EP3409636B1 - Method for damping torsional vibrations of a load-bearing element of a lifting device - Google Patents
Method for damping torsional vibrations of a load-bearing element of a lifting device Download PDFInfo
- Publication number
- EP3409636B1 EP3409636B1 EP18172846.0A EP18172846A EP3409636B1 EP 3409636 B1 EP3409636 B1 EP 3409636B1 EP 18172846 A EP18172846 A EP 18172846A EP 3409636 B1 EP3409636 B1 EP 3409636B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- load
- actuator
- controller
- damping
- handling element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013016 damping Methods 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 58
- 230000010355 oscillation Effects 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 238000012067 mathematical method Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 description 9
- 230000005284 excitation Effects 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000012938 design process Methods 0.000 description 2
- 230000001687 destabilization Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012905 input function Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/06—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
- B66C13/063—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/08—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
- B66C13/08—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
- B66C13/085—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/46—Position indicators for suspended loads or for crane elements
Definitions
- the present invention relates to a method for damping a torsional vibration about a vertical axis of a load-bearing element of a lifting device with a damping controller with at least one controller parameter, the load-bearing element being connected to at least three holding elements with a supporting element of the lifting device and the length of at least one holding element between the load-bearing element and the supporting element an actuator acting on the at least one holding element is adjusted by the damping controller.
- Lifting devices in particular cranes, are available in many different designs and are used in many different areas of application.
- Bridge cranes are used, for example, as hall cranes in factory halls and portal cranes, for example, for the manipulation of transport containers at transshipment locations for intermodal goods handling, such as in ports for the handling of ships by rail or truck or at freight stations for handling from the train to the truck or vice versa .
- the goods for transport are mainly stored in standardized containers, so-called ISO containers, which are equally suitable for transport in the three transport modes road, rail, water.
- the structure and mode of operation of a gantry crane is well known and is for example in the US 2007/0289931 A1 described using a "ship-to-shore crane".
- the crane has a supporting structure or a portal on which a boom is arranged.
- the portal with wheels for example, is movably arranged on a track and can be moved in one direction.
- the boom is firmly connected to the portal and a trolley movable along the boom is arranged on the boom.
- a cargo for example an ISO container
- the trolley is connected to a load-bearing element, a so-called spreader, by means of four ropes.
- the spreader can be raised or lowered using winches, here using two winches for two ropes each.
- the spreader can also be adapted to containers of different sizes.
- the US 2007/0289931 A1 mentions, among other things, the problem of oscillations around the vertical axis (skew), but does not propose a satisfactory solution.
- a target object consisting of lighting elements is provided on the load-bearing element and a corresponding CCD camera is provided on the trolley.
- This enables angular deviations around the vertical axis (skew), the longitudinal axis (list) and the transverse axis (trim) to be determined.
- an actuator is provided for each tether with which the length of the tether can be changed.
- the actuators are controlled in different ways, so that the individual tethers are shortened or lengthened and the corresponding error is compensated.
- the disadvantage here is that the method only suggests compensation of angular errors without taking into account the dynamics of a torsional vibration. This means that no torsional vibrations can be compensated for.
- the DE 102010054502 A1 proposes to compensate for torsional vibrations of the load-bearing element to arrange a slewing gear between the load-bearing element and the tether.
- this is very complex and therefore expensive, and the payload is also reduced by the weight of the slewing gear.
- the EP 2 878 566 A1 shows a method for torsional vibration damping of overhead cranes according to the preamble of claim 1, wherein a load is suspended from the crane by means of four ropes and the length of the ropes can be changed by means of adjusting devices.
- the angle of rotation of the load or a time derivative thereof is measured by means of a detection device and setpoints for the adjusting devices are calculated using a mathematical model, taking into account the geometry of the crane suspension, in order to dampen the torsional vibration.
- the input shaping method is a kind of pilot control with which it is possible to adjust the angle of rotation of the load-bearing element. It is not possible to dampen an existing torsional vibration. Another disadvantage is that the mathematical model used in the input shaping process has to be very precise, since there is no way to compensate for parameter deviations.
- the object is achieved in that the load-bearing element is excited to a torsional vibration at a specific lifting height of the load-bearing element, wherein at least one actual angle of rotation of the load-bearing element about the vertical axis and an actual actuator position are recorded, and thus model parameters of the torsional vibration model of the load-bearing element at the given lifting height be identified using an identification method.
- an identification method it is possible to dampen a torsional vibration of a load-bearing element at any lifting height without the damping regulator's control parameter or parameters having to be set manually. This significantly simplifies the operation of the lifting device or the rapid movement and precise positioning of a load, which saves time and thus increases productivity.
- unknown model parameters of a selected torsional vibration model can be determined, as a result of which an unknown vibration behavior of the load-bearing element can be determined and used for damping the torsional vibration.
- the at least one actuator is advantageously actuated hydraulically or electrically, as a result of which standard components such as hydraulic cylinders or electric motors can be used and an existing energy supply system can be used.
- At least two actuators are provided, in particular one actuator per holding element.
- redundancy of the torsional vibration damping can be realized on the one hand, whereby the reliability can be increased.
- smaller actuators with lower inertia can be used, which means that the response time of the damping control can be reduced and the control quality can be increased.
- the lifting height is advantageously measured by means of a camera system arranged on the carrying element or on the load-bearing element or by means of a lifting drive of the lifting device. This enables the lifting height to be recorded very precisely and in a simple manner.
- the angle of rotation of the load-bearing element is preferably measured by means of a camera system arranged on the support element or on the load-bearing element. With this simple method, the angle of rotation of the load-bearing element can be determined very precisely.
- a camera system is also relatively easy to retrofit on an existing lifting device.
- the torsional vibration model is a second order differential equation with at least three model parameters, in particular with a dynamic parameter ⁇ , a damping parameter ⁇ and a section gain parameter i ⁇ .
- the mathematical modeling of the torsional vibration system using a second order differential equation creates a simple but sufficiently accurate representation of the real torsional vibration.
- the identification method is a mathematical method, in particular an online least-square method. With this common mathematical method, model parameters can be determined easily and with sufficient accuracy.
- a state controller with preferably five controller parameters K I , K 1 , K 2 , K FF , K P is used as the damping controller. This creates a fast and stable damping controller with high control quality.
- An integrated pre-control improves the guiding behavior and an integrator (controller parameter K I ) achieves steady-state accuracy or model uncertainties can be compensated for.
- the damping controller is a target rotation angle given the load receiving member and the damping controller regulates these target rotation angle within a predetermined angular range, in particular in an angular range from -10 ° ⁇ ⁇ ⁇ + 10 °. In this way, a desired rotation of the load-bearing element can be achieved, whereby loads such as containers can also be positioned on targets that are not exactly aligned, such as inclined trucks.
- An anti-wind-up protection is advantageously integrated in the damping controller, whereby the damping controller is given actuator restrictions of the at least one actuator, in particular a maximum / minimum permissible actuator position s perm , a maximum / minimum permissible actuator speed v perm and a maximum / minimum permissible actuator acceleration a perm of the actuator.
- This so-called anti-wind-up protection prevents impermissibly high manipulated variables of the at least one actuator, which could lead to destabilization of the damping controller.
- Fig. 1 shows a lifting device 1 by way of example using a schematic container crane 2, which is used, for example, for loading and unloading ships in a port.
- a container crane 2 usually has a supporting structure 3, which is arranged either fixedly or movably on the floor.
- the supporting structure 3 can, for example, be arranged to be movable on rails in the Y direction, as schematically in FIG Fig. 1 is shown. Due to this degree of freedom in the Y direction, the container crane 2 can be used flexibly locally.
- the supporting structure 3 has a cantilever 4 which is fixedly connected to the supporting structure 3.
- a support element 5 is usually arranged on this boom 4 and can be moved in the longitudinal direction of the boom 4, that is to say in the X direction in the example shown, for example a support element 5 can be mounted in guides by means of rollers.
- the carrying element 5 is usually connected to a load-bearing element 7 for holding a load 8 by means of holding elements 6.
- the load 8 is usually a container 9, in most cases an ISO container with a length of 20, 40 or 45 feet and a width of 8 feet.
- load-bearing elements 7 which are suitable for simultaneously holding two containers 9 next to one another (so-called dual spreaders).
- the type and design of the load-bearing element 7 is, however, no longer relevant for the damping method according to the invention; any embodiments of the load-bearing element 7 can be used.
- the holding elements 6 are usually designed as ropes, with four holding elements 6 being arranged on the carrying element 5 in most cases, but more or fewer holding elements 6 can also be provided, but at least three holding elements 6.
- a load 8 such as one Container 9
- the lifting height 1 H is usually adjusted by means of one or more winches 10a, 10b, as schematically in FIG Fig. 3 is shown.
