EP3256415A1 - Crane and method for monitoring the overload protection of such a crane - Google Patents
Crane and method for monitoring the overload protection of such a craneInfo
- Publication number
- EP3256415A1 EP3256415A1 EP16703432.1A EP16703432A EP3256415A1 EP 3256415 A1 EP3256415 A1 EP 3256415A1 EP 16703432 A EP16703432 A EP 16703432A EP 3256415 A1 EP3256415 A1 EP 3256415A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- torque
- load
- boom
- crane
- dead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000012806 monitoring device Methods 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 230000005484 gravity Effects 0.000 claims description 7
- 238000004873 anchoring Methods 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/88—Safety gear
- B66C23/90—Devices for indicating or limiting lifting moment
- B66C23/905—Devices for indicating or limiting lifting moment electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C15/00—Safety gear
- B66C15/06—Arrangements or use of warning devices
- B66C15/065—Arrangements or use of warning devices electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/62—Constructional features or details
- B66C23/82—Luffing gear
- B66C23/821—Bracing equipment for booms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/88—Safety gear
- B66C23/90—Devices for indicating or limiting lifting moment
Definitions
- the present invention relates to a crane with a boom, to which at least one Lastabilitymi 'tte ⁇ is arranged be raised and lowered, with an overload protection device to the at least detecting means for detecting the projection and the load a load receiving means and wherein a monitoring device for monitoring the overload protection device is provided and has determining means for determining a boom holding and / or induced in a guy tensioning.
- the invention also relates to a method for monitoring the overload protection device of such a crane.
- the crane load is usually monitored by means of a crane control or an overload protection device implemented therein, if a critical load limit is reached, so that the crane threatens to fall over or is endangered in any other way in order then, if necessary, to switch off the corresponding drive devices of the crane in good time.
- an overload protection device usually works with stored load curves, which for a respective discharge the allowable load by means of sensors, the actual outreach and the actual load are detected on the crane and compared with the load permitted by the stored load curve for the respective outreach.
- the crane drives are switched off or at least slowed down by the overload protection device and / or a corresponding warning signal is displayed.
- the actual load can be determined, for example, from the hoist cable taking into account the reeving, for example by means of a force sensor which indicates the driving force of the hoist winch or also deflection rollers or bottles assigned to the force sensors.
- the projection ie the horizontal distance from an assumed tilting axis, in particular from the articulation or luffing axis of the boom, can be determined in various ways depending on the type of crane, for example by means of a position sensor which indicates the position of a cable winch, or an angular position sensor, the Indicates angle of attack of the boom or other suitable Ausladungssensoren, wherein a plurality of such sensors or detection means may be provided in combination with each other.
- an overload protection device can only operate safely and reliably if the said detection means actually correctly and precisely detect the projection and the load and do not provide false values.
- the load hook is driven with a double reeving, but the overload protection device only starts from a simple reeving, the load hook actually has twice as much load as indicated by the load detection means.
- the overload protection device would assume false values of the actual overshoot and / or the actual load, so that despite Comparison with the permissible load value for the corresponding projection according to the stored load curve, the stability of the crane may be at risk.
- the present invention is therefore based on the object to provide an improved crane and an improved method for monitoring the overload protection device, avoid the disadvantages of the prior art and advantageously develop the latter.
- a precise and permanently reliable monitoring of the overload protection device and its load and Ausladungser initiatedsstoff is to be created without costly scaling.
- the monitoring device determines a guy torque online from the continuously determined guy force, determines a load torque from the currently detected projection and the continuously detected load, determines a dead torque with the aid of stored crane data, the sum of said load torque and equalizes said dead moment with said guy torque and then, if a deviation detected during adjustment exceeds a tolerance threshold, emits an error and / or shutdown signal.
- the evaluation unit determines that the guy torque calculated by the torque calculator does not coincide or deviates too much from the sum of the counteracting load and dead moments, it can be assumed that with the sensor system or the detection means of the overload protection device that the load and detecting a discharge, something is wrong or the overload protection device is calculating incorrectly.
- the said tolerance threshold can be suitably set to take into account variable secondary loads such as wind forces, subsequently mounted billboards on the boom or other disturbance variables such as customary measuring tolerances.
- the aforementioned angle detector can in principle be designed differently, for example, be an angular position sensor, which is mounted in the region of the rocking axis of the boom.
