. Such prefabricated components can be manufactured in solid construction or lightweight construction. Prefabricated building elements in solid construction, such as reinforced concrete slabs, have the advantage that they can be used as load-bearing elements, while prefabricated building elements in lightweight construction, such as wood or plasterboard, usually only have a space-enclosing function. However, prefabricated building elements in solid construction have a high weight and are often not ecologically sustainable in their production and disposal, since they are difficult to recycle, for example. prefab elements in Lightweight constructions have a lower weight and are usually more environmentally friendly in their production and disposal, but have a shorter lifespan, poorer sound and heat insulation and also poorer strength and fire safety compared to prefabricated building elements in solid construction.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, diese Nachteile zu überwinden und ein Fertigbauelement und ein Fertigbausystem in Leichtbauweise bereitzustellen, die trotz einer geringen Masse eine hohe Tragfähigkeit, eine lange Lebensdauer, eine hohe Schall- und Wärmedämmung und auch eine hohe Brandschutzsicherheit bieten.The present invention is therefore based on the object of overcoming these disadvantages and providing a prefabricated component and a prefabricated system in lightweight construction which, despite their low mass, offer high load-bearing capacity, a long service life, high sound and heat insulation and also high fire safety.
So ist ein Verfahren zur Herstellung von Betonteilen mit Bewährung aus
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Fertigbauelement nach Anspruch 1 und Fertigbausystem mit mindestens zwei Fertigbauelementen nach Anspruch 10. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den abhängigen Ansprüchen beschrieben.This object is achieved according to the invention by a prefabricated component according to
Ein erfindungsgemäßes Fertigbauelement weist ein vorgespanntes Flächentragwerkelement aus Textilbeton, eine Aufbetonschicht und/oder eine Unterbetonschicht auf. Das vorgespannte Flächentragwerkelement ist als Faltwerk ausgebildet, das eine Faltung bzw. Faltenstruktur aufweist, die durch Erhebungen und/oder Vertiefungen im vorgespannten Flächentragwerkelement gebildet ist. Die Aufbetonschicht ist auf einer Oberfläche des vorgespannten Flächentragwerkelementes derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung ausgebildet, dass die Aufbetonschicht eine ebene Oberfläche bildet, die planparallel zum Flächentragwerkelement ausgerichtet ist. Die Aufbetonschicht kann somit beispielsweise eine gleichmäßige, ebene Unterlage für einen späteren schwimmenden Estrich bilden. Die Unterbetonschicht ist allein auf einer Oberfläche des vorgespannten Flächentragwerkelementes oder zusätzlich zu einer Aufbetonschicht auf einer der Aufbetonschicht gegenüberliegend angeordneten Oberfläche des vorgespannten Flächentragwerkelementes derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung ausgebildet, dass die Unterbetonschicht eine ebene Oberfläche bildet, die planparallel zum Flächentragwerkelement ausgerichtet ist. Das Fertigbauelement bietet dadurch sowohl die Vorteile eines massiven Betonbauelementes als auch die eines Leichtbauelementes. Es weist eine hohe Tragfähigkeit, Lebensdauer, Schall- und Wärmedämmung und auch eine hohe Brandschutzsicherheit auf, kann dabei aber dennoch mit geringen Materialstärken und infolgedessen mit einem sehr geringen Gewicht ausgebildet werden. Bei vertikalen Anwendungen kann dadurch beispielsweise die nutzbare Grundfläche eines Gebäudes vergrößert werden. Das Fertigbauelement eignet sich somit insbesondere für großformatige Wand- und/oder Deckenelemente.A prefabricated construction element according to the invention has a prestressed planar structure element made of textile-reinforced concrete, a concrete layer on top and/or a concrete layer underneath. The prestressed surface structure element is designed as a folded structure that has a fold or fold structure that is formed by elevations and/or depressions in the prestressed surface structure element. The concrete layer is formed on a surface of the prestressed surface structure element in the depressions and/or between the elevations of the fold in such a way that the concrete layer forms a flat surface which is aligned plane-parallel to the surface structure element. The top concrete layer can thus, for example, form an even, level base for a later floating screed. The sub-concrete layer is formed alone on a surface of the prestressed surface structure element or in addition to a concrete layer on a surface of the prestressed surface structure element arranged opposite the concrete layer in the depressions and/or between the elevations of the fold in such a way that the concrete layer below forms a flat surface which is aligned plane-parallel to the surface structure element is. The prefabricated element thus offers both the advantages of a solid concrete element and those of a lightweight element. It exhibits a high Load-bearing capacity, service life, sound and heat insulation and also a high level of fire safety, but can still be designed with low material thicknesses and consequently with a very low weight. In vertical applications, for example, this can increase the usable floor space of a building. The prefabricated element is therefore particularly suitable for large-format wall and/or ceiling elements.
Eine hohe Tragfähigkeit trotz Material- und Gewichtsersparnis kann zum einen durch das Flächentragwerkelement aus Textilbeton erreicht werden. Textilbeton besteht typischerweise aus einer Betonmatrix und einer textilen Bewehrung, die deutlich leichter als eine vergleichbare metallische Bewehrungen ist. Aus Textilbeton, der mit einer Zugspannung vorgespannt ist, lassen sich vorgespannte Flächentragwerkelemente ausbilden, die dem Fertigbauelement trotz eines geringen Eigengewichts aufgrund ihrer Vorspannung eine hohe Tragfähigkeit verleihen.A high load-bearing capacity despite the savings in material and weight can be achieved on the one hand by the surface structure element made of textile-reinforced concrete. Textile-reinforced concrete typically consists of a concrete matrix and textile reinforcement, which is significantly lighter than comparable metallic reinforcement. Textile-reinforced concrete, which is prestressed with a tensile stress, can be used to form prestressed surface structure elements which, despite their low dead weight, give the prefabricated element a high load-bearing capacity due to their prestressing.