- the lifting device 1 or the container crane 2 can therefore be moved in the direction of three axes. Due to fast movements, uneven loading of the container 9 or wind influences, it can happen that on the holding elements 6 arranged load-bearing element 7 with the container 9 arranged thereon is excited to vibrate, as follows based on the 2a and 2b is shown.
- Fig.2a shows schematically a support element 5, on which a load-bearing element 7 including load 8 is arranged by means of four holding elements 6.
- the coordinate system shows the degrees of freedom of the load-bearing element 7.
- the straight double arrows symbolize the possible directions of movement of the load-bearing element 7, the movement in the Y direction in the example shown being effected by a movement of the entire lifting device 1 and the movement in the X direction by movement of the support element 5 on the boom 4 (lifting device 1 and boom 4 in Fig. 1 a not shown) and the movement in the Z direction by changing the lifting height l H by means of the holding elements 6 and a lifting drive 10 (not shown).
- the curved double arrows symbolize the possible rotations of the load-bearing element 7 about the respective axis.
- Rotations about the X-axis or the Y-axis can be compensated for relatively easily by the user of the lifting device 1 or the container crane 2 and are not described in more detail here.
- a twist around the Z axis (i.e. around the vertical axis) as in Fig. 2b is, as described in the beginning, very disruptive, since in particular a torsional vibration of the load-bearing element 7 about the Z-axis would make positioning of a load 8 at a certain location, such as, for example, on the loading surface of a truck or a railway wagon, more difficult or delayed.
- a method is therefore provided with which such a torsional vibration of a load-bearing element 7 about the vertical axis can be damped simply and quickly, so that rapid movements of the load-bearing element 7 with a load 8 arranged thereon are made possible, which should contribute to an increase in the efficiency of goods manipulation.
- a detailed description of the method is given below using the Fig. 3 and Fig. 4 described.
- the lifting device 1 can also be designed in any other way for the application of the method according to the invention, for example as an indoor crane, tower crane, mobile crane, etc. It is only important that the basic function of the lifting device 1 and that the lifting device 1 has the essential components for carrying out the damping method according to the invention, as described below.
- Fig. 3 The essential components of a lifting device 1 are shown, here using the components of a container crane 2. The parts essential for the invention are shown. The structure and functioning of such cranes have already been described, are well known and therefore do not need to be explained in more detail.
- a lifting drive 10 is provided for lifting and lowering the load-bearing element 7 in the Z direction, that is to say for adjusting the lifting height l H.
- the lifting drive 10 is implemented by cable winches 10a and 10b, two retaining elements 6a, 6c and 6b, 6d being wound onto each cable winch 10a, 10b.
- other forms of lifting drive are also conceivable.
- At least one actuator 11a, 11b, 11c, 11d for changing the length of the holding element 6 is provided on at least one holding element 6a, 6b, 6c, 6d.
- an actuator 11a, 11b, 11c, 11d is advantageously provided on each holding element 6a, 6b, 6c, 6d.
- four holding elements 6a, 6b, 6c, 6d, each with an actuator 11a, 11b, 11c, 11d, are arranged on the lifting device 1.
- the holding elements 6a, 6b, 6c, 6d are guided over deflection rollers which are arranged on the load-bearing element 7.
- the respective free end of the holding elements 6a, 6b, 6c, 6d is fixed at a stationary holding point, for example on the carrying element 5.
- an actuator 11a, 11b, 11c, 11d is preferably fixed at a stationary holding point, for example on the carrying element 5, and the free end of the holding elements 6a, 6b, 6c, 6d on the actuator 11a, 11b, 11c, 11d.
- the length of a holding element 6a, 6b, 6c, 6d can thus be adjusted by adjusting the actuator 11a, 11b, 11c, 11d, which also adjusts the distance between the carrying element 5 and the load-bearing element 7.
- An actuator 11a, 11b, 11c, 11d can be controlled by a damping controller 12 to change the length of the corresponding holding element 6a, 6b, 6c, 6d between the carrying element 5 and the load-bearing element 7, preferably the actuator 11a, 11b, 11c, 11d at least one target actuator position s intended or desired actuator velocity v is to be determined.
- a damping controller 12 For damping control, at least one actual actuator position s ist of at least one actuator 11a, 11b, 11c, 11d can be detected by damping controller 12 (damping controller 12 in Fig. 3 not shown).
- the damping controller 12 can be designed, for example, as a separate component in the form of hardware and / or software or can also be implemented in an existing crane controller.
- the at least one actuator 11a, 11b, 11c, 11d can, as will be described in detail later, be controlled by the damping controller 12 in such a way that by changing the actuator position and / or actuator speed on the one hand the load-bearing element 7 is excited to a torsional vibration (as in FIG Fig. 3 is symbolized by the double arrow) or on the other hand can be controlled so that a torsional vibration of the load-bearing element 7 is damped.
- the lengths of two diagonally opposite holding elements 6a, 6b between the support element 5 and the load-bearing element 7 are preferably increased by means of the corresponding actuators 11a, 11b and the lengths of the two other diagonally opposite holding elements 6c, 6d for stimulating or damping a torsional vibration reduced by means of the corresponding actuators 11c, 11d or vice versa.
- only three holding elements 6 could also be arranged between the carrying element 5 and the load-bearing element 7 and only one actuator 11 for changing the length of one of the three holding elements 6.
- the length is achieved by means of the at least one actuator 11a, 11b, 11c, 11d of at least one holding element 6a, 6b, 6c, 6d between the carrying element 5 and the load-bearing element 7 can be changed, so that a torsional vibration of the load-bearing element 7 about the vertical axis, in Fig. 3 around the Z axis, can be excited or damped.
- An actuator 11a, 11b, 11c, 11d can be of any design, preferably a hydraulic or electrical embodiment is used which enables longitudinal adjustment. If, as in Fig. 3 shown, actuators 11a, 11b, 11c, 11d in the form of hydraulic cylinders are used, for example the energy for actuating the actuators 11a, 11b, 11c, 11d can be obtained from an existing hydraulic system. An actuator 11a, 11b, 11c, 11d can, however, also be designed, for example, as a cable winch and can be controlled electrically, wherein the actuation energy can be obtained from an existing power supply system.
- an actuator 11a, 11b, 11c, 11d is also conceivable, which are suitable for changing the length of a holding element 6 between the carrying element 5 and the load-bearing element 7.
- an actuator 11a, 11b, 11c, 11d must master the forces to be expected during the lifting and lowering of a load 8.
- an actuator 11a, 11b, 11c, 11d can also have an additional transmission gear, for example.
- At least one actual angle of rotation ⁇ ist of the load-bearing element 7 about the Z-axis (or vertical axis) can be detected, for example a measuring device 14 in the form of a camera system can be provided, with one on the carrying element 5 Camera 14a and on the load-bearing element 7 a measuring element 14b cooperating with the camera 14a is arranged, or vice versa.
- the actual angle of rotation ⁇ can also be measured in other ways, for example by means of a gyro-sensor, it is important that a measurement signal for the actual rotational angle ⁇ is present, which can be fed to the attenuator 12th
- the lifting height I H between the support element 5 and the load-bearing element 7 can be recorded.
- the lifting height l H can be detected via the lifting drive 10, for example in the form of a position signal of a cable winch 10a, 10b available in the crane control.
- the lifting height l H could also be obtained from the crane control.
- the lifting height l H may be for example, but also detected by means of the measuring device 14, for example by means of a camera system that both the lifting height H l and the actual rotational angle ⁇ is able to detect.
- Such measuring devices 14 are known in the prior art, which is why they are not dealt with in more detail here.
- Fig. 4 shows a block diagram of a possible embodiment of the control structure according to the invention with a damping controller 12, which, as already explained, can either be implemented as a separate component or preferably in the control of the lifting device 1, and a controlled system 15, which is controlled by the damping controller 12.
- the damping controller 12 is designed as a state controller 13 in the exemplary embodiment shown. In principle, however, any other suitable controller can also be used.
- the controlled system 15 uses this Fig. 3 system is described.
- the command of the damping controller 12 is a target rotation angle ⁇ to the load receiving member 7 and the manipulated variable is preferably a desired actuator position s to the at least one actuator 11a, 11b, 11c, 11d.
- a target actuator speed v to be used instead of the target actuator position s will be used instead of the target actuator position s.
- the actual angle of rotation ⁇ act can be recorded using a measuring device 14, for example by means of a camera system.
- the detected actual angle of rotation ⁇ ist of the load-bearing element 7 is fed to the damping controller 12 (and if the target actuator speed v soll is used, the detected actual actuator position s ist is also used as a manipulated variable).
- the damping controller 12 and if the target actuator speed v soll is used, the detected actual actuator position s ist is also used as a manipulated variable.
- an actual angular velocity ⁇ and feed it to the damping controller 12, which could further improve the damping control.
- an actual angular velocity ⁇ ist or an actual angular acceleration ⁇ founded ist can be derived from the recorded actual rotation angle ⁇ ist , for example by derivation according to time.
