[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2099948A2 - Method for coating a component - Google Patents

Method for coating a component

Info

Publication number
EP2099948A2
EP2099948A2 EP07820464A EP07820464A EP2099948A2 EP 2099948 A2 EP2099948 A2 EP 2099948A2 EP 07820464 A EP07820464 A EP 07820464A EP 07820464 A EP07820464 A EP 07820464A EP 2099948 A2 EP2099948 A2 EP 2099948A2
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
microns
ceramic particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820464A
Other languages
German (de)
French (fr)
Inventor
Thomas Berndt
Francis-Jurjen Ladru
Marcus Mensing
Gerhard Reich
Falk Stadelmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07820464A priority Critical patent/EP2099948A2/en
Publication of EP2099948A2 publication Critical patent/EP2099948A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05003Details of manufacturing specially adapted for combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Definitions

  • the invention relates to a method for coating a component with a multilayer ceramic layer, in which individual layers of the ceramic layer are applied to one another in a covering manner on the component by supplying ceramic particles to a coating burner, completely or partially melting them and depositing them on the component.
  • the invention further relates to a multilayer ceramic layer and a component which is provided with a multilayer ceramic layer.
  • Components which are used in an aggressive atmosphere in a temperature range of greater than 800 0 C, are often provided with protective coatings in order to prolong their service life.
  • gas turbine rotor blades or guide vanes are provided with ceramic-containing thermal barrier coatings or complex layer systems are applied which protect the blades against thermal, chemical and mechanical stresses.
  • the ceramic-containing thermal barrier coatings may contain, for example, zirconium oxides which are stabilized by yttrium oxides.
  • zirconium oxides which are stabilized by yttrium oxides.
  • powdered ceramic particles are supplied to a plasma coating burner in which they are completely or partially melted and then deposited on the component. The ceramic particles then form the thermal barrier coating on the surface of the component.
  • the heat-insulating layer is formed in individual layers applied one above the other on the component, ie 4 - 15 layers with a layer thickness of 20-50 ⁇ m are applied one above the other at a standard layer thickness of 200-400 ⁇ m.
  • a method for forming multilayer thermal barrier coatings on the surface of turbine blades is described in DE 100 22 157 C1.
  • pulverulent ceramic particles are supplied to the coating burner, where they are completely or partially melted and then deposited in the form of individual layers on the surface of the turbine blade.
  • ceramic particles are used with different size grain size, the ceramic particles are melted by a suitable control of the burner performance depending on their size different degrees, ie the smaller ceramic particles melt completely and the larger ceramic particles are only superficially melted. In this way, the porosity of the individual layers of the thermal barrier coating can be varied.
  • the known in the prior art ceramic layers have a total thickness that is not above 450 microns.
  • One of the reasons for this is that different problems occur in the production of ceramic thermal barrier coatings having a greater thickness.
  • the thermal barrier coating is formed by applying individual superimposed layers, the layers already present on the component surface increasingly isolate during the application process in such a way that the newly applied coating material of the further layers can not release its heat.
  • the porosity of the individual layers decreases, which on the one hand reduces their thermal insulation capability during operation of the component and on the other hand causes a much poorer adhesion of the layers to each other. Among other things, this can lead to a layer failure, ie there is a risk of local spalling of areas of the ceramic thermal barrier coating.
  • This object is achieved in that the coating burner from layer to layer ceramic particles are supplied with an increasingly larger grain size.
  • the basic idea of the invention is therefore to increase the grain size of the ceramic particles from layer to layer.
  • the component is coated with a first layer by supplying the coating burner with ceramic particles having the smallest total grain size used, for example -53 ⁇ m + 11 ⁇ m.
  • the coating burner ceramic particles are supplied with a grain size which is greater than that of the ceramic particles for the first layer.
  • the further layers are applied analogously with a constant increase in the grain size of the ceramic particles used.
  • the effect of the compaction of the individual layers with increasing layer thickness is counteracted by increasing the grain size of the ceramic particles from layer to layer due to the heat accumulation occurring.
  • the individual layers are formed with a nearly constant porosity, which on the one hand preserves their thermal insulation and on the other hand ensures the adhesion of the individual layers to each other. In this way, the risk of a shift failure is excluded.
  • the performance of the coating burner during the application of the individual layers of the ceramic layer continuously ierlich adapted to the grain of the ceramic particles it is provided that the performance of the coating burner during the application of the individual layers of the ceramic layer continuously ierlich adapted to the grain of the ceramic particles.
  • the performance of the coating burner during the application of the individual layers of the ceramic layer continuously ierlich adapted to the grain of the ceramic particles.
  • a plasma burner as a coating burner.
  • the performance of the plasma torch can be adjusted, for example, by the variation of the current intensity and / or the hydrogen gas flow and / or the argon gas rate.
  • a current of 500-650 A, a hydrogen gas flow of 12-16 NLPM and an argon gas rate of 40-60 NLPM can be set.
  • Hydrogen can be used, in particular mixing ratios Ar / N 2 / H 2 of 30-40 / 10-20 / 8-14 can be used.
  • the individual layers of the ceramic layer can be applied with a thickness in the range between 10 and 100 microns, in particular, a thickness between 20 - 50 microns is suitable. In this way, a ceramic layer is obtained, which has a high heat insulating ability and is mechanically stable.
  • the multilayer ceramic layer with a total thickness in the range between 100-1000 ⁇ m, in particular between 200 and 700 ⁇ m, particularly preferably between 250 and 600 ⁇ m, can be applied.
  • ceramic particles having a particle size of -75 ⁇ m + 10 ⁇ m or -53 ⁇ m + 11 ⁇ m or -90 ⁇ m + 11 ⁇ m can be supplied to the coating burner for the first layer.
  • ceramic particles having a grain size of -106 ⁇ m + 11 ⁇ m or -125 ⁇ m + 45 ⁇ m or-150 ⁇ m + 75 ⁇ m can be supplied to the coating burner. Furthermore, the coating burner, a mixture of ceramic particles are supplied with at least two different grain sizes. By suitable mixing of the two differently granulated ceramic particle fractions, the total grain size of the ceramic particles fed to the coating burner can be varied in a simple manner.
  • Ceramic particles with a constant grain size of -75 ⁇ m + 10 ⁇ m or -53 ⁇ m + 11 ⁇ m or -90 ⁇ m + 11 ⁇ m can be supplied to the coating burner for the lower layer.
  • the individual layers of the lower layer can be applied with a thickness in the range of 10-100 ⁇ m, in particular between 20-50 ⁇ m.
  • the total thickness of the underlayer may range between 150 and 450 microns.
  • a multilayer upper layer it is likewise possible for a multilayer upper layer to be applied to the multilayer ceramic layer by supplying ceramic particles to a coating burner, melting them completely or partially, and covering them over the multilayer ceramic layer in individual layers.
  • the ceramic particles for the upper layer have a larger grain size than the ceramic particles which are supplied to the coating burner for applying the last layer of the multilayer ceramic layer.
  • Figure 1 is a schematic partial sectional view of a
  • FIG. 2 shows a schematic illustration of a device for coating a component
  • FIG. 3 shows a gas turbine
  • Figure 5 is a combustion chamber.
  • FIG. 1 shows a schematic partial sectional view of a turbine blade 1, which is coated with a multi-layer ceramic layer 3 according to the invention.
  • a multilayer underlayer 2 is formed and on the multilayer ceramic layer 2 there is a multilayer top layer 4.