Eine verbesserte Tragfähigkeit kann zum anderen auch durch die Faltung des Flächentragwerkelementes und die Aufbeton- bzw. Unterbetonschicht erreicht werden. Die Faltung des Flächentragwerkelementes bewirkt eine Faltversteifung des Flächentragwerkelementes, mit der die Druck- und Biegefestigkeit des Fertigbauelements erhöht werden können. Darüber hinaus können das Flächentragwerkelement und die Aufbeton- bzw. Unterbetonschicht aufgrund der Faltung formschlüssig derart ineinandergreifen, dass ein Schubverbund zwischen dem Flächentragwerkelement und der Aufbeton- bzw. Unterbetonschicht ausgebildet werden kann, durch den die Steifigkeit des Fertigbauelements zusätzlich erhöht werden kann. Im vollen Schubverbund kann dadurch eine Steifigkeit des Fertigbauelements erreicht werden, die größer als die Summe der Steifigkeiten der einzelnen Komponenten des Fertigbauelements sein kann. Die Aufbeton- bzw. Unterbetonschicht können sich außerdem auch positiv auf die Lebensdauer des Fertigbauelements auswirken, da sie den Textilbeton des Flächentragwerkelementes vor einem Ablösen der Betondeckung der textilen Bewehrung schützen.On the other hand, an improved load-bearing capacity can also be achieved by folding the surface structure element and the top or bottom concrete layer. The folding of the surface structure element causes a folding reinforcement of the surface structure element, with which the compressive and bending strength of the prefabricated element can be increased. In addition, due to the folding, the surface structure element and the concrete layer or sub-concrete layer can interlock in a form-fitting manner such that a shear connection can be formed between the surface structure element and the concrete layer or concrete layer on top, through which the rigidity of the prefabricated element can be additionally increased. In full shear connection, a rigidity of the prefabricated component can be achieved that can be greater than the sum of the rigidities of the individual components of the prefabricated component. The top concrete or bottom concrete layer can also have a positive effect on the service life of the prefabricated component, since they protect the textile concrete of the surface structure element from detaching the concrete cover of the textile reinforcement.
Für eine hohe Steifigkeit und einfache Herstellung des Fertigbauelementes können die Vertiefungen und/oder Erhebungen der Faltung vorzugsweise als linienförmige Vertiefungen und/oder Erhebungen ausgebildet sein, die in der Faltung parallel zueinander angeordnet sein können. Die Vertiefungen und/oder Erhebungen können beispielsweise mit einem halbrunden, rechteckigen, dreieckigen und/oder trapezförmigen Querschnitt ausgebildet sein. Sie können insbesondere als Halbrundsicken, Kastensicken, Dreiecksicken und/oder Trapezsicken ausgebildet sein. Das vorgespannte Flächentragwerkelement kann als vorgespannte Trapezfaltwerkplatte, z. B. mit äquidistant parallel zueinander verlaufenden Trapezsicken ausgebildet sein. Die Vertiefungen und/oder Erhebungen können aber auch so angeordnet und ausgebildet sein, dass am Fertigbauelement lokal differenziert wirkende Kräfte oder Momente berücksichtigt werden können. Dies betrifft zum Beispiel die Abstände und Form von Vertiefungen und/oder Erhebungen, die lokal verändert definiert werden können, um lokal wirkende höhere oder kleinere wirkende Kräfte und Momente berücksichtigen zu können.For a high rigidity and simple production of the finished component, the depressions and / or elevations of the fold can preferably as linear depressions and/or elevations can be formed, which can be arranged parallel to one another in the fold. The depressions and/or elevations can be formed, for example, with a semicircular, rectangular, triangular and/or trapezoidal cross section. In particular, they can be designed as semi-circular beads, box beads, triangular beads and/or trapezoidal beads. The prestressed surface structure element can be used as a prestressed trapezoidal folded plate, e.g. B. be formed with equidistant parallel trapezoidal beads. However, the indentations and/or elevations can also be arranged and designed in such a way that locally differentiated forces or moments can be taken into account on the prefabricated component. This relates, for example, to the distances and shape of indentations and/or elevations, which can be defined locally changed in order to be able to take into account locally acting higher or smaller forces and moments.
Das vorgespannte Flächentragwerkelement ist vorzugsweise aus einem vorgespannten Textilbeton mit sofortigem Verbund gebildet. Unter einem vorgespannten Textilbeton mit sofortigem Verbund soll dabei ein Textilbeton verstanden werden, bei dem eine belastungsorientiert einachsig- oder mehrachsig mit einer Vorspannkraft auf Zug vorgespannte, textile Bewehrung stoff- und kraftschlüssig mit einer Betonmatrix verbunden wurde und die Vorspannkraft der Bewehrung nach Erhärten der Betonmatrix durch das Lösen der Vorspannung auf die Betonmatrix übertragen wurde. Derartig vorgespannte Flächentragwerke haben den Vorteil, dass sie werkseitig bereits vollständig fertiggestellt und auch in der Länge nach Maß zugeschnitten werden können.The prestressed tensile structure element is preferably formed from a prestressed textile concrete with an immediate bond. A prestressed textile concrete with an immediate bond is to be understood as a textile concrete in which a load-oriented, uniaxial or multiaxial prestressed textile reinforcement with a prestressing force for tension is connected to a concrete matrix in a material and non-positive manner and the prestressing force of the reinforcement is carried through after the concrete matrix has hardened the release of the prestress was transferred to the concrete matrix. Such prestressed surface structures have the advantage that they are already completely finished at the factory and can also be cut to size in length.
