[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3121510B1 - Vorsatzoptik - Google Patents

Vorsatzoptik Download PDF

Info

Publication number
EP3121510B1
EP3121510B1 EP16176224.0A EP16176224A EP3121510B1 EP 3121510 B1 EP3121510 B1 EP 3121510B1 EP 16176224 A EP16176224 A EP 16176224A EP 3121510 B1 EP3121510 B1 EP 3121510B1
Authority
EP
European Patent Office
Prior art keywords
light
spatial direction
reflector
side reflector
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16176224.0A
Other languages
English (en)
French (fr)
Other versions
EP3121510A1 (de
Inventor
Matthias Gebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3121510A1 publication Critical patent/EP3121510A1/de
Application granted granted Critical
Publication of EP3121510B1 publication Critical patent/EP3121510B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/40Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • F21S43/315Optical layout thereof using total internal reflection

Definitions

  • the present invention relates to a front optic for a semiconductor light source according to the preamble of claim 1.
  • Such an attachment optics has a central lens which has an optical axis and a focal region and which is adapted to generate from light incident on it from the focal region a central light bundle in which light propagates parallel to the optical axis.
  • the propagation direction of this light defines a first spatial direction.
  • the attachment optics furthermore has an inner side reflector which is arranged on a first side of the optical axis in a second spatial direction perpendicular to the first spatial direction.
  • the inner side reflector is configured to generate a first sub-beam of parallel light in which propagates light in the first spatial direction, which in the second spatial direction next to the central light bundle lies.
  • Such auxiliary optics are used to collect light of a semiconductor light source, such as a light emitting diode, and bundle.
  • a semiconductor light source such as a light emitting diode
  • Light-emitting diodes with largely flat light-emitting surface are approximately Lambert radiators and emit their light therefore in a solid angle, which includes almost a half-space.
  • a signal light distribution of a motor vehicle illumination device that is to be generated from the light of the semiconductor light source must fulfill certain brightness requirements only in a much smaller solid angle range, namely +/- 20 ° in the horizontal and +/- 10 ° in the vertical.
  • optical attachments consist of a transparent solid.
  • An example of such an attachment optics is from the DE 10 021 114 A1 in which a flat surface or a free-form surface serves as a light exit side.
  • the light exit side may be a Fresnel structure ( DE 197 28 354 ) or a scattering structure ( US 7 222 995 ) respectively.
  • a Fresnel lens may also be present on the light entry side of the attachment optics facing the light source.
  • the DE 20 2005010490 U1 and DE 102010046021 A1 disclose further attachment optics known from the prior art.
  • the known attachment optics are more or less rotationally symmetrical, or their light exit surface has a ratio of its length to its width of almost 1: 1. Therefore, these attachment optics can not be easily used when a ratio of the length of a light exit surface to its width of, for example 2: 1 or 3: 1 or more generally, greater than 1.5: 1 is required. In a realization of such conditions with the known concepts usually dark areas arise in the illumination of the optical attachment, which is undesirable.
  • the object of the invention in the specification of an optical attachment, which causes a homogeneous bright illumination of the light exit surface even at a ratio of the length of their light-emitting surface to the width, which is greater than 1.5 to 1.
  • the intent optical system according to the invention differs from the known intent optical mentioned above in particular in that it has at least one broadside arranged further reflector and at least one outer side reflector, wherein the broadside arranged further reflector arranged in the third spatial direction on a first side of the optical axis and set up is to generate a third sub-beam of parallel light having first a direction component parallel to the first spatial direction and a direction component parallel to the second spatial direction and a direction component parallel to the third spatial direction and is directed to the outer side reflector, the outer side reflector in the first spatial direction behind arranged on the inner side reflector and in the second spatial direction on a side facing away from the optical axis of the inner side reflector and is adapted to the third sub-beam s o deflect that the light of the third sub-beam propagates in the first spatial direction, wherein the third sub-beam is in the second spatial direction on a side facing away from the optical axis of the first sub-beam next to the first
  • the broadside i. arranged on a broad side of the optical attachment additional reflector, collects light that falls in the prior art neither on the central lens nor on one of the two side reflectors. This light would remain unused without this reflector and / or at least not specifically contribute to the generation of the desired light distribution due to a deflection in undesired spatial directions.
  • the broadside arranged further reflector this light parallelized and summarized to the third sub-beam, it makes it in relation to this property of parallelism to the central light beam and the first sub-light beam and the second sub-light beam and makes this otherwise lost light for the production of desired light distribution usable.
  • the fact that the further reflector arranged on the broad side is arranged to give the third sub-bundle first a direction component parallel to the first spatial direction and a direction component parallel to the second spatial direction and a direction component parallel to the third spatial direction, is the position of the outer side reflector to which the third side reflector Sub-beam is directed constructively fixed in the design of the attachment optics.
  • a preferred embodiment is characterized in that the inner side reflector is adapted to generate the first sub-beam of parallel light so that the first sub-beam adjacent to the central light beam adjoins this, the shape of which complements.
  • the third sub-beam lies in the second spatial direction on a side of the first sub-beam facing away from the optical axis adjacent to the first sub-beam and adjoins this, the shape of which complements.
  • the broadside arranged further reflector in the third spatial direction above the arranged in one of the narrow sides of the inner side reflector (21) and above the arranged also in the narrow side outer side reflector is arranged.
  • a further preferred embodiment is characterized in that the outer side arranged on the narrow side Side reflector in the first spatial direction behind the inner side reflector and in the second spatial direction on a side facing away from the optical axis side of the inner side reflector, that is further out than this, is arranged.
  • the outer side reflector is realized as a flat surface.
  • a light exit surface of the attachment optics has molded, light-scattering cushion structures.
  • Another preferred embodiment is characterized in that cushion optics are molded into the light entry surface.
  • cushion optics are molded into the reflective areas.
  • the light exit surface has a curved basic shape.
  • FIG. 1 shows the initially mentioned, per se known attachment optics 10 for a semiconductor light source in a perspective view.
  • the known optical attachment has a central lens 12 which has an optical axis 14 and a focal region 16.
  • the lens is adapted to generate from light incident on it from the focal area, a central light beam in which light propagates parallel to the optical axis.
  • the propagation direction of this light defines a first spatial direction 18 that is parallel to the optical axis.
  • a first side reflector 20 is in front of the second spatial direction 22 perpendicular to the first spatial direction arranged optical axis 14.
  • a second side reflector 24 is arranged in the second spatial direction 22 to or behind the optical axis 14.
  • the first side reflector 20 is configured by its shape and arrangement to produce a first sub-beam of parallel light in which propagates light in the first spatial direction 18, wherein the first sub-beam is in the second spatial direction 22 in front of the central light beam.
  • the second side reflector 24 is configured to generate a second sub-beam of parallel light in which propagates light in the first spatial direction, which lies in the second spatial direction to (behind) the central light beam.
  • the first sub-beam and the second sub-beam are each generated from light of a light source arranged in the focal area.
  • FIG. 2 shows the appearance of such illuminated light-emitting surface, as it provides a viewer who views the light exit surface from a lying on the optical axis of the lens position.