- the actual values required ie in particular the actual rotational angle ⁇ and optionally time derivatives thereof may be either measured directly or can be at least partially estimated in an observer.
- controller structure for the damping method according to the invention is secondary and in principle any suitable controller could be used.
- the required actual variables are then supplied to the damping controller 12 as measured values or estimated values.
- the damping controller 12 has at least one controller parameter, preferably five controller parameters.
- the characteristic of the control can be set by means of the controller parameter (s), e.g. Responsiveness, dynamics, overshoot, damping, etc., whereby one of the properties can be adjusted by means of a controller parameter. If several properties are to be influenced, a corresponding number of controller parameters is required. This enables the system behavior of the controlled system to be adapted.
- the controlled system i.e. the technical system to be controlled (e.g. as in Fig. 3 shown).
- the spring constant c ⁇ is modeled depending on the lifting height l H.
- this torsional vibration model is only to be understood as an example, and other torsional vibration models could be used that are capable of mapping or approximating the real torsional vibration.
- the model parameters of the torsional vibration model can be known, but are generally unknown. Therefore, according to the invention, the model parameters are identified in a first step using an identification method.
- identification methods are well known, for example from Isermann, R.: Identification of dynamic systems, 2nd edition, Springer-Verlag, 1992 or Ljung, L .: System Identification: Theory for the User, 2nd edition, Prentice Hall, 2009 , which is why it is not discussed in more detail here.
- the identification methods have in common that the system to be identified is excited with an input function (for example a step function) and the output variable is recorded and compared with an output variable of the model.
- the damping controller 12 can be used to excite the load-bearing element 7 with the load 8 arranged thereon at a specific lifting height l H into a torsional vibration about the Z axis.
- a separate excitation controller can be implemented in the damping controller 12, for example in the form of a two-point controller.
- the at least one actuator 11a, 11b, 11d for example in function of the actual rotation angle ⁇ is controlled the load receiving member 7 at the maximum possible target actuator speed v soll.
- the excitation advantageously takes place in opposite directions, for example by actuating actuators 11a, 11b with the maximum possible positive actuator speed v and actuators 11c, 11d can be controlled with the maximum possible negative actuator speed v or vice versa.
- the excitation of the torsional vibration can take place at any but fixed lifting height l H of the load-bearing element 7.
- the damping controller 12 determines the model parameters of the implemented torsional vibration model from the excited torsional vibration of the load bearing element 7 on the basis of the detected actual angle of rotation ⁇ ist of the load bearing element 7 and the detected actual actuator position s ist of the at least one actuator 11a, 11b, 11c, 11d by means of an identification method the specified lifting height l H.
- a mathematical online least-square method is used to identify the model parameters, but it would also be conceivable to use other methods, for example offline least-square methods or optimization-based methods.
- a damping controller 12 can now be designed for the torsional vibration model.
- a suitable controller structure is selected for this, for example a PID controller or a status controller.
- Each controller structure naturally has a number of controller parameters K k , k ⁇ 1, which must be set using a controller design process so that a desired control behavior results.
- controller design methods are also well known and are therefore not described in detail. Examples include the frequency characteristic curve method, the root locus curve method, the controller design by means of pole specification and the Riccati method, although there are of course a wealth of other methods.
- the concrete controller structure and the specific controller design process are not important for the present invention.
- the desired control behavior can also be chosen essentially arbitrarily for the invention, taking into account stability criteria and other boundary conditions, of course. It is only essential for the invention that the controller parameters are determined as a function of the lifting height l H. This can also be done in a variety of ways.
- controller parameters K k only have to be defined for a lifting height I H and can then simply be converted to other lifting heights l H. From the formula, however, the controller parameters K k can also be calculated offline for different lifting heights l H and a characteristic curve or a characteristic map can be created therefrom, which is then used in a further sequence.
- the controller parameters K k are adapted to the current lifting height l H in each time step of the control, for example by reading from a map or by calculation.
- the damping controller 12 uses the adjusted controller parameters K k to determine the manipulated variable that is set with the at least one actuator 11a, 11b, 11c, 11d in the respective time step.
- the controller parameters K k are thus based on the current one Lifting height I H adapted to optimally dampen torsional vibrations of the load-bearing element 7 at any lifting height I H
- a torsional vibration model in the form ⁇ + ⁇ + ⁇ i ⁇ s as described above is assumed.
- the model parameters of the torsional vibration model for example ⁇ , ⁇ and i ⁇ , are identified for a specific lifting height l H as described.
- a state controller 13 is used as the controller structure for the damping controller 12 due to its high control quality or control performance, as in FIG Fig. 4 shown.
- Five parameters K I , K P , K 1 , K 2 , K FF are provided as controller parameters K k .
- the actuator position s, the rotation angle ⁇ , beta is the angular velocity and deviation e ⁇ between target rotation angle ⁇ desired and actual rotational angle ⁇ is used.
- d 0 is a damping constant of the closed control loop, ie the almost undamped system is converted into a damped one with the aid of the damping controller 12.
- the parameters ⁇ i determine the dynamics and the response behavior of the control loop and are linked to the system properties of the torsional vibration model to be identified (the index i ⁇ 0 stands for the number of parameters of the damping controller, in the example shown these are the parameters ⁇ 0 , ⁇ 1 , ⁇ 2 ).
- the damping constant d 0 and the parameters ⁇ i are preferred pre-parameterized or specified, but can be adapted by the user if required.
- the controller parameters of the state controller 13 are then calculated in each time step of the control on the basis of the current lifting height l H and used as the basis for the control.
- the torsional vibration of the load-bearing element 7 can thus be effectively damped during a lifting process, because the damping controller 12 automatically adapts to the current lifting height l H.
- a correcting variable of the control of the damping controller 12 may be an actuator to be set to s or actuator speed v soll for the at least one actuator 11a, 11b, 11c, 11d detect and output at an interface sixteenth
- the damping controller 12 receives the required actual values via an interface 17, for example the actual position s ist of the at least one actuator 11a, 11b, 11c, 11d and the actual rotation angle ⁇ ist of the load-bearing element 7.
- the time derivative of the actual rotation angle ⁇ can be determined in the damping controller 12 or is also measured.
- a state estimation unit 20 ( Fig. 5 ), Be provided in the form of hardware and / or software that is found in the load receiving member 7, estimated values for the required input of the variable attenuator 12 from measured actual values, for example of the actual rotational angle ⁇ , in this case, for example-an estimated actual rotational angle ⁇ is and an estimated actual angular velocity ⁇ ⁇ . is .
- the state estimation unit 20 can be implemented, for example, as a well-known Kalman filter.
- the torsional vibration model can also be used in the state estimation unit 20 for this purpose.
- the damping controller 12 is given a target rotation angle ⁇ soll of the load-bearing element 7, which is adjusted by the damping controller 12.
- a target rotation angle ⁇ target deviating therefrom can also be specified be, with which the load-bearing element 7 is controlled by the damping controller 12 and independently of the lifting device 1 to this angle and thereby also torsional vibrations are damped by this angle.
- a load 8 such as a container 9
- the damping controller 12 can set a rotation angle ⁇ of the load-bearing element 7 in a range of, for example, ⁇ 10 °.
- an anti-wind-up protection is integrated in the damping controller (12), whereby the damping controller 12 is given actuator restrictions of the at least one actuator 11, in particular a maximum / minimum permissible actuator position s zul , a maximum / minimum permissible actuator speed v perm and a maximum / minimum permissible actuator acceleration a zul of the actuator 11.
- the damping controller 12 can be adapted to the type of actuator (s) 11 available for the lifting device 1.
- the damping controller 12 calculates, as described, a manipulated variable of the at least one actuator 11, for example the target actuator speed v soll .
- the target actuator speed v Exceeds this target actuator speed v to a maximum allowable Aktuatorbeschränkung, for example, the actuator speed v perm, the target actuator speed v soll is limited v perm to this maximum actuator velocity.
- Aktuatorbeschränkung or anti-wind-up protection it could for example be that the SAS 12 is to too high a target actuator speed v calculated that at least one actuator 11 due to its design could not follow. This would result in a control error and the SAS 12, in particular integrated in SAS 12 integrator, would try to compensate this control error by the manipulated variable, for example, the target actuator speed v should, would be further increased.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control And Safety Of Cranes (AREA)
- Vibration Prevention Devices (AREA)
Description
Die gegenständliche Erfindung betrifft ein Verfahren zum Dämpfen einer Drehschwingung um eine Hochachse eines Lastaufnahmeelements einer Hebeeinrichtung mit einem Dämpfungsregler mit zumindest einem Reglerparameter, wobei das Lastaufnahmeelement mit zumindest drei Halteelementen mit einem Tragelement der Hebeeinrichtung verbunden wird und die Länge zumindest eines Halteelements zwischen Lastaufnahmeelement und Tragelement mit einem auf das zumindest eine Halteelement wirkenden Aktuator durch den Dämpfungsregler verstellt wird.The present invention relates to a method for damping a torsional vibration about a vertical axis of a load-bearing element of a lifting device with a damping controller with at least one controller parameter, the load-bearing element being connected to at least three holding elements with a supporting element of the lifting device and the length of at least one holding element between the load-bearing element and the supporting element an actuator acting on the at least one holding element is adjusted by the damping controller.