- an angle detector and a Trommel eins- and / or drive position sensor may be provided which is associated with a retraction and / or detects the position of the guy rope and / or - boom for the boom and thus the boom angle.
- the boom setting angle determined with the aid of said setting or tilt angle detector is taken into account both when determining the load torque and when determining the dead moment, since a change in the boom set angle both the projection of the load receiving means and the lever arm or the projection of the center of gravity of the jib can influence.
- the monitoring device or its torque calculator can calculate the previously mentioned dead moment on the basis of the stored crane data, which may include the boom weight, the boom length, the center of gravity and / or the center of gravity distance from the luffing axis of the boom, taking into account said boom pitch.
- the Auslegerwippwinkels be taken into account the fact that with increasingly steep set boom of the lever arm of the dead weight and thus the dead moment is smaller.
- the torque calculator can also take into account the angle of attack for the load torque, since the lever arm or the overhang of the load-carrying means and thus the resulting load torque becomes smaller with the boom rising progressively steeper.
- the boom setting angle determined by said angle detector or rocking angle transmitter can be taken into account not only in the calculation of the dead moment and the load moment, but also in the calculation of the rotating in the opposite direction Abspannmoments, as usually also changes the effective lever arm of the bracing by adjusting the boom angle.
- the monitoring device or its moment calculator calculates from the respectively determined jib angle or rocking angle a lever arm of the clamping force on the boom, the projection of the at least one load receiving means and the lever arm of the dead load of the boom, in order to then, taking into account the respectively determined guying force, respectively calculate and balance the clockwise and anti-clockwise moments with the load and the stored boom dead weight.
- the crane has more than one load-carrying means, for example in the form of a first load hook, which runs from a main part of the boom or a trolley, and a second load hook, which runs from a boom extension or a so-called Flyjib, can for the plurality of load-receiving means each individual lever arms determined or discharges are taken into account in order to precisely determine the respective generated load moments.
- the monitoring device can advantageously assume that the lever arm can be related to a common tilting axis.
- the monitoring device can relate all lever arms of the guy, load and dead load forces on the rocking axis of the boom, whereby a simple, yet sufficiently precise torque calculation can be achieved.
- the calculation model used for this, which uses the monitoring device, is thereby considerably simplified without losing any accuracy.
- it is also possible to use different or different tilting axes for the moment calculation for example the base of the tower of a tower crane or an undercarriage support point located below the boom.
- the aforementioned calculation of the lever arms relative to the rocker axis of the boom considerably simplifies the calculation of moments.
- a force transmitter can be assigned to the neck cable or the neck tensioning rod which holds the boom in order to directly measure the tensioning force.
- at least one force transmitter of a guy strut or support for example in the form of a spire over which the guy stranding runs, be assigned to detect induced by the guy rope or rod reaction forces in the guy support.
- force and / or strain and / or bending deformation sensor can be assigned to a structural part of the crane, which undergoes a corresponding deformation by the clamping force.
- the bending moment introduced into the tower or the bending and / or expansion load resulting in the tower can be detected, which is a measure of the tension or reaction moment counteracting the load and dead moments.
- the guy force used in the context of the present invention may mean the force directly induced in a guy or the cantilever, or a related reaction force that occurs in a structural part of the crane and provides a measure of the load and dead moments counteracting the jacking force. or reaction moment.
- FIG. 1 is a schematic, fragmentary view of a tower crane with luffing boom and boom mounted extension on the boom in the form of a flyjib, as well as acting on the boom forces and moments,
- FIGS. 1 and 2 show a data flow diagram for clarifying the determination of the load and unloading or lever arm values, the torque calculation derived therefrom and the comparison of the clockwise rotating moments with the counterclockwise rotating moments, and FIGS.
- Fig. 3 a load curve of the overload protection device for a
- the crane 1 can be designed as a construction crane or tower crane, which comprises a tower 2, which can be supported on a revolving platform 3, which can be seated on an undercarriage and rotated about an upright axis of rotation.
- said tower 2 can also be anchored in a fixed manner in terms of rotation.
- the aforementioned undercarriage may be designed as a truck, caterpillar or otherwise movable, but also be a firmly anchored or firmly supported support base.
- Said tower 2 can carry a boom 3, which can be tilted up and down about a lying rocking axis 4, which can extend at the foot of the boom 3 and between tower 2 and boom 3.
- the boom 3 When trained as a top rotator, the boom 3 can also be rotated about an upright axis, in particular the tower longitudinal axis about the tower 2.