  • the ratio of the length of this light exit surface to its width is approximately 2: 1.
  • the central, circular round light spot is generated by the central light beam.
  • the left of it, to the circular round light spot on the left side complementary and otherwise rectangular limited light spot is generated by the first sub-beam, and the right of it, the circularly round light spot on the right side complementary and otherwise rectangular limited light spot is generated by a second sub-beam
  • FIG. 1 further shows that the side reflectors 20, 24 in this article in the second spatial direction, in the FIG. 1 So left and right, next to the central lens 12 are arranged. Their extension in the second spatial direction taken together defines the length of the light exit surface.
  • a third spatial direction in the FIG. 1 is a vertical direction, the thickness of the optical attachment is only slightly larger than the diameter of the central lens.
  • the lens 12 is located at the bottom of a cylindrical recess 30. In the extreme case, said thickness is just so much larger than the lens diameter that the wall thickness of the recess in the direction of the second spatial direction 22 and the optical axis 14 perpendicular third spatial direction 28 required for stability reasons Minimum not lower.
  • the focal region 16 is located on the optical axis 14 in front of the lens 12.
  • the light of a semiconductor light source 32 arranged in the focal region, which radiates into the depression, is divided into a plurality of bundles.
  • a central bundle enters the attachment optics via the light entry surface of the central lens 12. Further light enters via the lateral surface 34 of the recess in the attachment optics.
  • first broad side of the attachment optics which here is a top surface in the third spatial direction 28, or it propagates to a second broad side of the attachment optics, which here is also a flat, lower base surface.
  • the base surface and the top surface are mutually parallel, flat surfaces which limit the optical attachment in the third spatial direction 28, in this case upwards and downwards. At these surfaces, the light experiences internal total reflections, which redirect it into unusable areas of the optical attachment. This light is therefore lost for the generation of the desired light distribution and for the creation of the desired appearance. This lost share in the light of the light source is greater, the narrower the attachment optics in the third spatial direction.
  • FIG. 3 shows an embodiment of a front optical system according to the invention in a perspective view.
  • the eye perspective corresponds to the perspective of the FIG. 1
  • the optical attachment according to the invention also has a central lens 12 which has an optical axis 14 and a focal area 16.
  • the lens is adapted to generate a central light beam from light incident thereon from the focal region 16 in which light propagates parallel to the optical axis.
  • the propagation direction of this light defines a first spatial direction 18 that is parallel to the optical axis.
  • a first inner side reflector 21 is arranged in front of the optical axis 14 in a second spatial direction 22 perpendicular to the first spatial direction 18.
  • a second inner side reflector 25 is arranged in the second spatial direction 22 after or behind the optical axis 14.
  • the two inner side reflectors are preferably in narrow sides formed the attachment optics and thus integrally cohesive components of the attachment optics. They are preferably so-called TIR reflectors on which incident light from the focal region undergoes internal total reflections. Alternatively or in addition to their TIR properties, these reflectors can also be mirror-coated.
  • the first inner side reflector 21 is configured by its shape and arrangement to produce a first sub-beam of parallel light, in which propagates light in the first spatial direction 18, and in the second spatial direction 22 on a first side of the optical axis adjacent to the central light beam lies.
  • the second inner side reflector 25 is configured to generate a second sub-beam of parallel light in which light propagates in the first spatial direction and which is in the second spatial direction on a second side of the optical axis adjacent to the central light beam.
  • the two inner side reflectors preferably have the shape of part of the surface of a paraboloid of revolution whose focal point is on the optical axis and whose axis of rotation coincides with the optical axis and which opens in the first spatial direction.
  • the focal point of the paraboloid of revolution which is real, taking into account the refraction of light at the lateral surface 34, preferably coincides with the focal region of the lens 12.
  • a part of the light exit surface of the optical attachment according to the invention is homogeneously illuminated with said light bundles.
  • This homogeneously illuminated part corresponds to the homogeneously illuminated light exit surface of the known attachment optics 10 from FIG FIG. 1 , Its appearance corresponds therefore to one less sharp boundary in the second spatial direction 22 in the FIG. 2 shown appearance of the luminous attachment optics 10th
  • FIG. 3 showing an embodiment of a head optical system according to the invention, not yet from the known subject of the FIG. 1 ,
  • intent optics 36 additional reflectors on. These additional reflectors are located both on, or in the broad sides, as well as in the narrow sides of the attachment optics 36. These additional reflectors are preferably integrally material-bonded components of the transparent solid of the optical attachment and realized as TIR reflectors. However, they can also be mirror-coated.
  • the intent optics after FIG. 3 can be advantageously designed without undercut.
  • the first broadside of the attachment optics is in the FIG. 3 the front in the third spatial direction and thus upper broadside.
  • the second broadside of the attachment optics is in the FIG. 3 the rear in the third spatial direction and thus lower broadside.
  • the arranged in the broadsides additional reflectors collect light that came in the known intent optics on there flat base and the top surface and was lost for the light distribution to be generated.
  • This arrangement is also referred to in the present application as a broadside arrangement.
  • a narrow-side arrangement analogously describes an arrangement in one of the narrow sides of the attachment optics. The narrow sides are between the broadsides.
  • these additional reflectors parallelize this light and direct this light of the semiconductor light source 32 intercepted in the third spatial direction 28 above and below the inner side reflectors 21, 25 to outer lateral reflectors which are at the same height as the inner side reflectors 21, 25 in the narrow sides of the Attachment optics 34 are located.
  • These reflectors are preferably formed in the narrow sides of the optical attachment and realized as TIR reflectors or mirror-coated.
  • the outer side reflectors then direct this parallel light onto the light reflected parallel to the light reflected from the inner side reflectors and the light focused by the central lens so that a cross-section of the optical attachment lying at a greater length to the light propagation along the second spatial direction 22 is homogeneously illuminated than is the case in the known optical attachment 10, which works only with the central lens and the inner side reflectors.
  • the in the FIG. 3 Intended optics can be thoughtfully divided into four symmetrical components.
  • a first mental division takes place along the optical axis and transversely to the second spatial direction 22 in a right and a left half.
  • This orientation is a vertical section.
  • the optical axis 14 lies in the sectional plane and the right and the left half are mirror-symmetrical to each other.
  • Both halves can be thoughtfully continue along the optical axis and across the third spatial direction 28 split into an upper part and a lower part.
  • Orientation shown is a horizontal section. Again, the optical axis in the Section plane lie, and the upper part should be mirror-symmetrical to the lower part.
  • FIG. 4 shows such a quarter as representative of the entire intentional optics. This quarter corresponds to the upper left quarter of the front optics from the FIG. 3 .
  • the attachment optics 36 at least one broadside arranged further reflector 38 and at least one narrow side arranged further reflector 40.
  • the reflector 38 has the reflection surface enclosed by the edges 38.1 to 38.4, and it is in the third spatial direction 28 behind the optical axis 14 and thus in the arrangement according to FIG FIG. 3 arranged above the optical axis 14 and above the inner side reflector 21 arranged in one of the narrow sides and above the outer side reflector likewise arranged in the narrow side.
