[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3237687B1 - Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers - Google Patents

Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers Download PDF

Info

Publication number
EP3237687B1
EP3237687B1 EP15823601.8A EP15823601A EP3237687B1 EP 3237687 B1 EP3237687 B1 EP 3237687B1 EP 15823601 A EP15823601 A EP 15823601A EP 3237687 B1 EP3237687 B1 EP 3237687B1
Authority
EP
European Patent Office
Prior art keywords
vibration damper
fastening element
coupling
radial projection
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15823601.8A
Other languages
English (en)
French (fr)
Other versions
EP3237687A1 (de
Inventor
Albert Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rsm Ingenieure and Willi Meyer Bauunternehmen GmbH In GbR GmbH
Original Assignee
Rsm Ingenieure and Willi Meyer Bauunternehmen GmbH In GbR GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rsm Ingenieure and Willi Meyer Bauunternehmen GmbH In GbR GmbH filed Critical Rsm Ingenieure and Willi Meyer Bauunternehmen GmbH In GbR GmbH
Publication of EP3237687A1 publication Critical patent/EP3237687A1/de
Application granted granted Critical
Publication of EP3237687B1 publication Critical patent/EP3237687B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/054Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil involving penetration of the soil, e.g. vibroflotation

Definitions

  • the invention relates to a vibration damper for a coupling joint of a deep vibrator according to the preamble of claim 1, a coupling joint of a deep vibrator with such a vibration damper according to claim 10 and a deep vibrator with such a coupling joint according to claim 14.
  • a deep vibrator is a horizontal vibration generating device for soil stabilization of unsustainable soil. Deep vibrators are used to perform various vibratory methods to improve the structure of the subsoil if it does not have sufficient bearing capacity for the proposed project. For this purpose vibrations are introduced into the soil by the deep vibrator.
  • Coarse-grained and mobile soils such as e.g. Sand or gravel can be consolidated by these vibrations, i. are compacted by being brought into a denser storage (Rütteldruckmaschine).
  • the deep vibrator is introduced by air flushing in the dry process or by water flushing in the wet process in the ground and made the consolidation when pulling the Tiefenrüttlers from the ground.
  • the deep vibrator can also be designed as a lock vibrator in order to be able to introduce the addition material through a lock via a transport tube to the vibrator tip and there into the cavity created by lifting and lowering the deep vibrator.
  • Deep vibrators have a cylindrical metal tube as a housing or Trottlergephase, the lower end of the housing tip or Trottlerspitze represents, with which they can penetrate into the ground.
  • the striking mechanism is arranged within the housing and above the housing tip.
  • a in general. arranged electrical drive which is connected to the percussion and this can drive, with a hydraulic drive is possible.
  • This entire area of the housing with drive and percussion can be referred to as percussion gear housing.
  • the housing is connectable at its upper end via a Rüttler coupling with an extension tube in order to be suspended or fastened by means of this with a suspension to an excavator or a leader-guided carrying device.
  • the striking mechanism has an imbalance weight which can rotate about the longitudinal axis of the deep vibrator within the striking mechanism housing by means of the drive.
  • the rotating imbalance weight can put the striking mechanism housing together with the housing tip in a swinging, tumbling rotational movement about the longitudinal axis, so that the surrounding liquefied soil material displaced radially and / or can be rearranged.
  • the clutch (Rüttler coupling) connects the percussion mechanism including the drive or the striking mechanism housing vibration-damping with the coupling punch, which in turn is rigidly connected to the extension tube.
  • the coupling is used to connect the percussion mechanism and the coupling punch so that the hammer mechanism can be safely guided in the direction of the longitudinal axis, ie pressed and pulled, and at the same time can perform its pendulum motion about the longitudinal axis.
  • This part of the deep vibrator can also be referred to as a coupling joint.
  • the coupling joint is designed to be elastic to allow the pendulum movement of the striking mechanism about the longitudinal axis. At the same time, the elasticity of the coupling joint is used to absorb bouncing impacts, which can be introduced by the shaking of the soil in the hammer mechanism to keep them away from the coupling punch and thus from the carrier or excavator. Also, this is to avoid the transmission of the vibrations of the vibrating on support or excavator.
  • the coupling joint is usually provided by one or more vibration dampers, e.g. realized a vibrating metal, which represents the actual coupling joint.
  • the vibration metal may also be referred to as a vibration damper bush or shock absorber.
  • the vibrating metal is a rubber-metal compound in which an elastic rubber body is vulcanized between two metal parts and can act elastically damping between them.
  • the upper part of the rocker metal in the direction of the longitudinal axis can be fastened to the coupling punch and the lower part of the rocker metal in the direction of the longitudinal axis can be fastened in the coupling housing.
  • radially inner part of the oscillating metal can be fastened to the coupling punch and the radially outer part of the oscillating metal to the coupling housing.
  • the concrete designs of the coupling joint are individual construction of the individual production companies of deep vibrators.
  • the coupling can be designed differently and is generally an individual design of the manufacturers of deep vibrators.
  • couplings are known which are fully elastic, i. have only vibration metals, as well as clutches, in addition to vibration metals and pendulum bearings or the like, which may be a self-aligning ball bearing or a spherical roller bearing. These are structured differently and can have a different transmission behavior.
  • a self-aligning bearing can withstand axial and radial loads and is well suited to compensate for misalignments.
  • Self-aligning bearings are suitable for the heaviest loads, ie they have high load capacities.
  • the EP 1 016 759 A1 describes a depth vibration device which is lowered vertically into the ground.
  • an imbalance weight is rotated about the longitudinal axis of the device, so that the device follows a rotation path in a horizontal plane.
  • the angle between the deflection of the device in the rotation path plane and the imbalance weight within the device is determined and used to calculate the degree of compaction, which in turn is used to control the compaction performance of the device.
  • the DE 102 32 314 describes a vibratory drilling tool with a shaped drill having a radial vibrator that includes a rotating mass to drive the shaped drill into the ground.
  • An additional vibrator in the head of the drill bit generates axial vibrations for faster penetration of hard soil layers.
  • a vibration damping insert is positioned between the vibrators while a conventional damping insert is positioned between the drill bit and the carrier.
  • the axial vibrator works as a hydraulic / pneumatic hammer.
  • the vibrators are driven by electric, hydraulic or pneumatic motors.
  • the drill bit has an integral supply of ballast material to refill the hole as the drill bit is withdrawn.
  • the EP 1759 125 B1 describes a device for guiding a shaft in an oscillatory motion about a pivot point located on the axis of the shaft, the device having a spherical ball bearing mounted on the shaft within two ball bearings arranged one above the other and in a fixed support are mounted.
  • the WO 02 077 371 A1 describes a depth vibrator with a vibrator tube and an eccentric plate, which is disposed within the vibrator tube and around a Eccentric shaft rotates, and a motor that drives the eccentric shaft and which is located outside of the vibrator tube.
  • An object of the present invention is to provide a vibration damper for a coupling joint of a deep vibrator, which is compact and at the same time can absorb both torsional forces and tensile / compressive forces.
  • the present invention relates to a vibration damper for a coupling joint of a deep vibrator for compacting a soil.
  • the coupling joint is designed to be able to be arranged radially between a radially inwardly lower end of a coupling ram of the deep vibrator and a radially outer side coupling housing of the deep vibrator.
  • the coupling joint has a first fastening element, a second fastening element and a spring element arranged at least in sections radially between the first fastening element and the second fastening element.
  • the fastening elements may be metal elements and the spring element may be a rubber body, so that the vibration damper may also be referred to as a vibration metal.
  • the rubber body may be vulcanized to the two metal elements, whereby a firm connection between these elements can be created.
  • vibration damper can be constructed relatively short and compact in this way in the direction of the longitudinal axis. Further, by this arrangement, vibrations from the upper coupling rubber, which elastically connects the outer edges of the coupling housing and the coupling punch together and the Termination of the clutch joint against the environment serves to be kept away because they can be excluded by the radially formed vibration damper. Vibrations can lead to a breakage of the upper coupling rubber, which can then cause soil between the coupling punch and the clutch housing, which can lead to a stiffening or to a breakage of the clutch. This risk can thus be reduced.
  • the vibration damper according to the invention is characterized in that at least one fastening element has at least one radial projection which extends at least partially radially to the other fastening element and against which the spring element can be pressed at least partially in the direction of the longitudinal axis, wherein the radial projections partially radially overlap.
  • the radial projection narrows the radial distance between the two fasteners, wherein the remaining regions of the fastening elements have a greater distance from each other and in other words, the projections extend in the radial direction so that they overlap viewed from the longitudinal axis.
  • the spring body is arranged at least partially completely in the direction of the longitudinal axis between the projections, so that the damping of tensile or compressive forces can be further improved.
  • a surface of the radial projection is created, which is at least partially aligned in the direction of the longitudinal axis and can also be referred to as a collar or plate.
  • the spring element can be pressed against this surface of the radial projection or pulled away from it.
  • the tensile or compressive forces can be damped, which can occur in particular during retraction into the soil and during the drawing process during soil compaction.
  • the spring element torsional forces and bounce can continue to be recorded and a pendulum motion allows.
  • Such loads can not be absorbed by a pendulum bearing.
  • a vibration metal is cheaper than a self-aligning bearing.
  • the first fastening element has a first radial projection and a second radial projection, which are arranged spaced from one another in the direction of the longitudinal axis.
  • tensile or compressive forces can be damped in both directions of the longitudinal axis, which is the damping Effect improved.