- Said boom 3 is braced by means of a bracing 5, wherein said brace 5 can have a neck cable 7 which can be adjusted by a retracting unit 7, by the angle of tipping or the angle of attack of the boom 3 preferably infinitely adjustable.
- the aforementioned Nackenseil 7 may in this case be guided or deflected over an only indicated spire 8, but alternatively or additionally, other support struts and in particular instead of a guy rope and a guy rod can be provided.
- a hoisting rope with a load hook 9 hinged thereto can run over a corresponding deflection roller in the area of the jib tip, wherein said load hook 9 or the hoist rope connected therewith could also be guided via a trolley running along the extension arm 3 in FIG can be moved in a known manner.
- a boom extension 10 in the form of a flyjib can be attached to the boom 3, whereby a further load-bearing means in the form of a load hook 11 on a corresponding hoist rope can run off the said flyjib.
- the boom 3 has a number of useful and dead load forces, which have different lever arms and, as shown in FIG. 1, exert torques on the boom 3 in a clockwise direction.
- the running off of the boom 3 and the boom extension 10 load hooks 9 and 11 pull the boom 3 of FIG. 1 in a clockwise direction downwards, wherein the forces FQ + S and F * G + s respectively attached to the load hooks 9 and 11 respectively Payload and the rope and hook weight result.
- the horizontal projection of said forces FG + S and F * G + S determines their lever arm IQ + S and IFJ with respect to the rocking axis 4 of the boom 3, which can be regarded as a tilting axis.
- the dead load of the boom 3 tries to pull this boom 3 downwards in a clockwise direction with the force FA according to FIG. 1, said dead load resulting from the own weight of the boom 3, the dead weight of the flyjib or the boom extension 10 and optionally on it attached additional components such as a trolley rope, pulleys, headlights, winches, actuators and other attachments can put together.
- the dead load representing dead load force F A can be regarded as attacking in the center of gravity S, cf. FIG. 1.
- the aforementioned dead loads or weight forces and the geometry of the jib, including the distance of the center of gravity S from the teeter axis 4, can be stored in the form of crane data in a memory 12 of the crane control system 13.
- the anchoring force FN which can be applied by the aforementioned Nackenseil the bracing 5 and shown in FIG. 1 in the counterclockwise direction, the boom 3 tries to pull up.
- the aforementioned guy force F has the lever arm IN apparent in FIG. 1, which forms a straight line passing through the rocker axis 4 perpendicular to the neck cable 7.
- F N x IN F A x + F G + sx IG + S + F * G + sx IFJ
- the mentioned lever arms, IG + S and IFJ of the useful and dead loads and also the lever arm I of the clamping force F N are influenced by the angle of tilt or angle of attack of the arm 3, said lever arms I A , IG + S and IFJ the dead and payloads change significantly more with angular changes in the angle of attack of the boom 3 than the lever arm I of the guy F N , at least in the usual Anstellwinkel Anlagens of the boom 3, extending between a horizontal orientation of the boom 3 and an acute angle to Vertical upward pointing orientation of the boom 3 can reach.
- An overload protection device 14 implemented in the crane control 13 determines the outreach of the payloads FG + S and F * G + s and suitable payloads themselves by means of suitable detection means 15 and 16.
- an angle transmitter 17 can detect the rocking or angle of attack of the boom 3 the outreach, ie the said lever arms IG + S and IFJ, can be determined via the stored crane geometry or boom geometry data. If a trolley on the boom 3 movable, a Katz einsgeber can also be provided.
- the lifting cables leading to the load hooks 9 and 11 may be provided with lifting force generators 18, which may be associated with the hoisting winch drives or deflection roller suspensions in order to determine the hoist rope forces. From the correspondingly determined load values and unloading values, said overload protection device 14 can carry out a comparison with one or more load curves, which can be stored in the memory of the crane control system 13. Such a stored load curve 23 is shown by way of example in FIG. 4.
- a monitoring device 19 which consists of the aforementioned payloads and dead loads FQ + S, F * G + S and F A and the associated Ausladungs saddle or lever arms IG + S, IFJ and calculated on the boom 3 payload and dead load moments calculated. These useful and dead-load moments all act in a clockwise direction according to FIG. 1 and FIG. 2.
- said monitoring device 19 or the torque calculator 20 implemented therein calculates the anti - clockwise torque acting on the boom 3 in the counterclockwise direction according to FIGS. 1 and 2, which results from the Tightening force F N and the associated lever arm l N results.