  • the underlayer 2, the multilayer ceramic layer 3 and the top layer 4 are respectively stacked one above another layers 2a, 3a -c, 4a formed.
  • the lower layer 2 is applied directly to the turbine blade 1.
  • the layers 2a of the lower layer 2 consist of partially fused together ceramic particles with a constant grain size, wherein the grain size - 75 microns + 10 microns or - 53 microns + 11 microns or - 90 microns + 11 microns may be.
  • the layers 2a of the lower layer 2 have a thickness in the range between 10 and 100 ⁇ m, in particular between 20 and 50 ⁇ m.
  • the total thickness of the lower layer 2 is between 150 and 450 microns.
  • the multilayer ceramic layer 3 is applied flat.
  • the individual layers 3a, 3b, 3c of the multilayer ceramic layer 3 are made of partially fused ceramic particles, wherein the ceramic particles from layer to layer increasingly have a larger grain size.
  • the partially fused ceramic particles of the first layer 3a have a smaller grain size than the partially fused ceramic particles of the second layer 3.
  • the two layers 3a, 3b have approximately the same porosity, so that both have a high heat insulation capability and a strong one Liability of the layers 3a, 3b is guaranteed to each other.
  • the layers 3a, 3b, 3c have a thickness in the range between 10-100 ⁇ m, in particular between 20-50 ⁇ m.
  • the total thickness of the multilayer ceramic layer 3 is in the range between 100-1000 .mu.m, in particular between 200 and 700 .mu.m, and particularly preferably between 250 and 650 .mu.m.
  • the multilayer upper layer 4 is applied flat.
  • the upper layer 4 is formed by the superimposed layers 4a, which consist of partially fused ceramic particles.
  • the grain size of these ceramic particles is greater than the grain size of the ceramic particles of the last layer 3 c of the multilayer ceramic layer 3.
  • the multilayer ceramic layer 3 has a high heat insulating capability and on the other hand has a high mechanical stability, so that the risk of layer failure is reduced.
  • the lower layer 2 is applied layer by layer to the surface of the turbine blade 1.
  • ceramic particles with a constant grain size are fed to a coating burner, which is wholly or partly filled by it. melted and then deposited on the turbine blade in the individual layers 2a opaque one above the other.
  • the multilayer ceramic layer 3 is then applied to the lower layer 2.
  • ceramic particles are supplied to the coating burner, which particles are completely or partially melted by the latter and then deposited in the form of the layers 3a, 3b, 3c.
  • ceramic particles having a first grain size of -75 ⁇ m + 10 can be introduced for the first bearing of the multilayer ceramic layer 3.
  • the first layer 3a is applied on the surface of the lower layer 2 and the second layer 3b directly covering on the first layer 3a.
  • ceramic particles with an increasingly larger grain size are supplied from layer to layer to the coating burner. That the ceramic particles supplied to the coating burner for forming the sheet 3b have a larger grain than the ceramic particles supplied to the coating burner for forming the sheet 3a.
  • the ceramic particles with the largest grain size used for the multilayer ceramic layer 3 are finally completely or partially melted by the coating burner when the last layer 3c is deposited.
  • the variation of the grain sizes of the ceramic particles can be achieved, for example, by simultaneously supplying ceramic particles having at least two different grain sizes to the coating burner. In this case, by appropriate mixing of the two grains each increasing overall grain size can be obtained.
  • the performance of the coating torch can be continuously adapted to the grain size of the ceramic particles.
  • the performance can be increased if increasingly larger ceramic particles are to be deposited. This will ensure that even the larger ceramic particles are sufficiently melted to be firmly integrated into the layers 3a, 3b, 3c with.
  • a plasma torch When a plasma torch is used as a coating torch, its performance can be adjusted by varying the current intensity and / or the hydrogen gas flow and / or the argon gas rate.
  • the upper layer 4 is deposited over the entire surface on the multi-layer ceramic layer 3.
  • ceramic particles having a constant grain size are completely or partially melted in the coating burner and deposited in a covering manner on the multilayer ceramic layer 3 in the individual layers 4a.
  • ceramic particles are used for the layers 4a, which have a larger grain size than the ceramic particles which were used for the last layer 3c of the multilayer ceramic layer 3. In this way, it is ensured that the layers 4a of the top layer 4 also receive a sufficient porosity and thus have both a high thermal insulation capability and good adhesion to one another.
  • FIG. 2 schematically shows a device 5 for coating a component, for example the turbine blade 1.
  • the device 5 has three conveyor units 6a-c, each containing ceramic particles with a different size grain.
  • the conveyor units 6a-c are each connected via lines 7 to a powder switch 8 and designed to supply the powder switch 8 ceramic particles.
  • the powder switch 8 is designed to mix the supplied ceramic particles to a coating powder with uniform grain size. In this case, the resulting grain size of the coating powder depends on the quantities and grain sizes of the ceramic particles respectively supplied by the conveying units 6a-c.
  • the powder switch 8 is connected via a line 7 with a powder injector 9.
  • the powder injector 9 is arranged relative to a plasma torch 10 so that it can deliver a stream of coating powder 11 into the flame 12 of the plasma torch 10.
  • the device 5 may additionally have a control unit which controls the supply of the ceramic particles from the conveyor units 6a-c, and the function of the powder switch 8 and the powder injector 9.
  • the controller may also be configured to regulate the power of the plasma torch, depending on the grain size of the coating powder, i. to increase its performance at a larger grain size, to ensure a sufficient melting of the ceramic particles.
  • further conveying units may also be present.
  • FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • a compressor 105 for example, a torus-like
  • Combustion chamber 110 in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109.
  • the annular combustion chamber 110 communicates with an example annular hot gas channel 111.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure longitudinal grains
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949 known; These documents are part of the disclosure regarding the chemical composition of the alloys.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 4 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the blade 406.
  • solid metallic materials in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130.
  • superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr ⁇ 2, Y2 ⁇ 3-Zr ⁇ 2, ie it is not, partially ⁇ or fully stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 5 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of windings are arranged around an axis of rotation 102 in the circumferential direction
  • Burners 107 open into a common combustion chamber space 154, the flames 156 produce.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155.
  • the 110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system.
  • the heat shield elements 155 are then hollow and have, for example possibly still in the combustion chamber 154 opening cooling holes (not shown).
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should
  • MCrAlX may also be present, for example, a ceramic thermal insulation layer and consists for example of ZrC> 2, Y2Ü3-Zr ⁇ 2, ie it is not, partially or fully ⁇ dig stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may have to be freed from protective layers after their use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. After that a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The invention relates to a method for coating a component with a multilayer ceramic coating, in which the individual layers of the ceramic coating are applied covering one another on the component, and in which ceramic particles are supplied to a coating burner, melted partly or completely by said coating burner, and deposited on the component, wherein ceramic particles with a particle size, which increases from layer to layer, are supplied to the coating burner. Furthermore, the invention relates to a multilayer ceramic coating and a component which is provided with a multilayer ceramic coating.