  • the two side reflectors 21 and 40 as an inner and outer side reflector results from their different distance in the second spatial direction to the optical axis 14, which is smaller at the inner side reflector 21 than the outer side reflector 40.
  • the broadside arranged further reflector 38 is set up by its shape, a third sub-beam parallel light to the first direction of a direction parallel to the first spatial direction 18 and a direction component parallel to the second spatial direction 22 and a direction component parallel to the third spatial direction 28 and is directed to a narrow side arranged further reflector 40.
  • the inclination of a surface element of the reflector reflecting precisely this ray is due to the reflection law for each ray 38, so that the shape of the entire reflective surface of the broadside arranged further reflector 38 results as the sum of such surface elements and can be calculated and produced as a free-form surface.
  • the narrow side outer side reflector 40 is arranged in the first spatial direction 18 behind the inner side reflector 21 and in the second spatial direction 22 on a side facing away from the optical axis 14 side of the inner side reflector, ie further out than this.
  • Under the series arrangement is understood to mean an arrangement in which the outer side reflector extends in the first spatial direction further forward than the inner side reflector and wherein the inner side reflector protrudes counter to the first spatial direction over the outer side reflector.
  • Both reflectors 21, 40 may overlap in the first spatial direction, but they do not have to overlap.
  • the outer side reflector is characterized by its arrangement and Form configured to redirect the third sub-beam so that the light of the third sub-beam propagates preferably parallel in the first spatial direction, the third sub-beam in the second spatial direction on a side facing away from the optical axis of the first sub-beam next to the first sub-beam, in particular its shape Complementing, lies.
  • the first spatial direction 18 as a parallel emission direction of the outer side reflector and by the design angle of incidence is due to the law of reflection for each beam, the inclination of this beam reflecting surface element of the outer side reflector fixed, so that the shape of the entire reflective surface of the outer side reflector as a sum of such surface elements results and can be calculated and produced as a free-form surface.
  • the outer side reflector 40 Since the light incident on the outer side reflector 40 from the broadside arranged further reflector 38 is already aligned parallel, the outer side reflector can be realized as a flat surface.
  • the beams 42, 44 represent the third sub-beam.
  • the third sub-beam illuminates the two left columns of the facets of the light exit surface 46. These facets are illuminated neither by the central bundle nor by the first sub-bundle.
  • This comparison shows that the intent optical system according to the invention and in particular its light exit surface 46, with the same width in the third spatial direction 28 over a greater length in the second Direction 22 is illuminated as the known auxiliary optics 10. It is used for the illumination of the difference areas, ie the areas that are illuminated only in the intent invention optics, but not in the known intent optics, the light in the known attachment optics 10 at the level Base surface and the flat top surface is reflected in unusable areas of the optical attachment.
  • the light of the third sub-beam 42, 44 initially emanates from the light source arranged in the focal area 16 in radial directions, preferably having directions forward (first spatial direction), upward (third spatial direction) and lateral (opposite to the second spatial direction). As has already been explained above, this light comprises just the rays which do not fall on the central lens 12 or on an inner side reflector 21. By the invention, this light is parallelized on the broadside arranged further reflector 38 and directed forward and below the outside.
  • the outer side reflector 40 then directs the forward, downward and outward third sub-beams only forward, so that the downward and outward directional components disappear.
  • the light 42, 44 in the third sub-beam then propagates vertically at the same height as the light in the central bundle and in the lateral sub-beams.
  • An exemplary embodiment of an entire optical attachment according to the invention results from the fact that the remaining three quarters are designed symmetrically to the quarter considered here in detail.
  • Front attachment in a further embodiment also has one Front attachment according to the invention does not have such a symmetry.
  • the invention is then realized, for example, in one part, for example only one quarter of the attachment optics.
  • FIG. 5 shows the appearance of an illuminated light-emitting surface of such a head optical system according to the invention, as it provides a viewer who views the light exit surface from a lying on the optical axis of the lens position.
  • the ratio of the length of this light exit surface to its width is more than 3: 1. This is, with comparable width in the third spatial direction, significantly more than in the prior art, the appearance according to Fig. 2 supplies.
  • the greater length of the illumination is not at the expense of the illumination of the inner areas.
  • the greater length of illumination in the invention is achieved with light that has remained unused in the prior art.
  • embodiments are shown in which the light exit surfaces are provided with scattering cushion structures. These structures serve to expand the parallel aligned before the exit in extreme cases light (opening angle zero) to a standard for rule-compliant signal light distributions of automotive lights opening angle of, for example, 20 ° in the vertical and 40 ° in the horizontal.
  • cushion optics can also be formed in the light entry surface, for example in the central lens surface.
  • cushion optics may also be used be formed in the reflective areas. This applies both to each reflector arranged on the narrow side and to each reflector arranged on the broad side.
  • the light exit surface has a curved basic shape. Depending on the configuration, only the long sides or only the short sides are curved, so that the shape of a cylindrical lateral surface results, or both the long sides and the short sides of the light exit surface are curved, so that a curved surface in space results. Such curvature or curvature may be superimposed on the smaller cushion structures. The curvature or curvature may be convex, but it may also be concave.
  • the light exit surface has a stepped shape or does not extend at right angles, but obliquely to the optical axis.
  • the deflecting surface lying in front of it in the light path is preferably stepped in order to achieve homogeneous illumination.
  • Fig. 6 shows a further embodiment in which the transparent solid has a shape which kinks several times and in different directions. The kinking can be done at different angles, not just below 90 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorsatzoptik für eine Halbleiterlichtquelle nach dem Oberbegriff des Anspruchs 1.
  • Eine solche Vorsatzoptik weist eine zentrale Linse auf, die eine optische Achse und einen Fokalbereich aufweist und die dazu eingerichtet ist, aus Licht, das von dem Fokalbereich her auf sie einfällt, ein zentrales Lichtbündel zu erzeugen, in dem Licht parallel zur optischen Achse propagiert. Dabei definiert die Propagationsrichtung dieses Lichtes eine erste Raumrichtung. Die Vorsatzoptik weist darüber hinaus einen inneren Seitenreflektor auf, der in einer zur ersten Raumrichtung senkrechten zweiten Raumrichtung auf einer ersten Seite der optischen Achse angeordnet ist. Dabei ist der innere Seitenreflektor dazu eingerichtet, ein erstes Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung propagiert, das in der zweiten Raumrichtung neben dem zentralen Lichtbündel liegt.
  • Eine solche Vorsatzoptik wird als per se bekannt vorausgesetzt.
  • Solche Vorsatzoptiken dienen dazu , Licht einer Halbleiterlichtquelle, zum Beispiel einer Leuchtdiode, zu sammeln und zu bündeln. Leuchtdioden mit weitgehend ebener Lichtaustrittsfläche sind näherungsweise Lambert-Strahler und strahlen ihr Licht daher in einen Raumwinkel ab, der fast einen Halbraum umfasst.
  • Eine aus dem Licht der Halbleiterlichtquelle zu erzeugende Signallichtverteilung einer Kraftfahrzeugbeleuchtungseinrichtung muss, um regelkonform zu sein, dagegen bestimmte Helligkeitsanforderungen nur in einem viel kleineren Raumwinkelbereich, nämlich +/- 20° in der Horizontalen und +/- 10° in der Vertikalen erfüllen. Meist bestehen Vorsatzoptiken aus einem transparenten Festkörper. Ein Beispiel einer solchen Vorsatzoptik ist aus der DE 10 021 114 A1 bekannt, bei der eine ebene Fläche oder eine Freiformfläche als Lichtaustrittsseite dient. Alternativ dazu kann die Lichtaustrittsseite eine Fresnel-Struktur ( DE 197 28 354 ) oder eine Streustruktur ( US 7 222 995 ) aufweisen. Eine Fresnel-Linse kann auch an der der Lichtquelle zugewandten Lichteintrittsseite der Vorsatzoptik vorhanden sein. Die DE 20 2005010490 U1 und DE 102010046021 A1 offenbaren weitere aus dem Stand der Technik bekannte Vorsatzoptiken.