- the angle of attack of the boom 3 is taken into account, which is measured by the aforementioned angle transmitter 17.
- An evaluation unit 21 of the monitoring device 19 compares said counterclockwise rotating guy torque with the sum of clockwise rotating load and dead load moments, see FIG. 2. Specifically, said evaluation unit 21 determines the difference between said counterclockwise rotating guy torque and the sum of the clockwise and counterclockwise rotating torque moments. If the resulting difference exceeds a certain tolerance threshold, the evaluation unit 21 concludes that the overload protection device 14, in particular its detection means 5 and 16, is not working properly.
- the evaluation unit 21 can, on the one hand, output an error message, which can be output on a display device in the crane cabin and / or on a display device on the radio terminal.
- the evaluation unit 21 can also output a switch-off signal in order to switch off actuators, in particular a main hoist drive and / or a fly jib winch drive and / or a retractable drive.
- the said tolerance threshold is used to take into account disturbance variables such as wind forces, subsequently mounted billboards on the boom or other disturbances and can be stored in the memory 12 of the crane control 13 in the form of a fixed, predetermined threshold value.
- said tolerance threshold value can also be adapted to resulting disturbance variables, for example as a function of a wind measurement signal, in particular in such a way that the tolerance threshold is lowered with no or little wind and the tolerance threshold is increased with increasingly larger, stronger wind.
- An adaptation of the tolerance threshold as a function of other factors is conceivable.
- the monitoring device 19 can determine or sensor-detect the guy force FN by means of a force transmitter 24, said force transmitter 24 being able to be associated directly with the strap 5 or the neck cable 6.
- the force transmitter 24 can detect the winch torque of the retraction unit 7, on which the neck cable 6 is wound up.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Jib Cranes (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202015001023.7U DE202015001023U1 (en) | 2015-02-09 | 2015-02-09 | crane |
PCT/EP2016/000188 WO2016128122A1 (en) | 2015-02-09 | 2016-02-04 | Crane and method for monitoring the overload protection of such a crane |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3256415A1 true EP3256415A1 (en) | 2017-12-20 |
EP3256415B1 EP3256415B1 (en) | 2020-01-08 |
Family
ID=55315380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16703432.1A Active EP3256415B1 (en) | 2015-02-09 | 2016-02-04 | Crane, as well as process for monitoring the overload protection of such a crane |
Country Status (8)
Country | Link |
---|---|
US (1) | US10597266B2 (en) |
EP (1) | EP3256415B1 (en) |
CN (1) | CN107207227B (en) |
BR (1) | BR112017016438B1 (en) |
DE (1) | DE202015001023U1 (en) |
ES (1) | ES2775549T3 (en) |
RU (1) | RU2709322C2 (en) |
WO (1) | WO2016128122A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202015001023U1 (en) | 2015-02-09 | 2016-05-10 | Liebherr-Components Biberach Gmbh | crane |
DE202015001024U1 (en) * | 2015-02-09 | 2016-05-10 | Liebherr-Werk Biberach Gmbh | Crane with monitoring device for monitoring the overload protection |
DE102016104358B4 (en) * | 2016-03-10 | 2019-11-07 | Manitowoc Crane Group France Sas | Method for determining the carrying capacity of a crane and crane |
DE102017113386A1 (en) * | 2017-06-19 | 2018-12-20 | Liebherr-Werk Nenzing Gmbh | Lifting equipment, in particular a mobile crane or a crawler crane, with a device for monitoring the erection and depositing process of a boom system and corresponding method |
CN109218126B (en) * | 2017-06-30 | 2023-10-17 | 中兴通讯股份有限公司 | Method, device and system for monitoring node survival state |
JP6956645B2 (en) * | 2018-02-06 | 2021-11-02 | 住友重機械建機クレーン株式会社 | Suspension load arithmetic unit |
DE102018129352A1 (en) * | 2018-11-21 | 2020-05-28 | Liebherr-Werk Biberach Gmbh | Crane and method for monitoring the operation of such a crane |
CN111079259B (en) * | 2019-11-20 | 2023-06-20 | 湖南中联重科建筑起重机械有限责任公司 | Method and apparatus for determining tower crane head load |
FR3125032B1 (en) | 2021-07-06 | 2023-07-07 | Manitowoc Crane Group France | Crane control method for selecting and applying a preferential load curve according to the inclination of a jib structural element |