Das vorgespannte Flächentragwerkelement des Fertigbauelementes kann insbesondere mit mindestens einer vorgespannten, textilen Bewehrung aus Carbon-, Basalt- und/oder Glasfasern ausgebildet werden. Solche Bewehrungen können beispielsweise in Form von Rovings, d. h. Faserbündeln, Netzen und/oder Matten ausgebildet sein, wobei die Bewehrungen zur Verbesserung ihres Tragverhaltens auch mit Kunststoffen, insbesondere einem Harz, getränkt sein können und/oder auch mehrlagig ausgebildet sein können. Besonders bevorzugt ist die vorgespannte, textile Bewehrung mit Gelegestreifen aus Carbonrovings gebildet, die im Faltwerk mit ihrer Längsachse bevorzugt entlang linienförmiger Erhebungen und/oder Vertiefungen der Faltung angeordnet sind. Derartige Bewehrungen können für die Herstellung des Faltwerkes besonderes unkompliziert in einem Spannbett vorgespannt und einbetoniert werden. Alternativ kann die textile Bewehrung auch als Gelegematte ausgebildet sein, die komplementär geformt zur Faltung des Faltwerkes ausgebildet ist und der Faltung folgend im Faltwerk angeordnet ist.The prestressed planar structure element of the prefabricated construction element can be formed in particular with at least one prestressed, textile reinforcement made of carbon, basalt and/or glass fibers. Such reinforcements can be designed, for example, in the form of rovings, ie fiber bundles, nets and/or mats, whereby the reinforcements can also be impregnated with plastics, in particular a resin, to improve their load-bearing behavior and/or can also be designed in multiple layers. The prestressed, textile reinforcement is particularly preferably formed with scrim strips made of carbon rovings, which are preferably arranged in the fold with their longitudinal axis along linear elevations and/or depressions of the fold are. Reinforcements of this type can be prestressed in a stressed bed and embedded in concrete in a particularly uncomplicated manner for the production of the folded structure. Alternatively, the textile reinforcement can also be in the form of a scrim mat, which is shaped to complement the folding of the folded structure and is arranged in the folded structure following the folding.
Da das Fertigbauelement hauptsächlich aus Beton als Grundmaterial aufgebaut ist, weist es im Vergleich zu herkömmlichen Leichtbauelementen aus Holz- oder Gipswerk eine höhere Brandschutzsicherheit und auch eine höhere Schalldämmung auf. Neben den Materialeigenschaften der Grundmaterialien wirkt sich insbesondere die Form des Flächentragwerkelementes, d. h. die Faltung und auch die geschlossene Fläche des Flächentragwerkelementes im Gegensatz zu polyedrisch durchbrochenen Schalungen oder Stabwerken, positiv auf den Schallschutz und somit auf die Raumakustik aus. Darüber hinaus leitet die textile Bewehrung des Flächentragwerkelementes und somit das Fertigbauelement nicht nur Schall sondern auch Wärme deutlich schlechter als metallische Bewehrungen, sodass Wärmebrücken und somit Wärmeverluste durch das Fertigbauelement reduziert werden können.Since the prefabricated element is mainly made of concrete as the basic material, it has a higher level of fire safety and sound insulation compared to conventional lightweight elements made of wood or gypsum. In addition to the material properties of the base materials, the shape of the surface structure element, i. H. the folding and also the closed surface of the surface structure element, in contrast to polyhedral formwork or frame structures, have a positive effect on the sound insulation and thus on the room acoustics. In addition, the textile reinforcement of the surface structure element and thus the prefabricated element conducts not only sound but also heat much worse than metallic reinforcement, so that thermal bridges and thus heat losses through the prefabricated element can be reduced.
Für besonders leichte Fertigbauelemente kann es vorgesehen sein, dass die Aufbetonschicht und/oder die Unterbetonschicht aus einem Leichtbeton, insbesondere einem Schaumbeton oder Porenleichtbeton, ausgebildet sind. Schaum- oder Porenleichtbetone sind Betone, die unter Verwendung von Schaum oder Luftporenbildnern hergestellt werden. Sie weisen in der Regel einen Luftporengehalt von > 30 Vol.-% und Gesteinskörnungen mit einem Durchmesser kleiner als 2 mm bei einer Dichte kleiner als 1000 kg/m3, bevorzugt kleiner als 200 kg/m3, auf. Durch eine Aufbetonschicht und/oder eine Unterbetonschicht aus Schaumbeton oder Porenleichtbeton können die Fertigbauelemente mit besonderes guten Wärme- und Schalldämmeigenschaften und zudem einem hohen Feuerwiderstand ausgebildet werden. Im Brandfall sind insbesondere Verankerungen, die in der Auf- und/oder in der Unterbetonschicht oder zwischen der Auf- und der Unterbetonschicht angeordnet sind, durch die Auf- und/oder die Unterbetonschicht geschützt, sodass die Einsturzgefahr im Brandfall für Konstruktionen aus den Fertigbauelementen gesenkt werden kann.For particularly light prefabricated elements, it can be provided that the top concrete layer and/or the bottom concrete layer are made of a lightweight concrete, in particular a foamed concrete or aerated lightweight concrete. Foamed or aerated lightweight concretes are concretes that are manufactured using foam or air-entraining agents. They generally have an air void content of >30% by volume and aggregates with a diameter of less than 2 mm and a density of less than 1000 kg/m 3 , preferably less than 200 kg/m 3 . With a top concrete layer and/or a bottom concrete layer made of foam concrete or aerated lightweight concrete, the prefabricated building elements can be designed with particularly good heat and sound insulation properties and also a high level of fire resistance. In the event of a fire, anchors that are arranged in the top and/or in the sub-concrete layer or between the top and sub-concrete layer are protected by the top and/or sub-concrete layer, so that the risk of collapse in the event of fire is reduced for structures made of prefabricated building elements can be.