  • Die bekannten Vorsatzoptiken sind mehr oder weniger rotationssymmetrisch, oder ihre Lichtaustrittsfläche besitzt ein Verhältnis ihrer Länge zu ihrer Breite von nahezu 1:1. Daher lassen sich diese Vorsatzoptiken nicht ohne weiteres verwenden, wenn ein Verhältnis der Länge einer Lichtaustrittsfläche zu ihrer Breite von zum Beispiel 2:1 oder 3:1 oder allgemeiner, größer als 1,5:1 gefordert wird. Bei einer Realisierung solcher Verhältnisse mit den bekannten Konzepten entstehen meist dunkle Bereiche bei der Ausleuchtung der Vorsatzoptik, was unerwünscht ist.
  • Vor diesem Hintergrund besteht die Aufgabe der Erfindung in der Angabe einer Vorsatzoptik, die auch bei einem Verhältnis der Länge ihrer Lichtaustrittsfläche zu deren Breite, das größer als 1,5 zu 1 ist eine homogen helle Ausleuchtung der Lichtaustrittsfläche bewirkt.
  • Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Die erfindungsgemäße Vorsatzoptik unterscheidet sich von der eingangs genannten bekannten Vorsatzoptik insbesondere dadurch, dass sie wenigstens einen breitseitig angeordneten weiteren Reflektor und wenigstens einen äußeren Seitenreflektor aufweist, wobei der breitseitig angeordnete weitere Reflektor in der dritten Raumrichtung auf einer ersten Seite der optischen Achse angeordnet und dazu eingerichtet ist, ein drittes Nebenbündel parallelen Lichtes zu erzeugen, das zunächst eine Richtungskomponente parallel zur ersten Raumrichtung und eine Richtungskomponente parallel zur zweiten Raumrichtung und eine Richtungskomponente parallel zur dritten Raumrichtung besitzt und auf den äußeren Seitenreflektor gerichtet ist, wobei der äußere Seitenreflektor in der ersten Raumrichtung hinter dem inneren Seitenreflektor und in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des inneren Seitenreflektors angeordnet und dazu eingerichtet ist, das dritte Nebenbündel so umzulenken, dass das Licht des dritten Nebenbündels in die erste Raumrichtung propagiert, wobei das dritte Nebenbündel in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel liegt.
  • Der breitseitig, d.h. auf einer Breitseite der Vorsatzoptik angeordnete weitere Reflektor, sammelt Licht, das bei dem Stand der Technik weder auf die zentrale Linse noch auf einen der beiden Seitenreflektoren fällt. Dieses Licht würde ohne diesen Reflektor ungenutzt bleiben und/oder wegen einer Umlenkung in unerwünschte Raumrichtungen zumindest nicht gezielt zur Erzeugung der gewünschten Lichtverteilung beitragen.
  • Dadurch, dass der breitseitig angeordnete weitere Reflektor dieses Licht parallelisiert und zu dem dritten Nebenbündel zusammenfasst, gleicht er es in Bezug auf diese Eigenschaft der Parallelität dem zentralen Lichtbündel und dem ersten Nebenlichtbündel und dem zweiten Nebenlichtbündel an und macht dieses sonst verlorene Licht für die Erzeugung der gewünschten Lichtverteilung nutzbar.
  • Dadurch, dass der breitseitig angeordnete weitere Reflektor dazu eingerichtet ist, dem dritten Nebenbündel zunächst eine Richtungskomponente parallel zur ersten Raumrichtung und eine Richtungskomponente parallel zur zweiten Raumrichtung und eine Richtungskomponente parallel zur dritten Raumrichtung zu verleihen, ist die Position des äußeren Seitenreflektors, auf den das dritte Nebenbündel gerichtet wird, beim Entwurf der Vorsatzoptik konstruktiv festlegbar.
  • Dadurch, dass der äußere Seitenreflektor in der ersten Raumrichtung hinter dem inneren Seitenreflektor und in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des inneren Seitenreflektors angeordnet und dazu eingerichtet ist, das dritte Nebenbündel so umzulenken, dass das Licht des dritten Nebenbündels in die erste Raumrichtung propagiert, wobei das dritte Nebenbündel in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel liegt, wird das sonst ungenutzte Licht des dritten Nebenbündels in Bezug auf seine Ausbreitungsrichtung dem Licht des zentralen Bündels und des ersten Nebenbündels angeglichen. Der verbleibende Unterschied des Lichtes des dritten Nebenbündels zu den anderen genannten Bündeln besteht darin, dass sein zur Ausbreitungsrichtung senkrechter Querschnitt neben den dazu parallelen Querschnitten der anderen Bündel liegt. Dies ergibt gerade den erwünschten Effekt der Vergrößerung der mit parallelem Licht ausgeleuchteten Länge des Vorsatzoptikquerschnitts.
  • Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass der innere Seitenreflektor dazu eingerichtet ist, das erste Nebenbündel parallelen Lichtes so zu erzeugen, das das erste Nebenbündel, das neben dem zentralen Lichtbündel liegt, sich an dieses, dessen Form komplementierend, anschließt.
  • Bevorzugt ist auch, dass das dritte Nebenbündel in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel liegt und sich an dieses, dessen Form komplementierend, anschließt.
  • Ferner ist bevorzugt, dass der breitseitig angeordnete weitere Reflektor in der dritten Raumrichtung oberhalb des in einer der Schmalseiten angeordneten inneren Seitenreflektors (21) und oberhalb des ebenfalls in der Schmalseite angeordneten äußeren Seitenreflektors angeordnet ist.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass der schmalseitig angeordnete äußere Seitenreflektor in der ersten Raumrichtung hinter dem inneren Seitenreflektor und in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des inneren Seitenreflektors, also weiter außen als dieser, angeordnet ist.
  • Bevorzugt ist auch, dass der äußere Seitenreflektor als ebene Fläche verwirklicht ist.
  • Ferner ist bevorzugt, dass eine Lichtaustrittsfläche der Vorsatzoptik eingeformte, lichtstreuende Kissenstrukturen aufweist.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass Kissenoptiken in die Lichteintrittsfläche eingeformt sind.
  • Bevorzugt ist auch, dass Kissenoptiken in die reflektierenden Bereiche eingeformt sind.
  • Ferner ist bevorzugt, dass die Lichtaustrittsfläche eine gekrümmte Grundform aufweist.
  • Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung, den Zeichnungen und den Unteransprüchen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.
  • Dabei zeigen, jeweils in schematischer Form:
  • Figur 1
    eine bekannte Vorsatzoptik;
    Figur 2
    das Erscheinungsbild einer beleuchteten Lichtaustrittsfläche der bekannten Vorsatzoptik;
    Figur 3
    ein Ausführungsbeispiel einer erfindungsgemäßen Vorsatzoptik in einer perspektivischen Ansicht;
    Figur 4
    ein gedanklich abgeteiltes Viertel der Vorsatzoptik aus der Figur 3; und
    Figur 5
    ein Erscheinungsbild einer beleuchteten Lichtaustrittsfläche einer solchen Vorsatzoptik.
  • Dabei bezeichnen gleiche Bezugszeichen in verschiedenen Figuren jeweils gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente.
  • Figur 1 zeigt die eingangs genannte, per se bekannte Vorsatzoptik 10 für eine Halbleiterlichtquelle in einer perspektivischen Darstellung.
  • Die bekannte Vorsatzoptik weist eine zentrale Linse 12 auf, die eine optische Achse 14 und einen Fokalbereich 16 besitzt. Die Linse ist dazu eingerichtet, aus Licht, das von dem Fokalbereich her auf sie einfällt, ein zentrales Lichtbündel zu erzeugen, in dem Licht parallel zur optischen Achse propagiert. Die Propagationsrichtung dieses Lichtes definiert eine erste Raumrichtung 18, die parallel zu der optischen Achse ist.
  • Ein erster Seitenreflektor 20 ist in einer zur ersten Raumrichtung senkrechten zweiten Raumrichtung 22 vor der optischen Achse 14 angeordnet.
  • Ein zweiter Seitenreflektor 24 ist in der zweiten Raumrichtung 22 nach, bzw. hinter der optischen Achse 14 angeordnet.
  • Der erste Seitenreflektor 20 ist durch seine Form und Anordnung dazu eingerichtet, ein erstes Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung 18 propagiert, wobei das erste Nebenbündel in der zweiten Raumrichtung 22 vor dem zentralen Lichtbündel liegt. Der zweite Seitenreflektor 24 ist dazu eingerichtet, ein zweites Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung propagiert, das in der zweiten Raumrichtung nach (hinter) dem zentralen Lichtbündel liegt. Das erste Nebenbündel und das zweite Nebenbündel werden dabei jeweils aus Licht einer im Fokalbereich angeordneten Lichtquelle erzeugt.
  • Mit den genannten Lichtbündeln, also dem zentralen Lichtbündel, dem ersten Nebenbündel und dem zweiten Nebenbündel wird eine Lichtaustrittsfläche der bekannten Vorsatzoptik homogen mit parallelem Licht beleuchtet.
  • Die Figur 2 zeigt das Erscheinungsbild einer derart beleuchteten Lichtaustrittsfläche, wie es sich einem Betrachter bietet, der die Lichtaustrittsfläche aus einer auf der optischen Achse der Linse liegenden Position betrachtet. Das Verhältnis der Länge dieser Lichtaustrittsfläche zu ihrer Breite beträgt ca. 2:1. Der zentrale, kreisförmig runde Lichtfleck wird durch das zentrale Lichtbündel erzeugt. Der links davon liegende, zum kreisförmig runden Lichtfleck linksseitig komplementäre und ansonsten rechteckig begrenzte Lichtfleck wird durch das erste Nebenbündel erzeugt, und der rechts davon liegende, zum kreisförmig runden Lichtfleck rechtsseitig komplementäre und ansonsten rechteckig begrenzte Lichtfleck wird durch ein zweites Nebenbündel erzeugt
