EP3177750B1 - Monitoring and control of a coating process on the basis of a heat distribution on the workpiece - Google Patents
Monitoring and control of a coating process on the basis of a heat distribution on the workpiece Download PDFInfo
- Publication number
- EP3177750B1 EP3177750B1 EP15775425.0A EP15775425A EP3177750B1 EP 3177750 B1 EP3177750 B1 EP 3177750B1 EP 15775425 A EP15775425 A EP 15775425A EP 3177750 B1 EP3177750 B1 EP 3177750B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- heat distribution
- workpiece
- detected
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 121
- 238000009826 distribution Methods 0.000 title claims description 70
- 238000012544 monitoring process Methods 0.000 title description 2
- 239000011248 coating agent Substances 0.000 claims description 92
- 238000000034 method Methods 0.000 claims description 42
- 238000005507 spraying Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 238000007750 plasma spraying Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 20
- 239000007921 spray Substances 0.000 description 17
- 238000002485 combustion reaction Methods 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000009413 insulation Methods 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 239000012720 thermal barrier coating Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910000601 superalloy Inorganic materials 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- 229910009474 Y2O3—ZrO2 Inorganic materials 0.000 description 3
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010285 flame spraying Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000009419 refurbishment Methods 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- YPFNIPKMNMDDDB-UHFFFAOYSA-K 2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;iron(3+) Chemical compound [Fe+3].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O YPFNIPKMNMDDDB-UHFFFAOYSA-K 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000005309 stochastic process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
Definitions
- the invention relates to a method for coating a workpiece using a spray device and a device for performing the method according to the invention.
- the workpiece to be coated can in particular be a turbine blade or some other component located in a hot gas path of a gas turbine.
- Components that are subject to high thermal and mechanical loads such as turbine components and, in particular, turbine blades, are usually coated with a coating material in order to increase the temperature resistance and / or the abrasion resistance of the workpiece.
- Typical coatings that are used to coat turbine blades are so-called MCrAlX coatings, where M for a metal, for example iron (Fe), cobalt (Co) or nickel (Ni), Cr for chromium, Al for aluminum and X for Yttrium (Y) and / or silicon (Si), scandium (Sc) and / or at least one rare earth element or hafnium.
- ceramic thermal barrier coatings such as zirconium oxide, the structure of which is at least partially stabilized by yttrium oxide, are used in particular for turbine blades.
- TBC Thermal Barrier Coating
- zirconium oxide the structure of which is at least partially stabilized by yttrium oxide
- the coatings described are applied to the components to be coated by means of a spraying process. Examples of such spraying methods are high-speed flame spraying and plasma spraying.
- the object of the present invention is therefore to provide an advantageous method and an advantageous device for coating a workpiece using a spray device which enable a quick reaction to deviations of the coating produced from the desired coating properties.
- the invention is based on and includes the insight that the course of the coating process can be monitored and controlled by detecting the heat input on or into the workpiece due to the spray jet of the spray device in order to ensure that the desired coating properties of the finished coating are achieved .
- the spray jet or the coating material transported in it is strongly heated in conventional coating processes such as high-speed flame spraying or plasma spraying during the spraying or spraying process, so that the local distribution and the mass or density of the on the surface of the workpiece Assess adhering coating material using a thermal image and compare different coating processes on workpieces of the same type.
- the method according to the invention can advantageously be used, with corresponding local cooling resulting instead of an input of heat. Nevertheless, in the following, heat input and heat distribution are referred to, although the mentioned exceptional cases should not be excluded.
- the temperature of the workpiece when carrying out the method according to the invention, it is advantageous to bring the temperature of the workpiece to a certain value in order to create reproducible conditions for different coating processes of copies of the same workpiece type.
- the workpiece to be coated can particularly preferably be kept at the selected temperature by determining the temperature and heating or cooling the workpiece accordingly.
- the spray jet from the spray device and thus the work area is usually guided along a predetermined path over the surface of the workpiece (of course, the workpiece can in principle also be guided along the spray device).
- the working area denotes that area of the surface of the workpiece in which the coating material is currently being sprayed on. In a fully automated process, this path remains the same for every workpiece of the same type, which is why the heat input into the workpiece by the spray jet should also be the same if the specified coating parameters are observed. If a discrepancy between the detected heat distribution and the expected heat distribution is determined, the at least one coating parameter can be adapted in order to carry out the coating process as closely as possible following the specifications.
- the recorded heat distribution is compared with stored reference heat distributions. From the stored reference heat distributions, a reference heat distribution that most closely resembles the detected heat distribution is then selected. The at least one coating parameter is finally adapted as a function of a coating parameter data set assigned to the selected reference heat distribution.
- a deviation of the actual coating parameter or parameters from the specified values is determined by considering a deviation of the detected heat distribution from an expectation. It is assumed here that the actual coating parameters deviate from the specification in the same way as is the case for the coating parameter data sets assigned to the respective reference heat distributions.
- the recorded heat distribution deviates from the reference heat distribution assigned to the current coating parameters and is similar, for example, to a reference heat distribution with an increased supply rate of the coating material, it can be concluded from the coating parameter data record assigned to this reference heat distribution that the coating parameter is currently supplied faster than desired and specified. The specification for the feed rate can then be reduced accordingly.
- a difference is preferably determined between the coating parameter data set, the reference heat distribution most closely resembling the detected heat distribution, and the current at least one coating parameter used for the coating.
- the current at least one coating parameter can then be adapted as a function of this difference.
- the degree of adaptation of the at least one coating parameter can be proportional to the difference. This means that even larger deviations from the specification can be quickly compensated for.
- the reference heat distributions and the coating parameter data records assigned to the reference heat distributions are preferably obtained on the basis of carrying out coating processes using the assigned coating parameter data records.
- specimens of the workpiece type to be coated or, in a more economical embodiment, material samples, for example tile-shaped material samples, can be coated with different coating parameters and the properties of the coatings obtained in this way can be assessed.
- the stored reference heat distributions are divided into a plurality of groups, each of the groups being assigned to a respective surface region of the workpiece.
- the recorded heat distribution can be compared with that group of stored reference heat distributions that is assigned to that surface region of the workpiece in which the work area for which the recorded heat distribution was recorded is located.
- special features such as the local geometry or other properties of the workpiece, which cause variable coating properties and therefore require special coating parameters, can be taken into account when coating the workpiece.
- Each stored reference heat distribution is preferably assigned an evaluation which contains a statement about at least one coating property, in particular about a coating porosity, a coating roughness or a coating thickness.
- the deviations of the coating process from the specification recognized on the basis of the recorded heat distribution can be assessed on the basis of their expected effects on the resulting coating properties. This allows a prediction to be made about the quality of the coated workpiece and can be used to control the coating process, for example when adapting the at least one coating parameter.
- the heat distribution in the working area of the surface of the workpiece can be recorded with a pyrometer or an infrared camera.
- a pyrometer or an infrared camera.
- the at least one coating parameter can comprise at least one coating parameter selected from the group consisting of plasma voltage, powder feed rate of the coating material or composition of a plasma gas.
- a second aspect of the invention relates to a device for coating a workpiece.
- the device is equipped with a spray device, a heat measuring device and a control unit connected to the spray device and the heat measuring device.
- the control unit is designed to carry out the method according to the invention.
- Figure 1 shows an embodiment of the method according to the invention in the form of a flowchart.