Aufgrund kurzer Aushärte- bzw. Ausschalungszeiten bei der Herstellung der Aufbetonschicht und/oder Unterbetonschicht lassen sich die Fertigbauelemente werksseitig sehr rasch und unkompliziert durch Umschäumen des Flächentragwerkelementes mit dem Schaum- oder Porenleichtbeton und eine Dampfhärtung des Schaum- oder Porenleichtbetons ausbilden. Dabei können sowohl Kanäle für spätere Installationen bereits werksseitig in der Aufbetonschicht und/oder Unterbetonschicht ausgebildet werden, als auch besonders ebene Oberflächen der Aufbetonschicht und/oder Unterbetonschicht ausgebildet werden, die sich ohne weitere Aufbereitungsschritte für eine direkte Beschichtung mit Spachtel oder Farbe eignen. Am Ende der Nutzphase können die Aufbetonschicht und/oder Unterbetonschicht vom Flächentragwerkelement abgetrennt und zu einem homogenen, wiederverwertbaren Kies zerkleinert werden, sodass sich das Fertigbauelement einfach recyceln lässt. Das Fertigbauelement zeichnet sich daher aufgrund der einfachen Herstellung, der Material- und Gewichtsersparnis, der vorteilhaften Wärmedämmeigenschaften und auch der Recyclingfähigkeit durch eine sehr gute Ökobilanz aus.Due to the short hardening and stripping times during the production of the top concrete layer and/or bottom concrete layer, the prefabricated elements can be formed very quickly and easily in the factory by foaming the surface structure element with foam or lightweight cellular concrete and steam curing the foam or lightweight cellular concrete. Channels for later installations can already be formed at the factory in the top concrete layer and/or sub-concrete layer, as well as particularly flat surfaces of the top concrete layer and/or sub-concrete layer that are suitable for direct coating with spatula or paint without further preparation steps. At the end of the service life, the top concrete layer and/or bottom concrete layer can be separated from the tensile structure element and crushed into a homogeneous, reusable gravel, so that the prefabricated element can be easily recycled. The prefabricated component is therefore characterized by a very good ecological balance due to the simple production, the material and weight savings, the advantageous thermal insulation properties and also the recyclability.
Neben dem Recycling ist auch ein Reusing, d. h. eine Wiederverwendung, der Fertigbauelemente möglich. Die Fertigbauelemente können mit Verbindungselementen ausgebildet sein, mittels derer Fertigbauelemente mit anderen Bauelementen aber auch miteinander lösbar verbindbar sind. Dadurch können mit den Fertigbauelementen bei einer entsprechenden Fugenausbildung einzelne Raumzellen aber auch mehrgeschossige Bauwerke aufgebaut werden, die sehr einfach rückbaubar sind. Die Fertigbauelemente eignen sich somit beispielsweise als wiederverwendbare Fertigbauelemente für mobile Gebäude. Unter dem Begriff "Bauelement" sollen dabei alle Arten von Formteilen verstanden werden, die im Bauwesen Anwendung finden können.In addition to recycling, reusing, i. H. a reuse of the prefabricated components is possible. The prefabricated components can be formed with connecting elements, by means of which prefabricated components can be detachably connected to other components, but also to one another. As a result, with the prefabricated elements, with an appropriate joint design, individual room cells as well as multi-storey structures can be built, which can be dismantled very easily. The prefabricated components are therefore suitable, for example, as reusable prefabricated components for mobile buildings. The term “component” should be understood to mean all types of molded parts that can be used in construction.
Bevorzugt weist das Fertigbauelement an mindestens einer äußeren Stirnfläche ein Querjoch mit mindestens einem Verankerungselement auf, mittels dessen das Fertigbauelement mit einem Bauelement oder einem weiteren Fertigbauelement verbindbar ist. Das Querjoch kann hierbei sowohl bereits bei der Herstellung der Trapezplatten mitgegossen werden, als auch nachträglich an die Trapezplatte angeklebt werden. Alternativ oder zusätzlich kann das Fertigbauelement auch in der Aufbetonschicht mindestens ein Verankerungselement aufweisen, mittels dessen das Fertigbauelement mit einem Bauelement oder einem weiteren Fertigbauelement verbindbar ist. Das mindestens eine Verankerungselement in der Aufbetonschicht kann vorteilhaft in den Vertiefungen und/oder zwischen den Erhebungen der Faltung angeordnet sein. Die Verankerungselemente können beispielsweise als Bolzen- oder lösbare Verschraubungselemente ausgebildet sein, die auch in das Querjoch oder die Aufbetonschicht eingegossen werden können.The prefabricated component preferably has a transverse yoke with at least one anchoring element on at least one outer end face, by means of which the prefabricated component can be connected to a component or to another prefabricated component. The transverse yoke can be cast at the same time as the trapezoidal slab is being manufactured or it can be glued to the trapezoidal slab afterwards. Alternatively or additionally, the prefabricated component can also have at least one anchoring element in the topping concrete layer, by means of which the prefabricated component can be connected to a component or another prefabricated element can be connected. The at least one anchoring element in the concrete layer can advantageously be arranged in the depressions and/or between the elevations of the fold. The anchoring elements can be designed, for example, as bolts or detachable screw elements that can also be cast into the transverse yoke or the topping concrete layer.
Das Querjoch kann bevorzugt in der jeweiligen Stirnfläche derart ausgebildet sein, dass es bei der Verbindung des Fertigbauelementes mit einem Bauelement eine Auflage für das Bauelement bildet, d. h. das Querjoch kann so groß ausgebildet werden, dass die Kontaktfläche zwischen dem Bauelement und dem Fertigbauelement, die bei der Verbindung des Bauelementes mit dem Verankerungselement des Querjochs gebildet wird, vollständig mit dem Querjoch gebildet sein kann. Dadurch kann ein gleichmäßiger Lasteintrag in das Fertigbauelement erreicht werden, sodass das Fertigbauelement auch außermittige Beanspruchen aufnehmen kann. Werden erfindungsgemäße Fertigbauelemente miteinander verbunden, so kann die Kontaktfläche zwischen den Fertigbauelementen mit den Querjochen des jeweiligen Fertigbauelementes ausgebildet werden. Ein besonders gleichmäßiger Lasteintrag kann mit Querjochen erreicht werden, die aus einem bewehrten Beton ausgebildet sind.The transverse yoke can preferably be formed in the respective end face in such a way that it forms a support for the component when the prefabricated component is connected to a component, d. H. the transverse yoke can be made so large that the contact surface between the component and the finished component, which is formed when the component is connected to the anchoring element of the transverse yoke, can be formed entirely with the transverse yoke. As a result, a uniform load application can be achieved in the prefabricated component, so that the prefabricated component can also absorb eccentric loads. If prefabricated components according to the invention are connected to one another, the contact surface between the prefabricated components can be formed with the transverse yokes of the respective prefabricated component. A particularly even load application can be achieved with cross beams that are made of reinforced concrete.