Hebeeinrichtungen, insbesondere Kräne gibt es in vielen verschiedenen Ausführungsformen und sie kommen in vielen unterschiedlichen Anwendungsgebieten zum Einsatz. Zum Beispiel gibt es Turmkräne, die vorwiegend für den Hoch- und Tiefbau verwendet werden, oder es gibt Mobilkräne, z.B. für die Montage von Windkraftanlagen. Brückenkräne werden z.B. als Hallenkräne in Fabrikshallen verwendet und Portalkräne z.B. für die Manipulation von Transportcontainern an Umschlagsorten für den intermodalen Güterumschlag, wie z.B. in Häfen zum Umschlag von Schiffen auf die Eisenbahn oder den LKW oder auf Güterbahnhöfen zum Umschlag von der Eisenbahn auf den LKW oder umgekehrt. Vorwiegend werden dabei die Güter für den Transport in standardisierten Containern gelagert, sogenannten ISO-Containern, welche gleichermaßen für den Transport in den drei Transport-Modi Straße, Schiene, Wasser geeignet sind. Der Aufbau und die Funktionsweise eines Portalkrans ist hinlänglich bekannt und ist z.B. in der
Um die Wirtschaftlichkeit von Logistik-Prozessen zu erhöhen, wird unter anderem ein sehr rascher Güterumschlag gefordert, d.h. z.B. sehr rasche Be- und Entladungsvorgänge von Frachtschiffen und entsprechend schnelle Bewegungsvorgänge der Lastaufnahmeelemente und der Portalkräne insgesamt. Solche schnellen Bewegungsvorgänge können aber dazu führen, dass sich unerwünschte Schwingungen des Lastaufnahmeelements aufbauen, welche wiederum den Manipulationsvorgang verzögern, da die Container nicht präzise am vorgesehenen Ort platziert werden können. Insbesondere sind Drehschwingungen des Lastaufnahmeelements, also Schwingungen um die Hochachse störend, da diese mit herkömmlichen Kränen vom Kranführer nur schwer auszugleichen sind. Solche Drehschwingungen können zusätzlich auch durch z.B. eine ungleichmäßige Beladung des Containers oder durch Windeinflüsse hervorgerufen oder noch verstärkt werden.In order to increase the economic efficiency of logistics processes, among other things, very fast goods handling is required, ie for example very rapid loading and unloading processes for cargo ships and correspondingly fast movements of the load-bearing elements and the portal cranes as a whole. However, such rapid movements can lead to undesirable vibrations of the load-bearing element building up, which in turn delay the manipulation process, since the containers are not precisely on the intended Place can be placed. In particular, torsional vibrations of the load-bearing element, that is, vibrations about the vertical axis, are disruptive, since these are difficult to compensate for by the crane operator using conventional cranes. Such torsional vibrations can also be caused or increased by, for example, an uneven loading of the container or by wind.
Die
Die
Die
In der Veröffentlichung
Demzufolge ist es die Aufgabe der Erfindung, die Nachteile des Standes der Technik zu beseitigen, insbesondere soll zur Verbesserung des Betriebes einer Hebeeinrichtung ein verbessertes Verfahren zum Dämpfen von Drehschwingungen eines Lastaufnahmeelements der Hebeeinrichtung geschaffen werden, das unabhängig von geometrischen oder mechanischen Randbedingungen der Hebeeinrichtung ist.Accordingly, it is the object of the invention to eliminate the disadvantages of the prior art, in particular to improve the operation of a lifting device, an improved method for damping torsional vibrations of a load-bearing element of the lifting device, which is independent of geometric or mechanical boundary conditions of the lifting device.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass das Lastaufnahmeelement bei einer bestimmten Hubhöhe des Lastaufnahmeelements zu einer Drehschwingung angeregt, wobei zumindest ein Ist-Drehwinkel des Lastaufnahmeelements um die Hochachse und eine Ist-Aktuatorposition erfasst werden und damit Modellparameter des Drehschwingungsmodells des Lastaufnahmeelements bei der gegebenen Hubhöhe anhand einer Identifikationsmethode identifiziert werden. Mit diesem einfachen Verfahren wird es ermöglicht, eine Drehschwingung eines Lastaufnahmeelements in einer beliebigen Hubhöhe zu dämpfen, ohne dass der oder die Reglerparameter des Dämpfungsreglers manuell festgelegt werden müssen. Dadurch wird der Betrieb der Hebeeinrichtung bzw. ein rasches Bewegen und genaues Positionieren einer Last wesentlich vereinfacht, was zu einer Zeitersparnis und damit zu einer Steigerung der Produktivität führt. Mittels einer geeigneten Identifikationsmethode können unbekannte Modellparameter eines gewählten Drehschwingungsmodells ermittelt werden, wodurch ein unbekanntes Schwingungsverhalten des Lastaufnahmeelements ermittelt und zur Dämpfung der Drehschwingung herangezogen werden kann.According to the invention, the object is achieved in that the load-bearing element is excited to a torsional vibration at a specific lifting height of the load-bearing element, wherein at least one actual angle of rotation of the load-bearing element about the vertical axis and an actual actuator position are recorded, and thus model parameters of the torsional vibration model of the load-bearing element at the given lifting height be identified using an identification method. With this simple method it is possible to dampen a torsional vibration of a load-bearing element at any lifting height without the damping regulator's control parameter or parameters having to be set manually. This significantly simplifies the operation of the lifting device or the rapid movement and precise positioning of a load, which saves time and thus increases productivity. Using a suitable identification method, unknown model parameters of a selected torsional vibration model can be determined, as a result of which an unknown vibration behavior of the load-bearing element can be determined and used for damping the torsional vibration.
Vorteilhafterweise wird der zumindest eine Aktuator hydraulisch oder elektrisch betätigt, wodurch Standardkomponenten wie z.B. Hydraulikzylinder oder Elektromotoren verwendet werden können und ein vorhandenes Energieversorgungssystem genutzt werden kann.The at least one actuator is advantageously actuated hydraulically or electrically, as a result of which standard components such as hydraulic cylinders or electric motors can be used and an existing energy supply system can be used.
Wenn zumindest vier Halteelemente zwischen Lastaufnahmeelement und Trageelement vorgesehen sind, können größere Lasten manipuliert werden.If at least four holding elements are provided between the load-bearing element and the carrying element, larger loads can be manipulated.
Es ist vorteilhaft, wenn zumindest zwei Aktuatoren vorgesehen sind, insbesondere ein Aktuator je Halteelement. Dadurch kann einerseits eine Redundanz der Drehschwingungsdämpfung realisiert werden, wodurch die Ausfallsicherheit erhöht werden kann. Andererseits können kleinere Aktuatoren geringerer Trägheit verwendet werden, wodurch die Ansprechzeit der Dämpfungsregelung gesenkt und die Regelgüte erhöht werden kann.It is advantageous if at least two actuators are provided, in particular one actuator per holding element. In this way, redundancy of the torsional vibration damping can be realized on the one hand, whereby the reliability can be increased. On the other hand, smaller actuators with lower inertia can be used, which means that the response time of the damping control can be reduced and the control quality can be increased.
Vorteilhafterweise wird die Hubhöhe mittels einer, am Trageelement oder am Lastaufnahmeelement angeordneten Kamerasystems oder mittels eines Hubantriebs der Hebeeinrichtung gemessen. Dadurch kann die Hubhöhe sehr genau und in einfacher Weise erfasst werden.The lifting height is advantageously measured by means of a camera system arranged on the carrying element or on the load-bearing element or by means of a lifting drive of the lifting device. This enables the lifting height to be recorded very precisely and in a simple manner.
Bevorzugterweise wird der Drehwinkel des Lastaufnahmeelements mittels einer, am Trageelement oder am Lastaufnahmeelement angeordneten Kamerasystems gemessen. Mit dieser einfachen Methode kann der Drehwinkel des Lastaufnahmeelements sehr genau bestimmt werden. Ein Kamerasystem ist zudem relativ einfach auf einer bestehenden Hebeeinrichtung nachrüstbar.The angle of rotation of the load-bearing element is preferably measured by means of a camera system arranged on the support element or on the load-bearing element. With this simple method, the angle of rotation of the load-bearing element can be determined very precisely. A camera system is also relatively easy to retrofit on an existing lifting device.