- the method begins in a start step S1.
- a workpiece to be coated is provided and a path is determined along which the spray device is guided over the surface of the workpiece.
- the relevant coating parameter or parameters are selected and preset according to the coating to be applied and its desired properties.
- these coating parameters can in particular include a feed rate of the coating material, a plasma voltage or a composition of the plasma gas.
- step S3 the coating process is started or carried out in accordance with the predetermined coating parameter (s).
- the coating process can be carried out continuously or regularly interrupted for carrying out the further method steps S4 to S10. However, because of the shorter process time, continuous coating is preferred.
- step S4 a heat distribution of the work area on the surface of the workpiece is detected. This is preferably carried out using an imaging method which determines a respective temperature for the individual locations on the surface of the workpiece. The higher the resolution of the imaging process, the more precisely the heat distribution can be assessed.
- step S5 the detected heat distribution is compared with a plurality of reference heat distributions.
- a group of reference heat distributions from the total quantity can be selected for the comparison on reference heat distributions which are regarded as representative of the currently coated partial surface of the workpiece.
- the comparison determines that reference heat distribution which most closely resembles the detected heat distribution.
- step S6 the coating parameter data set assigned to the determined reference heat distribution is compared with the currently specified coating parameter or parameters.
- the coating parameter data record reproduces those coating parameters which led to the assigned reference heat distribution during a trial of the coating process. Since the resulting heat distribution depends on the actual coating parameters, conclusions are drawn about the actual values of the coating parameters of the current coating process by considering the coating parameters assigned to the determined reference heat distribution.
- step S7 a discrepancy between the assigned coating parameter data set and the specified coating parameter (s) is determined. It is assumed here that the specified at least one coating parameter is not adhered to by the spray device if a detected heat distribution that deviates from the expectation has occurred.
- step S8 a correction value or a set of correction values is then calculated as a function of the previously determined deviation, by which the at least one coating parameter is adapted in step S9.
- the adaptation of the at least one coating parameter is intended to ensure that the coating process is carried out more precisely in accordance with the specifications.
- step S10 it is finally checked whether the end of the path along which the workpiece is coated has been reached. If this is not the case, the coating process and the method according to the invention are continued by branching back to step S3; otherwise the method is ended in step S11. An investigation can then be carried out the properties of the coating and, if necessary, adjustments to the coating parameter data sets assigned to the reference heat distributions are made. It is also conceivable to select one or more from the heat distributions recorded during the implementation of the method and to make them available as reference heat distributions for further process runs. For this purpose, the recorded heat distributions and the associated respective coating parameter (s) can be stored while the method is being carried out. In particular, it is also conceivable to assess the informative value of the individual (reference) heat distributions and to achieve improved reproducibility of the coating process over a large number of process steps.
- the Figure 2 shows an example of a gas turbine 100 in a partial longitudinal section.
- the method according to the invention is particularly suitable for coating components of such a gas turbine 100.
- the gas turbine 100 has in the interior a rotor 103 which is rotatably mounted about an axis of rotation 102 and has a shaft 101, which is also referred to as a turbine rotor.
- the annular combustion chamber 110 communicates with an, for example, annular hot gas duct 111.
- annular hot gas duct 111 There, for example, four turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings. In the direction of flow of a working medium 113, as seen in the hot gas duct 111, a row of guide vanes 115 is followed by a row 125 formed from rotor blades 120.
- the guide blades 130 are attached to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are attached to the rotor 103, for example by means of a turbine disk 133.
- a generator or a work machine (not shown) is coupled to the rotor 103.
- the compressor 105 sucks in air 135 through the suction housing 104 and compresses it.
- the compressed air provided at the turbine-side end of the compressor 105 is fed to the burners 107 and mixed there with a fuel.
- the mixture is then burned in the combustion chamber 110 with the formation of the working medium 113.
- the working medium 113 flows along the hot gas duct 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 relaxes, transferring impulses, so that the rotor blades 120 drive the rotor 103 and the rotor 103 drives the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during the operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112 seen in the flow direction of the working medium 113 are subjected to the greatest thermal load.
- Substrates of the components can also have a directional structure, ie they are monocrystalline (SX structure) or only have longitudinally oriented grains (DS structure).
- SX structure monocrystalline
- DS structure longitudinally oriented grains
- Iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
- Such superalloys are for example from EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 or WO 00/44949 known.
- the blades 120, 130 can also have coatings against corrosion (MCrAlX; M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earths or hafnium).
- M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni)
- X is an active element and stands for yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earths or hafnium).
- Such alloys are known from EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 or EP 1 306 454 A1 .
- a thermal insulation layer can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- EB-PVD Electron beam evaporation
- the guide vane 130 has a guide vane root (not shown here) facing the inner casing 138 of the turbine 108 and a guide vane head opposite the guide vane root.
- the guide vane head faces the rotor 103 and is fixed on a fastening ring 140 of the stator 143.
- FIG. 8 shows a perspective view of a rotor blade 120 or guide vane 130 of a turbomachine that extends along a longitudinal axis 121.
- the turbomachine can be a gas turbine of an aircraft or a power plant for generating electricity, a steam turbine or a compressor.
- the blade 120, 130 has, one after the other along the longitudinal axis 121, a fastening area 400, a blade platform 403 adjoining it, and a blade 406 and a blade tip 415.
- the vane 130 can have a further platform at its vane tip 415 (not shown).
- a blade root 183 is formed which is used to fasten the rotor blades 120, 130 to a shaft or a disk (not shown).
- the blade root 183 is designed, for example, as a hammer head. Other configurations than a fir tree or dovetail foot are possible.
- the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium that flows past the airfoil 406.
- Such superalloys are for example from EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 or WO 00/44949 known.
- the blade 120, 130 can in this case be manufactured by a casting process, also by means of directional solidification, by a forging process, by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines that are exposed to high mechanical, thermal and / or chemical loads during operation.
- Such monocrystalline workpieces are manufactured e.g. by directional solidification from the melt. These are casting processes in which the liquid metallic alloy is converted into a monocrystalline structure, i.e. to a single crystal workpiece, or solidified in a directional manner.
- dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e. grains that run over the entire length of the workpiece and are referred to here, according to common usage, as directionally solidified) or a monocrystalline structure, i.e. the entire workpiece consists of a single crystal.
- a columnar grain structure columnar, i.e. grains that run over the entire length of the workpiece and are referred to here, according to common usage, as directionally solidified
- a monocrystalline structure i.e. the entire workpiece consists of a single crystal.
- directionally solidified structures are generally referred to, this means both single crystals that have no grain boundaries or at most small-angle grain boundaries, as well as columnar crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also referred to as directionally solidified structures.
- the blades 120, 130 can have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one rare element Earth, or hafnium (Hf)).
- M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni)
- X is an active element and stands for yttrium (Y) and / or silicon and / or at least one rare element Earth, or hafnium (Hf)).
- Such alloys are known from EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 or EP 1 306 454 A1 .
- the density is preferably 95% of the theoretical density.
- the layer composition preferably has Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y.
- nickel-based protective coatings such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5Re.
- a thermal insulation layer which is preferably the outermost layer, can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- the thermal insulation layer covers the entire MCrAlX layer.
- EB-PVD Electron beam evaporation
- the thermal insulation layer can have porous, micro- or macro-cracked grains for better thermal shock resistance.