Description

Verfahren zum Beschichten eines Bauteils Method for coating a component
Die Erfindung betrifft ein Verfahren zum Beschichten eines Bauteils mit einer mehrlagigen Keramikschicht, bei dem einzelne Lagen der Keramikschicht auf dem Bauteil deckend übereinander aufgebracht werden, indem Keramikpartikel einem Be- schichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf dem Bauteil abgeschieden werden. Die Erfindung betrifft weiterhin eine mehrlagige Keramikschicht und ein Bauteil, das mit einer mehrlagigen Keramikschicht versehen ist.The invention relates to a method for coating a component with a multilayer ceramic layer, in which individual layers of the ceramic layer are applied to one another in a covering manner on the component by supplying ceramic particles to a coating burner, completely or partially melting them and depositing them on the component. The invention further relates to a multilayer ceramic layer and a component which is provided with a multilayer ceramic layer.
Bauteile, die in einer aggressiven Atmosphäre in einem Tempe- raturbereich von größer als 8000C eingesetzt werden, sind häufig mit Schutzbeschichtungen versehen, um deren Lebensdauer zu verlängern. So werden beispielsweise Gasturbinenlauf- oder -leitschaufeln mit keramikhaltigen Wärmedämmschichten versehen bzw. es werden komplexe Schichtsysteme aufgebracht, welche die Schaufeln vor thermischen, chemischen und mechanischen Beanspruchungen schützen.Components, which are used in an aggressive atmosphere in a temperature range of greater than 800 0 C, are often provided with protective coatings in order to prolong their service life. For example, gas turbine rotor blades or guide vanes are provided with ceramic-containing thermal barrier coatings or complex layer systems are applied which protect the blades against thermal, chemical and mechanical stresses.
Die keramikhaltigen Wärmedämmschichten können beispielsweise Zirkonoxide enthalten, die durch Yttriumoxide stabilisiert sind. Als Verfahren zur Auftragung wird unter anderem Plasmaspritzen eingesetzt. Dabei werden pulverförmige Keramikpartikel einem Plasmabeschichtungsbrenner zugeführt, in dem sie ganz oder teilweise aufgeschmolzen und anschließend auf dem Bauteil abgeschieden werden. Die Keramikpartikel bilden dann auf der Oberfläche des Bauteils die Wärmedämmschicht.The ceramic-containing thermal barrier coatings may contain, for example, zirconium oxides which are stabilized by yttrium oxides. As a method of application, among other plasma spraying is used. Powdered ceramic particles are supplied to a plasma coating burner in which they are completely or partially melted and then deposited on the component. The ceramic particles then form the thermal barrier coating on the surface of the component.
In vielen Fällen wird die Wärmedämmschicht in einzelnen deckend übereinander aufgebrachten Lagen auf dem Bauteil ausgebildet, d.h. es werden bei einer Standartschichtdicke von 200 - 400 μm 4 - 15 Lagen mit einer Lagendicke von 20 - 50 μm übereinander aufgebracht. Ein Verfahren zur Ausbildung von mehrlagigen Wärmedämmschichten auf der Oberfläche von Turbinenschaufeln ist in der DE 100 22 157 Cl beschrieben. Hier werden pulverförmige Keramikpartikel dem Beschichtungsbrenner zugeführt, dort ganz oder teilweise aufgeschmolzen und anschließend in der Form einzelner Lagen auf der Oberfläche der Turbinenschaufel abgeschieden. Dabei werden Keramikpartikel mit unterschiedlich großer Körnung verwendet, wobei die Keramikpartikel durch eine geeignete Steuerung der Brennerleistung in Abhängigkeit von ihrer Größe unterschiedlich stark aufgeschmolzen werden, d.h. die kleineren Keramikpartikel schmelzen vollständig und die größeren Keramikpartikel sind nur oberflächlich angeschmolzen. Auf diese Weise kann die Porosität der einzelnen Lagen der Wärmedämmschicht variiert werden.In many cases, the heat-insulating layer is formed in individual layers applied one above the other on the component, ie 4 - 15 layers with a layer thickness of 20-50 μm are applied one above the other at a standard layer thickness of 200-400 μm. A method for forming multilayer thermal barrier coatings on the surface of turbine blades is described in DE 100 22 157 C1. Here, pulverulent ceramic particles are supplied to the coating burner, where they are completely or partially melted and then deposited in the form of individual layers on the surface of the turbine blade. In this case, ceramic particles are used with different size grain size, the ceramic particles are melted by a suitable control of the burner performance depending on their size different degrees, ie the smaller ceramic particles melt completely and the larger ceramic particles are only superficially melted. In this way, the porosity of the individual layers of the thermal barrier coating can be varied.
Die im Stand der Technik bekannten Keramikschichten haben eine Gesamtdicke, die nicht oberhalb von 450 μm liegt. Dies ist unter anderem dadurch begründet, dass bei der Herstellung von keramischen Wärmedämmschichten mit einer größeren Dicke verschiedene Probleme auftreten.The known in the prior art ceramic layers have a total thickness that is not above 450 microns. One of the reasons for this is that different problems occur in the production of ceramic thermal barrier coatings having a greater thickness.
Wenn die Wärmedämmschicht durch Aufbringen von einzelnen übereinander liegenden Lagen ausgebildet wird, isolieren die bereits auf der Bauteiloberfläche vorhandenen Lagen während des Auftragungsprozesses zunehmend stärker derart, dass das neu aufgebrachte Beschichtungsmaterial der weiteren Lagen seine Wärme nicht abgeben kann. Es kommt zu einem Wärmestau, in dessen Folge die Temperatur der neu aufgebrachten Lagen zunimmt, was dazu führt, dass diese stärker verdichtet wer- den. Durch diese Verdichtung nimmt jedoch die Porosität der einzelnen Lagen ab, was einerseits deren Wärmeisolationsfähigkeit während des Betriebes des Bauteils reduziert und andererseits eine wesentlich schlechtere Haftung der Lagen aneinander hervorruft. Dies kann unter anderem dazu führen, dass es zu einem Schichtversagen kommt, d.h. es besteht die Gefahr des lokalen Abplatzens von Bereichen der keramischen Wärmedämmschicht . Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs genannten Art so auszubilden, dass mehrlagige Keramikschichten mit einer Dicke größer als 450 μm auf einem Bauteil aufgebracht werden können. Dabei soll das Bau- teil mit den einzelnen Lagen so beschichtet werden, dass diese eine ausreichende Porosität erhalten, wodurch sowohl eine hohe Wärmeisolationsfähigkeit als auch eine gute Haftfähigkeit der Lagen aneinander sichergestellt wird.If the thermal barrier coating is formed by applying individual superimposed layers, the layers already present on the component surface increasingly isolate during the application process in such a way that the newly applied coating material of the further layers can not release its heat. This leads to a build-up of heat, as a result of which the temperature of the newly applied layers increases, with the result that they become more densely compressed. By this compression, however, the porosity of the individual layers decreases, which on the one hand reduces their thermal insulation capability during operation of the component and on the other hand causes a much poorer adhesion of the layers to each other. Among other things, this can lead to a layer failure, ie there is a risk of local spalling of areas of the ceramic thermal barrier coating. It is therefore an object of the present invention, a method of the type mentioned in such a way that multilayer ceramic layers can be applied with a thickness greater than 450 microns on a component. The component is to be coated with the individual layers in such a way that they obtain sufficient porosity, which ensures both a high thermal insulation capability and a good adhesiveness of the layers to one another.
Diese Aufgabe wird dadurch gelöst, dass dem Beschichtungs- brenner von Lage zu Lage Keramikpartikel mit einer zunehmend größeren Körnung zugeführt werden.This object is achieved in that the coating burner from layer to layer ceramic particles are supplied with an increasingly larger grain size.
Grundgedanke der Erfindung ist es also die Körnung der Kera- mikpartikel von Lage zu Lage zu erhöhen. Zunächst wird das Bauteil mit einer ersten Lage beschichtet, indem dem Be- schichtungsbrenner Keramikpartikel mit der kleinsten insgesamt verwendeten Körnung, beispielsweise - 53 μm + 11 μm zugeführt werden. Um dann eine zweite Lage auf der ersten Lage aufzubringen, werden dem Beschichtungsbrenner Keramikpartikel mit einer Körnung zugeführt, die größer als die der Keramikpartikel für die erste Lage ist. Anschließend werden analog die weiteren Lagen unter stetiger Zunahme der Körnung der verwendeten Keramikpartikel aufgebracht.The basic idea of the invention is therefore to increase the grain size of the ceramic particles from layer to layer. First, the component is coated with a first layer by supplying the coating burner with ceramic particles having the smallest total grain size used, for example -53 μm + 11 μm. In order then to apply a second layer on the first layer, the coating burner ceramic particles are supplied with a grain size which is greater than that of the ceramic particles for the first layer. Subsequently, the further layers are applied analogously with a constant increase in the grain size of the ceramic particles used.
Vorteilhaft ist hierbei, dass durch die Erhöhung der Körnung der Keramikpartikel von Lage zu Lage dem Effekt des Verdich- tens der einzelnen Lagen mit zunehmender Schichtdicke aufgrund des auftretenden Wärmestaus entgegengewirkt wird. So werden die einzelnen Lagen mit einer nahezu konstanten Porosität ausgebildet, was einerseits deren Wärmeisolationsfähigkeit bewahrt und andererseits die Haftung der einzelnen Lagen aneinander sicherstellt. Auf diese Weise wird auch die Gefahr eines Schichtversagens ausgeschlossen.It is advantageous here that the effect of the compaction of the individual layers with increasing layer thickness is counteracted by increasing the grain size of the ceramic particles from layer to layer due to the heat accumulation occurring. Thus, the individual layers are formed with a nearly constant porosity, which on the one hand preserves their thermal insulation and on the other hand ensures the adhesion of the individual layers to each other. In this way, the risk of a shift failure is excluded.