  • the damping Effect improved can be achieved by the arrangement of mutually offset two projections of the first fastener with intermediate spring body that pulls at a load in the direction of the longitudinal axis of the spring body on the one projection and presses on the other projection. If the direction of the load reverses, the spring body pushes on the one projection and pulls on the other projection. In this way, with identical design of the projections equal damping effects can be achieved in both directions. If the projections are configured differently, better damping effects than with only one projection can be achieved.
  • the second fastening element has a radial projection, which is spaced apart in the direction of the longitudinal axis to the ends of the second fastening element, preferably approximately centrally. This also makes it possible to achieve a damping of tensile or compressive forces, in which arrangement the spring element can press on the one projection from both sides in the direction of the longitudinal axis or can pull on this.
  • the radial projection of the second fastening element is arranged in the direction of the longitudinal axis between the first radial projection and the second radial projection of the first fastening element. This arrangement further improves the damping of tensile or compressive forces, because the spring body is fastened in the direction of the longitudinal axis to partially opposite surfaces and in each case can pull or press against them.
  • At least one radial projection is at least partially obliquely formed.
  • An oblique course is understood to mean that this oblique surface of the projection extends partially in the radial direction and at the same time partially in the direction of the longitudinal axis. In this way it can be achieved that the spring body over all its areas can absorb radial forces, torsional forces and tensile and compressive forces.
  • the first radial projection and the second radial projection of the first fastening element are formed at least partially opposite to each other obliquely.
  • the opposite projection of the second fastener include between them and the spring element can simultaneously absorb radial forces, torsional forces and tensile and compressive forces.
  • the radial projection of the second fastening element is formed at least in sections on one side, preferably on both sides, obliquely. In this way, this projection can also help that the spring body can absorb both radial forces and tensile and compressive forces.
  • the radial projection of the second fastening element is designed to extend substantially parallel to the first radial projection of the first fastening element and / or the radial projection of the second fastening element is formed to extend substantially parallel to the second radial projection of the first fastening element.
  • the first fastening element is arranged radially on the outside and the second fastening element is arranged radially on the inside.
  • the present invention also relates to a coupling joint for a deep vibrator for compacting a floor with a first vibration damper as described above.
  • a coupling joint for a deep vibrator for compacting a floor with a first vibration damper as described above.
  • the properties and advantages of the vibration damper according to the invention described above can be used in a coupling joint of a deep vibrator.
  • the coupling joint further comprises a second vibration damper having a first fastening element, a second fastening element and a spring element arranged at least partially radially between the first fastening element and the second fastening element, wherein the second vibration damper in the direction of the longitudinal axis below or above the first vibration damper is arranged.
  • the second vibration damper is provided for receiving torsional forces about the longitudinal axis, which represent the essential loads in a deep vibrator. In this way, this task can be supported by the second vibration damper, so that the first vibration damper can be formed and used in addition to the damping of tensile and compressive forces, without the coupling joint could not absorb torsional forces sufficient.
  • the coupling joint further comprises a third vibration damper with a first fastener, a second fastener and at least partially radially disposed between the first fastener and the second fastener spring element, wherein the third vibration damper relative to the first vibration damper the second vibration damper is arranged opposite in the direction of the longitudinal axis.
  • the third vibration damper which is preferably constructed identically to the second vibration damper, the uptake of torsional forces can be further improved and the first vibration damper relieved of this task even further. Due to the two-sided arrangement of the second and third vibration damper in the direction of the longitudinal axis about the first vibration damper around the substantially torsional forces receiving elements can be evenly distributed distributed in the coupling joint.
  • the first vibration damper and the second vibration damper and / or the third vibration damper are integrally formed.
  • the fastening elements may be integrally formed.
  • the spring body are further integrally formed. This simplifies the manufacture and assembly of the vibration damper and improves the positioning of the individual vibration damper to each other.
  • the present invention also relates to a deep vibrator for compacting a floor with a coupling joint as described above, wherein the coupling joint is radially inwardly connected to the lower end of a coupling ram of the deep vibrator and radially outside with a coupling housing of the deep vibrator.
  • the coupling joint is radially inwardly connected to the lower end of a coupling ram of the deep vibrator and radially outside with a coupling housing of the deep vibrator.
  • Fig. 1 shows a schematic representation of a deep vibrator 1.
  • the deep vibrator 1 extends substantially cylindrically in the direction of its longitudinal axis L, to which extends perpendicular to the radial direction R and the radius R.
  • the deep vibrator 1 has in the lower part of the representation of Fig. 1 the vibrator housing 10 and housing 10, which has a cylindrical housing part 11 and the striking mechanism housing 11, from which further down the housing tip 12 and Jottlerspitze 12 extends, with the deep vibrator 1 can retract into the ground.
  • the striking mechanism 3 is arranged, which has an electric drive 2, which can put an imbalance weight 31 in the unbalance generating rotational movement about the longitudinal axis L via an imbalance weight shaft 30.
  • the deep vibrator 1 has in the upper part of the representation of Fig. 1 the coupling ram 8 and the linkage 8, which is connected via a coupling 4 and a croquttler coupling 4 with the percussion mechanism 3 and its striking mechanism housing 11.
  • Fig. 2 shows a schematic representation of a coupling 4 according to the invention a deep vibrator 1 in a first embodiment.
  • Fig. 3 shows a schematic representation of a coupling 4 according to the invention a deep vibrator 1 in a second embodiment.
  • the clutch 4 has a radially outer cylindrical clutch housing 40 which is connected in the direction of the longitudinal axis L via a cylindrical annular coupling housing elastic closure 41, which may also be referred to as a coupling rubber 41, with the cylindrical outer wall or outside of the clutch ram 8.
  • the coupling rubber 41 serves the elastic completion of the clutch 4 out to the surrounding soil.
  • the clutch 4 is connected via a coupling joint 42 with the lower end 80 of the coupling punch 8.
  • the coupling joint 42 has a first vibration damper 5, which is arranged centrally in the direction of the longitudinal axis L between a second, upper vibration damper 6 and a third, lower vibration damper 7.
  • Each vibration damper 5, 6, 7 has radially outboard a first fastening element 51, 61, 71, which is connected to the coupling housing 40, and a radially inner fastening element 52, 62, 72, which is connected to the lower end 80 of the coupling punch 8, on.
  • a spring element 53, 63, 73 is arranged.
  • the fastening elements 51, 52, 61, 62, 71, 72 are formed as metal elements 51, 52, 61, 62, 71, 72 and the spring elements 53, 63, 73 as elastic rubber body 53, 63, 73 and vulcanized to each other.
  • the vibration dampers 5, 6, 7 can therefore also be referred to as vibration metals 5, 6, 7.
  • the three vibration dampers 5, 6, 7 are formed as separate elements, which can be joined together to form the coupling joint 42.
  • the two embodiment of a coupling 4 according to the invention according to the Fig. 3 are the three vibration damper 5, 6, 7 made in one piece, wherein the metal elements 51, 52, 61, 62, 71, 72 are continuous, the elastic rubber body 53, 63, 73, however, are made in several parts.
  • the coupling joint 42 can absorb torsional forces, which is essentially taken over by the second, upper oscillating metal 6 and the third, lower oscillating metal 7.
  • the first, central oscillating metal 5 can absorb not only torsional forces but also tensile and compressive forces at the same time, as will be described in more detail below with reference to three embodiments of the vibrating metal 5 according to the invention.
  • Fig. 4 shows a schematic detail view of a vibration damper 5 or vibration metal 5 according to the invention in a first embodiment. Shown is the part of the vibrating metal 5 of Fig. 2 , which is disposed on the left between the lower end 80 of the coupling punch 8 and the clutch housing 40, so that the radial direction R in the illustration of Fig. 4 extends to the left and thus the longitudinal axis L is right of the illustration (not shown).
  • the first, radially outer metal element 51 has spaced apart in the direction of the longitudinal axis L and arranged at its upper or lower edge in the direction of the longitudinal axis L each have a radial projection 54, 55 which are equally radially inwardly to the second, radially inner metal element 52nd extend to a radius R1.
  • a radial projection 56 on the second, radially inner metal member 52 is disposed radially outwardly to the first, radially outer metal member 51 through extends to a radius R2.
  • the radius R1 is less than the radius R2, so that the projections 54, 55, 56 overlap in this area viewed from the longitudinal axis L. This overlap ensures that, at least in this area, forces FL in the direction of the longitudinal axis L can be transmitted via the elastic rubber body 53 between the metal elements 51, 52.
  • forces FL in the direction of the longitudinal axis L can be transmitted via the elastic rubber body 53 between the metal elements 51, 52.
  • the projections 54, 55, 56 are aligned obliquely and parallel to each other.
  • the spring body 53 can be formed with an approximately constant thickness between the metal elements 51, 52, so that the spring body 53 can produce a comparable resilient effect in all directions.
  • the oscillations of the percussion mechanism 3 with respect to the coupling ram 8 can be carried out or transmitted uniformly in this way.
  • the vibration metal 5 according to the invention, the projections 54, 55 of the first, radially outer metal element 51 are formed round or arcuate. As a result, even more even oscillations of the hammer mechanism 3 can be achieved with respect to the coupling punch 8.
  • the projections 54, 55, 56 are angular, so that they each have edges purely in the radial direction or purely in the direction of the longitudinal axis L. This may be the production of the Metal elements 51, 52 simplify and improve the transmission of tensile and compressive forces, however, limit the possibilities of the pendulum movements of the percussion mechanism 3 relative to the coupling ram 8 or make them less uniform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Springs (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