- the thermal insulation layer is therefore preferably more porous than the MCrAlX layer.
- Refurbishment means that components 120, 130 may have to be freed of protective layers after their use (e.g. by sandblasting). The corrosion and / or oxidation layers or products are then removed. If necessary, cracks in the component 120, 130 are also repaired. Then the component 120, 130 is recoated and the component 120, 130 is used again.
- the blade 120, 130 can be made hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and optionally also has film cooling holes 418 (indicated by dashed lines).
- the Figure 4 shows a combustion chamber 110 of a gas turbine.
- the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber in which a plurality of burners 107 arranged in the circumferential direction around an axis of rotation 102 open into a common combustion chamber 154, which generate flames 156.
- the combustion chamber 110 is designed in its entirety as an annular structure which is positioned around the axis of rotation 102.
- the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of approximately 1000 degrees Celsius to 1600 degrees Celsius.
- the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed from heat shield elements 155.
- Each heat shield element 155 made of an alloy has a particularly heat-resistant one on the working medium side Protective layer (MCrAlX layer and / or ceramic coating) or is made of high temperature resistant material (solid ceramic stones).
- M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths or hafnium (Hf).
- Such alloys are known from EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 or EP 1 306 454 A1 .
- a ceramic thermal insulation layer for example, can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
- EB-PVD Electron beam evaporation
- thermal insulation layer can have porous, micro- or macro-cracked grains for better thermal shock resistance.
- Refurbishment means that heat shield elements 155 may have to be freed of protective layers after their use (for example by sandblasting). The corrosion and / or oxidation layers or products are then removed. If necessary, cracks in the heat shield element 155 are also repaired. Thereafter, the heat shield elements 155 are recoated and the heat shield elements 155 are used again.
- a cooling system can also be provided for the heat shield elements 155 or for their holding elements.
- the heat shield elements 155 are then, for example, hollow and possibly also have cooling holes (not shown) opening into the combustion chamber space 154.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Beschichten eines Werkstücks unter Verwendung einer Sprühvorrichtung und eine Vorrichtung zum Durchführen des erfindungsgemäßen Verfahrens. Das zu beschichtende Werkstück kann insbesondere eine Turbinenschaufel oder ein sonstiges in einem Heißgaspfad einer Gasturbine gelegenes Bauteil sein.The invention relates to a method for coating a workpiece using a spray device and a device for performing the method according to the invention. The workpiece to be coated can in particular be a turbine blade or some other component located in a hot gas path of a gas turbine.
Thermisch und mechanisch hochbelastete Bauteile wie beispielsweise Turbinenbauteile und hierbei insbesondere Turbinenschaufeln, werden in der Regel mit einem Beschichtungsmaterial beschichtet, um die Temperaturbeständigkeit und/oder die Abrasionsfestigkeit des Werkstücks zu erhöhen. Typische Beschichtungen, die zum Beschichten von Turbinenschaufeln zum Einsatz kommen, sind sogenannte MCrAlX-Beschichtungen, wobei M für ein Metall, beispielsweise Eisen (Fe), Kobalt (Co) oder Nickel (Ni), Cr für Chrom, Al für Aluminium und X für Yttrium (Y) und/oder Silizium (Si), Scandium (Sc) und/oder zumindest ein Element der seltenen Erden oder Hafnium stehen. Weiterhin kommen insbesondere bei Turbinenschaufeln keramische Wärmedämmschichten (TBC, Thermal Barrier Coating) zum Einsatz wie beispielsweise Zirkoniumoxid, dessen Struktur zumindest teilweise durch Yttriumoxid stabilisiert ist. Die beschriebenen Beschichtungen werden mittels Spritzverfahren auf die zu beschichtenden Bauteile aufgebracht. Beispiele für solche Spritzverfahren sind Hochgeschwindigkeitsflammspritzen und Plasmaspritzen.Components that are subject to high thermal and mechanical loads, such as turbine components and, in particular, turbine blades, are usually coated with a coating material in order to increase the temperature resistance and / or the abrasion resistance of the workpiece. Typical coatings that are used to coat turbine blades are so-called MCrAlX coatings, where M for a metal, for example iron (Fe), cobalt (Co) or nickel (Ni), Cr for chromium, Al for aluminum and X for Yttrium (Y) and / or silicon (Si), scandium (Sc) and / or at least one rare earth element or hafnium. Furthermore, ceramic thermal barrier coatings (TBC, Thermal Barrier Coating) such as zirconium oxide, the structure of which is at least partially stabilized by yttrium oxide, are used in particular for turbine blades. The coatings described are applied to the components to be coated by means of a spraying process. Examples of such spraying methods are high-speed flame spraying and plasma spraying.
Beispielsweise bei der Beschichtung von Turbinenbauteilen, insbesondere von Turbinenschaufeln, mit Haftvermittlungs-, Wärmedämm- und/oder oxidations- und korrosionshemmenden Schichten mittels Spritzverfahren kann es während der Beschichtung zu stochastischen Prozessabweichungen kommen. Hierzu zählen u. a. Änderungen der Form und der Größe des Spritzfleckens aufgrund des Verschleißes der Elektrode in der Spritzvorrichtung, Schwankungen in der Pulverzufuhr, Anlagenausfälle, etc. Letztendlich führen signifikante Änderungen zu einem Prozessabbruch bzw. zu einer Fehlleistung, d. h. das beschichtete Bauteil erfüllt nicht die gestellten Anforderungen und muss entschichtet und anschließend wieder neu beschichtet werden, oder es ist als Ausschuss anzusehen.
Aufgabe der vorliegenden Erfindung ist es daher, ein vorteilhaftes Verfahren und eine vorteilhafte Vorrichtung zum Beschichten eines Werkstücks unter Verwendung einer Sprühvorrichtung zur Verfügung zu stellen, die ein rasches Reagieren auf Abweichungen der erstellten Beschichtung von den gewünschten Beschichtungseigenschaften ermöglichen.The object of the present invention is therefore to provide an advantageous method and an advantageous device for coating a workpiece using a spray device which enable a quick reaction to deviations of the coating produced from the desired coating properties.
Die Erfindung führt daher ein verbessertes Verfahren zum Beschichten eines Werkstücks unter Verwendung einer Sprühvorrichtung ein. Dabei werden das Beschichten des Werkstücks gemäß wenigstens einem Beschichtungsparameter vorgenommen und während des Beschichtens wenigstens folgende Schritte ausgeführt:
- Erfassen einer örtlichen Wärmeverteilung in einem Arbeitsbereich einer Oberfläche des Werkstücks; und
- Anpassen des wenigstens einen Beschichtungsparameters in Abhängigkeit von der erfassten Wärmeverteilung.
- Detecting a local heat distribution in a work area of a surface of the workpiece; and
- Adapting the at least one coating parameter as a function of the detected heat distribution.