Gemäß einer ersten Ausführungsform der Erfindung ist vorgesehen, dass die Leistung des Beschichtungsbrenners während des Aufbringens der einzelnen Lagen der Keramikschicht kontinu- ierlich an die Körnung der Keramikpartikel angepasst wird. Auf diese Weise ist es möglich während des Beschichtungsvor- gangs die Porosität der einzelnen Lagen noch genauer zu steuern, bzw. zu modifizieren. Durch die Anpassung der Brenner- leistung kann insbesondere beeinflusst werden, wie stark die Keramikpartikel aufgeschmolzen werden.According to a first embodiment of the invention it is provided that the performance of the coating burner during the application of the individual layers of the ceramic layer continuously ierlich adapted to the grain of the ceramic particles. In this way, it is possible during the coating process to control the porosity of the individual layers even more precisely, or to modify them. By adjusting the burner output, it is possible in particular to influence how much the ceramic particles are melted.
Es ist ebenfalls möglich als Beschichtungsbrenner einen Plasmabrenner zu verwenden. In diesem Fall kann die Leistung des Plasmabrenners beispielsweise durch die Variation der Stromstärke und/oder des Wasserstoffgasflusses und/oder der Argongasrate angepasst werden. So kann eine Stromstärke von 500 - 650 A, ein Wasserstoffgasfluss von 12 - 16 NLPM und eine Argongasrate von 40 - 60 NLPM eingestellt werden. Gegebenen- falls können auch Gasmischungen aus Argon, Stickstoff undIt is also possible to use a plasma burner as a coating burner. In this case, the performance of the plasma torch can be adjusted, for example, by the variation of the current intensity and / or the hydrogen gas flow and / or the argon gas rate. Thus, a current of 500-650 A, a hydrogen gas flow of 12-16 NLPM and an argon gas rate of 40-60 NLPM can be set. Optionally, gas mixtures of argon, nitrogen and
Wasserstoff verwendet werden, wobei insbesondere Mischungsverhältnisse Ar/N2/H2 von 30-40/10-20/8-14 zum Einsatz kommen können .Hydrogen can be used, in particular mixing ratios Ar / N 2 / H 2 of 30-40 / 10-20 / 8-14 can be used.
Die einzelnen Lagen der Keramikschicht können mit einer Dicke im Bereich zwischen 10 und 100 μm aufgebracht werden, wobei insbesondere eine Dicke zwischen 20 - 50 μm geeignet ist. Auf diese Weise wird eine Keramikschicht erhalten, die eine hohe Wärmeisolationsfähigkeit besitzt und mechanisch stabil ist.The individual layers of the ceramic layer can be applied with a thickness in the range between 10 and 100 microns, in particular, a thickness between 20 - 50 microns is suitable. In this way, a ceramic layer is obtained, which has a high heat insulating ability and is mechanically stable.
Bei einer weiteren Ausführungsform kann die mehrlagige Keramikschicht mit einer Gesamtdicke im Bereich zwischen 100 - 1000 μm, insbesondere zwischen 200 und 700 μm besonders bevorzugt zwischen 250 und 600 μm aufgebracht werden.In a further embodiment, the multilayer ceramic layer with a total thickness in the range between 100-1000 μm, in particular between 200 and 700 μm, particularly preferably between 250 and 600 μm, can be applied.
Dem Beschichtungsbrenner können für die erste Lage beispielsweise Keramikpartikel mit einer Körnung von - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm zugeführt werden.For example, ceramic particles having a particle size of -75 μm + 10 μm or -53 μm + 11 μm or -90 μm + 11 μm can be supplied to the coating burner for the first layer.
Für die Aufbringung der letzten Lage, d.h. der äußersten Lage der mehrlagigen Keramikschicht, können dem Beschichtungsbrenner Keramikpartikel mit einer Körnung von - 106 μm + 11 μm oder - 125 μm + 45 μm oder - 150 μm + 75 μm zugeführt werden. Weiterhin kann dem Beschichtungsbrenner auch ein Gemisch von Keramikpartikel mit mindestens zwei verschiedenen Körnungen zugeführt werden. Durch ein geeignetes Mischen der beiden verschieden gekörnten Keramikpartikelfraktionen kann in einfacher Weise die Gesamtkörnung der dem Beschichtunqsbrenner zugeführten Keramikpartikel variiert werden.For the application of the last layer, ie the outermost layer of the multilayer ceramic layer, ceramic particles having a grain size of -106 μm + 11 μm or -125 μm + 45 μm or-150 μm + 75 μm can be supplied to the coating burner. Furthermore, the coating burner, a mixture of ceramic particles are supplied with at least two different grain sizes. By suitable mixing of the two differently granulated ceramic particle fractions, the total grain size of the ceramic particles fed to the coating burner can be varied in a simple manner.
Es ist ebenfalls möglich, vor dem Beschichten mit der mehrla- gigen Keramikschicht eine mehrlagige Unterschicht auf dem Bauteil aufzubringen, indem Keramikpartikel mit einer konstanten Körnung einem Beschichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf dem Bauteil in einzelnen Lagen deckend übereinander abgeschieden werden. Anschließend wird auf der Unterschicht die mehrlagige Keramikschicht ausgebildet.It is likewise possible to apply a multilayer sublayer to the component before coating with the multilayer ceramic layer by supplying ceramic particles with a constant grain size to a coating burner, melting it completely or partially and then stacking it over the component in individual layers. Subsequently, the multilayer ceramic layer is formed on the underlayer.
Dem Beschichtungsbrenner können für die Unterschicht Keramikpartikel mit einer konstanten Körnung von - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm zugeführt werden. Außerdem können die einzelnen Lagen der Unterschicht mit einer Dicke im Bereich von 10 - 100 μm, insbesondere zwischen 20 - 50 μm aufgebracht werden. Die Gesamtdicke der Unterschicht kann im Bereich zwischen 150 und 450 μm liegen.Ceramic particles with a constant grain size of -75 μm + 10 μm or -53 μm + 11 μm or -90 μm + 11 μm can be supplied to the coating burner for the lower layer. In addition, the individual layers of the lower layer can be applied with a thickness in the range of 10-100 μm, in particular between 20-50 μm. The total thickness of the underlayer may range between 150 and 450 microns.
Es ist ebenfalls möglich, dass auf der mehrlagigen Keramikschicht eine mehrlagige Oberschicht aufgebracht wird, indem Keramikpartikel einem Beschichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf der mehrla- gigen Keramikschicht in einzelnen Lagen deckend übereinander aufgebracht werden. Dabei weisen die Keramikpartikel für die Oberschicht eine größere Körnung als die Keramikpartikel, welche dem Beschichtungsbrenner zum Aufbringen der letzten Lage der mehrlagigen Keramikschicht zugeführt werden, auf.It is likewise possible for a multilayer upper layer to be applied to the multilayer ceramic layer by supplying ceramic particles to a coating burner, melting them completely or partially, and covering them over the multilayer ceramic layer in individual layers. In this case, the ceramic particles for the upper layer have a larger grain size than the ceramic particles which are supplied to the coating burner for applying the last layer of the multilayer ceramic layer.
Die erfindungsgemäße Aufgabe wird ebenfalls durch eine mehrlagige Keramikschicht mit den Merkmalen des Anspruchs 14 und durch ein Bauteil mit den Merkmalen des Anspruchs 24 gelöst. Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert. In der Zeichnung zeigt:The object of the invention is also achieved by a multilayer ceramic layer having the features of claim 14 and by a component having the features of claim 24. In the following the invention will be explained in more detail with reference to an embodiment with reference to the drawing. In the drawing shows:
Figur 1 eine schematische Teilschnittansicht einerFigure 1 is a schematic partial sectional view of a
Turbinenschaufel mit einer erfindungsgemäßen mehrlagigen Keramikschicht, undTurbine blade with a multilayer ceramic layer according to the invention, and
Figur 2 eine schematische Darstellung einer Vorrichtung zum Beschichten eines Bauteils,FIG. 2 shows a schematic illustration of a device for coating a component,
Figur 3 eine Gasturbine,FIG. 3 shows a gas turbine,
Figur 4 perspektivisch eine Turbinenschaufel undFigure 4 in perspective a turbine blade and
Figur 5 eine Brennkammer.Figure 5 is a combustion chamber.
In der Figur 1 ist eine schematische Teilschnittansicht einer Turbinenschaufel 1 gezeigt, die mit einer erfindungsgemäßen mehrlagigen Keramikschicht 3 flächig beschichtet ist. Unter der mehrlagigen Keramikschicht 3 auf der Turbinenschaufel 1 ist eine mehrlagige Unterschicht 2 ausgebildet und auf der mehrlagigen Keramikschicht 2 befindet sich eine mehrlagige Oberschicht 4. Die Unterschicht 2, die mehrlagige Keramikschicht 3 und die Oberschicht 4 werden jeweils von deckend übereinander angeordneten Lagen 2a, 3a-c, 4a gebildet.1 shows a schematic partial sectional view of a turbine blade 1, which is coated with a multi-layer ceramic layer 3 according to the invention. Under the multilayer ceramic layer 3 on the turbine blade 1, a multilayer underlayer 2 is formed and on the multilayer ceramic layer 2 there is a multilayer top layer 4. The underlayer 2, the multilayer ceramic layer 3 and the top layer 4 are respectively stacked one above another layers 2a, 3a -c, 4a formed.
Die Unterschicht 2 ist unmittelbar auf der Turbinenschaufel 1 aufgebracht. Die Lagen 2a der Unterschicht 2 bestehen aus teilweise miteinander verschmolzenen Keramikpartikeln mit einer konstanten Körnung, wobei die Körnung - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm sein kann. Die Lagen 2a der Unterschicht 2 haben eine Dicke im Bereich zwischen 10 - 100 μm, insbesondere zwischen 20 - 50 μm. Die Gesamtdicke der Unterschicht 2 liegt zwischen 150 und 450 μm. Auf der Unterschicht 2 ist die mehrlagige Keramikschicht 3 flächig aufgebracht. Die einzelnen Lagen 3a, 3b, 3c der mehrlagigen Keramikschicht 3 bestehen aus teilweise miteinander verschmolzenen Keramikpartikeln, wobei die Keramikpartikel von Lage zu Lage zunehmend eine größere Körnung aufweisen.The lower layer 2 is applied directly to the turbine blade 1. The layers 2a of the lower layer 2 consist of partially fused together ceramic particles with a constant grain size, wherein the grain size - 75 microns + 10 microns or - 53 microns + 11 microns or - 90 microns + 11 microns may be. The layers 2a of the lower layer 2 have a thickness in the range between 10 and 100 μm, in particular between 20 and 50 μm. The total thickness of the lower layer 2 is between 150 and 450 microns. On the lower layer 2, the multilayer ceramic layer 3 is applied flat. The individual layers 3a, 3b, 3c of the multilayer ceramic layer 3 are made of partially fused ceramic particles, wherein the ceramic particles from layer to layer increasingly have a larger grain size.