Gemäß einer bevorzugten Ausführungsform ist das Drehschwingungsmodell eine Differentialgleichung zweiter Ordnung mit zumindest drei Modellparametern, insbesondere mit einem Dynamikparameter δ, einem Dämpfungsparameter ξ und einem Streckenverstärkungsparameter iβ. Mit der mathematischen Modellierung des Drehschwingungssystems durch eine Differentialgleichung zweiter Ordnung wird eine einfache aber ausreichend genaue Abbildung der realen Drehschwingung geschaffen.According to a preferred embodiment, the torsional vibration model is a second order differential equation with at least three model parameters, in particular with a dynamic parameter δ, a damping parameter ξ and a section gain parameter i β . The mathematical modeling of the torsional vibration system using a second order differential equation creates a simple but sufficiently accurate representation of the real torsional vibration.
Es ist vorteilhaft, wenn die Identifikationsmethode ein mathematisches Verfahren ist, insbesondere ein online Least-Square Verfahren. Mit dieser gängigen mathematischen Methode können Modellparameter in einfacher Weise und ausreichend genau ermittelt werden.It is advantageous if the identification method is a mathematical method, in particular an online least-square method. With this common mathematical method, model parameters can be determined easily and with sufficient accuracy.
Es ist vorteilhaft, wenn als Dämpfungsregler ein Zustandsregler mit vorzugsweise fünf Reglerparametern KI, K1, K2, KFF, KP verwendet wird. Dadurch wird ein schneller und stabiler Dämpfungsregler mit hoher Regelgüte geschaffen. Durch eine integrierte Vorsteuerung (Reglerparameter KFF) kann das Führungsverhalten verbessert werden und durch einen Integrator (Reglerparameter KI) erreicht man stationäre Genauigkeit bzw. können Modellunsicherheiten ausgeglichen werden.It is advantageous if a state controller with preferably five controller parameters K I , K 1 , K 2 , K FF , K P is used as the damping controller. This creates a fast and stable damping controller with high control quality. An integrated pre-control (controller parameter K FF ) improves the guiding behavior and an integrator (controller parameter K I ) achieves steady-state accuracy or model uncertainties can be compensated for.
Gemäß einer bevorzugten Ausführungsform wird dem Dämpfungsregler ein Soll-Drehwinkel des Lastaufnahmeelements vorgegeben und der Dämpfungsregler regelt diesen Soll-Drehwinkel in einem vorgegebenen Winkelbereich ein, insbesondere in einem Winkelbereich von -10° ≤ βsoll ≤ +10°. Dadurch kann eine gewünschte Verdrehung des Lastaufnahmeelements erreicht werden wodurch Lasten wie z.B. Container auch auf nicht exakt ausgerichtete Ziele wie z.B. schräg stehende LKW's positioniert werden können. Is intended in a preferred embodiment the damping controller is a target rotation angle given the load receiving member and the damping controller regulates these target rotation angle within a predetermined angular range, in particular in an angular range from -10 ° ≤ β ≤ + 10 °. In this way, a desired rotation of the load-bearing element can be achieved, whereby loads such as containers can also be positioned on targets that are not exactly aligned, such as inclined trucks.
Vorteilhafterweise wird im Dämpfungsregler ein Anti-Wind-Up Schutz integriert, wobei dem Dämpfungsregler Aktuatorbeschränkungen des zumindest einen Aktuators vorgegeben werden, insbesondere eine maximal/minimal zulässige Aktuatorposition szul, eine maximal/minimal zulässige Aktuatorgeschwindigkeit vzul und eine maximal/minimal zulässige Aktuatorbeschleunigung azul des Aktuators. Durch diesen sogenannten Anti-Wind-Up Schutz können unzulässig hohe Stellgrößen des zumindest einen Aktuators vermieden werden, die zu einer Destabilisierung des Dämpfungsreglers führen könnten.An anti-wind-up protection is advantageously integrated in the damping controller, whereby the damping controller is given actuator restrictions of the at least one actuator, in particular a maximum / minimum permissible actuator position s perm , a maximum / minimum permissible actuator speed v perm and a maximum / minimum permissible actuator acceleration a perm of the actuator. This so-called anti-wind-up protection prevents impermissibly high manipulated variables of the at least one actuator, which could lead to destabilization of the damping controller.
Die gegenständliche Erfindung wird nachfolgend unter Bezugnahme auf die
-
Fig.1 den grundsätzlichen Aufbau einer Hebeeinrichtung anhand eines Containerkrans, -
Fig.2a und 2b ein Lastaufnahmeelement inklusive Last zur Darstellung einer Drehschwingung, -
Fig.3 einen Ausschnitt einer schematischen Hebeeinrichtung, -
Fig.4 eine Reglerstruktur eines Dämpfungsreglers, -
Fig. 5 eine Zustandsschätzeinheit.
-
Fig. 1 the basic structure of a lifting device using a container crane, -
2a and 2b a load-bearing element including a load to represent a torsional vibration, -
Fig. 3 a section of a schematic lifting device, -
Fig. 4 a controller structure of a damping controller, -
Fig. 5 a state estimation unit.
Erfindungsgemäß ist deshalb ein Verfahren vorgesehen, mit dem eine derartige Drehschwingung eines Lastaufnahmeelements 7 um die Hochachse einfach und schnell gedämpft werden kann, sodass rasche Bewegungsvorgänge des Lastaufnahmeelements 7 mit daran angeordneter Last 8 ermöglicht werden, was zu einer Effizienzsteigerung der Gütermanipulation beitragen soll. Eine detaillierte Beschreibung des Verfahrens ist nachfolgend anhand der
Natürlich ist die beschriebene Ausführungsform der Hebeeinrichtung 1 als Containerkran 2 gemäß den
In
Gemäß einer bevorzugten Ausführungsform der Erfindung sind zwischen Trageelement 5 (in
Bei einem Hubantrieb 10 wie in
Ein Aktuator 11a, 11b, 11c, 11d kann dabei zur Veränderung der Länge des entsprechenden Halteelements 6a, 6b, 6c, 6d zwischen Trageelement 5 und Lastaufnahmeelement 7 von einem Dämpfungsregler 12 angesteuert werden, vorzugsweise kann dem Aktuator 11a, 11b, 11c, 11d dabei zumindest eine Soll-Aktuatorposition ssoll oder eine Soll-Aktuatorgeschwindigkeit vsoll vorgegeben werden. Für die Dämpfungsregelung kann vom Dämpfungsregler 12 zumindest eine Ist-Aktuatorposition sist des zumindest einen Aktuators 11a, 11b, 11c, 11d erfasst werden (Dämpfungsregler 12 in
In der dargestellten Ausführungsform werden dabei zur Anregung oder zur Dämpfung einer Drehschwingung vorzugsweise die Längen von zwei diagonal gegenüberliegenden Halteelementen 6a, 6b zwischen Trageelement 5 und Lastaufnahmeelement 7 mittels der korrespondierenden Aktuatoren 11a, 11b vergrößert und die Längen der zwei anderen diagonal gegenüberliegenden Halteelemente 6c, 6d mittels der korrespondierenden Aktuatoren 11c, 11d verringert oder umgekehrt. Beispielsweise könnten aber auch nur drei Halteelemente 6 zwischen Trageelement 5 und Lastaufnahmeelement 7 angeordnet sein und nur ein Aktuator 11 zur Änderung der Länge eines der drei Halteelemente 6. Wichtig ist nur, dass mittels des zumindest einen Aktuators 11a, 11b, 11c, 11d die Länge von zumindest eines Halteelements 6a, 6b, 6c, 6d zwischen Trageelement 5 und Lastaufnahmeelement 7 veränderbar ist, sodass eine Drehschwingung des Lastaufnahmeelements 7 um die Hochachse, in
Ein Aktuator 11a, 11b, 11c, 11d kann beliebig ausgeführt sein, bevorzugt wird eine hydraulische oder elektrische Ausführungsform verwendet, die eine Längsverstellung ermöglicht. Wenn, wie in
Zur Durchführung des erfindungsgemäßen Dämpfungsverfahrens ist vorgesehen, dass zumindest ein Ist-Drehwinkel βist des Lastaufnahmeelements 7 um die Z-Achse (bzw. Hochachse) erfasst werden kann, beispielsweise kann eine Messeinrichtung 14 in Form eines Kamerasystems vorgesehen sein, wobei am Trageelement 5 eine Kamera 14a und am Lastaufnahmeelement 7 ein mit der Kamera 14a zusammenwirkendes Messelement 14b angeordnet ist, oder umgekehrt. Der Ist-Drehwinkel βist kann aber auch auf andere Weise gemessen werden, z.B. mittels eines Gyro-Sensors, wichtig ist, dass ein Messsignal für den Ist-Drehwinkel βist vorliegt, das dem Dämpfungsregler 12 zugeführt werden kann. Weiters ist vorgesehen, dass die Hubhöhe IH zwischen Trageelement 5 und Lastaufnahmeelement 7 erfasst werden kann. Beispielsweise kann die Hubhöhe lH über den Hubantrieb 10 erfasst werden, z.B. in Form eines, in der Kransteuerung verfügbaren Positionssignals einer Seilwinde 10a, 10b. Die Hubhöhe lH könnte auch aus der Kransteuerung bezogen werden. Die Hubhöhe lH kann beispielsweise aber auch mittels der Messeinrichtung 14 erfasst werden, z.B. mittels eines Kamerasystems, das sowohl die Hubhöhe lH als auch den Ist-Drehwinkel βist erfassen kann. Solche Messeinrichtungen 14 sind im Stand der Technik bekannt, weshalb hier nicht näher darauf eingegangen wird.To carry out the damping method according to the invention, it is provided that at least one actual angle of rotation β ist of the load-