Die Erfindung beruht auf der Einsicht und schließt diese mit ein, dass sich der Verlauf des Beschichtungsverfahrens anhand einer Erfassung des Wärmeeintrags auf das beziehungsweise in das Werkstück aufgrund des Sprühstrahls der Sprühvorrichtung überwachen und steuern lässt, um das Erreichen der gewünschten Beschichtungseigenschaften der fertigen Beschichtung zu gewährleisten. Der Sprühstrahl beziehungsweise das in ihm transportierte Beschichtungsmaterial wird in üblichen Beschichtungsverfahren wie dem Hochgeschwindigkeitsflammspritzen oder dem Plasmaspritzen während des Sprüh- oder Spritzvorgangs stark erhitzt, so dass sich die örtliche Verteilung und die Masse oder Dichte des auf der Oberfläche des Werkstücks anhaftenden Beschichtungsmaterials anhand eines Wärmebildes beurteilen und zwischen verschiedenen Beschichtungsvorgängen an Werkstücken desselben Typs vergleichen lassen. In Ausnahmefällen kann es vorkommen, dass das Werkstück eine höhere Temperatur besitzt als das aufgesprühte Beschichtungsmaterial. Auch hier kann das erfindungsgemäße Verfahren vorteilhaft verwendet werden, wobei sich anstelle eines Wärmeeintrags eine entsprechende lokale Abkühlung ergibt. Dennoch wird im folgenden von einem Wärmeeintrag und einer Wärmeverteilung gesprochen, obgleich die erwähnten Ausnahmefälle nicht ausgeschlossen sein sollen.The invention is based on and includes the insight that the course of the coating process can be monitored and controlled by detecting the heat input on or into the workpiece due to the spray jet of the spray device in order to ensure that the desired coating properties of the finished coating are achieved . The spray jet or the coating material transported in it is strongly heated in conventional coating processes such as high-speed flame spraying or plasma spraying during the spraying or spraying process, so that the local distribution and the mass or density of the on the surface of the workpiece Assess adhering coating material using a thermal image and compare different coating processes on workpieces of the same type. In exceptional cases it can happen that the workpiece has a higher temperature than the sprayed coating material. Here, too, the method according to the invention can advantageously be used, with corresponding local cooling resulting instead of an input of heat. Nevertheless, in the following, heat input and heat distribution are referred to, although the mentioned exceptional cases should not be excluded.
Allgemein ist es bei der Durchführung des erfindungsgemäßen Verfahrens vorteilhaft, die Temperatur des Werkstücks auf einen bestimmten Wert zu bringen, um für unterschiedliche Beschichtungsvorgänge von Exemplaren desselben Werkstücktyps reproduzierbare Verhältnisse zu schaffen. Besonders bevorzugt kann das zu beschichtende Werkstück auf der gewählten Temperatur gehalten werden, indem die Temperatur bestimmt und das Werkstück entsprechend geheizt oder gekühlt wird.In general, when carrying out the method according to the invention, it is advantageous to bring the temperature of the workpiece to a certain value in order to create reproducible conditions for different coating processes of copies of the same workpiece type. The workpiece to be coated can particularly preferably be kept at the selected temperature by determining the temperature and heating or cooling the workpiece accordingly.
Während des Beschichtungsvorgangs wird der Sprühstrahl der Sprühvorrichtung und damit der Arbeitsbereich üblicherweise entlang einer vorgegebenen Bahn über die Oberfläche des Werkstücks geführt (selbstverständlich kann grundsätzlich auch das Werkstück entlang der Sprühvorrichtung geführt werden). Der Arbeitsbereich bezeichnet dabei denjenigen Bereich der Oberfläche des Werkstücks, in dem gerade das Beschichtungsmaterial aufgesprüht wird. In einem vollautomatisierten Verfahren bleibt diese Bahn für jedes Werkstück desselben Typs gleich, weshalb auch der Wärmeeintrag in das Werkstück durch den Sprühstrahl gleichartig sein sollte, wenn die vorgegebenen Beschichtungsparameter eingehalten werden. Wird eine Abweichung der erfassten Wärmeverteilung von der erwarteten Wärmeverteilung festgestellt, kann der wenigstens eine Beschichtungsparameter angepasst werden, um den Beschichtungsvorgang möglichst nah den Vorgaben folgend durchzuführen.During the coating process, the spray jet from the spray device and thus the work area is usually guided along a predetermined path over the surface of the workpiece (of course, the workpiece can in principle also be guided along the spray device). The working area denotes that area of the surface of the workpiece in which the coating material is currently being sprayed on. In a fully automated process, this path remains the same for every workpiece of the same type, which is why the heat input into the workpiece by the spray jet should also be the same if the specified coating parameters are observed. If a discrepancy between the detected heat distribution and the expected heat distribution is determined, the at least one coating parameter can be adapted in order to carry out the coating process as closely as possible following the specifications.
Insbesondere wird die erfasste Wärmeverteilung mit gespeicherten Referenzwärmeverteilungen verglichen. Aus den gespeicherten Referenzwärmeverteilungen wird dann eine der erfassten Wärmeverteilung am stärksten ähnelnde Referenzwärmeverteilung ausgewählt. Der wenigstens eine Beschichtungsparameter wird schließlich in Abhängigkeit von einem der ausgewählten Referenzwärmeverteilung zugeordneten Beschichtungsparameterdatensatz angepasst. Beim Erfindungsverfahren wird also eine Abweichung des oder der tatsächlichen Beschichtungsparameter von den vorgegebenen Werten festgestellt, indem eine Abweichung der erfassten Wärmeverteilung von einer Erwartung betrachtet wird. Dabei wird angenommen, dass die tatsächlichen Beschichtungsparameter in derselben Art und Weise von der Vorgabe abweichen, wie dies für die den jeweiligen Referenzwärmeverteilungen zugeordneten Beschichtungsparameterdatensätze der Fall ist. Weicht also die erfasste Wärmeverteilung von der den aktuellen Beschichtungsparametern zugeordneten Referenzwärmeverteilung ab und ähnelt dabei beispielsweise einer Referenzwärmeverteilung bei erhöhter Zuführrate des Beschichtungsmaterials, kann aus dem dieser Referenzwärmeverteilung zugeordneten Beschichtungsparameterdatensatz geschlossen werden, dass gegenwärtig das Beschichtungsparameter schneller zugeführt wird als gewünscht und vorgegeben. Dementsprechend kann dann die Vorgabe für die Zuführrate abgesenkt werden.In particular, the recorded heat distribution is compared with stored reference heat distributions. From the stored reference heat distributions, a reference heat distribution that most closely resembles the detected heat distribution is then selected. The at least one coating parameter is finally adapted as a function of a coating parameter data set assigned to the selected reference heat distribution. In the method of the invention, a deviation of the actual coating parameter or parameters from the specified values is determined by considering a deviation of the detected heat distribution from an expectation. It is assumed here that the actual coating parameters deviate from the specification in the same way as is the case for the coating parameter data sets assigned to the respective reference heat distributions. If the recorded heat distribution deviates from the reference heat distribution assigned to the current coating parameters and is similar, for example, to a reference heat distribution with an increased supply rate of the coating material, it can be concluded from the coating parameter data record assigned to this reference heat distribution that the coating parameter is currently supplied faster than desired and specified. The specification for the feed rate can then be reduced accordingly.