  • Die Erfindung betrifft einen Schwingungsdämpfer für ein Kupplungsgelenk eines Tiefenrüttlers gemäß dem Oberbegriff des Anspruchs 1, ein Kupplungsgelenk eines Tiefenrüttlers mit einem derartigen Schwingungsdämpfer gemäß dem Anspruch 10 sowie einen Tiefenrüttler mit einem derartigen Kupplungsgelenk gemäß dem Anspruch 14.
  • Ein Tiefenrüttler ist ein horizontal schwingungserzeugendes Gerät zur Bodenstabilisierung nicht tragfähiger Böden. Tiefenrüttler werden zur Durchführung von verschiedenen Rüttelverfahren eingesetzt, um den Bauuntergrund zu verbessern, falls dieser für das geplante Vorhaben keine ausreichende Tragfähigkeit aufweist. Hierzu werden durch den Tiefenrüttler Schwingungen in den Boden eingebracht.
  • Grobkörnige und rollige Böden wie z.B. Sand oder Kies können durch diese Schwingungen konsolidiert, d.h. in sich verdichtet, werden, indem sie in eine dichtere Lagerung gebracht werden (Rütteldruckverfahren). Der Tiefenrüttler wird dabei durch Luftspülung im Trockenverfahren oder durch Wasserspülung im Nassverfahren in den Boden eingebracht und die Konsolidierung beim Herausziehen des Tiefenrüttlers aus dem Boden vorgenommen.
  • Bei gemischt- oder feinkörnigen sowie bindigen Böden wie z.B. Feinsande oder Schluffe, bei denen keine ausreichende Verdichtung des Bodenmaterials erreicht werden kann, wird grobkörniges Zugabematerial wie z.B. Kies in den durch Spülung und Schwingungen verflüssigten Boden eingebracht, so dass eine sog. Rüttelstopfsäule geschaffen (Rüttel-Stopfverfahren). Der Tiefenrüttler kann hierzu auch als Schleusenrüttler ausgebildet werden, um das Zugabematerial durch eine Schleuse über ein Transportrohr zur Rüttlerspitze und dort in den durch Heben und Senken des Tiefenrüttlers entstehenden Hohlraum einbringen zu können.
  • Tiefenrüttler weisen ein zylindrisches Metallrohr als Gehäuse bzw. Rüttlergehäuse auf, dessen unteres Ende die Gehäusespitze oder Rüttlerspitze darstellt, mit der sie in den Untergrund eindringen können. Innerhalb des Gehäuses und oberhalb der Gehäusespitze ist das Schlagwerk angeordnet. Weiter oberhalb ist ein im Allg. elektrischer Antrieb angeordnet, welcher mit dem Schlagwerk verbunden ist und dieses antreiben kann, wobei auch ein hydraulischer Antrieb möglich ist. Dieser gesamte Bereich des Gehäuses mit Antrieb und Schlagwerk kann als Schlagwerkgehäuse bezeichnet werden. Das Gehäuse ist an ihrem oberen Ende über eine Rüttlerkupplung mit einem Verlängerungsrohr verbindbar, um mittels diesem mit einer Aufhängung an einem Bagger oder einem mäklergeführten Traggerät aufgehängt bzw. befestigt werden zu können.
  • Das Schlagwerk weist ein Unwuchtgewicht auf, welche mittels des Antriebs innerhalb des Schlagwerkgehäuses um die Längsachse des Tiefenrüttlers rotieren kann. Das rotierende Unwuchtgewicht kann das Schlagwerkgehäuse samt Gehäusespitze in eine schwingende, taumelnde Rotationsbewegung um die Längsachse versetzen, so dass das umgebende verflüssigte Bodenmaterial radial verdrängt und bzw. oder umgelagert werden kann.
  • Die Kupplung (Rüttlerkupplung) verbindet das Schlagwerk samt Antrieb bzw. das Schlagwerkgehäuse schwingungsdämpfend mit dem Kupplungsstempel, welcher seinerseits starr mit dem Verlängerungsrohr verbunden ist. Die Kupplung dient der Verbindung des Schlagwerks und des Kupplungsstempels derart, dass das Schlagwerk sicher in Richtung der Längsachse geführt, d.h. gedrückt und gezogen, werden kann und gleichzeitig seine Pendelbewegung um die Längsachse ausführen kann. Dieser Teil des Tiefenrüttlers kann auch als Kupplungsgelenk bezeichnet werden.
  • Das Kupplungsgelenk ist hierzu elastisch ausgeführt, um die Pendelbewegung des Schlagwerkes um die Längsachse zu ermöglichen. Gleichzeitig dient die Elastizität des Kupplungsgelenks der Aufnahme von Prellschlägen, welche durch das Rütteln des Bodens in das Schlagwerk eingeleitet werden können, um diese vom Kupplungsstempel und damit vom Traggerät bzw. Bagger fernzuhalten. Auch soll hierdurch die Übertragung der Schwingungen der Rüttelverfahren auf Traggerät bzw. Bagger vermieden werden. Das Kupplungsgelenk wird üblicherweise durch einen oder mehrere Schwingungsdämpfer wie z.B. ein Schwingmetall realisiert, welches das eigentliche Kupplungsgelenk darstellt. Das Schwingmetall kann auch als Schwingungsdämpferbuchse oder Schockabsorber bezeichnet werden.
  • Das Schwingmetall stellt eine Gummi-Metall-Verbindung dar, bei der ein elastischer Gummikörper zwischen zwei Metallteilen anvulkanisiert ist und elastisch dämpfend zwischen diesen wirken kann. Der in Richtung der Längsachse obere Teil des Schwingmetalls kann um Kupplungsstempel und der in Richtung der Längsachse untere Teil des Schwingmetalls kann im Kupplungsgehäuse befestigt sein. Auch kann radial innere Teil des Schwingmetalls am Kupplungsstempel und der radial äußere Teil des Schwingmetalls am Kupplungsgehäuse befestigt sein. Die konkreten Ausführungen des Kupplungsgelenks sind individuelle Konstruktion der einzelnen Herstellungsfirmen von Tiefenrüttlern.
  • Die Kupplung kann unterschiedlich ausgestaltet sein und ist im Allgemeinen eine individuelle Konstruktion der Herstellerfirmen von Tiefenrüttlern. Dabei sind Kupplungen bekannt, die vollelastisch ausgebildet sind, d.h. lediglich Schwingmetalle aufweisen, als auch Kupplungen, die neben Schwingmetallen auch Pendellager oder dergleichen aufweisen, welches ein Pendelkugellager oder ein Pendelrollenlager sein kann. Diese sind unterschiedlich aufgebaut und können ein unterschiedliches Übertragungsverhalten aufweisen.
  • Ein Pendellager kann axialen und radialen Belastungen standhalten und eignet sich gut, um Fluchtfehler auszugleichen. Pendellager sind für schwerste Belastungen geeignet, d.h. sie weisen hohe Tragzahlen auf.
  • Nachteilig ist hierbei, dass ein Pendellager keine elastische Wirkung hat und damit keine Schwingungen aufnehmen kann. Somit kann dieses Kupplungsgelenk keine Zug- und Druckkräfte aufnehmen bzw. nur in sehr eingeschränktem Maße.
  • Die EP 1 016 759 A1 beschreibt eine Tiefenvibrationsvorrichtung, welche vertikal in den Boden abgesenkt wird. Dabei wird ein Unwuchtgewicht um die Längsachse der Vorrichtung gedreht, so dass die Vorrichtung einem Rotationsweg in einer horizontalen Ebene folgt. Bei der Tiefenvibrationsvorrichtung wird der Winkel zwischen der Auslenkung der Vorrichtung in der Rotationspfadebene und dem Unwuchtgewicht innerhalb der Vorrichtung bestimmt und verwendet, um den Grad der Verdichtung zu berechnen, der wiederum verwendet wird, um die Verdichtungsleistung der Vorrichtung zu steuern.
  • Die DE 102 32 314 beschreibt ein vibrierendes Bohrwerkzeug mit einem geformten Bohrer mit einem radialen Vibrator, der eine rotierende Masse umfasst, um den geformten Bohrer in den Boden zu treiben. Ein zusätzlicher Vibrator im Kopf des Bohrmeißels erzeugt axiale Vibrationen für ein schnelleres Eindringen von harten Bodenschichten. Ein Vibrationsdämpfungseinsatz ist zwischen den Vibratoren positioniert, während ein herkömmlicher Dämpfungseinsatz zwischen dem Bohrmeißel und dem Träger positioniert ist. Der Axialvibrator arbeitet als hydraulischer/pneumatischer Hammer. Die Vibratoren werden von elektrischen, hydraulischen oder pneumatischen Motoren angetrieben. Der Bohrmeißel hat eine integrale Zuführung für Ballastmaterial, um das Loch nachzufüllen, wenn das Bohrmeißel zurückgezogen wird.
  • Die EP 1759 125 B1 beschreibt eine Vorrichtung zum Führen einer Welle in einer oszillierenden Bewegung um einen Drehpunkt, der sich auf der Achse der Welle befindet, wobei die Vorrichtung ein sphärisches Kugellager aufweist, das an der Welle innerhalb zweier Kugellager angebracht ist, die übereinander angeordnet und in einer festen Halterung montiert sind.