D.h. die teilweise miteinander verschmolzenen Keramikpartikel der ersten Lage 3a haben eine kleinere Körnung als die teilweise miteinander verschmolzenen Keramikpartikel der zweiten Lage 3. Die beiden Lagen 3a, 3b weisen jedoch eine etwa glei- che Porosität auf, so dass beide eine hohe Wärmeisolationsfähigkeit besitzen und eine starke Haftung der Lagen 3a, 3b aneinander gewährleistet ist.That The partially fused ceramic particles of the first layer 3a have a smaller grain size than the partially fused ceramic particles of the second layer 3. However, the two layers 3a, 3b have approximately the same porosity, so that both have a high heat insulation capability and a strong one Liability of the layers 3a, 3b is guaranteed to each other.
Die Lagen 3a, 3b, 3c haben eine Dicke im Bereich zwischen 10 - 100 μm, insbesondere zwischen 20 - 50 μm. Die Gesamtdicke der mehrlagigen Keramikschicht 3 liegt im Bereich zwischen 100 - 1000 μm, insbesondere zwischen 200 und 700 μm und besonders bevorzugt zwischen 250 und 650 μm.The layers 3a, 3b, 3c have a thickness in the range between 10-100 μm, in particular between 20-50 μm. The total thickness of the multilayer ceramic layer 3 is in the range between 100-1000 .mu.m, in particular between 200 and 700 .mu.m, and particularly preferably between 250 and 650 .mu.m.
Auf der mehrlagigen Keramikschicht 3 ist die mehrlagige Oberschicht 4 flächig aufgebracht. Die Oberschicht 4 wird von den übereinander angeordneten Lagen 4a gebildet, welche aus teilweise miteinander verschmolzenen Keramikpartikeln bestehen. Die Körnung dieser Keramikpartikel ist größer als die Körnung der Keramikpartikel der letzten Lage 3c der mehrlagigen Keramikschicht 3.On the multilayer ceramic layer 3, the multilayer upper layer 4 is applied flat. The upper layer 4 is formed by the superimposed layers 4a, which consist of partially fused ceramic particles. The grain size of these ceramic particles is greater than the grain size of the ceramic particles of the last layer 3 c of the multilayer ceramic layer 3.
Die mehrlagige Keramikschicht 3 hat einerseits eine hohe Wärmeisolationsfähigkeit und besitzt andererseits eine große me- chanische Stabilität, so dass die Gefahr des Schichtversagens reduziert ist.On the one hand, the multilayer ceramic layer 3 has a high heat insulating capability and on the other hand has a high mechanical stability, so that the risk of layer failure is reduced.
Um die Turbinenschaufel 1 zu beschichten, wird in einem ersten Schritt die Unterschicht 2 Lage für Lage auf der Oberflä- che der Turbinenschaufel 1 aufgebracht. Dazu werden Keramikpartikel mit einer konstanten Körnung einem Beschichtungs- brenner zugeführt, von diesem ganz oder teilweise aufge- schmolzen und dann auf der Turbinenschaufel in den einzelnen Lagen 2a deckend übereinander abgeschieden.In order to coat the turbine blade 1, in a first step the lower layer 2 is applied layer by layer to the surface of the turbine blade 1. For this purpose, ceramic particles with a constant grain size are fed to a coating burner, which is wholly or partly filled by it. melted and then deposited on the turbine blade in the individual layers 2a opaque one above the other.
In einem zweiten Schritt wird dann auf der Unterschicht 2 die mehrlagige Keramikschicht 3 aufgebracht. Dazu werden dem Be- schichtungsbrenner Keramikpartikel zugeführt, welche von diesem ganz oder teilweise aufgeschmolzen und dann in Form der Lagen 3a, 3b, 3c abgeschieden werden.In a second step, the multilayer ceramic layer 3 is then applied to the lower layer 2. To this end, ceramic particles are supplied to the coating burner, which particles are completely or partially melted by the latter and then deposited in the form of the layers 3a, 3b, 3c.
In den Beschichtungsbrenner können für die erste Lager der mehrlagigen Keramikschicht 3 beispielsweise Keramikpartikel mit einer ersten Körnung von - 75 μm + 10 eingebracht werden.In the coating torch, for example, ceramic particles having a first grain size of -75 μm + 10 can be introduced for the first bearing of the multilayer ceramic layer 3.
Die erste Lage 3a wird auf der Oberfläche der Unterschicht 2 und die zweite Lage 3b unmittelbar deckend auf der ersten Lage 3a aufgebracht. Dabei werden von Lage zu Lage dem Beschichtungsbrenner Keramikpartikel mit einer zunehmend größeren Körnung zugeführt. D.h. die Keramikpartikel, die dem Beschichtungsbrenner für die Ausbildung der Lage 3b zugeführt werden, haben eine größere Körnung als die Keramikpartikel, die dem Beschichtungsbrenner für die Ausbildung der Lage 3a zugeführt werden. Die Keramikpartikel mit der größten für die mehrlagige Keramikschicht 3 verwendeten Körnung werden schließlich von dem Beschichtungsbrenner ganz oder teilweise aufgeschmolzen, wenn die letzte Lage 3c abgeschieden wird.The first layer 3a is applied on the surface of the lower layer 2 and the second layer 3b directly covering on the first layer 3a. In this case, ceramic particles with an increasingly larger grain size are supplied from layer to layer to the coating burner. That the ceramic particles supplied to the coating burner for forming the sheet 3b have a larger grain than the ceramic particles supplied to the coating burner for forming the sheet 3a. The ceramic particles with the largest grain size used for the multilayer ceramic layer 3 are finally completely or partially melted by the coating burner when the last layer 3c is deposited.
Die Variation der Körnungen der Keramikpartikel kann beispielsweise dadurch erfolgen, dass dem Beschichtungsbrenner gleichzeitig Keramikpartikel mit mindestens zwei verschiede- nen Körnungen zugeführt werden. Dabei kann durch geeignetes Mischen der beiden Körnungen eine jeweils zunehmende Gesamtkörnung erhalten werden.The variation of the grain sizes of the ceramic particles can be achieved, for example, by simultaneously supplying ceramic particles having at least two different grain sizes to the coating burner. In this case, by appropriate mixing of the two grains each increasing overall grain size can be obtained.
Außerdem kann die Leistung des Beschichtungsbrenners kontinu- ierlich an die Körnung der Keramikpartikel angepasst werden. So kann die Leistung erhöht werden, wenn zunehmend größere Keramikpartikel abgeschieden werden sollen. Auf diese Weise wird sichergestellt, dass auch die größeren Keramikpartikel hinreichend aufgeschmolzen sind, um fest in die Lagen 3a, 3b, 3c mit eingebunden zu werden.In addition, the performance of the coating torch can be continuously adapted to the grain size of the ceramic particles. Thus, the performance can be increased if increasingly larger ceramic particles are to be deposited. This will ensure that even the larger ceramic particles are sufficiently melted to be firmly integrated into the layers 3a, 3b, 3c with.
Wenn ein Plasmabrenner als Beschichtungsbrenner verwendet wird, kann dessen Leistung durch Variation der Stromstärke und/oder des Wasserstoffgasflusses und/oder der Argongasrate angepasst werden.When a plasma torch is used as a coating torch, its performance can be adjusted by varying the current intensity and / or the hydrogen gas flow and / or the argon gas rate.
In einem letzten Schritt wird flächig deckend auf der mehrla- gigen Keramikschicht 3 die Oberschicht 4 abgeschieden. Dazu werden Keramikpartikel mit einer konstanten Körnung ganz oder teilweise in dem Beschichtungsbrenner aufgeschmolzen und in den einzelnen Lagen 4a deckend übereinander auf der mehrlagigen Keramikschicht 3 abgeschieden.In a last step, the upper layer 4 is deposited over the entire surface on the multi-layer ceramic layer 3. For this purpose, ceramic particles having a constant grain size are completely or partially melted in the coating burner and deposited in a covering manner on the multilayer ceramic layer 3 in the individual layers 4a.
Dabei werden für die Lagen 4a Keramikpartikel verwendet, die eine größere Körnung haben als die Keramikpartikel, welche für die letzte Lage 3c der mehrlagigen Keramikschicht 3 verwendet wurden. Auf diese Weise ist sichergestellt, dass auch die Lagen 4a der Oberschicht 4 eine ausreichende Porosität erhalten und damit sowohl eine hohe Wärmeisolationsfähigkeit als auch eine gute Haftung aneinander besitzen.In this case, ceramic particles are used for the layers 4a, which have a larger grain size than the ceramic particles which were used for the last layer 3c of the multilayer ceramic layer 3. In this way, it is ensured that the layers 4a of the top layer 4 also receive a sufficient porosity and thus have both a high thermal insulation capability and good adhesion to one another.
In der Figur 2 ist schematisch eine Vorrichtung 5 zum Beschichten eines Bauteils, beispielsweise der Turbinenschaufel 1 gezeigt. Die Vorrichtung 5 weist drei Fördereinheiten 6a-c auf, die jeweils Keramikpartikel mit einer unterschiedlich großen Körnung enthalten. Die Fördereinheiten 6a-c sind je- weils über Leitungen 7 mit einer Pulverweiche 8 verbunden und dafür ausgelegt, der Pulverweiche 8 Keramikpartikel zuzuführen. Die Pulverweiche 8 ist ausgebildet, die ihr zugeführten Keramikpartikel zu einem Beschichtungspulver mit einheitlicher Körnung zu vermischen. Dabei hängt die resultierende Körnung des Beschichtungspulvers von den Mengen und den Körnungen der jeweils von den Fördereinheiten 6a-c zugeführten Keramikpartikeln ab. Die Pulverweiche 8 ist über eine Leitung 7 mit einem Pulverinjektor 9 verbunden. Der Pulverinjektor 9 ist so relativ zu einem Plasmabrenner 10 angeordnet, dass er einen Strom von Beschichtungspulver 11 in die Flamme 12 des Plasmabrenners 10 abgeben kann.FIG. 2 schematically shows a device 5 for coating a component, for example the turbine blade 1. The device 5 has three conveyor units 6a-c, each containing ceramic particles with a different size grain. The conveyor units 6a-c are each connected via lines 7 to a powder switch 8 and designed to supply the powder switch 8 ceramic particles. The powder switch 8 is designed to mix the supplied ceramic particles to a coating powder with uniform grain size. In this case, the resulting grain size of the coating powder depends on the quantities and grain sizes of the ceramic particles respectively supplied by the conveying units 6a-c. The powder switch 8 is connected via a line 7 with a powder injector 9. The powder injector 9 is arranged relative to a plasma torch 10 so that it can deliver a stream of coating powder 11 into the flame 12 of the plasma torch 10.