Dabei wird bevorzugt eine Differenz zwischen dem Beschichtungsparameterdatensatz der der erfassten Wärmeverteilung am stärksten ähnelnden Referenzwärmeverteilung und dem aktuellen für das Beschichten verwendeten wenigstens einen Beschichtungsparameter bestimmt. Der aktuelle wenigstens eine Beschichtungsparameter kann dann in Abhängigkeit von dieser Differenz angepasst werden. Beispielsweise kann das Maß der Anpassung des wenigstens einen Beschichtungsparameters proportional zu der Differenz sein. Dadurch können auch gröbere Abweichungen von der Vorgabe schnell ausgeglichen werden.In this case, a difference is preferably determined between the coating parameter data set, the reference heat distribution most closely resembling the detected heat distribution, and the current at least one coating parameter used for the coating. The current at least one coating parameter can then be adapted as a function of this difference. For example, the degree of adaptation of the at least one coating parameter can be proportional to the difference. This means that even larger deviations from the specification can be quickly compensated for.
Die Referenzwärmeverteilungen und die den Referenzwärmeverteilungen jeweils zugeordneten Beschichtungsparameterdatensätze werden vorzugsweise anhand einer Durchführung von Beschichtungsvorgängen unter Verwendung der zugeordneten Beschichtungsparameterdatensätze gewonnen. Dafür können Exemplare des zu beschichtenden Werkstücktyps oder in einer kostengünstigeren Ausführungsform Materialproben, beispielsweise kachelförmige Materialproben, mit unterschiedlichen Beschichtungsparametern beschichtet und die Eigenschaften der so erhaltenen Beschichtungen beurteilt werden.The reference heat distributions and the coating parameter data records assigned to the reference heat distributions are preferably obtained on the basis of carrying out coating processes using the assigned coating parameter data records. For this purpose, specimens of the workpiece type to be coated or, in a more economical embodiment, material samples, for example tile-shaped material samples, can be coated with different coating parameters and the properties of the coatings obtained in this way can be assessed.
Gemäß der Erfindung sind die gespeicherten Referenzwärmeverteilungen in eine Mehrzahl von Gruppen unterteilt, wobei jede der Gruppen einer jeweiligen Oberflächenregion des Werkstücks zugeordnet ist. Beim Vergleichen der erfassten Wärmeverteilung mit den gespeicherten Referenzwärmeverteilungen kann die erfasste Wärmeverteilung mit derjenigen Gruppe von gespeicherten Referenzwärmeverteilungen verglichen werden, die derjenigen Oberflächenregion des Werkstücks zugeordnet ist, in der sich der Arbeitsbereich, für den die erfasste Wärmeverteilung erfasst wurde, befindet. Dadurch können Besonderheiten wie beispielsweise die örtliche Geometrie oder andere Eigenschaften des Werkstücks, die veränderliche Beschichtungseigenschaften bedingen und daher besondere Beschichtungsparameter erfordern, bei der Beschichtung des Werkstücks berücksichtigt werden.According to the invention, the stored reference heat distributions are divided into a plurality of groups, each of the groups being assigned to a respective surface region of the workpiece. When comparing the recorded heat distribution with the stored reference heat distributions, the recorded heat distribution can be compared with that group of stored reference heat distributions that is assigned to that surface region of the workpiece in which the work area for which the recorded heat distribution was recorded is located. As a result, special features such as the local geometry or other properties of the workpiece, which cause variable coating properties and therefore require special coating parameters, can be taken into account when coating the workpiece.
Bevorzugt ist jeder gespeicherten Referenzwärmeverteilung eine Bewertung zugeordnet, die eine Aussage über wenigstens eine Beschichtungseigenschaft, insbesondere über eine Beschichtungsporosität, eine Beschichtungsrauheit oder eine Beschichtungsdicke, enthält. Anhand der zugeordneten Bewertungen können die anhand der erfassten Wärmeverteilung erkannten Abweichungen des Beschichtungsvorgangs von der Vorgabe anhand ihrer zu erwartenden Auswirkungen auf die resultierenden Beschichtungseigenschaften beurteilt werden. Dies erlaubt es, eine Vorhersage über die Qualität des beschichteten Werkstücks zu treffen und kann bei der Steuerung des Beschichtungsvorgangs, beispielsweise bei der Anpassung des wenigstens einen Beschichtungsparameters, berücksichtigt werden.Each stored reference heat distribution is preferably assigned an evaluation which contains a statement about at least one coating property, in particular about a coating porosity, a coating roughness or a coating thickness. On the basis of the assigned evaluations, the deviations of the coating process from the specification recognized on the basis of the recorded heat distribution can be assessed on the basis of their expected effects on the resulting coating properties. This allows a prediction to be made about the quality of the coated workpiece and can be used to control the coating process, for example when adapting the at least one coating parameter.
Die Wärmeverteilung in dem Arbeitsbereich der Oberfläche des Werkstücks kann mit einem Pyrometer oder einer Infrarotkamera erfasst werden. Alternativ ist es bei ausreichend dünnen Werkstücken auch möglich, die Wärmeverteilung anhand von auf der Rückseite des Werkstücks angeordneten Temperaturmesselementen zu erfassen.The heat distribution in the working area of the surface of the workpiece can be recorded with a pyrometer or an infrared camera. Alternatively, in the case of sufficiently thin workpieces, it is also possible to detect the heat distribution using temperature measuring elements arranged on the back of the workpiece.
Besonders bevorzugt kommt im Rahmen des erfindungsgemäßen Verfahrens ein Plasmaspritzverfahren zum Einsatz. In einem solchen Fall kann der wenigstens eine Beschichtungsparameter wenigstens einen aus der Gruppe Plasmaspannung, Pulverzuführrate des Beschichtungsmaterials oder Zusammensetzung eines Plasmagases ausgewählten Beschichtungsparameter umfassen.A plasma spraying process is particularly preferably used in the context of the process according to the invention. In such a case, the at least one coating parameter can comprise at least one coating parameter selected from the group consisting of plasma voltage, powder feed rate of the coating material or composition of a plasma gas.
Ein zweiter Aspekt der Erfindung betrifft eine Vorrichtung zum Beschichten eines Werkstücks. Die Vorrichtung ist mit einer Sprühvorrichtung, einer Wärmemessvorrichtung und einer mit der Sprühvorrichtung und der Wärmemessvorrichtung verbundenen Steuereinheit ausgestattet. Die Steuereinheit ist dabei dazu ausgebildet, das erfindungsgemäße Verfahren auszuführen.A second aspect of the invention relates to a device for coating a workpiece. The device is equipped with a spray device, a heat measuring device and a control unit connected to the spray device and the heat measuring device. The control unit is designed to carry out the method according to the invention.
Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren. Es zeigen:
- Figur 1
- ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms;
- Figur 2
- beispielhaft eine Gasturbine in einem Längsteilschnitt;
- Figur 3
- in perspektivischer Ansicht eine Laufschaufel oder Leitschaufel einer Strömungsmaschine; und
- Figur 4
- eine
Brennkammer 110 einer Gasturbine.
- Figure 1
- an embodiment of the method according to the invention in the form of a flow chart;
- Figure 2
- an example of a gas turbine in a partial longitudinal section;
- Figure 3
- a perspective view of a rotor blade or guide vane of a turbomachine; and
- Figure 4
- a
combustor 110 of a gas turbine.
In Schritt S3 wird der Beschichtungsvorgang gemäß dem oder den vorgegebenen Beschichtungsparameter(n) begonnen beziehungsweise durchgeführt. Der Beschichtungsvorgang kann kontinuierlich ausgeführt oder regelmäßig für die Durchführung der weiteren Verfahrensschritte S4 bis S10 unterbrochen werden. Wegen der kürzeren Verfahrensdauer wird jedoch ein kontinuierliches Beschichten bevorzugt.In step S3, the coating process is started or carried out in accordance with the predetermined coating parameter (s). The coating process can be carried out continuously or regularly interrupted for carrying out the further method steps S4 to S10. However, because of the shorter process time, continuous coating is preferred.