CN115901300B (en) * | 2022-10-24 | 2023-10-24 | 江苏省特种设备安全监督检验研究院 | Device and method for monitoring wind-proof and anti-skid capacity of crane in working state |
GB202301065D0 (en) | 2023-01-25 | 2023-03-08 | Heavy Lift Projects Ltd | Ring crown |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU368178A1 (en) * | 1969-10-17 | 1973-01-26 | Б. В. Степанов , В. Д. Щербаков Центральное конструкторское бюро Главстроймеханизации | LIMITER OF LOAD CAPACITY OF THE CRANE |
US4752012A (en) * | 1986-08-29 | 1988-06-21 | Harnischfeger Corporation | Crane control means employing load sensing devices |
JPH07125987A (en) * | 1993-11-08 | 1995-05-16 | Komatsu Mec Corp | Suspension load/overturning moment detecting device for mobile crane |
EP0667315B1 (en) * | 1994-02-09 | 1998-11-25 | Liebherr-Werk Biberach GmbH | Method and device to limit the load moment of a tower crane |
JP3281481B2 (en) * | 1994-06-29 | 2002-05-13 | 日立建機株式会社 | Crane load calculation device |
JP2000191286A (en) * | 1998-12-22 | 2000-07-11 | Yutani Heavy Ind Ltd | Sensing method and device for actual load of crane |
JP4224929B2 (en) * | 1999-07-16 | 2009-02-18 | コベルコクレーン株式会社 | Crane overload prevention device |
DE10127403A1 (en) | 2001-05-29 | 2002-12-05 | Demag Mobile Cranes Gmbh | Method of determining size of a load based on tangential direction of cable brace between boom and mast |
US6769836B2 (en) * | 2002-04-11 | 2004-08-03 | Enviro-Pave, Inc. | Hot-in-place asphalt recycling machine and process |
RU2267458C1 (en) * | 2004-04-28 | 2006-01-10 | Тульский государственный университет | System for checking load stability of mobile load-lifting machine |
JP2008110825A (en) * | 2006-10-30 | 2008-05-15 | Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd | Suspension load calculation device and overload prevention device |
US10203268B2 (en) * | 2008-12-04 | 2019-02-12 | Laura P. Solliday | Methods for measuring and modeling the process of prestressing concrete during tensioning/detensioning based on electronic distance measurements |
NO337712B1 (en) * | 2010-03-24 | 2016-06-06 | Nat Oilwell Varco Norway As | Device and method for reducing dynamic loads in cranes |
DE102011107754B4 (en) * | 2011-06-10 | 2021-07-22 | Liebherr-Werk Ehingen Gmbh | Angle-related procedure for monitoring crane safety during the set-up process, as well as crane and crane control |
CN202245857U (en) * | 2011-09-15 | 2012-05-30 | 成都东仑科技有限公司 | Moment display |
PL2815353T3 (en) * | 2012-02-17 | 2020-01-31 | Columbus Mckinnon Corporation | Material lifting system and method |
DE102012221909A1 (en) * | 2012-11-29 | 2014-06-05 | Hirschmann Automation And Control Gmbh | Cable break diagnostics for a crane |
US9067766B1 (en) * | 2013-09-16 | 2015-06-30 | Jergens, Inc. | Hoisting device and system and method for using the same |
DE102014008094A1 (en) * | 2014-06-02 | 2015-12-03 | Liebherr-Werk Nenzing Gmbh | Method for controlling the alignment of a crane load and a jib crane |
US10078923B2 (en) * | 2014-06-06 | 2018-09-18 | Tulsa Winch, Inc. | Embedded hoist human-machine interface |
DE202015001023U1 (en) | 2015-02-09 | 2016-05-10 | Liebherr-Components Biberach Gmbh | crane |
DE202015001024U1 (en) * | 2015-02-09 | 2016-05-10 | Liebherr-Werk Biberach Gmbh | Crane with monitoring device for monitoring the overload protection |
DE102015006117A1 (en) * | 2015-05-11 | 2016-11-17 | Liebherr-Werk Ehingen Gmbh | Method of operating a crane and crane |
-
2015
- 2015-02-09 DE DE202015001023.7U patent/DE202015001023U1/en active Active
-
2016
- 2016-02-04 BR BR112017016438-8A patent/BR112017016438B1/en not_active IP Right Cessation
- 2016-02-04 ES ES16703432T patent/ES2775549T3/en active Active
- 2016-02-04 CN CN201680009567.2A patent/CN107207227B/en active Active
- 2016-02-04 RU RU2017131350A patent/RU2709322C2/en active
- 2016-02-04 WO PCT/EP2016/000188 patent/WO2016128122A1/en active Application Filing
- 2016-02-04 EP EP16703432.1A patent/EP3256415B1/en active Active
-
2017
- 2017-08-09 US US15/673,226 patent/US10597266B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
ES2775549T3 (en) | 2020-07-27 |
RU2017131350A (en) | 2019-03-11 |
CN107207227A (en) | 2017-09-26 |
DE202015001023U1 (en) | 2016-05-10 |
CN107207227B (en) | 2019-03-29 |
WO2016128122A1 (en) | 2016-08-18 |
BR112017016438B1 (en) | 2022-05-03 |
US10597266B2 (en) | 2020-03-24 |