  • Die WO 02 077 371 A1 beschreibt einen Tiefenvibrator mit einem Vibratorrohr und einer Exzenterplatte, die innerhalb des Vibratorrohrs angeordnet ist und sich um eine Exzenterwelle dreht, und einen Motor, der die exzentrische Welle antreibt und der außerhalb des Vibratorrohrs angeordnet ist.
  • Eine Aufgabe der vorliegenden Erfindung ist es, einen Schwingungsdämpfer für ein Kupplungsgelenk eines Tiefenrüttlers bereitzustellen, welcher kompakt aufgebaut ist und gleichzeitig sowohl Torsionskräfte als auch Zug-/Druckkräfte aufnehmen kann. Zumindest soll eine Alternative zu bekannten Schwingungsdämpfern für Kupplungsgelenke von Tiefenrüttlern bereitgestellt werden.
  • Die Aufgabe wird erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Anspruchs 1, ein Kupplungsgelenk gemäß dem Anspruch 10 sowie einen Tiefenrüttler gemäß dem Anspruch 14 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.
  • Somit betrifft die vorliegende Erfindung einen Schwingungsdämpfer für ein Kupplungsgelenk eines Tiefenrüttlers zum Verdichten eines Bodens. Das Kupplungsgelenk ist ausgebildet, um radial zwischen einem radial innenseitigen unteren Ende eines Kupplungsstempels des Tiefenrüttlers und einem radial außenseitigen Kupplungsgehäuse des Tiefenrüttlers angeordnet werden zu können. Das Kupplungsgelenk weist ein erstes Befestigungselement, ein zweites Befestigungselement und ein zumindest abschnittsweise radial zwischen dem ersten Befestigungselement und dem zweiten Befestigungselement angeordnetes Federelement auf. Die Befestigungselemente können Metallelemente und das Federelement ein Gummikörper sein, sodass der Schwingungsdämpfer auch als Schwingmetall bezeichnet werden kann. Der Gummikörper kann an den beiden Metallelementen anvulkanisiert sein, wodurch eine feste Verbindung zwischen diesen Elementen geschaffen werden kann.
  • Die Anordnung dieser Elemente radial hintereinander ist vorteilhaft, weil der Schwingungsdämpfer auf diese Art und Weise in Richtung der Längsachse vergleichsweise kurz und kompakt aufgebaut werden kann. Ferner können durch diese Anordnung Schwingungen vom oberen Kupplungsgummi, welches die äußeren Kanten des Kupplungsgehäuses und des Kupplungsstempels elastisch miteinander verbindet und dem Abschluss des Kupplungsgelenks gegen die Umgebung dient, ferngehalten werden, weil diese durch den radial ausgebildeten Schwingungsdämpfer ausgenommen werden können. Schwingungen können zu einem Bruch des oberen Kupplungsgummis führen, wodurch dann Erdreich zwischen den Kupplungsstempel und das Kupplungsgehäuse gelangen kann, was zu einer Versteifung bzw. zu einem Bruch der Kupplung führen kann. Diese Gefahr kann somit verringert werden.
  • Der Schwingungsdämpfer zeichnet sich erfindungsgemäß dadurch aus, dass wenigstens ein Befestigungselement wenigstens einen radialen Vorsprung aufweist, der sich zumindest teilweise radial zum anderen Befestigungselement hin erstreckt und gegen den das Federelement zumindest teilweise in Richtung der Längsachse gedrückt werden kann, wobei sich die radialen Vorsprünge teilweise radial überlappen. Mit anderen Worten verengt der radiale Vorsprung den radialen Abstand zwischen den beiden Befestigungen, wobei die übrigen Bereiche der Befestigungselemente einen größeren Abstand zueinander aufweisen und mit anderen Worten erstrecken sich die Vorsprünge derart in radialer Richtung, sodass sie sich aus Richtung der Längsachse betrachtet überdecken. Hierdurch kann erreicht werden, dass der Federkörper zumindest teilweise vollkommen in Richtung der Längsachse zwischen den Vorsprüngen angeordnet ist, so dass die Dämpfung von Zug- bzw. Druckkräften weiter verbessert werden kann.
  • Auf diese Weise wird eine Fläche des radialen Vorsprungs geschaffen, welche zumindest teilweise in Richtung der Längsachse hin ausgerichtet ist und auch als Kragen oder Teller bezeichnet werden kann. Bei einer zumindest teilweisen Belastung des Schwingungsdämpfers in Richtung der Längsachse durch Druckkräfte zum radialen Vorsprung hin oder durch Zugkräfte vom radialen Vorsprung weg, kann das Federelement gegen diese Fläche des radialen Vorsprungs gedrückt bzw. von diesem weggezogen werden. Hierdurch können die Zug- bzw. Druckkräfte gedämpft werden, welche insbesondere beim Einfahren in das Erdreich sowie bei Ziehvorgang während der Bodenverdichtung entstehen können. Durch das Federelement können weiterhin Torsionskräfte und Prellschläge aufgenommen und eine Pendelbewegung ermöglicht werden. Derartige Belastungen können durch ein Pendellager gar nicht aufgenommen werden. Ferner ist ein Schwingmetall günstiger als ein Pendellager.
  • Gemäß einem Aspekt der vorliegenden Erfindung weist das erste Befestigungselement einen ersten radialen Vorsprung und einen zweiten radialen Vorsprung auf, die zueinander in Richtung der Längsachse beabstandet angeordnet sind. Auf diese Weise können Zug- bzw. Druckkräfte in beide Richtungen der Längsachse gedämpft werden, was die dämpfende Wirkung verbessert. Mit anderen Worten kann durch die Anordnung der zueinander versetzten beiden Vorsprünge des ersten Befestigungselements mit dazwischenliegendem Federkörper erreicht werden, dass bei einer Belastung in Richtung der Längsachse der Federkörper an dem einen Vorsprung zieht und auf den anderen Vorsprung drückt. Kehrt sich die Richtung der Belastung um, so drückt der Federkörper auf den einen Vorsprung und zieht an dem anderen Vorsprung. Auf diese Art und Weise können bei identischer Ausgestaltung der Vorsprünge gleiche Dämpfungswirkungen in beide Richtungen erreicht werden. Sind die Vorsprünge unterschiedlich ausgestaltet, so können bessere Dämpfungswirkungen als bei nur einem Vorsprung erreicht werden.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist das zweite Befestigungselement einen radialen Vorsprung auf, der in Richtung der Längsachse zu den Enden des zweiten Befestigungselements beabstandet, vorzugsweise etwa mittig, angeordnet ist. Auch hierdurch kann eine Dämpfung von Zug- bzw. Druckkräften erreicht werden, wobei in dieser Anordnung das Federelement von beiden Seiten in Richtung der Längsachse auf den einen Vorsprung drücken bzw. an diesem ziehen kann.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist der radiale Vorsprung des zweiten Befestigungselements in Richtung der Längsachse zwischen dem ersten radialen Vorsprung und dem zweiten radialen Vorsprung des ersten Befestigungselements angeordnet ist. Diese Anordnung verbessert die Dämpfung von Zug- bzw. Druckkräften weiter, weil der Federkörper in Richtung der Längsachse an sich teilweise gegenüberliegenden Flächen befestigt ist und jeweils an diesen ziehen bzw. gegen diese drücken kann.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist wenigstens ein radialer Vorsprung zumindest abschnittsweise schräg verlaufend ausgebildet. Unter einem schrägen Verlauf ist dabei zu verstehen, dass sich diese schräg verlaufende Fläche des Vorsprungs teilweise in radialer Richtung und gleichzeitig teilweise in Richtung der Längsachse erstreckt. Auf diese Weise kann erreicht werden, dass der Federkörper über alle seine Bereiche hinweg radiale Kräfte, Torsionskräfte sowie Zug- und Druckkräfte aufnehmen kann.