Besonders bevorzugt können die Fertigbauelemente als Wand- oder Deckenelemente ausgebildet werden. Fertigbauelemente, die als Deckenelemente ausgebildet sind, sollten vorteilhafterweise in der Aufbetonschicht in den Vertiefungen und/oder zwischen den Erhebungen der Faltung des vorgespannten Flächentragwerkelementes mindestens ein Verankerungselement aufweisen, mittels dessen das Deckenelement mit einem Bauelement oder einem weiteren Fertigbauelement verbindbar ist. Die Aufbetonschicht auf der Oberfläche des vorgespannten Flächentragwerkelementes ist vorteilhafterweise derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung des vorgespannten Flächentragwerkelementes ausgebildet, so dass die Aufbetonschicht mit den Erhebungen und/oder Vertiefungen der Faltung eine ebene Oberfläche bildet, die planparallel zum vorgespannten Flächentragwerkelement ausgerichtet ist. Dadurch kann das Faltwerk eine direkte Auflagefläche für ein Bauelement oder ein weiteres Fertigbauelement, das mit dem Deckenelement mittels des Verankerungselementes verbunden werden kann, bilden und die Aufbetonschicht entlasten. Die Unterbetonschicht ist vorteilhafterweise auf einer der Aufbetonschicht gegenüberliegend angeordneten Oberfläche des vorgespannten Flächentragwerkelementes derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung des vorgespannten Flächentragwerkelementes ausgebildet, so dass die Unterbetonschicht die Vertiefungen und/oder Erhebungen der Faltung bedeckt und eine ebene Oberfläche bildet, die planparallel zum vorgespannten Flächentragwerkelement ausgerichtet ist. Die Unterbetonschicht kann somit als durchgehende Oberfläche ausgebildet werden, die eine gute Wärmedämmung und Brandschutzsicherheit aufweist und direkt mit Spachtel oder Farbe beschichtet werden kann.Particularly preferably, the prefabricated elements can be designed as wall or ceiling elements. Prefabricated building elements, which are designed as ceiling elements, should advantageously have at least one anchoring element in the topping concrete layer in the depressions and/or between the elevations of the fold of the prestressed planar structure element, by means of which the ceiling element can be connected to a structural element or another prefabricated building element. The concrete layer on the surface of the prestressed surface structure element is advantageously formed in the depressions and/or between the elevations of the fold of the prestressed surface structure element in such a way that the concrete layer forms a flat surface with the elevations and/or depressions of the fold, which is plane-parallel to the prestressed surface structure element is aligned. As a result, the folding structure can be a direct support surface for a component or another prefabricated component that is connected to the ceiling element can be connected by means of the anchoring element, form and relieve the concrete layer. The sub-concrete layer is advantageously formed on a surface of the prestressed surface structure element arranged opposite the topping concrete layer in the depressions and/or between the elevations of the fold of the prestressed surface structure element such that the sub-concrete layer covers the depressions and/or elevations of the fold and forms a flat surface, which is aligned plane-parallel to the prestressed surface structure element. The sub-concrete layer can thus be designed as a continuous surface that has good thermal insulation and fire safety and can be coated directly with spatula or paint.
Fertigbauelemente, die als Wandelement ausgebildet sind, sollten vorteilhafterweise an mindestens einer äußeren Stirnfläche ein Querjoch mit mindestens einem Verankerungselement aufweisen, mittels dessen das Wandelement an der Stirnfläche auf Stoß oder an einer mit dem Querjoch gebildeten Seitenfläche des Wandelementes unter einem rechten Winkel mit einem Bauelement oder einem weiteren Fertigbauelement verbindbar ist. Das mindestens eine Verankerungselement kann hierfür im Querjoch beispielsweise senkrecht oder parallel zur jeweiligen Stirnfläche des Wandelementes ausgebildet oder ausgerichtet sein. Die Aufbetonschicht auf der Oberfläche des vorgespannten Flächentragwerkelementes und die Unterbetonschicht auf einer der Aufbetonschicht gegenüberliegend angeordneten Oberfläche des vorgespannten Flächentragwerkelementes können derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung des vorgespannten Flächentragwerkelementes ausgebildet sein, dass die Aufbetonschicht und die Unterbetonschicht die Vertiefungen und/oder Erhebungen der Faltung jeweils bedecken und jeweils ebene Oberflächen bilden, die planparallel zum vorgespannten Flächentragwerkelement ausgerichtet sind. Die Aufbetonschicht und die Unterbetonschicht können die Oberfläche des Flächentragwerkelementes dabei vollständig überdecken.Prefabricated building elements, which are designed as wall elements, should advantageously have a transverse yoke with at least one anchoring element on at least one outer end face, by means of which the wall element can be butt-joined to the end face or to a side surface of the wall element formed with the transverse yoke at a right angle to a component or another prefabricated element can be connected. For this purpose, the at least one anchoring element can be formed or aligned in the transverse yoke, for example perpendicularly or parallel to the respective end face of the wall element. The top concrete layer on the surface of the prestressed surface structure element and the sub-concrete layer on a surface of the prestressed surface structure element arranged opposite the top concrete layer can be formed in the depressions and/or between the elevations of the fold of the prestressed surface structure element in such a way that the top concrete layer and the sub-concrete layer cover the depressions and/or or cover elevations of the fold and form flat surfaces that are aligned plane-parallel to the prestressed surface structure element. The top concrete layer and the bottom concrete layer can completely cover the surface of the surface structure element.