    Figur 1 zeigt ferner, dass die Seitenreflektoren 20, 24 bei diesem Gegenstand in der zweiten Raumrichtung, bei der Figur 1 also links und rechts, neben der zentralen Linse 12 angeordnet sind. Ihre Ausdehnung in der zweiten Raumrichtung definiert zusammengenommen die Länge der Lichtaustrittsfläche.
  • In einer dritten Raumrichtung, die in der Figur 1 eine vertikale Richtung ist, ist die Dicke der Vorsatzoptik nur geringfügig größer als der Durchmesser der zentralen Linse. Die Linse 12 befindet sich am Boden einer zylinderförmigen Vertiefung 30. Im Extremfall ist die genannte Dicke gerade so viel größer als der Linsendurchmesser, dass die Wandstärke der Vertiefung in der zur zweiten Raumrichtung 22 und zur optischen Achse 14 senkrechten dritten Raumrichtung 28 ein aus Stabilitätsgründen erforderliches Mindestmaß nicht unterschreitet.
  • Der Fokalbereich 16 befindet sich auf der optischen Achse 14 vor der Linse 12. Das Licht einer im Fokalbereich angeordneten Halbleiterlichtquelle 32, die in die Vertiefung hinein strahlt, wird in mehrere Bündel aufgeteilt. Ein zentrales Bündel tritt über die Lichteintrittsfläche der zentralen Linse 12 in die Vorsatzoptik ein. Weiteres Licht tritt über die Mantelfläche 34 der Vertiefung in die Vorsatzoptik ein.
  • Ein Teil dieses Lichts trifft auf die Seitenreflektoren 20, 24. Darüber hinaus tritt auch Licht über die Mantelfläche 34 in die Vorsatzoptik ein, das nicht auf einen der Seitenreflektoren 20, 24 fällt. Dieses Licht propagiert zu einer ersten Breitseite der Vorsatzoptik, die hier eine in der dritten Raumrichtung 28 obere Deckfläche ist, oder es propagiert zu einer zweiten Breitseite der Vorsatzoptik, die hier eine ebenfalls ebene, untere Grundfläche ist. Die Grundfläche und die Deckfläche sind dabei einander parallele, ebene Flächen, welche die Vorsatzoptik in der dritten Raumrichtung 28, hier also nach oben und unten, begrenzen. An diesen Flächen erfährt das Licht interne Totalreflexionen, die es in nicht nutzbare Bereiche der Vorsatzoptik umlenken. Dieses Licht geht daher für die Erzeugung der gewünschten Lichtverteilung und für die Erzeugung des gewünschten Erscheinungsbildes verloren. Dieser verloren gehende Anteil am Licht der Lichtquelle ist umso größer, je schmaler die Vorsatzoptik in der dritten Raumrichtung ist.
  • Figur 3 zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Vorsatzoptik in einer perspektivischen Ansicht. Die Blickperspektive entspricht der Blickperspektive der Figur 1. Die erfindungsgemäße Vorsatzoptik weist ebenfalls eine zentrale Linse 12 auf, die eine optische Achse 14 und einen Fokalbereich 16 besitzt. Die Linse ist dazu eingerichtet, aus Licht, das von dem Fokalbereich 16 her auf sie einfällt, ein zentrales Lichtbündel zu erzeugen, in dem Licht parallel zur optischen Achse propagiert. Die Propagationsrichtung dieses Lichtes definiert eine erste Raumrichtung 18, die parallel zu der optischen Achse ist.
  • Ein erster innerer Seitenreflektor 21 ist in einer zur ersten Raumrichtung 18 senkrechten zweiten Raumrichtung 22 vor der optischen Achse 14 angeordnet. Ein zweiter innerer Seitenreflektor 25 ist in der zweiten Raumrichtung 22 nach, bzw. hinter der optischen Achse 14 angeordnet. Die beiden inneren Seitenreflektoren sind bevorzugt in Schmalseiten der Vorsatzoptik eingeformt und somit einstückig stoffschlüssige Bestandteile der Vorsatzoptik. Sie sind bevorzugt sogenannte TIR-Reflektoren, an denen aus dem Fokalbereich einfallendes Licht interne Totalreflexionen erfährt. Alternativ oder ergänzend zu ihren TIR-Eigenschaften können diese Reflektoren auch spiegelnd beschichtet sein.
  • Der erste innere Seitenreflektor 21 ist durch seine Form und Anordnung dazu eingerichtet, ein erstes Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung 18 propagiert, und das in der zweiten Raumrichtung 22 auf einer ersten Seite der optischen Achse neben dem zentralen Lichtbündel liegt. Der zweite innere Seitenreflektor 25 ist dazu eingerichtet, ein zweites Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung propagiert und das in der zweiten Raumrichtung auf einer zweiten Seite der optischen Achse neben dem zentralen Lichtbündel liegt.
  • Die beiden inneren Seitenreflektoren haben bevorzugt die Form eines Teils der Fläche eines Rotationsparaboloids, dessen Brennpunkt auf der optischen Achse liegt und dessen Rotationsachse mit der optischen Achse zusammenfällt und das sich in der ersten Raumrichtung öffnet. Der unter Berücksichtigung der Brechung von Licht an der Mantelfläche 34 reale Brennpunkt des Rotationsparaboloids fällt bevorzugt mit dem Fokalbereich der Linse 12 zusammen.
  • Mit den genannten Lichtbündeln wird ein Teil der Lichtaustrittsfläche der erfindungsgemäßen Vorsatzoptik homogen beleuchtet. Dieser homogen ausgeleuchtete Teil entspricht der homogen ausgeleuchteten Lichtaustrittsfläche der bekannten Vorsatzoptik 10 aus der Figur 1. Sein Erscheinungsbild entspricht daher bis auf eine weniger scharfe Begrenzung in der zweiten Raumrichtung 22 dem in der Figur 2 dargestellten Erscheinungsbild der leuchtenden Vorsatzoptik 10.
  • Soweit wie bis hier beschrieben, unterscheidet sich der Gegenstand der Figur 3, der ein Ausführungsbeispiel einer erfindungsgemäßen Vorsatzoptik zeigt, noch nicht von dem bekannten Gegenstand der Figur 1.
  • Im Unterschied zum Gegenstand der Figur 1 weist die in der Figur 3 dargestellte Vorsatzoptik 36 zusätzliche Reflektoren auf. Diese zusätzlichen Reflektoren befinden sich sowohl auf, beziehungsweise in den Breitseiten, als auch in den Schmalseiten der Vorsatzoptik 36. Auch diese zusätzlichen Reflektoren sind bevorzugt einstückig stoffschlüssige Bestandteile des transparenten Festkörpers der Vorsatzoptik und als TIR-Reflektoren verwirklicht. Sie können aber ebenfalls auch spiegelnd beschichtet sein. Die Vorsatzoptik nach Figur 3 lässt sich vorteilhafterweise ohne Hinterschnitt gestalten.
  • Die erste Breitseite der Vorsatzoptik ist in der Figur 3 die in der dritten Raumrichtung vordere und damit obere Breitseite. Die zweite Breitseite der Vorsatzoptik ist in der Figur 3 die in der dritten Raumrichtung hintere und damit untere Breitseite. Die in den Breitseiten angeordneten zusätzlichen Reflektoren sammeln Licht, das bei der bekannten Vorsatzoptik auf die dort ebene Grundfläche und die Deckfläche auftraf und für die zu erzeugende Lichtverteilung verloren ging. Diese Anordnung wird in der vorliegenden Anmeldung auch als breitseitige Anordnung bezeichnet. Eine schmalseitige Anordnung beschreibt analog dazu eine Anordnung in einer der Schmalseiten der Vorsatzoptik. Die Schmalseiten liegen zwischen den Breitseiten.
  • Gleichzeitig parallelisieren diese zusätzlichen Reflektoren dieses Licht und lenken dieses in der dritten Raumrichtung 28 oberhalb und unterhalb der inneren Seitenreflektoren 21, 25 aufgefangene Licht der Halbleiterlichtquelle 32 auf äußere seitliche Reflektoren, die sich auf gleicher Höhe wie die inneren Seitenreflektoren 21, 25 in den Schmalseiten der Vorsatzoptik 34 befinden. Auch diese Reflektoren sind bevorzugt in die Schmalseiten der Vorsatzoptik eingeformt und als TIR-Reflektoren verwirklicht oder spiegelnd beschichtet.
  • Die äußeren seitlichen Reflektoren richten dieses parallele Licht dann auf die parallel zu dem von den inneren Seitenreflektoren reflektierten Licht und dem von der zentralen Linse gebündelten Licht aus, so dass ein quer zu der Lichtausbreitung längs der zweiten Raumrichtung 22 liegender Querschnitt der Vorsatzoptik auf einer größeren Länge homogen ausgeleuchtet wird als dies bei der bekannten Vorsatzoptik 10 der Fall ist, die nur mit der zentralen Linse und den inneren Seitenreflektoren arbeitet.
  • Die in der Figur 3 dargestellte Vorsatzoptik lässt sich gedanklich in vier symmetrische Bestandteile aufteilen. Eine erste gedankliche Teilung erfolgt längs der optischen Achse und quer zur zweiten Raumrichtung 22 in eine rechte und eine linke Hälfte. Bei der in der Figur 3 dargestellten Orientierung ist das ein Vertikalschnitt. Die optische Achse 14 liegt in der Schnittebene und die rechte und die linke Hälfte sind spiegelsymmetrisch zueinander.
  • Beide Hälften lassen sich gedanklich weiter längs der optischen Achse und quer zur dritten Raumrichtung 28 in einen oberen Teil und einen unteren Teil aufteilen. Bei der in der Figur 3 dargestellten Orientierung ist das ein Horizontalschnitt. Wieder soll die optische Achse in der Schnittebene liegen, und der obere Teil soll spiegelsymmetrisch zum unteren Teil sein.
  • Als Resultat ergeben sich vier zueinander symmetrische Viertel. Diese gedankliche Aufteilung ist insofern sinnvoll, als jedes Viertel für sich bereits die Erfindung verkörpert und die auf ein Viertel reduzierte Betrachtung das Verständnis erleichtert.