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung sind der erste radiale Vorsprung und der zweite radiale Vorsprung des ersten Befestigungselements zumindest abschnittsweise zueinander entgegengesetzt schräg verlaufend ausgebildet. Auf diese Weise können die beiden Vorsprünge das Federelement und ggfs. den gegenüberliegenden Vorsprung des zweiten Befestigungselements zwischen sich einschließen und das Federelement kann gleichzeitig radiale Kräfte, Torsionskräfte sowie Zug- und Druckkräfte aufnehmen.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist der radiale Vorsprung des zweiten Befestigungselements zumindest abschnittsweise einseitig, vorzugsweise beidseitig, schräg verlaufend ausgebildet. Hierdurch kann auch dieser Vorsprung dazu beitragen, dass der Federkörper sowohl radiale Kräfte als auch Zug- und Druckkräfte aufnehmen kann.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist der radiale Vorsprung des zweiten Befestigungselements zum ersten radialen Vorsprung des ersten Befestigungselements im Wesentlichen parallel verlaufend ausgebildet und bzw. oder der radiale Vorsprung des zweiten Befestigungselements ist zum zweiten radialen Vorsprung des ersten Befestigungselements im Wesentlichen parallel verlaufend ausgebildet. Hierdurch können einander gegenüberliegende Flächen geschaffen werden, an denen der Federkörper ziehen bzw. auf die der Federkörper drücken kann. Dies verbessert die Dämpfung von Zug- bzw. Druckkräften.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist das erste Befestigungselement radial außenseitig und das zweite Befestigungselement radial innenseitig angeordnet.
  • Die vorliegende Erfindung betrifft auch ein Kupplungsgelenk für einen Tiefenrüttler zum Verdichten eines Bodens mit einem ersten Schwingungsdämpfer wie zuvor beschrieben. Auf diese Weise können die zuvor beschriebenen Eigenschaften und Vorteile des erfindungsgemäßen Schwingungsdämpfers bei einem Kupplungsgelenk eines Tiefenrüttlers genutzt werden.
  • Gemäß einem Aspekt der vorliegenden Erfindung weist das Kupplungsgelenk ferner einen zweiten Schwingungsdämpfer mit einem ersten Befestigungselement, einem zweiten Befestigungselement und einem zumindest abschnittsweise radial zwischen dem ersten Befestigungselement und dem zweiten Befestigungselement angeordneten Federelement auf, wobei der zweite Schwingungsdämpfer in Richtung der Längsachse unterhalb oder oberhalb des ersten Schwingungsdämpfers angeordnet ist. Dabei ist der zweite Schwingungsdämpfer zur Aufnahme von Torsionskräften um die Längsachse vorgesehen, welche die wesentlichen Belastungen bei einem Tiefenrüttler darstellen. Auf diese Weise kann diese Aufgabe durch den zweiten Schwingungsdämpfer unterstützt werden, so dass der erste Schwingungsdämpfer zusätzlich zur Dämpfung von Zug- und Druckkräften ausgebildet und eingesetzt werden kann, ohne dass das Kupplungsgelenk Torsionskräfte nicht ausreichend aufnehmen könnte.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung weist das Kupplungsgelenk ferner einen dritten Schwingungsdämpfer mit einem ersten Befestigungselement, einem zweiten Befestigungselement und einem zumindest abschnittsweise radial zwischen dem ersten Befestigungselement und dem zweiten Befestigungselement angeordneten Federelement auf, wobei der dritte Schwingungsdämpfer relativ zum ersten Schwingungsdämpfer dem zweiten Schwingungsdämpfer in Richtung der Längsachse gegenüberliegend angeordnet ist. Durch den dritten Schwingungsdämpfer, der vorzugsweise identisch zum zweiten Schwingungsdämpfer aufgebaut ist, kann die Aufnahme von Torsionskräften weiter verbessert und der erste Schwingungsdämpfer von dieser Aufgabe noch weiter entlastet werden. Durch die beidseitige Anordnung des zweiten und dritten Schwingungsdämpfers in Richtung der Längsachse um den ersten Schwingungsdämpfer herum können die im Wesentlichen die Torsionskräfte aufnehmenden Elemente gleichmäßig im Kupplungsgelenk verteilt angeordnet werden.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung sind der erste Schwingungsdämpfer und der zweite Schwingungsdämpfer und bzw. oder der dritte Schwingungsdämpfer einstückig ausgebildet sind. Hierzu können die Befestigungselemente einstückig ausgebildet sein. Vorzugsweise sind ferner die Federkörper einstückig ausgebildet. Dies vereinfacht die Herstellung und Montage des Schwingungsdämpfers und verbessert die Positionierbarkeit der einzelnen Schwingungsdämpfer zueinander.
  • Die vorliegende Erfindung betrifft auch einen Tiefenrüttler zum Verdichten eines Bodens mit einem Kupplungsgelenk wie zuvor beschrieben, wobei das Kupplungsgelenk radial innenseitig mit dem unteren Ende eines Kupplungsstempels des Tiefenrüttlers und radial außenseitig mit einem Kupplungsgehäuse des Tiefenrüttlers verbunden ist. Auf diese Weise können die zuvor beschriebenen Eigenschaften und Vorteile des erfindungsgemäßen Kupplungsgelenks bei einem Tiefenrüttler genutzt werden.
  • Einige Ausführungsformen und weitere Vorteile der Erfindung werden nachstehend im Zusammenhang mit den folgenden Figuren erläutert. Darin zeigt:
  • Fig. 1
    eine schematische Darstellung eines Tiefenrüttler;
    Fig. 2
    eine schematische Darstellung einer erfindungsgemäßen Kupplung eines Tiefenrüttlers in einer ersten Ausführungsform;
    Fig. 3
    eine schematische Darstellung einer erfindungsgemäßen Kupplung eines Tiefenrüttlers in einer zweiten Ausführungsform;
    Fig. 4
    eine schematische Detailansicht eines erfindungsgemäßen Schwingungsdämpfers in einer ersten Ausführungsform;
    Fig. 5
    eine schematische Detailansicht eines erfindungsgemäßen Schwingungsdämpfers in einer zweiten Ausführungsform; und
    Fig. 6
    eine schematische Detailansicht eines erfindungsgemäßen Schwingungsdämpfers in einer dritten Ausführungsform.
  • Fig. 1 zeigt eine schematische Darstellung eines Tiefenrüttler 1. Der Tiefenrüttler 1 erstreckt sich im Wesentlichen zylindrisch in Richtung seiner Längsachse L, zu der sich senkrecht die radiale Richtung R bzw. der Radius R erstreckt.
  • Der Tiefenrüttler 1 weist im unteren Bereich der Darstellung der Fig. 1 das Rüttlergehäuse 10 bzw. Gehäuse 10 auf, welches einen zylindrischen Gehäuseteil 11 bzw. das Schlagwerkgehäuse 11 aufweist, von dem sich weiter nach unten die Gehäusespitze 12 bzw. Rüttlerspitze 12 erstreckt, mit der der Tiefenrüttler 1 in den Boden einfahren kann. Im Schlagwerkgehäuse 11 ist das Schlagwerk 3 angeordnet, welches einen elektrischen Antrieb 2 aufweist, der über eine Unwuchtgewichtswelle 30 ein Unwuchtgewicht 31 in die die Unwucht erzeugende Rotationsbewegung um die Längsachse L versetzen kann.
  • Der Tiefenrüttler 1 weist im oberen Bereich der Darstellung der Fig. 1 den Kupplungsstempel 8 bzw. das Gestänge 8 auf, welcher über eine Kupplung 4 bzw. eine Rüttlerkupplung 4 mit dem Schlagwerk 3 bzw. dessen Schlagwerkgehäuse 11 verbunden ist.
  • Fig. 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Kupplung 4 eines Tiefenrüttlers 1 in einer ersten Ausführungsform. Fig. 3 zeigt eine schematische Darstellung einer erfindungsgemäßen Kupplung 4 eines Tiefenrüttlers 1 in einer zweiten Ausführungsform.
  • Die Kupplung 4 weist ein radial außenliegendes zylindrisches Kupplungsgehäuse 40 auf, welches in Richtung der Längsachse L über einen zylindrischen ringförmigen elastischen Kupplungsgehäuseabschluss 41, der auch als Kupplungsgummi 41 bezeichnet werden kann, mit der zylindrischen Außenwand bzw. Außenseite des Kupplungsstempels 8 verbunden ist. Das Kupplungsgummi 41 dient dem elastischen Abschluss der Kupplung 4 nach außen zum umgebenden Erdreich hin. Innerhalb des Kupplungsgehäuses 40 ist die Kupplung 4 über ein Kupplungsgelenk 42 mit dem unteren Ende 80 des Kupplungsstempels 8 verbunden.