Die Verankerungselemente können beispielsweise als Bolzen aus Metall oder glasfaserverstärktem Kunststoff, als Dübel, Verbundanker oder Verschraubungselement ausgebildet sein. Sie können beispielsweise durch eine Spreizung, d. h. eine plastische Verformung des Verankerungselementes oder durch das Schneiden eines Gewindes mittels des Verankerungselementes im Fertigbauelement befestigt sein, sodass die Verankerungselemente für das Recycling der Fertigbauelemente leicht entfernt werden können. Alternativ können die Verankerungselemente auch mittels eines Bindemittels, z. B. einer Vergussmaße, im Fertigbauelement befestigt sein oder als Einlegeteile bereits bei der Ausbildung der Aufbeton- bzw. Unterbetonschicht oder eines Querjoche in diese eingegossen sein.The anchoring elements can be designed, for example, as bolts made of metal or glass fiber reinforced plastic, as dowels, compound anchors or screwing elements. You can, for example, by spreading, ie a plastic deformation of the anchoring element or be fixed by cutting a thread by means of the anchoring element in the prefabricated building element, so that the anchoring elements can be easily removed for recycling the prefabricated building elements. Alternatively, the anchoring elements can also be used with a binder, e.g. B. a grout, be fixed in the prefabricated element or be cast as inserts during the formation of the top concrete or sub-concrete layer or a transverse yoke in this.
Ein Fertigbausystem weist mindestens zwei erfindungsgemäße Fertigbauelemente auf, die wie beschrieben mittels der Verankerungselemente an einer äußeren Stirnfläche oder an der Aufbetonschicht oder der Unterbetonschicht miteinander verbindbar sind und als Wandelemente oder Deckenelement ausgebildet sein können.A prefabricated construction system has at least two prefabricated components according to the invention, which can be connected to one another as described by means of the anchoring elements on an outer end face or on the top concrete layer or the bottom concrete layer and can be designed as wall elements or ceiling elements.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend anhand der
Es zeigen:
- Fig. 1:
- in einer schematischen Schnittdarstellung eine Vorderansicht und eines Seitenansicht eines Beispiels eines Fertigbauelementes,
- Fig. 2:
- in einer schematischen Schnittdarstellung ein Beispiel eines als Deckenelement ausgebildeten Fertigbauelementes mit senkrecht aufstehendem Wandelement,
- Fig. 3:
- in einer schematischen Schnittdarstellung ein Beispiel eines als Wandelement ausgebildeten Fertigbauelementes,
- Fig. 4:
- in einer schematischen Schnittansicht ein Beispiel eines Fertigbausystems als Wand-Deckenknoten einer Außenwand und
- Fig. 5:
- in einer schematischen Schnittansicht ein weiteres Beispiele eines Fertigbausystems als Wand-Deckenknoten einer Innenwand.
- Figure 1:
- in a schematic sectional representation, a front view and a side view of an example of a prefabricated component,
- Figure 2:
- in a schematic sectional view, an example of a prefabricated element designed as a ceiling element with a vertical wall element,
- Figure 3:
- in a schematic sectional view, an example of a prefabricated element designed as a wall element,
- Figure 4:
- in a schematic sectional view an example of a prefabricated construction system as a wall-ceiling node of an outer wall and
- Figure 5:
- in a schematic sectional view, another example of a prefabricated system as a wall-ceiling node of an interior wall.
In
Im dargestellten Beispiel der
Die Aufbetonschicht 2 und/oder die Unterbetonschicht 3 sind im dargestellten Beispiel der
Im dargestellten Beispiel der
Das Querjoch 5 kann insbesondere als Zwischenauflage für das Bauelement 7 oder das weitere Fertigbauelement, mit dem das Fertigbauelement verbindbar ist, ausgebildet sein, d. h. das Querjoch 5 kann so groß ausgebildet werden, dass die Kontaktfläche, die bei der Verbindung des Fertigbauelementes mit dem Bauelement 7 oder einem weiteren Fertigbauelement mittels des mindestens einen Verankerungselementes 6 des Querjochs 5 zwischen dem Fertigbauelement und dem Bauelement 7 oder einem weiteren Fertigbauelement gebildet wird, vollständig mit dem Querjoch 5 gebildet ist. Dadurch kann ein gleichmäßiger Lasteintrag in das Fertigbauelement erreicht werden, sodass das Fertigbauelement auch außermittige Beanspruchungen aufnehmen kann. Das Querjoch 5 kann insbesondere auch in auskragenden Fertigbauteilen als Auflager an belasteten Flächen der Kragenende ausgebildet sein. Alternativ oder zusätzlich zu Verankerungselementen 6 in Querjochen 5 kann außerdem mindestens ein Verankerungselement 6 in der Aufbetonschicht 2 (in
Das Fertigbauelement kann insbesondere mit mindestens einem lösbaren Verankerungselement 6 ausgebildet werden, sodass entsprechende Konstruktionen aus den Fertigbauelementen einfach rückbaubar und wiederverwendbar sind. Die Anzahl und Anordnung der Querjoche 5 und Verankerungselemente 6 können variabel an die jeweiligen Abmessungen, Einbaurichtung und Belastungen des Fertigbauelementes angepasst werden. Das Fertigbauelement kann insbesondere auch als Wand- oder Deckenelement ausgebildet werden. Solche Fertigbauelemente können typischerweise mit einer Breite im Bereich von 1,20 Metern bis 2,40 Metern, einer Länge zwischen 3 Metern bis 8 Metern und einer Wand- bzw. Deckenstärke von 15 cm bis 40 cm ausgebildet werden und auch Zwischenjoche für Zwischenebenen und/oder Öffnungen, beispielsweise für Türen oder Fenster, aufweisen. Die Querjoche und/oder Zwischenjoche können außerdem Spannkanäle aufweisen, durch die die Fertigbauelemente beispielsweise zur Überbrückung von Öffnungen mit Spanngliedern, wie z. B. Spannstäben, zusammengespannt werden können. Die Fertigbauteile können hierfür segmentiert, d. h. in Teilabschnitten ausgebildet sein, wobei die Fugen zwischen den einzelnen Teilabschnitten typischerweise senkrecht zur Haupttragrichtung der zusammengespannten Teilabschnitte mit Noppen am jeweiligen Joch ausgebildet sind. Die Fertigbauteile lassen sich somit auch für Konstruktionen in Segmentbauweise verwenden. Alternativ oder zusätzlich zur Verspannung über Spannkanäle und Spannglieder können die Fertigbauteile zur Lastverteilung auch mit Unterzügen ausgebildet sein.The prefabricated component can in particular be formed with at least one