  • Figur 4 zeigt ein solches Viertel stellvertretend für die gesamte Vorsatzoptik. Dieses Viertel entspricht dem oberen linken Viertel der Vorsatzoptik aus der Figur 3. Wie Figur 4 zeigt, weist die Vorsatzoptik 36 wenigstens einen breitseitig angeordneten weiteren Reflektor 38 und wenigstens einen schmalseitig angeordneten weiteren Reflektor 40 auf. Der Reflektor 38 besitzt die von den Kanten 38.1 bis 38.4 umschlossene Reflexionsfläche, und er ist in der dritten Raumrichtung 28 hinter der optischen Achse 14 und damit bei der Anordnung gemäß Figur 3 über der optischen Achse 14 und oberhalb des in einer der Schmalseiten angeordneten inneren Seitenreflektors 21 und oberhalb des ebenfalls in der Schmalseite angeordneten äußeren Seitenreflektors angeordnet. Durch diese Anordnung sammelt er gerade das Licht aus dem Fokalbereich 16 auf, das über die Mantelfläche 34 der Vertiefung in den transparenten Festkörper der Vorsatzoptik 36 eintritt und das nicht auf den inneren Seitenreflektor 21 fällt. Die Bezeichnung der beiden Seitenreflektoren 21 und 40 als innerer und äußerer Seitenreflektor ergibt sich durch deren in der zweiten Raumrichtung unterschiedlichen Abstand zur optischen Achse 14, der beim inneren Seitenreflektor 21 kleiner ist als beim äußeren Seitenreflektor 40.
  • Der breitseitig angeordnete weitere Reflektor 38 ist durch seine Form dazu eingerichtet, ein drittes Nebenbündel parallelen Lichtes zu erzeugen, das zunächst eine Richtungskomponente parallel zur ersten Raumrichtung 18 und eine Richtungskomponente parallel zur zweiten Raumrichtung 22 und eine Richtungskomponente parallel zur dritten Raumrichtung 28 besitzt und auf einen schmalseitig angeordneten weiteren Reflektor 40 gerichtet ist.
  • Diese funktionellen Merkmale charakterisieren die Form des breitseitig angeordneten weiteren Reflektors 38. Durch die Festlegung der parallelen Abstrahlrichtung und durch die konstruktiv vorgegebenen Einfallswinkel des letztlich von dem Fokalbereich 16 ausgehenden Lichtes liegt aufgrund des Reflexionsgesetzes für jeden Strahl die Neigung eines genau diesen Strahl reflektierenden Flächenelementes des Reflektors 38 fest, so dass sich die Form der gesamten reflektierenden Fläche des breitseitig angeordneten weiteren Reflektors 38 als Summe solcher Flächenelemente ergibt und als Freiformfläche berechnen und herstellen lässt.
  • Der schmalseitig angeordnete äußere Seitenreflektor 40 ist in der ersten Raumrichtung 18 hinter dem inneren Seitenreflektor 21 und in der zweiten Raumrichtung 22 auf einer der optischen Achse 14 abgewandten Seite des inneren Seitenreflektors, also weiter außen als dieser, angeordnet. Unter der Hintereinanderanordnung wird dabei eine Anordnung verstanden, bei welcher der äußere Seitenreflektor sich in der ersten Raumrichtung weiter nach vorn erstreckt als der innere Seitenreflektor und bei welcher der innere Seitenreflektor entgegen der ersten Raumrichtung über den äußeren Seitenreflektor hinausragt. Beide Reflektoren 21, 40 können sich dabei in der ersten Raumrichtung überlappen, sie müssen sich aber nicht überlappen.
  • Der äußere Seitenreflektor ist durch seine Anordnung und Form dazu eingerichtet, das dritte Nebenbündel so umzulenken, dass das Licht des dritten Nebenbündels bevorzugt parallel in die erste Raumrichtung propagiert, wobei das dritte Nebenbündel in der zweiten Raumrichtung auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel, insbesondere dessen Form komplementierend, liegt. Diese funktionellen Merkmale charakterisieren die Form und die Anordnung des äußeren Seitenreflektors in Bezug auf die zweite Raumrichtung 22.
  • Durch die Festlegung der ersten Raumrichtung 18 als parallele Abstrahlrichtung des äußeren Seitenreflektors und durch die konstruktiv vorgegebenen Einfallswinkel liegt aufgrund des Reflexionsgesetzes für jeden Strahl die Neigung des diesen Strahl reflektierenden Flächenelementes des äußeren Seitenreflektors fest, so dass sich die Form der gesamten reflektierenden Fläche des äußeren Seitenreflektors als Summe solcher Flächenelemente ergibt und als Freiformfläche berechnen und herstellen lässt.
  • Da das vom breitseitig angeordneten weiteren Reflektor 38 auf den äußeren Seitenreflektor 40 einfallende Licht bereits parallel ausgerichtet ist, kann der äußere Seitenreflektor als ebene Fläche verwirklicht sein. Die Strahlen 42, 44 repräsentieren das dritte Nebenbündel.
  • Bei dem Ausführungsbeispiel, das in der Figur 4 dargestellt ist, leuchtet das dritte Nebenbündel die beiden linken Spalten der Facetten der Lichtaustrittsfläche 46 aus. Diese Facetten werden weder von dem zentralen Bündel noch von dem ersten Nebenbündel beleuchtet. Dieser Vergleich zeigt, dass die erfindungsgemäße Vorsatzoptik und insbesondere ihre Lichtaustrittsfläche 46, bei gleicher Breite in der dritten Raumrichtung 28 über eine größere Länge in der zweiten Raumrichtung 22 ausgeleuchtet wird als die bekannte Vorsatzoptik 10. Dabei wird für die Ausleuchtung der Unterschiedsbereiche, also der Bereiche, die nur bei der erfindungsgemäßen Vorsatzoptik, nicht aber bei der bekannten Vorsatzoptik ausgeleuchtet werden, Licht verwendet, das bei der bekannten Vorsatzoptik 10 an der ebenen Grundfläche und der ebenen Deckfläche in nicht nutzbare Bereiche der Vorsatzoptik reflektiert wird.
  • Das Licht des dritten Nebenbündels 42, 44 geht von der im Fokalbereich 16 angeordneten Lichtquelle zunächst in radiale Richtungen aus, wobei es bevorzugt Richtungen nach vorn (erste Raumrichtung), oben (dritte Raumrichtung) und zur Seite (entgegengesetzt zur zweiten Raumrichtung) besitzt. Wie weiter oben bereits ausgeführt wurde, umfasst dieses Licht gerade die Strahlen, die weder auf die zentrale Linse 12 noch auf einen inneren Seitenreflektor 21 fallen. Durch die Erfindung wird dieses Licht am breitseitig angeordneten weiteren Reflektor 38 parallelisiert und nach vorn unten und außen gerichtet.
  • Der äußere Seitenreflektor 40 richtet das nach vorn, unten und außen gerichtete dritte Nebenbündel dann nur noch nach vorn aus, so dass die nach unten und außen weisenden Richtungskomponenten verschwinden. Das Licht 42, 44 im dritten Nebenbündel propagiert dann vertikal auf gleicher Höhe wie das Licht im zentralen Bündel und in den seitlichen Nebenbündeln.
  • Ein Ausführungsbeispiel einer gesamten erfindungsgemäßen Vorsatzoptik ergibt sich dadurch, dass die übrigen drei Viertel symmetrisch zu dem hier im Detail betrachteten Viertel gestaltet werden.
  • In einer weiteren Ausgestaltung weist eine ebenfalls erfindungsgemäße Vorsatzoptik eine solche Symmetrie nicht auf. Die Erfindung ist dann zum Beispiel in einem Teil, beispielsweise nur einem Viertel der Vorsatzoptik verwirklicht.
  • Die Figur 5 zeigt das Erscheinungsbild einer beleuchteten Lichtaustrittsfläche einer solchen erfindungsgemäßen Vorsatzoptik, wie es sich einem Betrachter bietet, der sich die Lichtaustrittsfläche aus einer auf der optischen Achse der Linse liegenden Position betrachtet. Das Verhältnis der Länge dieser Lichtaustrittsfläche zu ihrer Breite beträgt mehr als 3:1. Das ist, bei vergleichbarer Breite in der dritten Raumrichtung, deutlich mehr als beim Stand der Technik, der das Erscheinungsbild gemäß Fig. 2 liefert. Dabei geht die größere Länge der Ausleuchtung nicht zu Lasten der Ausleuchtung der inneren Bereiche. Die bei der Erfindung größere Länge der Ausleuchtung wird mit Licht erzielt, das beim Stand der Technik ungenutzt blieb.
  • In den Figuren sind Ausgestaltungen dargestellt, bei denen die Lichtaustrittsflächen mit streuenden Kissenstrukturen versehen sind. Diese Strukturen dienen dazu, das vor dem Austreten im Extremfall parallel ausgerichtete Licht (Öffnungswinkel gleich Null) auf einen für regelkonforme Signallichtverteilungen von Kraftfahrzeugleuchten üblichen Öffnungswinkel von zum Beispiel 20° in der Vertikalen und 40° in der Horizontalen aufzuweiten.
  • Alternativ oder ergänzend zu solchen in die jeweilige Lichtaustrittsfläche der Vorsatzoptik eingeformten Kissenoptiken können Kissenoptiken auch in die Lichteintrittsfläche, zum Beispiel in die zentrale Linsenfläche eingeformt sein.
  • Weiter alternativ oder ergänzend können Kissenoptiken auch in die reflektierenden Bereiche eingeformt sein. Dies gilt sowohl für jeden schmalseitig angeordneten Reflektor als auch für jeden breitseitig angeordneten Reflektor.
  • In einer bevorzugten Ausgestaltung weist die Lichtaustrittsfläche eine gekrümmte Grundform auf. Je nach Ausgestaltung sind dabei nur die langen Seiten oder nur die kurzen Seiten gekrümmt, so dass sich die Form einer zylindrischen Mantelfläche ergibt, oder es sind sowohl die langen Seiten als auch die kurzen Seiten der Lichtaustrittsfläche gekrümmt, so dass sich eine im Raum gewölbte Fläche ergibt. Einer solchen Krümmung oder Wölbung können die kleineren Kissenstrukturen überlagert sein. Die Krümmung oder Wölbung kann konvex sein, sie kann aber auch konkav sein.
  • In weiteren Ausgestaltungen besitzt die Lichtaustrittsfläche eine gestufte Form oder verläuft nicht rechtwinklig, sondern schräg zur optischen Achse. Bei einer gekrümmten, insbesondere bei einer gewölbten Lichtaustrittsfläche ist die im Lichtweg davor liegende Umlenkfläche bevorzugt gestuft ausgeführt, um eine homogene Ausleuchtung zu erzielen.
  • Fig. 6 zeigt eine weitere Ausgestaltung, bei welcher der transparente Festkörper eine Form hat, die mehrfach und in verschiedene Richtungen abknickt. Das Abknicken kann unter verschiedenen Winkeln erfolgen, nicht nur unter 90°.