  • Das Kupplungsgelenk 42 weist einen ersten Schwingungsdämpfer 5 auf, der in Richtung der Längsachse L mittig zwischen einem zweiten, oberen Schwingungsdämpfer 6 und einem dritten, unteren Schwingungsdämpfer 7 angeordnet ist. Jeder Schwingungsdämpfer 5, 6, 7 weist radial außenliegend ein erstes Befestigungselement 51, 61, 71, welches mit dem Kupplungsgehäuse 40 verbunden ist, und ein radial innenliegendes Befestigungselement 52, 62, 72, welches mit dem unteren Ende 80 des Kupplungsstempels 8 verbunden ist, auf. Jeweils radial zwischen den Befestigungselementpaaren 51, 52, 61, 62, 71, 72 ist ein Federelement 53, 63, 73 angeordnet. Die Befestigungselemente 51, 52, 61, 62, 71, 72 sind als Metallelemente 51, 52, 61, 62, 71, 72 und die Federelemente 53, 63, 73 als elastische Gummikörper 53, 63, 73 ausgebildet und aneinander anvulkanisiert. Die Schwingungsdämpfer 5, 6, 7 können daher auch als Schwingmetalle 5, 6, 7 bezeichnet werden.
  • In der ersten Ausführungsform einer erfindungsgemäßen Kupplung 4 gemäß der Fig. 2 sind die drei Schwingungsdämpfer 5, 6, 7 als separate Elemente ausgebildet, die zu dem Kupplungsgelenk 42 zusammengefügt werden können. In der zweiten Ausführungsform einer erfindungsgemäßen Kupplung 4 gemäß der Fig. 3 sind die drei Schwingungsdämpfer 5, 6, 7 einteilig ausgeführt, wobei die Metallelemente 51, 52, 61, 62, 71, 72 durchgängig, die elastischen Gummikörper 53, 63, 73 jedoch mehrteilig ausgeführt sind.
  • Durch die Schwingmetalle 5, 6, 7 wird in beiden Ausführungsformen der erfindungsgemäßen Kupplung 4 die Pendelbewegung des Schlagwerks 3 gegenüber dem Kupplungsstempel 8 über das Kupplungsgelenk 42 ermöglicht. Gleichzeitig kann das Kupplungsgelenk 42 Torsionskräfte aufnehmen, was im Wesentlichen durch das zweite, obere Schwingmetall 6 und das dritte, untere Schwingmetall 7 übernommen wird. Erfindungsgemäß kann das erste, mittlere Schwingmetall 5 nicht nur Torsionskräfte sondern auch gleichzeitig Zug- und Druckkräfte aufnehmen, wie im Folgenden anhand von drei Ausführungsformen des erfindungsgemäßen Schwingmetalls 5 näher beschrieben werden wird.
  • Fig. 4 zeigt eine schematische Detailansicht eines erfindungsgemäßen Schwingungsdämpfers 5 bzw. Schwingmetalls 5 in einer ersten Ausführungsform. Dargestellt ist der Teil des Schwingmetalls 5 der Fig. 2, der links zwischen dem unteren Ende 80 des Kupplungsstempels 8 und dem Kupplungsgehäuse 40 angeordnet ist, so dass sich die radiale Richtung R in der Darstellung der Fig. 4 nach links erstreckt und somit die Längsachse L rechts der Darstellung liegt (nicht dargestellt).
  • Das erste, radial äußere Metallelement 51 weist in Richtung der Längsachse L beabstandet und an seiner oberen bzw. unteren Kante in Richtung der Längsachse L angeordnet jeweils einen radialen Vorsprung 54, 55 auf, die sich gleichermaßen nach radial innen zum zweiten, radial inneren Metallelement 52 hin bis zu einem Radius R1 erstrecken. Etwa mittig in Richtung der Längsachse L zwischen den beiden radialen Vorsprüngen 54, 55 des ersten, radial äußeren Metallelements 51 ist ein radialer Vorsprung 56 am zweiten, radial inneren Metallelement 52 angeordnet, der sich radial nach außen zum ersten, radial äußeren Metallelement 51 hin bis zu einem Radius R2 erstreckt. Der Radius R1 ist dabei geringer als der Radius R2, so dass sich die Vorsprünge 54, 55, 56 in diesem Bereich aus Richtung der Längsachse L betrachtet überlappen. Durch diese Überlappung wird sichergestellt, dass zumindest in diesem Bereich Kräfte FL in Richtung der Längsachse L über den elastischen Gummikörper 53 zwischen den Metallelementen 51, 52 übertragen werden können. Somit können erfindungsgemäß über das Schwingmetall 5 nicht nur Torsionskräfte sondern auch gleichzeitig Zug- und Druckkräfte übertragen werden.
  • In der ersten Ausführungsform der Fig. 4 des erfindungsgemäßen Schwingmetalls 5 sind die Vorsprünge 54, 55, 56 schräg verlaufend und parallel zueinander ausgerichtet. Hierdurch kann der Federkörper 53 mit einer etwa gleichbleibenden Dicke zwischen den Metallelementen 51, 52 ausgebildet werden, sodass der Federkörper 53 in alle Richtungen eine vergleichbare federnde Wirkung erzeugen kann. Auch können die Pendelbewegungen des Schlagwerks 3 gegenüber dem Kupplungsstempel 8 auf diese Weise gleichmäßig ausgeführt bzw. übertragen werden.
  • In der zweiten Ausführungsform der Fig. 5 des erfindungsgemäßen Schwingmetalls 5 sind die Vorsprünge 54, 55 des ersten, radial äußeren Metallelements 51 rund bzw. bogenförmig ausgebildet. Hierdurch können noch gleichmäßigere Pendelbewegungen des Schlagwerks 3 gegenüber dem Kupplungsstempel 8 erreicht werden.
  • In der dritten Ausführungsform der Fig. 6 des erfindungsgemäßen Schwingmetalls 5 sind die Vorsprünge 54, 55, 56 eckig ausgebildet, so dass sie jeweils Kanten rein in radialer Richtung bzw. rein in Richtung der Längsachse L aufweisen. Dies kann die Herstellung der Metallelemente 51, 52 vereinfachen und die Übertragung von Zug- und Druckkräften verbessern, jedoch die Möglichkeiten der Pendelbewegungen des Schlagwerks 3 gegenüber dem Kupplungsstempel 8 einschränken bzw. diese weniger gleichmäßig werden lassen.
  • BEZUGSZEICHENLISTE (Teil der Beschreibung)
  • L
    Längsachse bzw. Rotationsachse des Tiefenrüttlers 1
    FL
    Druckkraft in Richtung der Längsachse
    FR
    Druckkraft in rein radialer Richtung
    R
    Radius bzw. radiale Richtung senkrecht zur Längsachse L
    R1
    innerer Radius des ersten bzw. zweiten radialen Vorsprungs 54, 55 des ersten, äußeren Befestigungselements 51 des ersten Schwingungsdämpfers 5
    R2
    äußerer Radius des radialen Vorsprungs 56 des zweiten, inneren Befestigungselements 52 des ersten Schwingungsdämpfers 5
    1
    (rohrförmiger, zylindrischer) Tiefenrüttler
    10
    Rüttlergehäuse bzw. Gehäuse
    11
    zylindrischer Gehäuseteil bzw. Schlagwerkgehäuse
    12
    Gehäusespitze bzw. Rüttlerspitze
    2
    (elektrischer) Antrieb
    3
    Schlagwerk
    30
    Unwuchtgewichtswelle
    31
    Unwuchtgewicht
    4
    Kupplung bzw. Rüttlerkupplung
    40
    Kupplungsgehäuse
    41
    elastischer Kupplungsgehäuseabschluss bzw. Kupplungsgummi
    42
    Kupplungsgelenk
    5
    erster, mittlerer Schwingungsdämpfer bzw. Schwingmetall
    51
    erstes, radial äußeres Befestigungselement bzw. Metallelement des ersten Schwingungsdämpfers 5
    52
    zweites, radial inneres Befestigungselement bzw. Metallelement des ersten Schwingungsdämpfers 5
    53
    Federelement bzw. Gummikörper des ersten Schwingungsdämpfers 5
    54
    erster, oberer radialer Vorsprung des ersten Befestigungselements 51 des ersten Schwingungsdämpfers 5
    55
    zweiter, unterer radialer Vorsprung des ersten Befestigungselements 51 des ersten Schwingungsdämpfers 5
    56
    radialer Vorsprung des zweiten Befestigungselements 52 des ersten Schwingungsdämpfers 5
    6
    zweiter, oberer Schwingungsdämpfer bzw. Schwingmetall
    61
    erstes, radial äußeres Befestigungselement bzw. Metallelement des zweiten Schwingungsdämpfers 6
    62
    zweites, radial inneres Befestigungselement bzw. Metallelement des zweiten Schwingungsdämpfers 6
    63
    Federelement bzw. Gummikörper des zweiten Schwingungsdämpfers 6
    7
    dritter, unterer Schwingungsdämpfer bzw. Schwingmetall
    71
    erstes, radial äußeres Befestigungselement bzw. Metallelement des dritten Schwingungsdämpfers 7
    72
    zweites, radial inneres Befestigungselement bzw. Metallelement des dritten Schwingungsdämpfers 7
    73
    Federelement bzw. Gummikörper des dritten Schwingungsdämpfers 7
    8
    Kupplungsstempel bzw. Gestänge
    80
    unteres Ende des Kupplungsstempels 8