Das Fertigbauelement weist in der Aufbetonschicht 2 in den Vertiefungen und/oder zwischen den Erhebungen der Faltung mindestens ein Verankerungselement 6, im dargestellten Beispiel ein Verschraubungselement, auf, mittels dessen das Deckenelement mit einem Bauelement 7 oder einem weiteren Fertigbauelement lösbar verbindbar ist. Die Aufbetonschicht 2 auf der Oberfläche des vorgespannten Flächentragwerkelementes 1 ist derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung ausgebildet ist, dass die Aufbetonschicht 2 mit den Erhebungen und/oder Vertiefungen der Faltung eine ebene Oberfläche bildet, die planparallel zum vorgespannten Flächentragwerkelement 1 ausgerichtet ist. Dadurch bildet das Faltwerk eine direkte Auflagefläche für das Bauelement 7 bzw. für ein weiteres Fertigbauelement, und die Aufbetonschicht 2 wird entlastet. Die Unterbetonschicht 3 ist vorteilhafterweise auf einer der Aufbetonschicht 2 gegenüberliegend angeordneten Oberfläche des vorgespannten Flächentragwerkelementes 1 derart in den Vertiefungen und/oder zwischen den Erhebungen der Faltung ausgebildet, dass die Unterbetonschicht 3 die Vertiefungen und/oder Erhebungen der Faltung bedeckt und eine ebene Oberfläche bildet, die planparallel zum vorgespannten Flächentragwerkelement 1 ausgerichtet ist.The prefabricated element has at least one
In
Die
Im Beispiel der
Lediglich in den Ausführungsbeispielen offenbarte Merkmale der verschiedenen Ausführungsbeispiele können miteinander kombiniert und einzeln, unabhängig vom jeweiligen gezeigten Beispiel, beansprucht werden.Features of the various exemplary embodiments disclosed only in the exemplary embodiments can be combined with one another and claimed individually, independently of the respective example shown.
Claims (10)
- A prefabricated building element having a prestressed planar load-bearing structure element (1) made of textile concrete, a top concrete layer (2) and/or a bottom concrete layer (3), characterized in thatthe prestressed planar load-bearing structure element (1) is designed as a folded plate having a fold formed by elevations and/or depressions in the prestressed planar load-bearing structure element (1),the top concrete layer (2) is designed on a surface of the prestressed load-bearing structure element (1) in the depressions and/or between the elevations of the fold such that the top concrete layer (2) forms a flat surface aligned plane-parallel to the prestressed load-bearing structure element (1), and/orthe bottom concrete layer (3) is designed on a surface of the prestressed planar load-bearing structure element (1) arranged opposite the top concrete layer (2) in the depressions and/or between the elevations of the fold such that the bottom concrete layer (3) forms a flat surface aligned plane-parallel to the prestressed loading-bearing structure element (1).
- The prefabricated building element according to claim 1, characterized in that the prestressed planar load-bearing structure element (1) is designed as a folded plate having a fold formed with linear elevations and/or linear depressions; wherein the linear depressions and/or elevations are formed with a semicircular, rectangular, triangular and/or trapezoidal cross section.
- The prefabricated building element according to any one of the preceding claims, characterized in that the prestressed planar load-bearing structure element (1) is designed as a folded plate having a fold with elevations and/or depressions designed as semicircular beads, rectangular beads, trapezoidal beads or triangular beads.
- The prefabricated building element according to any one of the preceding claims, characterized in that the prestressed planar load-bearing structure element (1) is formed from a prestressed textile concrete with an immediate bond having at least one textile reinforcement made from carbon, basalt and/or glass fiber bundles (4).
- The prefabricated building element according to any one of the preceding claims, characterized in that the at least one textile reinforcement is designed as a scrim strip, wherein the scrim strips are arranged in the folded plate with their longitudinal axis along the linear elevations and/or linear depressions of the fold.
- The prefabricated building element according to any one of the preceding claims, characterized in that the top concrete layer (2) and/or the bottom concrete layer (3) is/are made of a lightweight concrete, in particular a foamed concrete or aerated lightweight concrete.
- The prefabricated building element according to any one of the preceding claims, characterized in that the prefabricated building element has a transverse yoke (5) on at least one outer end face with an anchoring element (6), by means of which the prefabricated building element can be connected to a component (7) or a further prefabricated building element, and/or has at least one anchoring element (6) in the top concrete layer (2) and/or the bottom concrete layer (3), by means of which anchoring element (6) the prefabricated building element can be connected to a component (7) or to a further prefabricated building element.
- The prefabricated building element according to any one of the preceding claims, characterized in that
the prefabricated building element has at least one anchoring element (6) in the top concrete layer (2) and/or the bottom concrete layer (3) in the depressions and/or between the elevations of the fold, by means of which anchoring element (6) the prefabricated building element can be connected to a component (7) or a further prefabricated building element. - The prefabricated building element according to any one of the preceding claims, characterized in that the top concrete layer (2) and/or the bottom concrete layer (3) is/are designed in the depressions and/or between the elevations of the fold such thatthe top concrete layer (2) and/or the bottom concrete layer (3) each form(s) a flat surface with the elevations and/or depressions of the fold, which flat surface is aligned plane-parallel to the prestressed planar load-bearing structure element (1), orthe top concrete layer (2) and/or the bottom concrete layer (3) is/are designed in the depressions and/or between the elevations of the fold such that the top concrete layer (2) and/or the bottom concrete layer (3) each cover(s) the depressions and/or elevations of the fold and form(s) a flat surface aligned plane-parallel to the prestressed planar load-bearing structure element (1).