Die Vorrichtung 5 kann zusätzlich eine Steuereinheit aufweisen, welche die Zufuhr der Keramikpartikel aus den Fördereinheiten 6a-c, und die Funktion der Pulverweiche 8 und des PuI- verinjektors 9 steuert. Die Steuerung kann auch dafür ausgelegt sein, in Abhängigkeit von der Körnung des Beschichtungs- pulvers die Leistung des Plasmabrenners zu regulieren, d.h. dessen Leistung bei einer größeren Körnung zu erhöhen, um ein ausreichendes Schmelzen der Keramikpartikel zu gewährleisten. Es können auch neben den drei gezeigten Fördereinheiten 6a-c noch weitere Fördereinheiten vorhanden sein.The device 5 may additionally have a control unit which controls the supply of the ceramic particles from the conveyor units 6a-c, and the function of the powder switch 8 and the powder injector 9. The controller may also be configured to regulate the power of the plasma torch, depending on the grain size of the coating powder, i. to increase its performance at a larger grain size, to ensure a sufficient melting of the ceramic particles. In addition to the three conveying units 6a-c shown, further conveying units may also be present.
Die Figur 3 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartigeThe gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner. Along the rotor 103 successively follow an intake housing 104, a compressor 105, for example, a torus-like
Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109. Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.Combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109. The annular combustion chamber 110 communicates with an example annular hot gas channel 111. There, for example, four successively connected turbine stages 112 form the turbine 108th
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125. Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind. An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) .Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows. The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver- dichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the gas turbine 100, air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet .The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) . Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Super- legierungen verwendet.To withstand the prevailing temperatures, they can be cooled by means of a coolant. Likewise, substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure). As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 Al, WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierungen Teil der Offenbarung.Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949 known; These documents are part of the disclosure regarding the chemical composition of the alloys.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt .The vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
Die Figur 4 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.FIG. 4 shows a perspective view of a moving blade 120 or guide blade 130 of a turbomachine that extends along a longitudinal axis 121.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf. Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel- spitze 415 eine weitere Plattform aufweisen (nicht dargestellt) .The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415. As a guide blade 130, the blade 130 may have at its blade tip 415 another platform (not shown).
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich. Die Schaufel 120, 130 weist für ein Medium, das an dem Schau- felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf. Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet . Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 Al, WO 99/67435 oder WO 00/44949 bekannt; diese Schriften sind bzgl. der chemischen Zusammensetzung der Legierung Teil der Offenbarung. Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible. The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the blade 406. In conventional blades 120, 130, for example, solid metallic materials, in particular superalloys, are used in all regions 400, 403, 406 of the blade 120, 130. Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949; These documents are part of the disclosure regarding the chemical composition of the alloy. The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
Werkstücke mit einkristalliner Struktur oder Strukturen wer- den als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt. Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen. Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Rieh- tung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) . Solche Verfahren sind aus der US-PS 6,024,792 und der EPThe production of such monocrystalline workpieces, for example, by directed solidification from the melt. These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally. Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, it is necessary to avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries which negate the good properties of the directionally solidified or monocrystalline component. If the term "directionally solidified microstructures" is used, it refers both to single crystals which have no grain boundaries or at most small-angle grain boundaries, and to stem crystal structures which are likely to be found in longitudinal grooves. grain boundaries, but have no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures. Such methods are known from US Pat. No. 6,024,792 and EP
0 892 090 Al bekannt; diese Schriften sind bzgl. des Erstarrungsverfahrens Teil der Offenbarung.0 892 090 Al known; these writings are part of the revelation regarding the solidification process.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 Al, die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen. Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte . Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) .Likewise, the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy. The density is preferably 95% of the theoretical density. A protective aluminum oxide layer (TGO = thermal grown oxide layer) is formed on the MCrAlX layer (as an intermediate layer or as the outermost layer).
Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re.Preferably, the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y. Besides these cobalt-based protective coatings, nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zrθ2, Y2θ3-Zrθ2, d.h. sie ist nicht, teil¬ weise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX can still be present a thermal barrier coating, which is preferably the outermost layer, and consists for example of Zrθ2, Y2θ3-Zrθ2, ie it is not, partially ¬ or fully stabilized by yttria and / or calcium oxide and / or magnesium oxide.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht . Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.The thermal barrier coating covers the entire MCrAlX layer. Suitable coating processes, such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphäri- sches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.Other coating methods are conceivable, e.g. Atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance. The thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.The blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
Die Figur 5 zeigt eine Brennkammer 110 der Gasturbine 100. Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Um- fangsrichtung um eine Rotationsachse 102 herum angeordnetenFIG. 5 shows a combustion chamber 110 of the gas turbine 100. The combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a multiplicity of windings are arranged around an axis of rotation 102 in the circumferential direction
Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.Burners 107 open into a common combustion chamber space 154, the flames 156 produce. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 10000C bis 16000C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebs- parametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C. to 1600 ° C. In order to enable a comparatively long service life for these operating parameters, which are unfavorable for the materials, the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155.
Aufgrund der hohen Temperaturen im Inneren der BrennkammerDue to the high temperatures inside the combustion chamber
110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.110 may also be provided for the heat shield elements 155 and for their holding elements, a cooling system. The heat shield elements 155 are then hollow and have, for example possibly still in the combustion chamber 154 opening cooling holes (not shown).
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeits- mediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt. Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 Al, die bzgl. der chemischen Zusammensetzung der Legierung Teil dieser Offenbarung sein sollen.Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks). These protective layers may be similar to the turbine blades, so for example MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf). Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1, which should be part of this disclosure with regard to the chemical composition of the alloy.
Auf der MCrAlX kann noch eine beispielsweise keramische Wär- medämmschicht vorhanden sein und besteht beispielsweise aus ZrC>2, Y2Ü3-Zrθ2, d.h. sie ist nicht, teilweise oder vollstän¬ dig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.On the MCrAlX may also be present, for example, a ceramic thermal insulation layer and consists for example of ZrC> 2, Y2Ü3-Zrθ2, ie it is not, partially or fully ¬ dig stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.By suitable coating methods, e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Kör- ner zur besseren Thermoschockbeständigkeit aufweisen.Other coating methods are conceivable, e.g. atmospheric plasma spraying (APS), LPPS, VPS or CVD. The thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
Wiederaufarbeitung (Refurbishment) bedeutet, dass Turbinenschaufeln 120, 130, Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in der Turbinenschaufel 120, 130 oder dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Turbinenschaufeln 120, 130, Hitzeschildelemente 155 und ein erneuter Einsatz der Turbinenschaufeln 120, 130 oder der Hitzeschildelemente 155 Refurbishment means that turbine blades 120, 130, heat shield elements 155 may have to be freed from protective layers after their use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. After that a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155