BR112017016438A2 (en) | 2018-04-10 |
EP3256415B1 (en) | 2020-01-08 |
US20170334687A1 (en) | 2017-11-23 |
RU2017131350A3 (en) | 2019-08-15 |
RU2709322C2 (en) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3256414B1 (en) | Crane, as well as process for monitoring the overload protection of such a crane | |
EP3256415B1 (en) | Crane, as well as process for monitoring the overload protection of such a crane | |
DE102011107754B4 (en) | Angle-related procedure for monitoring crane safety during the set-up process, as well as crane and crane control | |
EP3259222B1 (en) | Crane with adjusting unit for influencing a deformation of the jib system | |
EP2719652B1 (en) | Device for the transportation of persons by means of a crane, and crane with a device for the transportation of persons | |
EP2524892A1 (en) | Crane control | |
EP3271282B1 (en) | Slewing crane and method for aligning a slewing crane | |
EP3428112B1 (en) | Lifting device, in particular a mobile crane or a cable dredger, having a device for monitoring the alignment and depositing process of a boom system and corresponding method | |
EP3856673A1 (en) | Crane and method for monitoring the operation of such a crane | |
EP3532425B1 (en) | Method for the compensation of diagonal pull in cranes | |
EP3613903B1 (en) | Method for monitoring the structural load of a carrier machine with a drilling and ramming device, and working machine comprising a ramming and drilling device | |
EP4192779B1 (en) | Slewing jib crane having a camera, and method for reducing load oscillation during crane operation | |
EP4053065B1 (en) | Device and method for controlling a crane rotational gear and crane | |
EP3411322B1 (en) | Method for bringing a work machine into a weathervane position, and work machine for carrying out the method | |
EP4247746A1 (en) | Lifting gear, and method for determining slack rope on the lifting gear | |
WO2020187599A1 (en) | Crane | |
DE102020215260B4 (en) | Method of operating a crane and crane | |
EP4263413A1 (en) | Lifting gear | |
DE4417608A1 (en) | Method and device for limiting the load torque of a tower crane | |
DE102021103934A1 (en) | Hoist and method of determining slack in the hoist |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181217 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66C 15/06 20060101ALI20190626BHEP Ipc: B66C 23/90 20060101AFI20190626BHEP Ipc: B66C 13/16 20060101ALI20190626BHEP Ipc: B66C 23/82 20060101ALI20190626BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190802 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016008326 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1222457 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2775549 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200531 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200409 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200508 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: LIEBHERR-COMPONENTS BIBERACH GMBH, DE Free format text: FORMER OWNER: LIEBHERR-COMPONENTS BIBERACH GMBH, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016008326 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200204 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200108 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220609 AND 20220615 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: LIEBHERR-WERK BIBERACH GMBH Effective date: 20220921 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016008326 Country of ref document: DE Owner name: LIEBHERR-WERK BIBERACH GMBH, DE Free format text: FORMER OWNER: LIEBHERR-COMPONENTS BIBERACH GMBH, 88400 BIBERACH, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 1222457 Country of ref document: AT Kind code of ref document: T Owner name: LIEBHERR-WERK BIBERACH GMBH, DE Effective date: 20221018 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230630 |
|
P02 | Opt-out of the competence of the unified patent court (upc) changed |
Effective date: 20230906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240301 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240226 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 9 Ref country code: GB Payment date: 20240221 Year of fee payment: 9 Ref country code: CH Payment date: 20240301 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240227 Year of fee payment: 9 Ref country code: FR Payment date: 20240227 Year of fee payment: 9 |