Claims (10)

  1. Vorsatzoptik (36) für eine Halbleiterlichtquelle, mit einer zentralen Linse (12), die eine optische Achse (14) und einen Fokalbereich (16) aufweist und die dazu eingerichtet ist, aus Licht, das von dem Fokalbereich (16) her auf sie einfällt, ein zentrales Lichtbündel zu erzeugen, in dem Licht parallel zur optischen Achse propagiert, wobei die Propagationsrichtung dieses Lichtes eine erste Raumrichtung (18) definiert, mit einem inneren Seitenreflektor (21), der in einer zur ersten Raumrichtung (18) senkrechten zweiten Raumrichtung (22) auf einer ersten Seite der optischen Achse angeordnet ist, wobei der innere Seitenreflektor (21) dazu eingerichtet ist, ein erstes Nebenbündel parallelen Lichtes zu erzeugen, in dem Licht in der ersten Raumrichtung propagiert, das in der zweiten Raumrichtung neben dem zentralen Lichtbündel liegt, dadurch gekennzeichnet, dass die Vorsatzoptik (36) wenigstens einen breitseitig angeordneten weiteren Reflektor (38) und wenigstens einen äußeren Seitenreflektor (40) aufweist, wobei der breitseitig angeordneten weitere Reflektor (38) in einer dritten Raumrichtung (28) auf einer ersten Seite der optischen Achse angeordnet und dazu eingerichtet ist, ein drittes Nebenbündel parallelen Lichtes zu erzeugen, das zunächst eine Richtungskomponente parallel zur ersten Raumrichtung (18) und eine Richtungskomponente parallel zur zweiten Raumrichtung (22) und eine Richtungskomponente parallel zur dritten Raumrichtung besitzt und auf den äußeren Seitenreflektor (40) gerichtet ist, wobei der äußere Seitenreflektor (40) in der ersten Raumrichtung (18) hinter dem inneren Seitenreflektor (21) und in der zweiten Raumrichtung (22) auf einer der optischen Achse abgewandten Seite des inneren Seitenreflektors (21) angeordnet und dazu eingerichtet ist, das dritte Nebenbündel so umzulenken, dass das Licht des dritten Nebenbündels in die erste Raumrichtung (18) propagiert, wobei das dritte Nebenbündel in der zweiten Raumrichtung (22) auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel liegt.
  2. Vorsatzoptik (36) nach Anspruch 1, dadurch gekennzeichnet, dass der innere Seitenreflektor (21) dazu eingerichtet ist, das erste Nebenbündel parallelen Lichtes so zu erzeugen, das das erste Nebenbündel, das neben dem zentralen Lichtbündel liegt, sich an dieses, dessen Form komplementierend, anschließt.
  3. Vorsatzoptik (36) nach Anspruch 2, dadurch gekennzeichnet, dass das dritte Nebenbündel in der zweiten Raumrichtung (22) auf einer der optischen Achse abgewandten Seite des ersten Nebenbündels neben dem ersten Nebenbündel liegt und sich an dieses, dessen Form komplementierend, anschließt.
  4. Vorsatzoptik (36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der breitseitig angeordnete weitere Reflektor (38) in der dritten Raumrichtung (28) oberhalb des in einer der Schmalseiten angeordneten inneren Seitenreflektors (21) und oberhalb des ebenfalls in der Schmalseite angeordneten äußeren Seitenreflektors angeordnet ist.
  5. Vorsatzoptik (36) nach Anspruch 4, dadurch gekennzeichnet, dass der schmalseitig angeordnete äußere Seitenreflektor (40) in der ersten Raumrichtung (18) hinter dem inneren Seitenreflektor (21) und in der zweiten Raumrichtung (22) auf einer der optischen Achse (14) abgewandten Seite des inneren Seitenreflektors, (21) also weiter außen als dieser, angeordnet ist.
  6. Vorsatzoptik (36) nach Anspruch 5, dadurch gekennzeichnet, dass der äußere Seitenreflektor (40) als ebene Fläche verwirklicht ist.
  7. Vorsatzoptik (36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Lichtaustrittsfläche (46) der Vorsatzoptik eingeformte, lichtstreuende Kissenstrukturen aufweist.
  8. Vorsatzoptik (36) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Kissenoptiken in einer Lichteintrittsfläche eingeformt sind.
  9. Vorsatzoptik (36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kissenoptiken in die reflektierenden Bereiche eingeformt sind.
  10. Vorsatzoptik (36) nach einem der vorhergehende Ansprüche, dadurch gekennzeichnet, dass die Lichtaustrittsfläche (46) eine gekrümmte Grundform aufweist.
EP16176224.0A 2015-07-22 2016-06-24 Vorsatzoptik Active EP3121510B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015213830.5A DE102015213830A1 (de) 2015-07-22 2015-07-22 Vorsatzoptik