Die einzelnen Schritte des Dämpfungsverfahrens sind nachfolgend anhand von
Die benötigten Istgrößen, also insbesondere der Ist-Drehwinkel βist und gegebenenfalls zeitliche Ableitungen davon, können entweder direkt gemessen werden oder können, zumindest teilweise, auch in einem Beobachter geschätzt werden. Ein Vorteil der Verwendung von mittels eines Beobachters geschätzter Istgrößen, wie z.B. eines Ist-Drehwinkels βist, ist, dass dadurch ein etwaig vorhandenes und für die Dämpfungsregelung unerwünschtes Messrauschen von Messwerten einer Messeinrichtung 14 vermieden werden kann. Das ist der Hauptgrund, warum in einer bevorzugten Ausgestaltung nach
Es ist allerdings anzumerken, dass die Reglerstruktur für das erfindungsgemäße Dämpfungsverfahren sekundär ist und grundsätzlich jeder geeignete Regler verwendet werden könnte. Dem Dämpfungsregler 12 sind dann je nach Implementierung die benötigten Istgrößen als Messwerte oder Schätzwerte zuzuführen.However, it should be noted that the controller structure for the damping method according to the invention is secondary and in principle any suitable controller could be used. Depending on the implementation, the required actual variables are then supplied to the damping
Der Dämpfungsregler 12 weist zumindest einen Reglerparameter auf, vorzugsweise fünf Reglerparameter. Mittels des bzw. der Reglerparameter kann die Charakteristik der Regelung eingestellt werden, also z.B. Ansprechverhalten, Dynamik, Überschwingen, Dämpfung, usw., wobei mittels eines Reglerparameters jeweils eine der Eigenschaften verstellt werden kann. Sollen mehrere Eigenschaften beeinflusst werden, ist eine entsprechende Anzahl von Reglerparameter erforderlich. Dadurch kann das Systemverhalten des geregelten Systems adaptiert werden.The damping
Für den Entwurf eines geeigneten Dämpfungsreglers 12 ist zuerst die Regelstrecke, also das zu regelnde technische System (z.B. wie in
Es sei angemerkt, dass dieses Drehschwingungsmodell nur beispielhaft zu verstehen ist und es könnten auch andere Drehschwingungsmodelle verwendet werden, die in der Lage sind die reale Drehschwingung abzubilden bzw. anzunähern.It should be noted that this torsional vibration model is only to be understood as an example, and other torsional vibration models could be used that are capable of mapping or approximating the real torsional vibration.
Die Modellparameter des Drehschwingungsmodells, also z.B. δ, ξ und iβ, können bekannt sein, sind aber in der Regel unbekannt. Daher werden gemäß der Erfindung in einem ersten Schritt die Modellparameter mit einer Identifikationsmethode identifiziert. Solche Identifikationsmethoden sind hinlänglich bekannt, beispielsweise aus
Mit den bekannten (vorab bekannten oder identifizierten) Modellparametern kann für das Drehschwingungsmodell nun ein Dämpfungsregler 12 entworfen werden. Hierfür wird eine geeignete Reglerstruktur gewählt, beispielsweise ein PID-Regler oder ein Zustandsregler. Jede Reglerstrukur hat natürlich eine Anzahl von Reglerparametern Kk, k≥1, die mittels eines Reglerentwurfverfahrens so eingestellt werden müssen, sodass sich ein gewünschtes Regelverhalten ergibt. Solche Reglerentwurfverfahren sind ebenfalls hinlänglich bekannt und werden deshalb nicht im Detail beschrieben. Beispielhaft seien das Frequenzkennlinienverfahren, das Wurzelortskurvenverfahren, der Reglerentwurf durch Polvorgabe und das Riccati-Verfahren genannt, wobei es natürlich noch eine Fülle weiterer Verfahren gibt. Für die gegenständliche Erfindung kommt es aber weder auf die konkrete Reglerstruktur noch auf das konkrete Reglerentwurfsverfahren an. Auch das gewünschte Regelverhalten kann, natürlich unter Berücksichtigung von Stabilitätskriterien und anderen Randbedingungen, für die Erfindung im Wesentlichen beliebig gewählt werden. Für die Erfindung wesentlich ist lediglich, dass die Reglerparameter abhängig von der Hubhöhe lH festgelegt werden. Auch das kann auf verschiedenste Weise erfolgen.With the known (previously known or identified) model parameters, a damping
Denkbar wäre, die Modellparameter für verschiedene Hubhöhen lH zu identifizieren und die Reglerparameter Kk dann jeweils für die verschiedenen Hubhöhen zu bestimmen. Auf diese Weise kann man sich Kennlinien der Reglerparameter Kk in Abhängigkeit von der Hubhöhe lH oder Kennfelder in Abhängigkeit von der Hubhöhe lH und anderen Größen, wie beispielsweise einem Massenträgheitsmoment Jβ, aufbauen. Das wäre natürlich sehr aufwendig und wenig praktikabel. Vorzugsweise werden daher die Reglerparameter Kk des Dämpfungsreglers 12 als formelmäßiger Zusammenhang als Funktion von zumindest der Hubhöhe lH, und gegebenenfalls anderer Modellparameter, angegeben, also beispielsweise Kk=f(lH) oder Kk=f(lH, ...). Damit müssen die Reglerparameter Kk nur für eine Hubhöhe IH festgelegt werden und können dann einfach auf andere Hubhöhen lH umgerechnet werden. Aus dem formelmäßigen Zusammenhang können aber offline ebenfalls die Reglerparameter Kk für verschiedene Hubhöhen lH berechnet werden und daraus eine Kennlinie oder ein Kennfeld erstellt werden, das dann in weitere Folge verwendet wird.It would be conceivable to identify the model parameters for different lifting heights l H and then to determine the controller parameters K k for the different lifting heights. In this way, characteristic curves of the controller parameters K k as a function of the lifting height l H or characteristic maps as a function of the lifting height l H and other variables, such as a moment of inertia J β , can be built up. That would of course be very complex and not very practical. The controller parameters K k of the damping
Für die Dämpfungsregelung werden die Reglerparameter Kk in jedem Zeitschritt der Regelung, an die aktuelle Hubhöhe lH angepasst, beispielsweise durch Auslesen aus einem Kennfeld oder durch Berechnung. Der Dämpfungsregler 12 ermittelt dann mit den angepassten Reglerparameter Kk die Stellgröße, die mit dem zumindest einen Aktuator 11a, 11b, 11c, 11d im jeweiligen Zeitschritt eingestellt wird. Die Reglerparameter Kk werden so an die aktuelle Hubhöhe IH angepasst, um Drehschwingungen des Lastaufnahmeelements 7 in einer beliebigen Hubhöhe IH optimal dämpfen zu könnenFor the damping control, the controller parameters K k are adapted to the current lifting height l H in each time step of the control, for example by reading from a map or by calculation. The damping
Insbesondere im Fall einer Hebeeinrichtung 1 mit einem Lastaufnahmeelement 7 ist oftmals üblich für verschiedene Lasten 8, z.B. für Container verschiedener Größe, verschiedene Lastaufnahmeelemente 7 oder in der Größe anpassbare Lastaufnahmeelemente 7 zu verwenden. Das hätte natürlich unmittelbar Einfluss auf das Massenträgheitsmoment Jβ. Daher kann vorgesehen sein, die obige Prozedur für verschiedene Lastaufnahmeelemente 7 durchzuführen. Damit würde man für verschiedene Lastaufnahmeelemente 7 verschiedene Reglerparameter Kk erhalten.In the case of a
Das erfindungsgemäße Verfahren wird nachfolgend anhand eines konkreten Ausführungsbeispiels erläutert. Es wird von einem Drehschwingungsmodell in der Form δβ̈+ξβ̇+β=iβs wie oben beschrieben ausgegangen. Die Modellparameter des Drehschwingungsmodells, also z.B. δ, ξ und iβ, werden für eine bestimmte Hubhöhe lH wie beschrieben identifiziert. Als Reglerstruktur für den Dämpfungsregler 12 wird aufgrund seiner hohen Regelgüte bzw. Regelperformance ein Zustandsregler 13 verwendet, wie in
Als Zustände des Systems werden die Aktuatorposition s, der Drehwinkel β, die Winkelgeschwindigkeit β̇ und eine Abweichung eβ zwischen Soll-Drehwinkel βsoll und Ist-Drehwinkel βist verwendet. Die Reglerparameter Kk wurden als Funktion der Hubhöhe lH, die in den Modellparametern