In Schritt S4 wird eine Wärmeverteilung des Arbeitsbereichs auf der Oberfläche des Werkstücks erfasst. Dies wird vorzugsweise mit einem bildgebenden Verfahren durchgeführt, das für die einzelnen Orte der Oberfläche des Werkstücks eine jeweilige Temperatur bestimmt. Je höher die Auflösung des bildgebenden Verfahrens, desto genauer kann die Wärmeverteilung beurteilt werden.In step S4, a heat distribution of the work area on the surface of the workpiece is detected. This is preferably carried out using an imaging method which determines a respective temperature for the individual locations on the surface of the workpiece. The higher the resolution of the imaging process, the more precisely the heat distribution can be assessed.
In Schritt S5 wird die erfasste Wärmeverteilung mit einer Mehrzahl von Referenzwärmeverteilungen verglichen. Dabei kann eine Gruppe von Referenzwärmeverteilungen aus der Gesamtmenge an Referenzwärmeverteilungen für den Vergleich ausgewählt werden, die für die aktuell beschichtete Teiloberfläche des Werkstücks als repräsentativ angesehen wird. Durch den Vergleich wird bei dem vorliegenden Ausführungsbeispiel diejenige Referenzwärmeverteilung ermittelt, die der erfassten Wärmeverteilung am stärksten ähnelt. Daraufhin wird in Schritt S6 der der ermittelten Referenzwärmeverteilung zugeordnete Beschichtungsparameterdatensatz mit dem oder den aktuell vorgegebenen Beschichtungsparametern verglichen. Der Beschichtungsparameterdatensatz gibt diejenigen Beschichtungsparameter wieder, die bei einer Probedurchführung des Beschichtungsvorgangs zu der zugeordneten Referenzwärmeverteilung geführt haben. Da die sich jeweils ergebende Wärmeverteilung von den tatsächlichen Beschichtungsparametern abhängt, wird also über die Betrachtung der der ermittelten Referenzwärmeverteilung zugeordneten Beschichtungsparameter auf die Ist-Werte der Beschichtungsparameter des aktuellen Beschichtungsvorgangs zurückgeschlossen. In Schritt S7 wird eine Abweichung zwischen dem zugeordneten Beschichtungsparameterdatensatz und dem oder den vorgegebenen Beschichtungsparameter(n) ermittelt. Hierbei wird angenommen, dass der vorgegebene wenigstens eine Beschichtungsparameter durch die Sprühvorrichtung nicht eingehalten wird, wenn es zu einer von der Erwartung abweichenden erfassten Wärmeverteilung gekommen ist. Anschließend wird in Schritt S8 in Abhängigkeit von der zuvor bestimmten Abweichung ein Korrekturwert oder ein Satz von Korrekturwerten berechnet, um die in Schritt S9 der wenigstens eine Beschichtungsparameter angepasst wird. Durch die Anpassung des wenigstens einen Beschichtungsparameters soll erreicht werden, dass der Beschichtungsvorgang genauer gemäß den Vorgaben durchgeführt wird.In step S5, the detected heat distribution is compared with a plurality of reference heat distributions. A group of reference heat distributions from the total quantity can be selected for the comparison on reference heat distributions which are regarded as representative of the currently coated partial surface of the workpiece. In the present exemplary embodiment, the comparison determines that reference heat distribution which most closely resembles the detected heat distribution. Then, in step S6, the coating parameter data set assigned to the determined reference heat distribution is compared with the currently specified coating parameter or parameters. The coating parameter data record reproduces those coating parameters which led to the assigned reference heat distribution during a trial of the coating process. Since the resulting heat distribution depends on the actual coating parameters, conclusions are drawn about the actual values of the coating parameters of the current coating process by considering the coating parameters assigned to the determined reference heat distribution. In step S7, a discrepancy between the assigned coating parameter data set and the specified coating parameter (s) is determined. It is assumed here that the specified at least one coating parameter is not adhered to by the spray device if a detected heat distribution that deviates from the expectation has occurred. In step S8, a correction value or a set of correction values is then calculated as a function of the previously determined deviation, by which the at least one coating parameter is adapted in step S9. The adaptation of the at least one coating parameter is intended to ensure that the coating process is carried out more precisely in accordance with the specifications.
In Schritt S10 wird schließlich geprüft, ob das Ende der Bahn, entlang welcher das Werkstück beschichtet wird, erreicht ist. Ist dies nicht der Fall, wird der Beschichtungsvorgang und das erfindungsgemäße Verfahren durch Zurückverzweigen zu Schritt S3 fortgesetzt; andernfalls wird das Verfahren in Schritt S11 beendet. Anschließend kann eine Untersuchung der Eigenschaften der Beschichtung und gegebenenfalls Anpassungen an den den Referenzwärmeverteilungen zugeordneten Beschichtungsparameterdatensätzen vorgenommen werden. Ebenfalls ist denkbar, aus den während der Durchführung des Verfahrens erfassten Wärmeverteilungen eine oder mehrere auszuwählen und für weitere Verfahrensdurchläufe als Referenzwärmeverteilungen zur Verfügung zu stellen. Hierfür können die erfassten Wärmeverteilungen und der oder die zugehörigen jeweiligen Beschichtungsparameter während einer Verfahrensdurchführung gespeichert werden. Insbesondere ist auch denkbar, die Aussagekraft der einzelnen (Referenz-)Wärmeverteilungen zu beurteilen und über eine Vielzahl von Verfahrensdurchgängen eine verbesserte Reproduzierbarkeit des Beschichtungsvorgangs zu erreichen.In step S10 it is finally checked whether the end of the path along which the workpiece is coated has been reached. If this is not the case, the coating process and the method according to the invention are continued by branching back to step S3; otherwise the method is ended in step S11. An investigation can then be carried out the properties of the coating and, if necessary, adjustments to the coating parameter data sets assigned to the reference heat distributions are made. It is also conceivable to select one or more from the heat distributions recorded during the implementation of the method and to make them available as reference heat distributions for further process runs. For this purpose, the recorded heat distributions and the associated respective coating parameter (s) can be stored while the method is being carried out. In particular, it is also conceivable to assess the informative value of the individual (reference) heat distributions and to achieve improved reproducibility of the coating process over a large number of process steps.
Die
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.The
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.An
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.The
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.Each
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.The
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).A generator or a work machine (not shown) is coupled to the
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During the operation of the
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.The components exposed to the hot working
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.In order to withstand the temperatures prevailing there, they can be cooled by means of a coolant.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).Substrates of the components can also have a directional structure, ie they are monocrystalline (SX structure) or only have longitudinally oriented grains (DS structure).
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.Iron-, nickel- or cobalt-based superalloys, for example, are used as the material for the components, in particular for the
Solche Superlegierungen sind beispielsweise aus der
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.A thermal insulation layer can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.Suitable coating processes such as Electron beam evaporation (EB-PVD) produces columnar grains in the thermal barrier coating.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The
Die
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine can be a gas turbine of an aircraft or a power plant for generating electricity, a steam turbine or a compressor.