Claims

Patentansprüche claims
1. Verfahren zum Beschichten eines Bauteils (1) mit einer mehrlagigen Keramikschicht (3) , bei dem die einzelnen Lagen (3a-c) der Keramikschicht (3) auf dem Bauteil (1) übereinander aufgebracht werden, indem Keramikpartikel einem Beschichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf dem Bauteil (1) abgeschieden werden,1. A method for coating a component (1) with a multilayer ceramic layer (3), wherein the individual layers (3a-c) of the ceramic layer (3) on the component (1) are applied to each other by supplying ceramic particles to a coating burner, of be completely or partially melted and deposited on the component (1),
dadurch gekennzeichnet, dasscharacterized in that
dem Beschichtungsbrenner von Lage (3a) zu Lage (3b) Keramikpartikel mit einer zunehmend größeren Körnung zugeführt werden, auf der mehrlagigen Keramikschicht (3) eine mehrlagige Oberschicht (4) aufgebracht wird, indem Keramikpartikel einem Beschichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf der mehrlagigen Keramikschicht (3) in einzelnen Lagen (4a) deckend übereinander aufgebracht werden, wobei die Keramikpartikel für die Oberschicht (4) eine größere Körnung als die Keramikpartikel haben, welche dem Beschichtungsbrenner beim Aufbringen der letzten Lage (3c) der mehrlagigen Keramikschicht (3) zugeführt werden .the ceramic coating of layer (3a) to layer (3b) ceramic particles are supplied with an increasingly larger grain size, on the multilayer ceramic layer (3) a multilayer top layer (4) is applied by ceramic particles supplied to a coating burner, of this completely or partially melted and on the multilayer ceramic layer (3) in individual layers (4a) are applied to each other covering one another, wherein the ceramic particles for the upper layer (4) have a greater grain size than the ceramic particles which the coating burner during application of the last layer (3c) of the multilayer ceramic layer ( 3) are supplied.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass2. The method according to claim 1, characterized in that
die Leistung des Beschichtungsbrenners während des Aufbrin- gens der einzelnen Lagen (3a-c) der Keramikschicht (3) kon- tinuierlich an die Körnung der Keramikpartikel angepasst wird. the performance of the coating burner during the application of the individual layers (3a-c) of the ceramic layer (3) is continuously adapted to the grain size of the ceramic particles.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass3. The method according to claim 2, characterized in that
ein Plasmabrenner als Beschichtungsbrenner verwendet wird.a plasma torch is used as a coating burner.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass4. The method according to claim 3, characterized in that
die Leistung des Plasmabrenners durch eine Variation derthe performance of the plasma torch by a variation of the
Stromstärke und/oder des Wasserstoffgasflusses und/oder der Argongasrate angepasst wird.Amperage and / or the hydrogen gas flow and / or the argon gas rate is adjusted.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass5. The method according to any one of the preceding claims, characterized in that
die einzelnen Lagen (3a-c) der Keramikschicht mit einer Dicke im Bereich zwischen 10 und 100 μm, insbesondere zwi- sehen 20 bis 50 μm aufgebracht werden.the individual layers (3a-c) of the ceramic layer with a thickness in the range between 10 and 100 .mu.m, in particular between see see 20 to 50 microns are applied.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass6. The method according to any one of the preceding claims, characterized in that
die mehrlagige Keramikschicht (3) mit einer Gesamtdicke im Bereich zwischen 100 bis 1000 μm, insbesondere zwischen 200 und 700 μm und besonders bevorzugt zwischen 250 und 650 μm aufgebracht wird.the multilayer ceramic layer (3) having a total thickness in the range between 100 to 1000 .mu.m, in particular between 200 and 700 .mu.m and particularly preferably between 250 and 650 microns is applied.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass dem Beschichtungsbrenner für die erste Lage (3a) Keramikpartikel mit einer Körnung von7. The method according to any one of claims 1 to 6, characterized in that the coating burner for the first layer (3a) ceramic particles with a grain size of
- 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm zugeführt werden. - 75 microns + 10 microns or - 53 microns + 11 microns or - 90 microns + 11 microns are supplied.
Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Method according to one of claims 1 to 7, characterized in that
dem Beschichtungsbrenner für die letzte Lage (3c) Keramikpartikel mit einer Körnung von - 106 μm + 11 μm oder - 125 μm + 45 μm oder - 150 μm + 75 μm zugeführt werden.the coating burner for the last layer (3c) ceramic particles with a grain size of - 106 microns + 11 microns or - 125 microns + 45 microns or - 150 microns + 75 microns are supplied.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass9. The method according to any one of claims 1 to 7, characterized in that
dem Beschichtungsbrenner ein Gemisch von Keramikpartikel mit mindestens zwei verschiedenen Körnungen zugeführt wird.the coating burner, a mixture of ceramic particles is supplied with at least two different grain sizes.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass10. The method according to any one of claims 1 to 9, characterized in that
vor dem Beschichten eine mehrlagige Unterschicht (2) auf dem Bauteil (1) aufgebracht wird, indem Keramikpartikel mit einer konstanten Körnung einem Beschichtungsbrenner zugeführt, von diesem ganz oder teilweise aufgeschmolzen und auf dem Bauteil (1) in einzelnen Lagen (2a) deckend übereinander aufgebracht werden.prior to coating, a multilayer underlayer (2) is applied to the component (1) by supplying ceramic particles with a constant grain size to a coating burner, completely or partially melted by the latter and covering each other on the component (1) in individual layers (2a) become.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass11. The method according to claim 10, characterized in that
dem Beschichtungsbrenner für die Ausbildung der Unterschicht (2) Keramikpartikel mit einer konstanten Körnung von - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm zugeführt werden. the coating burner for the formation of the lower layer (2) ceramic particles with a constant grain size of - 75 microns + 10 microns or - 53 microns + 11 microns or - 90 microns + 11 microns are supplied.
12. Verfahren nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass12. The method according to any one of claims 10 or 11, characterized in that
die einzelnen Lagen (2a) der Unterschicht (2) mit einer Dicke im Bereich zwischen 10 und 100 μm, insbesondere zwischen 20 bis 50 μm aufgebracht werden.the individual layers (2a) of the lower layer (2) are applied with a thickness in the range between 10 and 100 μm, in particular between 20 and 50 μm.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass13. The method according to any one of claims 10 to 12, characterized in that
die Unterschicht (2) mit einer Gesamtdicke im Bereich zwischen 150 und 450 μm aufgebracht wird.the lower layer (2) is applied with a total thickness in the range between 150 and 450 μm.
14. Mehrlagige Keramikschicht (3), bei der einzelne Lagen (3a-c) deckend übereinander angeordnet sind, wobei die einzelnen Lagen (3a-c) aus teilweise miteinander verschmolzenen Keramikpartikeln bestehen, dadurch gekennzeichnet, dass14. Multi-layer ceramic layer (3), in which individual layers (3a-c) are arranged one above the other in a covering manner, wherein the individual layers (3a-c) consist of partially fused ceramic particles, characterized in that
die Keramikpartikel von Lage (3a) zu Lage (3b) zunehmend eine größere Körnung aufweisen, auf der mehrlagigen Keramikschicht (3) eine mehrlagigethe ceramic particles from layer (3a) to layer (3b) increasingly have a larger grain size, on the multilayer ceramic layer (3) a multilayer
Oberschicht (4) aufgebracht ist, welche aus einzelnen deckend übereinander angeordnetenUpper layer (4) is applied, which consists of individual covering one above the other
Lagen (4a) besteht, wobei die einzelnen Lagen (4a) aus teilweise miteinander verschmolzenen Keramikpartikeln bestehen, deren Körnung größer als die Körnung der Keramikpartikel der letzten LageLayers (4a), wherein the individual layers (4a) consist of partially fused ceramic particles whose grain size is greater than the grain size of the ceramic particles of the last layer
(3c) der mehrlagigen Keramikschicht (3) ist. (3c) of the multilayer ceramic layer (3).
15. Mehrlagige Keramikschicht (3) nach Anspruch 14, dadurch gekennzeichnet, dass15. Multi-layer ceramic layer (3) according to claim 14, characterized in that
die Lagen (3a-c) eine Dicke im Bereich zwischen 10 und 100 μm, insbesondere zwischen 20 und 50 μm aufweisen.the layers (3a-c) have a thickness in the range between 10 and 100 μm, in particular between 20 and 50 μm.
16. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass16. Multi-layer ceramic layer (3) according to any one of claims 14 or 15, characterized in that
ihre Gesamtdicke im Bereich zwischen 100 bis 1000 μm, insbesondere zwischen 200 und 700 μm und besonders bevorzugt zwischen 250 und 650 μm liegt.their total thickness is in the range between 100 to 1000 .mu.m, in particular between 200 and 700 .mu.m and particularly preferably between 250 and 650 microns.
17. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass17. Multi-layer ceramic layer (3) according to any one of claims 14 to 16, characterized in that
die Keramikpartikel der ersten Lage (3a) eine Körnung von - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm haben .the ceramic particles of the first layer (3a) have a grain size of -75 μm + 10 μm or -53 μm + 11 μm or -90 μm + 11 μm.
18. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass18. Multi-layer ceramic layer (3) according to any one of claims 14 to 17, characterized in that
die Keramikpartikel der letzten Lage (3c) eine Körnung von - 106 μm + 11 μm oder - 125 μm + 45 μm oder - 150 μm + 75 μm haben. the ceramic particles of the last layer (3c) have a grain size of - 106 μm + 11 μm or - 125 μm + 45 μm or - 150 μm + 75 μm.
19. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass19. Multi-layer ceramic layer (3) according to any one of claims 14 to 16, characterized in that
die Keramikpartikel mindestens zwei verschiedenen Körnungen haben .the ceramic particles have at least two different grain sizes.
20. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass20. Multi-layer ceramic layer (3) according to any one of claims 14 to 19, characterized in that
sie auf einer Unterschicht (2), welche aus einzelnen deckend übereinander angeordneten Lagen (2a) besteht, wobei die einzelnen Lagen (2a) aus teilweise miteinander verschmolzenen Keramikpartikeln mit einer konstanten Körnung bestehen, aufgebracht ist.it is applied to a lower layer (2), which consists of individual layers (2a) arranged one above the other, wherein the individual layers (2a) consist of partially fused ceramic particles with a constant grain size.
21. Mehrlagige Keramikschicht (3) nach Anspruch 20, dadurch gekennzeichnet, dass21. Multi-layer ceramic layer (3) according to claim 20, characterized in that
die Keramikpartikel der Unterschicht (2) eine konstante Körnung von - 75 μm + 10 μm oder - 53 μm + 11 μm oder - 90 μm + 11 μm haben.the ceramic particles of the lower layer (2) have a constant grain size of - 75 μm + 10 μm or - 53 μm + 11 μm or - 90 μm + 11 μm.
22. Mehrlagige Keramikschicht (3) nach einem der Ansprüche22. Multi-layer ceramic layer (3) according to any one of claims
20 oder 21, dadurch gekennzeichnet, dass20 or 21, characterized in that
die Lagen (2a) der Unterschicht (2) eine Dicke im Bereich zwischen 10 bis 100 μm, insbesondere zwischen 20 bis 50 μm aufweisen . the layers (2a) of the lower layer (2) have a thickness in the range between 10 to 100 μm, in particular between 20 to 50 μm.
23. Mehrlagige Keramikschicht (3) nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass23. Multi-layer ceramic layer (3) according to any one of claims 20 to 22, characterized in that
die Gesamtdicke der Unterschicht (2) zwischen 150 und 450 μm beträgt.the total thickness of the lower layer (2) is between 150 and 450 μm.
24. Bauteil (1), insbesondere ein Bauteil einer Gasturbine, das mit einer mehrlagiqen Keramikschicht (3) nach einem der Ansprüche 15 bis 23 versehen ist. 24. component (1), in particular a component of a gas turbine, which is provided with a mehrlagiqen ceramic layer (3) according to any one of claims 15 to 23.
EP07820464A 2006-12-15 2007-09-21 Method for coating a component Withdrawn EP2099948A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07820464A EP2099948A2 (en) 2006-12-15 2007-09-21 Method for coating a component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06026084A EP1932936A1 (en) 2006-12-15 2006-12-15 Method for coating a component
PCT/EP2007/060045 WO2008071467A2 (en) 2006-12-15 2007-09-21 Method for coating a component
EP07820464A EP2099948A2 (en) 2006-12-15 2007-09-21 Method for coating a component