Publications (2)

Publication Number Publication Date
EP3121510A1 EP3121510A1 (de) 2017-01-25
EP3121510B1 true EP3121510B1 (de) 2019-05-22

Family

ID=56411393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16176224.0A Active EP3121510B1 (de) 2015-07-22 2016-06-24 Vorsatzoptik

Country Status (2)

Country Link
EP (1) EP3121510B1 (de)
DE (1) DE102015213830A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017002394A1 (de) 2016-06-17 2017-12-21 Docter Optics Se Verfahren zum Herstellen eines Vorsatzoptikarrays für einen Fahrzeugscheinwerfer
DE102017213100A1 (de) * 2017-07-28 2019-01-31 Osram Gmbh Totale interne reflexionslinse (tir-linse), tir-linsenanordnung, beleuchtungsssystem und scheinwerfer
KR102617540B1 (ko) * 2018-09-14 2023-12-26 에스엘 주식회사 조명 장치
DE102019126732A1 (de) * 2019-10-02 2021-04-08 OSRAM CONTINENTAL GmbH Optik und Anordnung
DE102023105942A1 (de) 2023-03-09 2024-09-12 Docter Optics Se Primäroptik für einen Fahrzeugscheinwerfer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728354C2 (de) 1997-07-03 1999-12-02 Sidler Gmbh & Co Refraktorelement als Vorsatz für eine Lichtquelle und Verwendung eines solchen Refraktorelements als Vorsatz für eine Bremsleuchte eines Fahrzeugs
DE10021114B4 (de) 2000-05-02 2009-04-30 Robert Bosch Gmbh Beleuchtungsvorrichtung
DE202005010490U1 (de) * 2005-07-04 2005-09-22 Fer Fahrzeugelektrik Gmbh Optikkörper
US7222995B1 (en) 2006-01-19 2007-05-29 Bayco Products, Ltd. Unitary reflector and lens combination for a light emitting device
DE102006008191B4 (de) * 2006-02-22 2015-10-08 Hella Kgaa Hueck & Co. Leuchteneinheit für Fahrzeuge
DE102010046021A1 (de) * 2010-09-18 2012-03-22 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugscheinwerfer mit einem Mehrfunktions-Projektionsmodul
US8684575B2 (en) * 2011-02-24 2014-04-01 Stanley Electric Co., Ltd. Lighting unit
DE102011055429B4 (de) * 2011-11-17 2021-03-11 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge
JP6203519B2 (ja) * 2012-09-13 2017-09-27 株式会社小糸製作所 車両用灯具
DE102013212352A1 (de) * 2013-06-26 2014-12-31 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugbeleuchtungseinrichtung mit einer Einkoppeloptik und einer Transport- und Umformoptik

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015213830A1 (de) 2017-01-26
EP3121510A1 (de) 2017-01-25

Similar Documents

Publication Publication Date Title
EP3121510B1 (de) Vorsatzoptik
EP2607774B1 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einer langen und flachen leuchtenden Fläche
DE102013212353B4 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einer eine Einkoppeloptik und eine Transport- und Umformoptik aufweisenden Lichtleiteranordnung
EP3012521B1 (de) Leuchte für ein kraftfahrzeug
DE102004026530B3 (de) Optikkörper
DE20200571U1 (de) Fahrzeugleuchte
EP3084496A1 (de) Optisches element, sowie anordnung zur lichtabgabe
EP3134675B1 (de) Optisches element für eine led, led-anordnung mit einem solchen optischen element, sowie leuchte mit einer solchen led-anordnung
DE102013212355A1 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einem eine Einkoppeloptik und eine Transport- und Umformoptik aufweisenden Lichtleiter
DE102012107676A1 (de) Optikkörper für eine Fahrzeugleuchte
EP3524873A1 (de) Effizientes, mikroprojektoren aufweisendes projektionslichtmodul für einen kraftfahrzeugscheinwerfer
EP2618045A1 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
EP2500753B1 (de) Lichtleiter mit direkt Licht auskoppelnden Auskoppelelementen
EP3531012A1 (de) Beleuchtungseinrichtung für kraftfahrzeuge mit einem langgestreckten lichtleiter
EP2372235A2 (de) Fahrzeugleuchte mit einer Lichtleiter-Vorsatzoptik
DE102015213827B4 (de) Vorsatzoptik für eine Signalleuchte einer Kraftfahrzeugbeleuchtungseinrichtung
DE102015219211A1 (de) Lichtmodul für eine Kfz-Beleuchtungseinrichtung
EP3812653A1 (de) Signalleuchte mit einem lichtleiter
EP3212997B1 (de) Optisches element sowie anordnung zur lichtabgabe mit einem optischen element
EP2876361B1 (de) Kraftfahrzeugbeleuchtungseinrichtung
DE102012209013B4 (de) Optisches Element und ein Leuchtmodul
EP1126211B1 (de) Projektionsscheinwerfer für ein Kraftfahrzeug
DE19938734A1 (de) Fahrzeugleuchte
DE102019118005A1 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einer Lichtleiterplatte
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016004758

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0043140000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 43/31 20180101ALI20180927BHEP

Ipc: F21S 43/14 20180101AFI20180927BHEP

Ipc: F21S 43/40 20180101ALI20180927BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181210

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 43/14 20180101AFI20180927BHEP

Ipc: F21S 43/40 20180101ALI20180927BHEP

Ipc: F21S 43/31 20180101ALI20180927BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004758

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1136550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190522

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004758

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

26N No opposition filed

Effective date: 20200225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190624

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1136550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210624

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 9