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.The
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt) .As a
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).In the
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.The
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.The
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.With
Solche Superlegierungen sind beispielsweise aus der
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.Workpieces with a monocrystalline structure or structures are used as components for machines that are exposed to high mechanical, thermal and / or chemical loads during operation.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.Such monocrystalline workpieces are manufactured e.g. by directional solidification from the melt. These are casting processes in which the liquid metallic alloy is converted into a monocrystalline structure, i.e. to a single crystal workpiece, or solidified in a directional manner.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.In doing so, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e. grains that run over the entire length of the workpiece and are referred to here, according to common usage, as directionally solidified) or a monocrystalline structure, i.e. the entire workpiece consists of a single crystal. In this process, the transition to globular (polycrystalline) solidification must be avoided, since non-directional growth necessarily creates transverse and longitudinal grain boundaries, which destroy the good properties of the directionally solidified or monocrystalline component.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).If directionally solidified structures are generally referred to, this means both single crystals that have no grain boundaries or at most small-angle grain boundaries, as well as columnar crystal structures that have grain boundaries running in the longitudinal direction but no transverse grain boundaries. These second-mentioned crystalline structures are also referred to as directionally solidified structures.
Solche Verfahren sind aus der
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.The density is preferably 95% of the theoretical density.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).A protective aluminum oxide layer (TGO = thermally grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr-8Al-0,6Y-0,7Si oder Co-28Ni-24Cr-10Al-0,6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al-0,6Y-3Re oder Ni-12Co-21Cr-11Al-0,4Y-2Re oder Ni-25Co-17Cr-10Al-0,4Y-1,5Re.The layer composition preferably has Co-30Ni-28Cr-8Al-0.6Y-0.7Si or Co-28Ni-24Cr-10Al-0.6Y. In addition to these cobalt-based protective coatings, nickel-based protective coatings such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-0.4Y-2Re or Ni-25Co-17Cr-10Al-0.4Y-1 are also preferably used , 5Re.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.A thermal insulation layer, which is preferably the outermost layer, can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide. The thermal insulation layer covers the entire MCrAlX layer.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.Suitable coating processes such as Electron beam evaporation (EB-PVD) produces columnar grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.Other coating processes are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal insulation layer can have porous, micro- or macro-cracked grains for better thermal shock resistance. The The thermal insulation layer is therefore preferably more porous than the MCrAlX layer.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.The
Die
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.The
The
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000 Grad Celsius bis 1600 Grad Celsius ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.In order to achieve a comparatively high degree of efficiency, the
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.Each
Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf). Solche Legierungen sind bekannt aus der
Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.A ceramic thermal insulation layer, for example, can also be present on the MCrAlX and consists, for example, of ZrO2, Y2O3-ZrO2, i.e. it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.Suitable coating processes such as Electron beam evaporation (EB-PVD) produces columnar grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.Other coating methods are conceivable, e.g. atmospheric plasma spray (APS), LPPS, VPS or CVD. The thermal insulation layer can have porous, micro- or macro-cracked grains for better thermal shock resistance.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Hitzeschildelemente 155 und ein erneuter Einsatz der Hitzeschildelemente 155.Refurbishment means that
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.Due to the high temperatures inside the
Obwohl die vorliegende Erfindung anhand eines Ausführungsbeispiels beschrieben worden ist, versteht es sich, dass dieses Ausführungsbeispiel lediglich der exemplarischen Darstellung der Erfindung dient und dass Abweichungen von diesem Ausführungsbeispiel möglich sind. Die Erfindung soll daher nicht auf die Ausgestaltung des Ausführungsbeispiels beschränkt sein, sondern lediglich durch die angehängten Ansprüche.Although the present invention has been described on the basis of an exemplary embodiment, it is understood that this exemplary embodiment only serves to illustrate the invention by way of example and that deviations from this exemplary embodiment are possible. The invention is therefore not intended to be restricted to the configuration of the exemplary embodiment, but only by the appended claims.
Claims (8)
- Method for coating a workpiece using a spraying device, wherein the coating of the workpiece is performed according to at least one coating parameter, and
wherein at least the following steps are carried out during coating:- detecting a local heat distribution in a working area of a surface of the workpiece; and- adapting the at least one coating parameter as a function of the detected heat distribution,
in which the detected heat distribution is compared with stored reference heat distributions, and wherein the at least one coating parameter is adapted as a function of a coating parameter data set which is assigned to a reference heat distribution, of the stored reference heat distributions, that most closely resembles the detected heat distribution,
in which the stored reference heat distributions are divided into a plurality of groups,
wherein each of the groups is assigned to a respective surface region of the workpiece, and
wherein, when the detected heat distribution is compared with the stored reference heat distributions, the detected heat distribution is compared with that group of stored reference heat distributions which is assigned to that surface region of the workpiece containing the working area for which the detected heat distribution has been detected. - Method according to Claim 1,
in which a difference between the coating parameter data set of the reference heat distribution that most closely resembles the detected heat distribution and the current at least one coating parameter used for the coating is determined, and the current at least one coating parameter is adapted as a function of this difference. - Method according to either of Claims 1 and 2,
in which the reference heat distributions and the coating parameter data sets respectively assigned to the reference heat distributions have been obtained by performing coating operations using the associated coating parameter data sets. - Method according to one of Claims 1 to 3,
in which an assessment is assigned to each stored reference heat distribution which contains a statement about at least one coating property,
in particular about a coating porosity, a coating roughness or a coating thickness. - Method of one of the preceding claims,
in which the heat distribution in the working area of the surface of the workpiece is detected with a pyrometer or an infrared camera. - Method according to one of the preceding claims,
in which a plasma spraying method is used. - Method according to the preceding claim,
wherein the at least one coating parameter comprises at least one of plasma voltage, powder feed rate, or composition of a plasma gas. - Device for coating a workpiece and comprising a spraying device, a heat measuring device and a control unit connected to the spraying device and the heat measuring device, which control unit is designed to carry out the method according to one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014220180.2A DE102014220180A1 (en) | 2014-10-06 | 2014-10-06 | Monitoring and controlling a coating process based on a heat distribution on the workpiece |