Im Dämpfungsregler 12 werden dann in jedem Zeitschritt der Regelung die Reglerparameter des Zustandsreglers 13 anhand der aktuellen Hubhöhe lH berechnet und der Regelung zugrunde gelegt. Damit kann die Drehschwingung des Lastaufnahmeelements 7 wirkungsvoll während eines Hubvorganges gedämpft werden, weil sich der Dämpfungsregler 12 selbsttätig an die aktuelle Hubhöhe lH anpasst.In the damping
Als Stellgröße der Regelung kann der Dämpfungsregler 12 eine einzustellende Aktuatorposition ssoll oder eine Aktuatorgeschwindigkeit vsoll für den zumindest einen Aktuator 11a, 11b, 11c, 11d ermitteln und an einer Schnittstelle 16 ausgeben. Dazu erhält der Dämpfungsregler 12 über eine Schnittstelle 17 die benötigten Istgrößen, beispielsweise die Ist-Position sist des zumindest einen Aktuators 11a, 11b, 11c, 11d und den Ist-Drehwinkel βist des Lastaufnahmeelements 7. Die zeitliche Ableitung des Ist-Drehwinkel βist kann im Dämpfungsregler 12 ermittelt werden oder wird auch gemessen.As a correcting variable of the control of the damping
Alternativ kann eine Zustandsschätzeinheit 20 (
Dem Dämpfungsregler 12 wird ein Soll-Drehwinkel βsoll des Lastaufnahmeelements 7 vorgegeben, der durch den Dämpfungsregler 12 eingeregelt wird. Normalerweise wird ein Soll-Drehwinkel βsoll=0 vorgegeben, womit Drehschwingungen um eine definierte Nullstellung ausgeregelt werden. Es kann aber auch ein davon abweichender Soll-Drehwinkel βsoll vorgegeben werden, womit das Lastaufnahmeelement 7 durch den Dämpfungsregler 12 und unabhängig von der Hebeeinrichtung 1 auf diesen Winkel geregelt wird und dabei auch Drehschwingungen um diesen Winkel gedämpft werden. Dadurch kann beispielsweise eine Last 8, wie z.B. ein Container 9, in einem vorgegebenen Winkelbereich verdreht werden und dadurch z.B. auch auf einer Ladefläche eines ungenau positionierten LKW's abgeladen werden. Hierfür ist keine zusätzliche Einrichtung zum Verdrehen des Lastaufnahmeelements 7 um die Hochachse erforderlich. Je nach Art und Ausführung der Hebeeinrichtung 1 und ihrer Komponenten kann dabei durch den Dämpfungsregler 12 ein Drehwinkel β des Lastaufnahmeelements 7 in einem Bereich von beispielsweise ±10° eingestellt werden.The damping
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird im Dämpfungsregler (12) ein Anti-Wind-Up Schutz integriert, wobei dem Dämpfungsregler 12 Aktuatorbeschränkungen des zumindest einen Aktuators 11 vorgegeben werden, insbesondere eine maximal/minimal zulässige Aktuatorposition szul, eine maximal/minimal zulässige Aktuatorgeschwindigkeit vzul und eine maximal/minimal zulässige Aktuatorbeschleunigung azul des Aktuators 11. Durch diesen integrierten Anti-Wind-Up Schutz kann der Dämpfungsregler 12 an die Bauart des oder der verfügbaren Aktuatoren 11 der Hebeeinrichtung 1 angepasst werden. Zur Dämpfung der Drehschwingung des Lastaufnahmeelements 7 berechnet der Dämpfungsregler 12 wie beschrieben eine Stellgröße des zumindest einen Aktuators 11, beispielsweise die Soll-Aktuatorgeschwindigkeit vsoll. Überschreitet diese Soll-Aktuatorgeschwindigkeit vsoll eine maximal zulässige Aktuatorbeschränkung, z.B. die Aktuatorgeschwindigkeit vzul, wird die Soll-Aktuatorgeschwindigkeit vsoll auf diese maximal zulässige Aktuatorgeschwindigkeit vzul limitiert. Ohne Aktuatorbeschränkung bzw. Anti-Wind-Up Schutz könnte es z.B. vorkommen, dass der Dämpfungsregler 12 eine zu hohe Soll-Aktuatorgeschwindigkeit vsoll berechnet, der der zumindest eine Aktuator 11 aufgrund seiner Ausgestaltung nicht folgen könnte. Dies würde zu einem Regelfehler führen und der Dämpfungsregler 12, insbesondere der im Dämpfungsregler 12 integrierte Integrator, würde versuchen diesen Regelfehler zu kompensieren, indem die Stellgröße, beispielsweise die Soll-Aktuatorgeschwindigkeit vsoll, weiter erhöht werden würde. Dieses "Aufladen" des Dämpfungsreglers 12 bzw. insbesondere des im Dämpfungsregler integrierten Integrators könnte zu einer Destabilisierung des Dämpfungsreglers 12 führen, was durch den integrierten Anti-Wind-Up Schutz zuverlässig vermieden werden kann. Zusätzlich kann von der Soll-Aktuatorgeschwindigkeit vsoll auch auf eine Soll-Aktuatorbeschleunigung asoll gerechnet werden und diese mit einer maximal/minimal zulässigen Aktuatorbeschleunigung azul des entsprechenden Aktuators 11a, 11b, 11c, 11d verglichen werden. Wird diese maximal/minimal zulässige Aktuatorbeschleunigung azul überschritten, kann dies ebenfalls mit einer Limitierung der Soll-Aktuatorgeschwindigkeit vsoll berücksichtigt werden. Damit können unterschiedliche Ausführungsformen und Baugrößen von Aktuatoren 11a, 11b, 11c, 11d im Dämpfungsregler berücksichtigt werden, wodurch das Verfahren sehr flexibel auf unterschiedlichsten Hebeeinrichtungen 1 anwendbar ist.According to an advantageous embodiment of the invention, an anti-wind-up protection is integrated in the damping controller (12), whereby the damping
Claims (11)
- A method for damping rotational oscillation about a vertical axis (Z) of a load-handling element (7) of a lifting device (1) by means of a damping controller (12) having at least one controller parameter, wherein the load-handling element (7) is connected to a suspension element (5) of the lifting device (1) by means of at least three holding elements (6) and the length of at least one holding element (6) between the load-handling element (7) and the suspension element (5) is adjusted by the damping controller (12) by means of an actuator (11), which acts on the at least one holding element (6), wherein the at least one controller parameter is determined by means of a rotational oscillation model of the load-handling element (7) as a function of the lifting height (lH), wherein in order to damp the rotational oscillation of the load-handling element (7) at any lifting height (lH), the at least one controller parameter is adapted to said lifting height (lH), characterized in that the load-handling element (7) is excited to rotationally oscillate at a certain lifting height (lH) of the load-handling element (7), that at the same time at least an actual angle of rotation (βist) of the load-handling element (7) about the vertical axis and an actual actuator position (sist) are sensed and, by means thereof, model parameters of the rotational oscillation model of the load-handling element (7) at the given lifting height (lH) are identified by means of an identification method.
- The method according to claim 1, characterized in that the at least one actuator (11) is hydraulically or electrically actuated.
- The method according to claim 1 or 2, characterized in that at least four holding elements (6) are provided between the load-handling element (7) and the suspension element (5).
- The method according to claim 1 to 3, characterized in that at least two actuators (11) are provided, particularly one actuator (11) per holding element (6).
- The method according to claim 1 to 4, characterized in that the lifting height (lH) is measured by means of a camera system (14) arranged on the suspension element (5) or on the load-handling element (7) or by means of a lifting drive (10) of the lifting device (1).
- The method according to claim 1 to 5, characterized in that the actual angle of rotation (βist) of the load-handling element (7) is measured by means of a measuring device (14) arranged on the suspension element (5) or on the load-handling element (7), preferably by means of a camera system or a gyro sensor.
- The method according to claim 1 to 6, characterized in that the rotational oscillation model is a second-order differential equation having at least three model parameters, particularly a dynamic parameter (δ), a damping parameter (ξ), and a system gain parameter (iβ).
- The method according to claim 1 to 7, characterized in that the identification method is a mathematical method, particularly an online least-squares method.
- The method according to claim 1 to 8, characterized in that the damping controller (12) is a state controller having preferably five controller parameters (KI, K1, K2, KFF, KP).
- The method according to claim 1 to 9, characterized in that a desired angle of rotation (βsoll) of the load-handling element (7) is specified to the damping controller (12) and the damping controller (12) attains the desired angle of rotation (βsoll) of the load-handling element (7) in a specified angle range, particularly in an angle range of -10° ≤ βsoll ≤ +10°.