- A prefabricated building system having at least two prefabricated building elements according to any one of claims 7 or 8, the prefabricated building elements being able to be connected to one another by means of the anchoring elements (6).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019213577.3A DE102019213577B4 (en) | 2019-09-06 | 2019-09-06 | Prefabricated element |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3789553A1 EP3789553A1 (en) | 2021-03-10 |
EP3789553B1 true EP3789553B1 (en) | 2022-04-06 |
Family
ID=72473336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20194545.8A Active EP3789553B1 (en) | 2019-09-06 | 2020-09-04 | Prefabricated construction element and prefabricated system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3789553B1 (en) |
DE (1) | DE102019213577B4 (en) |
ES (1) | ES2912902T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023237937A1 (en) * | 2023-02-01 | 2023-12-14 | Sadeghi Sara | Two-phase floating foundation using basalt fibers |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US985165A (en) * | 1908-07-16 | 1911-02-28 | Joseph S Hagan | Concrete floor. |
FR532018A (en) * | 1921-02-04 | 1922-01-25 | Concrete construction process applicable to walls, walls or partitions, floors, roofs, etc., of houses or other buildings and devices for manufacturing such constructions | |
DE1609344U (en) | 1950-05-04 | 1950-07-06 | Preh Elektro Feinmechanik | AUTOMATIC CHANGING DEVICE FOR TOYS. |
FR1491552A (en) * | 1966-07-01 | 1967-08-11 | Profil Sa Ind Financ Le | Improvements to ribbed panels and their applications |
DE1609344B2 (en) * | 1966-11-02 | 1977-07-07 | Institut für Stahlbeton, DDR 8060 Dresden | FOLDING CARRIERS |
DE3337268B4 (en) * | 1983-10-13 | 2005-02-17 | Matériaux de Construction International | Tension belt made of a hydraulically setting compound |
DE69008732T2 (en) * | 1989-09-26 | 1994-11-24 | Gesertek Oy, Kouvola | METHOD FOR PRODUCING A COMPOSITE BRIDGE. |
US6385942B1 (en) * | 1999-11-01 | 2002-05-14 | Acsys Inc. | Building panels |
DE102016117032A1 (en) * | 2015-09-10 | 2017-03-16 | Technische Universität Dresden | Covering layer component and drywall system |
GB2550426A (en) * | 2016-05-20 | 2017-11-22 | Kingspan Holdings (Irl) Ltd | A metal decking sheet and composite slab and related methods |
DE102017102366A1 (en) * | 2017-02-07 | 2018-08-09 | Technische Universität Dresden | End anchorage of textile fabrics |
-
2019
- 2019-09-06 DE DE102019213577.3A patent/DE102019213577B4/en active Active
-
2020
- 2020-09-04 ES ES20194545T patent/ES2912902T3/en active Active
- 2020-09-04 EP EP20194545.8A patent/EP3789553B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2912902T3 (en) | 2022-05-30 |
DE102019213577A1 (en) | 2021-03-11 |
DE102019213577B4 (en) | 2021-07-29 |
EP3789553A1 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3191657B1 (en) | Lost formwork in high strength or ultra high strength concrete | |
EP1623078B1 (en) | Method for bonding bricks to form a brick composite and corresponding brick composite | |
EP2787140B1 (en) | Flat ceiling in composite wood concrete construction and method for producing such a ceiling | |
EP3789553B1 (en) | Prefabricated construction element and prefabricated system | |
AT523599B1 (en) | Process for producing a composite element and composite element | |
EP1482101A1 (en) | Wall element, method for the production of wall elements and connecting means for a wall element | |
AT518496B1 (en) | Process for producing a composite element and composite element | |
EP1525358A1 (en) | Insulating layer consisting of mineral fibres, and building wall | |
EP3569788B1 (en) | Segment for a building, method for the production thereof, corner segment for a building, method for the production thereof, building and method for the production thereof | |
EP4086401B1 (en) | Heat-insulating toothed component and method for constructing a building section | |
EP3663474B1 (en) | Device for decoupling heat between a concrete wall of a building and a floor and production method | |
EP2297413A2 (en) | Multiple shell semi-finished component | |
WO1995035422A1 (en) | Concrete shuttering panel | |
EP3663475B1 (en) | Device for decoupling heat between a concrete wall of a building and a ceiling and production method | |
DE2436706A1 (en) | Wide-span prestressed concrete ceiling slabs - containing centrally seated stress members and anchored projecting site-concrete-layer connectors | |
AT414334B (en) | Compound brick, for building construction, has a liquid expanding bonding material over the brick bonding surfaces to set into a hard bond giving a brick which can be used in cold weather | |
WO2022232851A1 (en) | Method for producing a composite element, and composite element | |
AT200769B (en) | Process for the production of structures from concrete and structure produced therefrom | |
EP0949387A1 (en) | Concrete floor element | |
DE202021002943U1 (en) | Inventive lightweight ceiling panels with a large span, made of cross-glued ultra-high-performance concrete sandwich elements with a honeycomb core | |
DE102019213580A1 (en) | Method for producing a composite component and composite component | |
DE911906C (en) | Process for the production of weight-saving intermediate components for solid floors | |
DE102020007552A1 (en) | Device and method for manufacturing a device | |
EP1338715A1 (en) | Prefabricated panel and method of production | |
DE20201124U1 (en) | Multi-layer, plate-shaped outer wall element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210831 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: E04B 1/04 20060101ALI20211013BHEP Ipc: E04B 2/86 20060101ALI20211013BHEP Ipc: E04C 5/07 20060101ALI20211013BHEP Ipc: E04C 2/32 20060101ALI20211013BHEP Ipc: E04C 2/06 20060101ALI20211013BHEP Ipc: E04B 5/04 20060101ALI20211013BHEP Ipc: E04C 2/04 20060101AFI20211013BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211108 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1481464 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020000901 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2912902 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220530 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220808 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020000901 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220904 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230901 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231124 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231001 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20200904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240923 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240920 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240918 Year of fee payment: 5 Ref country code: BE Payment date: 20240918 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240918 Year of fee payment: 5 |