PCT/EP2015/072543 WO2016055325A1 (en) | 2014-10-06 | 2015-09-30 | Monitoring and control of a coating process on the basis of a heat distribution on the workpiece |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3177750A1 EP3177750A1 (en) | 2017-06-14 |
EP3177750B1 true EP3177750B1 (en) | 2020-11-25 |
Family
ID=54256738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15775425.0A Active EP3177750B1 (en) | 2014-10-06 | 2015-09-30 | Monitoring and control of a coating process on the basis of a heat distribution on the workpiece |
Country Status (4)
Country | Link |
---|---|
US (1) | US10975463B2 (en) |
EP (1) | EP3177750B1 (en) |
DE (1) | DE102014220180A1 (en) |
WO (1) | WO2016055325A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10969217B2 (en) | 2017-08-04 | 2021-04-06 | Rolls-Royce North American Technologies, Inc. | Adaptive control of coating thickness |
US11679898B2 (en) | 2020-06-15 | 2023-06-20 | General Electric Company | Inspection and repair tool |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656331A (en) * | 1982-04-26 | 1987-04-07 | General Electric Company | Infrared sensor for the control of plasma-jet spray coating and electric are heating processes |
DE3926479A1 (en) | 1989-08-10 | 1991-02-14 | Siemens Ag | RHENIUM-PROTECTIVE COATING, WITH GREAT CORROSION AND / OR OXIDATION RESISTANCE |
DE58908611D1 (en) | 1989-08-10 | 1994-12-08 | Siemens Ag | HIGH-TEMPERATURE-RESISTANT CORROSION PROTECTION COATING, IN PARTICULAR FOR GAS TURBINE COMPONENTS. |
US5047612A (en) | 1990-02-05 | 1991-09-10 | General Electric Company | Apparatus and method for controlling powder deposition in a plasma spray process |
JP3370676B2 (en) | 1994-10-14 | 2003-01-27 | シーメンス アクチエンゲゼルシヤフト | Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same |
DE19535078B4 (en) * | 1995-09-21 | 2006-06-08 | Robert Bosch Gmbh | Monitoring and control of thermal spray processes |
US6296043B1 (en) * | 1996-12-10 | 2001-10-02 | Howmet Research Corporation | Spraycast method and article |
EP0892090B1 (en) | 1997-02-24 | 2008-04-23 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
EP0861927A1 (en) | 1997-02-24 | 1998-09-02 | Sulzer Innotec Ag | Method for manufacturing single crystal structures |
WO1999067435A1 (en) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Directionally solidified casting with improved transverse stress rupture strength |
DE19837400C1 (en) * | 1998-08-18 | 1999-11-18 | Siemens Ag | Coating of high-temperature components by plasma spraying |
DE19857737A1 (en) * | 1998-11-25 | 2000-05-31 | Joma Chemicals As Limingen | Material and method for producing a corrosion and wear-resistant layer by thermal spraying |
US6231692B1 (en) | 1999-01-28 | 2001-05-15 | Howmet Research Corporation | Nickel base superalloy with improved machinability and method of making thereof |
DE50006694D1 (en) | 1999-07-29 | 2004-07-08 | Siemens Ag | HIGH-TEMPERATURE-RESISTANT COMPONENT AND METHOD FOR PRODUCING THE HIGH-TEMPERATURE-RESISTANT COMPONENT |
GB0026868D0 (en) * | 2000-11-03 | 2000-12-20 | Isis Innovation | Control of deposition and other processes |
DE50104022D1 (en) | 2001-10-24 | 2004-11-11 | Siemens Ag | Protective layer containing rhenium to protect a component against corrosion and oxidation at high temperatures |
DE50112339D1 (en) | 2001-12-13 | 2007-05-24 | Siemens Ag | High-temperature resistant component made of monocrystalline or polycrystalline nickel-based superalloy |
FR2836619B1 (en) * | 2002-02-28 | 2004-04-16 | Snecma Services | THERMAL PROJECTION INSTRUMENT |
DE10244037A1 (en) * | 2002-09-21 | 2004-04-08 | Mtu Aero Engines Gmbh | Process for coating a workpiece |
DE102004010782A1 (en) * | 2004-03-05 | 2005-09-22 | Mtu Aero Engines Gmbh | Method for coating a workpiece |
DE102004059549A1 (en) * | 2004-12-10 | 2006-06-22 | Mtu Aero Engines Gmbh | Method for coating a workpiece |
DE102008048262B4 (en) * | 2008-09-22 | 2021-03-18 | Linde Gmbh | Method and device for determining the degree of melting of a thermally sprayed surface as well as method and device for automatically melting down a thermally sprayed surface |
DE102009048706A1 (en) * | 2009-10-08 | 2011-04-28 | Hermle Maschinenbau Gmbh | Method and device for producing a molded part by means of generative application |
DE102012021265A1 (en) * | 2012-10-29 | 2014-04-30 | Kennametal Inc. | Non-contact and wear-free monitoring of plasma powder deposition welding and high velocity flame spraying processes, comprises evaluating emissions of plasma generated between workpiece and burner by spectrometer and emission spectroscopy |
DE102013223688A1 (en) * | 2013-11-20 | 2015-05-21 | Siemens Aktiengesellschaft | Method and device for the automated application of a spray coating |
-
2014
- 2014-10-06 DE DE102014220180.2A patent/DE102014220180A1/en not_active Withdrawn
-
2015
- 2015-09-30 WO PCT/EP2015/072543 patent/WO2016055325A1/en active Application Filing
- 2015-09-30 EP EP15775425.0A patent/EP3177750B1/en active Active
- 2015-09-30 US US15/513,349 patent/US10975463B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3177750A1 (en) | 2017-06-14 |
US10975463B2 (en) | 2021-04-13 |
US20170321317A1 (en) | 2017-11-09 |
WO2016055325A1 (en) | 2016-04-14 |
DE102014220180A1 (en) | 2016-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2280801B1 (en) | Method for welding workpieces made of high-temperature resistant super alloys | |
EP2311597B1 (en) | Method of laser welding workpieces from heat resistant superalloys with control of some laser welding parameters for reaching a particular cooling rate | |
EP2876183B1 (en) | Method and device for automatically applying a spray coating | |
EP2259892A1 (en) | Welding method with a controlled temperature profile and device therefor | |
EP3068921B1 (en) | Compressor blade with erosion resistant hard material coating | |
EP1952931A1 (en) | Mechtrode with powder feed and method for utilising such mechtrode | |
EP1941965A1 (en) | Re-opening of holes using thermography and component | |
EP2312267A1 (en) | Device and method for measuring thickness of coating with laser triangulation | |
EP2391744B1 (en) | Coating using thermal and non-thermal coating method | |
EP2186594A1 (en) | Method of and device for pre-heating during welding using a second laser beam | |
EP3177750B1 (en) | Monitoring and control of a coating process on the basis of a heat distribution on the workpiece | |
WO2009087189A2 (en) | Small solder rod | |
EP2226149A1 (en) | Two-step welding method | |
EP2240293A1 (en) | Method for fusing curved surfaces, and a device | |
EP2460608A1 (en) | Manufacturing a wire by means of prototyping, wire and welding method | |
EP2583784A1 (en) | Preparation of a welding point before welding and component | |
WO2018114766A1 (en) | Method for joining hot gas component segments by soldering, and corresponding hot gas component | |
EP1978790B1 (en) | Device and method for coating a component and adjustment device | |
EP2254725A1 (en) | Device for welding using a process and welding method | |
EP1797985A1 (en) | Method and device for welding | |
EP2099948A2 (en) | Method for coating a component | |
EP2177643A1 (en) | Method for repairing a superalloy with the same superalloy powder and ceramic | |
WO2009089840A1 (en) | Method and device for controlled edm machining | |
EP2241391A1 (en) | Method for producing a negative mould for casting a turbine rotor and mould for producing a wax model of a turbine rotor | |
WO2010149189A1 (en) | Solder rod, soldering of holes, method for coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170308 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190326 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200616 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1338397 Country of ref document: AT Kind code of ref document: T Effective date: 20201215 Ref country code: DE Ref legal event code: R081 Ref document number: 502015013909 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015013909 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP Ref country code: NL Ref legal event code: PD Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT Effective date: 20210129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210225 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015013909 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
26N | No opposition filed |
Effective date: 20210826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210325 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220908 Year of fee payment: 8 Ref country code: DE Payment date: 20220617 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1338397 Country of ref document: AT Kind code of ref document: T Effective date: 20210930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220921 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220926 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502015013909 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201125 |