- The method according to claim 1 to 10, characterized in that anti-windup protection is integrated in the damping controller (12), wherein actuator limits of the at least one actuator (11), particularly a maximum permissible actuator position (szul), a maximum permissible actuator velocity (vzul), and a maximum permissible actuator acceleration (azul) of the actuator (11), are specified to the damping controller (12).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50448/2017A AT520008B1 (en) | 2017-05-29 | 2017-05-29 | Method for damping torsional vibrations of a load-bearing element of a lifting device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3409636A1 EP3409636A1 (en) | 2018-12-05 |
EP3409636B1 true EP3409636B1 (en) | 2020-07-08 |
Family
ID=62196449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18172846.0A Active EP3409636B1 (en) | 2017-05-29 | 2018-05-17 | Method for damping torsional vibrations of a load-bearing element of a lifting device |
Country Status (9)
Country | Link |
---|---|
US (1) | US10676327B2 (en) |
EP (1) | EP3409636B1 (en) |
JP (1) | JP2019019001A (en) |
KR (1) | KR20180130461A (en) |
CN (1) | CN108928739B (en) |
AT (1) | AT520008B1 (en) |
BR (1) | BR102018010641A2 (en) |
CA (1) | CA3006453A1 (en) |
SG (1) | SG10201804565TA (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3453669A1 (en) * | 2017-09-08 | 2019-03-13 | Siemens Aktiengesellschaft | Control equipment for a hoisting gear and method for operating the same |
EP3653562A1 (en) * | 2018-11-19 | 2020-05-20 | B&R Industrial Automation GmbH | Method and oscillating regulator for regulating oscillations of an oscillatory technical system |
CZ2019387A3 (en) * | 2019-06-19 | 2020-02-26 | České vysoké učenà technické v Praze | A device for changing the dynamic stiffness of a gantry or overhung structure |
CN110342400B (en) * | 2019-06-25 | 2021-02-19 | 河南科技大学 | Bridge crane positioning anti-swing control method based on load energy coupling |
WO2021040894A1 (en) * | 2019-08-23 | 2021-03-04 | Oceaneering International, Inc. | Motion arresting and dampening device |
DE102021117938A1 (en) | 2021-07-12 | 2023-01-12 | Amova Gmbh | Storage and retrieval device for a high-bay warehouse |
CN113536571B (en) * | 2021-07-16 | 2022-12-23 | 重庆大学 | Dynamics modeling method and system for mine multi-rope winding type hoist and storage medium |
US11608252B1 (en) * | 2022-02-15 | 2023-03-21 | Innovative Minds, LLC | Damper systems for suspended loads |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3899083A (en) * | 1972-03-24 | 1975-08-12 | Krupp Gmbh | Device ofr damping pendulum movements |
US4531647A (en) * | 1976-01-14 | 1985-07-30 | Hitachi, Ltd. | Device for stopping the swinging movement of a load hung by a crane |
JP2633830B2 (en) * | 1986-03-12 | 1997-07-23 | 株式会社日立製作所 | Attitude control device for hanging equipment |
US5819962A (en) * | 1993-03-05 | 1998-10-13 | Mitsubishi Jukogyo Kabushiki Kaisha | Apparatus for stopping the oscillation of hoisted cargo |
KR100314143B1 (en) * | 1995-08-30 | 2001-12-28 | 튜보 린타마키, 타피오 하카카리 | Control device and control method of loading and loading part of crane |
FI109990B (en) * | 2001-03-23 | 2002-11-15 | Kci Kone Cranes Int Oy | Arrangement for placement of a lifting crane driver |
DE10245868B4 (en) * | 2002-09-30 | 2019-10-10 | Siemens Aktiengesellschaft | Method and device for positioning a load |
FI117969B (en) * | 2004-09-01 | 2007-05-15 | Kalmar Ind Oy Ab | Plant and method for stopping a rotary pendulum movement of a container |
WO2007000256A1 (en) | 2005-06-28 | 2007-01-04 | Abb Ab | Load control device for a crane |
ES2401439T3 (en) * | 2006-08-29 | 2013-04-19 | Abb Ab | Load control device for a crane |
DE102010054502A1 (en) | 2010-12-14 | 2012-06-14 | Wolfgang Wichner | Method and device for positioning a hanging on a cable suspension of a crane crane load in the direction of rotation about its vertical axis |
EP2878566B1 (en) * | 2013-11-28 | 2016-02-17 | Siemens Aktiengesellschaft | Method for influencing a movement of a load lifted by a crane |
-
2017
- 2017-05-29 AT ATA50448/2017A patent/AT520008B1/en not_active IP Right Cessation
-
2018
- 2018-05-17 EP EP18172846.0A patent/EP3409636B1/en active Active
- 2018-05-24 BR BR102018010641-4A patent/BR102018010641A2/en not_active Application Discontinuation
- 2018-05-25 JP JP2018100408A patent/JP2019019001A/en not_active Withdrawn
- 2018-05-25 US US15/990,052 patent/US10676327B2/en active Active
- 2018-05-29 CA CA3006453A patent/CA3006453A1/en not_active Abandoned
- 2018-05-29 KR KR1020180061009A patent/KR20180130461A/en not_active Application Discontinuation
- 2018-05-29 CN CN201810528132.XA patent/CN108928739B/en active Active
- 2018-05-30 SG SG10201804565TA patent/SG10201804565TA/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3409636A1 (en) | 2018-12-05 |
JP2019019001A (en) | 2019-02-07 |
AT520008B1 (en) | 2020-02-15 |
CN108928739B (en) | 2021-10-19 |
KR20180130461A (en) | 2018-12-07 |
SG10201804565TA (en) | 2018-12-28 |
CN108928739A (en) | 2018-12-04 |
AT520008A1 (en) | 2018-12-15 |
CA3006453A1 (en) | 2018-11-29 |
US20180339888A1 (en) | 2018-11-29 |
BR102018010641A2 (en) | 2019-03-12 |
US10676327B2 (en) | 2020-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3409636B1 (en) | Method for damping torsional vibrations of a load-bearing element of a lifting device | |
EP3649072B1 (en) | Crane and method for controlling such a crane | |
WO2020001991A1 (en) | Crane and method for controlling such a crane | |
EP1326798B1 (en) | Crane or digger for swinging a load hanging on a support cable with damping of load oscillations | |
EP3461783B1 (en) | Lifting device and method for controlling a lifting device | |
EP2272784B1 (en) | Crane for covering a load suspended on a load rope | |
EP4013713B1 (en) | Crane and method for controlling such a crane | |
EP3408208B1 (en) | Crane, and method for controlling such a crane | |
WO2004106215A1 (en) | Crane or excavator for handling a cable-suspended load provided with optimised motion guidance | |
DE102015100669B4 (en) | ANTI-PENDULUM CONTROL SYSTEM WITH ADJUSTABLE SUPPORT FOR TRANSPORTING A SUSPENDED LOAD | |
EP3653562A1 (en) | Method and oscillating regulator for regulating oscillations of an oscillatory technical system | |
EP2878566B1 (en) | Method for influencing a movement of a load lifted by a crane | |
EP3115331B1 (en) | Machine device, with a tendency to oscillate under a pulse-formed drive load and method for operating such a device | |
DE19907989A1 (en) | Path regulation method for gantry crane | |
EP1992583B1 (en) | Crane with crane control | |
DE10029579B4 (en) | Method for orienting the load in crane installations | |
EP3106345A1 (en) | Transport device for transporting an elongated structural member and method for transporting an elongated structural member | |
EP1834920A1 (en) | Method for automatic handling of a crane load with sway damping and path control | |
EP3652104B1 (en) | Control equipment for a hoisting gear and method for operating the same | |
DE102013219279A1 (en) | Load-bearing damper and lifting device for suspended loads | |
DE102019102453B4 (en) | Adjustable counterweight for a robotic manipulator | |
WO2023025643A1 (en) | Tower crane, method and control unit for operating a tower crane, trolley and trolley travel unit | |
DE102017110006B4 (en) | External winch for a helicopter with devices for stabilizing an external load attached to the external winch, and helicopters with such an external winch | |
EP4186848B1 (en) | Trajectory planning with flexible obstacle planning functionality | |
EP4406905A1 (en) | Method and device for operating a boom slewing crane and boom slewing crane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181212 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200107 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH Ref country code: AT Ref legal event code: REF Ref document number: 1288250 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018001831 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200708 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201009 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201008 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201109 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018001831 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
26N | No opposition filed |
Effective date: 20210409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20210401 Year of fee payment: 4 Ref country code: NO Payment date: 20210414 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210401 Year of fee payment: 4 Ref country code: CH Payment date: 20210408 Year of fee payment: 4 Ref country code: SE Payment date: 20210427 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210401 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220601 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220518 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220517 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220517 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220601 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240502 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1288250 Country of ref document: AT Kind code of ref document: T Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240404 Year of fee payment: 7 Ref country code: FR Payment date: 20240502 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 |