Claims (14)

  1. Schwingungsdämpfer (5) für ein Kupplungsgelenk (42) eines Tiefenrüttlers (1) zum Verdichten eines Bodens,
    wobei das Kupplungsgelenk (42) ausgebildet ist, um radial zwischen einem radial innenseitigen unteren Ende (80) eines Kupplungsstempels (8) des Tiefenrüttlers (1) und einem radial außenseitigen Kupplungsgehäuse (40) des Tiefenrüttlers (1) angeordnet werden zu können, mit
    einem ersten Befestigungselement (51),
    einem zweiten Befestigungselement (52), und
    einem zumindest abschnittsweise radial zwischen dem ersten Befestigungselement (51) und dem zweiten Befestigungselement (52) angeordneten Federelement (53),
    dadurch gekennzeichnet, dass
    wenigstens ein Befestigungselement (51, 52) wenigstens einen radialen Vorsprung (54, 55, 56) aufweist, der sich zumindest teilweise radial zum anderen Befestigungselement (51, 52) hin erstreckt und gegen den das Federelement (53) zumindest teilweise in Richtung der Längsachse (L) gedrückt werden kann,
    wobei sich die radialen Vorsprünge (54, 55, 56) teilweise radial überlappen.
  2. Schwingungsdämpfer (5) nach Anspruch 1,
    wobei das erste Befestigungselement (51) einen ersten radialen Vorsprung (54) und einen zweiten radialen Vorsprung (55) aufweist, die zueinander in Richtung der Längsachse (L) beabstandet angeordnet sind.
  3. Schwingungsdämpfer (5) nach Anspruch 1 oder 2,
    wobei das zweite Befestigungselement (52) einen radialen Vorsprung (56) aufweist, der in Richtung der Längsachse (L) zu den Enden des zweiten Befestigungselements (52) beabstandet, vorzugsweise etwa mittig, angeordnet ist.
  4. Schwingungsdämpfer (5) nach Anspruch 2 oder 3,
    wobei der radiale Vorsprung (56) des zweiten Befestigungselements (52) in Richtung der Längsachse (L) zwischen dem ersten radialen Vorsprung (54) und dem zweiten radialen Vorsprung (55) des ersten Befestigungselements (51) angeordnet ist.
  5. Schwingungsdämpfer (5) nach einem der vorherigen Ansprüche,
    wobei wenigstens ein radialer Vorsprung (54, 55, 56) zumindest abschnittsweise schräg verlaufend ausgebildet ist.
  6. Schwingungsdämpfer (5) nach einem der Ansprüche 2 bis 5,
    wobei der erste radiale Vorsprung (54) und der zweite radiale Vorsprung (55) des ersten Befestigungselements (51) zumindest abschnittsweise zueinander entgegengesetzt schräg verlaufend ausgebildet sind.
  7. Schwingungsdämpfer (5) nach einem der Ansprüche 3 bis 6,
    wobei der radiale Vorsprung (56) des zweiten Befestigungselements (52) zumindest abschnittsweise einseitig, vorzugsweise beidseitig, schräg verlaufend ausgebildet ist.
  8. Schwingungsdämpfer (5) nach einem der Ansprüche 3 bis 7,
    wobei der radiale Vorsprung (56) des zweiten Befestigungselements (52) zum ersten radialen Vorsprung (54) des ersten Befestigungselements (51) im Wesentlichen parallel verlaufend ausgebildet ist, und/oder
    wobei der radiale Vorsprung (56) des zweiten Befestigungselements (52) zum zweiten radialen Vorsprung (55) des ersten Befestigungselements (51) im Wesentlichen parallel verlaufend ausgebildet ist.
  9. Schwingungsdämpfer (5) nach einem der vorherigen Ansprüche,
    wobei das erste Befestigungselement (51) radial außenseitig und das zweite Befestigungselement (52) radial innenseitig angeordnet ist.
  10. Kupplungsgelenk (42) für einen Tiefenrüttler (1) zum Verdichten eines Bodens, mit einem ersten Schwingungsdämpfer (5) nach einem der vorherigen Ansprüche.
  11. Kupplungsgelenk (42) nach Anspruch 10, ferner mit
    einem zweiten Schwingungsdämpfer (6), mit
    einem ersten Befestigungselement (61),
    einem zweiten Befestigungselement (62), und
    einem zumindest abschnittsweise radial zwischen dem ersten Befestigungselement (61) und dem zweiten Befestigungselement (62) angeordneten Federelement (63),
    wobei der zweite Schwingungsdämpfer (6) in Richtung der Längsachse (L) unterhalb oder oberhalb des ersten Schwingungsdämpfers (5) angeordnet ist.
  12. Kupplungsgelenk (42) nach Anspruch 11, ferner mit
    einem dritten Schwingungsdämpfer (7), mit
    einem ersten Befestigungselement (71),
    einem zweiten Befestigungselement (72), und
    einem zumindest abschnittsweise radial zwischen dem ersten Befestigungselement (71) und dem zweiten Befestigungselement (72) angeordneten Federelement (73),
    wobei der dritte Schwingungsdämpfer (7) relativ zum ersten Schwingungsdämpfer (5) dem zweiten Schwingungsdämpfer (6) in Richtung der Längsachse (L) gegenüberliegend angeordnet ist.
  13. Kupplungsgelenk (42) nach Anspruch 11 oder 12,
    wobei der erste Schwingungsdämpfer (5) und der zweite Schwingungsdämpfer (6) und/oder der dritte Schwingungsdämpfer (7) einstückig ausgebildet sind.
  14. Tiefenrüttler (1) zum Verdichten eines Bodens, mit
    einem Kupplungsgelenk (42) nach einem der Ansprüche 10 bis 13,
    wobei das Kupplungsgelenk (42) radial innenseitig mit dem unteren Ende (80) eines Kupplungsstempels (8) des Tiefenrüttlers (1) und radial außenseitig mit einem Kupplungsgehäuse (40) des Tiefenrüttlers (1) verbunden ist.
EP15823601.8A 2014-12-23 2015-12-21 Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers Active EP3237687B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014019138.9A DE102014019138A1 (de) 2014-12-23 2014-12-23 Schwingungsdämpfer für ein Kupplungsgelenk eines Tiefenrüttlers
PCT/EP2015/080735 WO2016102433A1 (de) 2014-12-23 2015-12-21 Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers

Publications (2)

Publication Number Publication Date
EP3237687A1 EP3237687A1 (de) 2017-11-01
EP3237687B1 true EP3237687B1 (de) 2019-09-11

Family

ID=55135188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15823601.8A Active EP3237687B1 (de) 2014-12-23 2015-12-21 Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers

Country Status (3)

Country Link
EP (1) EP3237687B1 (de)
DE (1) DE102014019138A1 (de)
WO (1) WO2016102433A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019105307U1 (de) 2019-09-25 2019-10-21 Albert Schneider Tiefenrüttler zum Verdichten eines Bodens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859962C2 (de) * 1998-12-29 2001-07-12 Keller Grundbau Gmbh Verfahren und Vorrichtung zur Verbesserung eines Baugrundes unter Ermittlung des Verdichtungsgrades
DE10115107A1 (de) * 2001-03-27 2002-10-31 Wilhelm Degen Tiefenrüttler
DE10232314A1 (de) * 2002-07-17 2004-02-05 Bauer Spezialtiefbau Gmbh Vorrichtung und Verfahren zum Verdichten von Böden und zur Herstellung von säulenförmigen Körpern im Boden mit Hilfe von Tiefenrüttlern
AU2005263847B2 (en) * 2004-06-23 2010-09-02 Bertin Technologies Device for guiding a shaft in an oscillating movement
FR2941714B1 (fr) * 2009-01-30 2015-01-02 Cie Du Sol Dispositif vibreur a motorisation hydraulique pour machine de vibrocompactage.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3237687A1 (de) 2017-11-01
DE102014019138A1 (de) 2016-06-23
WO2016102433A1 (de) 2016-06-30

Similar Documents

Publication Publication Date Title
EP2558649B1 (de) Anordnung zur bereitstellung einer pulsierenden druckkraft
DE102012201443A1 (de) Verdichterwalze für einen Bodenverdichter
DE3344315A1 (de) Abgestimmtes gyroskop mit dynamischem absorber
EP0116164B1 (de) Vibrationsramme
DE102011112316B4 (de) Schwingungserreger zur Erzeugung einer gerichteten Erregerschwingung
EP3450631B1 (de) Tiefenrüttler mit verstellbarer unwucht
EP3951057A1 (de) Bodenbearbeitungswalzensystem für eine bodenbearbeitungsmaschine
EP3354796B1 (de) Bodenverdichter
DE102014118802B4 (de) Arbeitseinrichtung
WO2016102432A1 (de) Tiefenrüttler
EP2891750B1 (de) An einem Trägergerät verstellbar angeordneter Plattenverdichter
EP3237687B1 (de) Schwingungsdämpfer für ein kupplungsgelenk eines tiefenrüttlers
EP2242590B1 (de) Unwuchterreger mit einer oder mehreren rotierbaren unwuchten
WO2013010277A1 (de) Unwuchterreger für ein bodenverdichtungsgerät
EP3832015A1 (de) Bodenbearbeitungswalze
EP3067470B1 (de) Rüttler als anbaugerät für eine baumaschine
EP3384096B1 (de) Anordnung zur bereitstellung einer pulsierenden druckkraft
DE102008017058B4 (de) Seitensteuerung für eine Vibrationsplatte
EP3230531B1 (de) Verfahren und vorrichtungen zur baugrundverbesserung
EP3617405B1 (de) Walzenvorrichtung mit schwingungerreger zur bodenverdichtung
DE102014226373A1 (de) Verdichtungsgerät, sowie Verfahren zum Verdichten von Böden
DE102011087096B4 (de) Werkzeug und Verfahren zum Erstellen von Bohrlöchern mit einem nicht rotationssymmetrischen Querschnitt
DE102014019141A1 (de) Tiefenrüttler zum Verdichten eines Bodens
DE202018105582U1 (de) Elektrohammer
DE4445188A1 (de) Gerät, insbesondere Stampfgerät, zur Bodenverdichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1178610

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010361

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015010361

Country of ref document: DE

Representative=s name: HOLZ, CHRISTIAN, DIPL.-ING. DR.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015010361

Country of ref document: DE

Owner name: WILLI MEYER BAUUNTERNEHMEN GMBH, DE

Free format text: FORMER OWNER: RSM INGENIEURE GMBH + WILLI MEYER BAUUNTERNEHMEN GMBH IN GBR, 29525 UELZEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010361

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151221

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1178610

Country of ref document: AT

Kind code of ref document: T

Owner name: WILLI MEYER BAUUNTERNEHMEN GMBH, DE

Effective date: 20231116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 9

Ref country code: IT

Payment date: 20231228

Year of fee payment: 9

Ref country code: FR

Payment date: 20231221

Year of fee payment: 9

Ref country code: DE

Payment date: 20231231

Year of fee payment: 9

Ref country code: AT

Payment date: 20231221

Year of fee payment: 9