Publications (1)

Publication Number Publication Date
EP2099948A2 true EP2099948A2 (en) 2009-09-16

Family

ID=38007989

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06026084A Withdrawn EP1932936A1 (en) 2006-12-15 2006-12-15 Method for coating a component
EP07820464A Withdrawn EP2099948A2 (en) 2006-12-15 2007-09-21 Method for coating a component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06026084A Withdrawn EP1932936A1 (en) 2006-12-15 2006-12-15 Method for coating a component

Country Status (3)

Country Link
US (1) US20100086757A1 (en)
EP (2) EP1932936A1 (en)
WO (1) WO2008071467A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459699C1 (en) * 2010-12-20 2012-08-27 Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" Method of fabricating decorative concrete articles
RU2572249C1 (en) * 2014-11-06 2016-01-10 Автономная некоммерческая организация высшего профессионального образования "Белгородский университет кооперации, экономики и права" Method to engobe concrete products

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3914010C2 (en) * 1989-04-26 1995-09-14 Osaka Fuji Corp Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
DE3924267C1 (en) * 1989-07-22 1994-12-22 Vaw Ver Aluminium Werke Ag Arrangement for use as protection against projectiles
US5498484A (en) * 1990-05-07 1996-03-12 General Electric Company Thermal barrier coating system with hardenable bond coat
US5762841A (en) * 1993-07-29 1998-06-09 Toshiba Ceramics Co., Ltd. Ceramic porous body having a continuous particle size distribution
US5579534A (en) * 1994-05-23 1996-11-26 Kabushiki Kaisha Toshiba Heat-resistant member
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings
CA2272852A1 (en) * 1996-11-12 1998-05-22 National Research Council Of Canada Functionally gradient ceramic structures
US6327452B1 (en) * 2000-02-14 2001-12-04 Xerox Corporation Donor rolls and methods of making donor rolls
DE10022157C1 (en) * 2000-05-09 2002-01-03 Deutsch Zentr Luft & Raumfahrt Process for forming a thermal insulation structure and its use
US6503575B1 (en) * 2000-05-22 2003-01-07 Praxair S.T. Technology, Inc. Process for producing graded coated articles
US6764779B1 (en) * 2003-02-24 2004-07-20 Chromalloy Gas Turbine Corporation Thermal barrier coating having low thermal conductivity
US7955708B2 (en) * 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. Optimized high temperature thermal barrier
US8017230B2 (en) * 2005-10-31 2011-09-13 Praxair S.T. Technology, Inc. Ceramic powders and thermal barrier coatings made therefrom
EP1845171B1 (en) * 2006-04-10 2016-12-14 Siemens Aktiengesellschaft Use of metallic powders having different particle sizes for forming a coating system
US7695830B2 (en) * 2006-09-06 2010-04-13 Honeywell International Inc. Nanolaminate thermal barrier coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008071467A3 *

Also Published As

Publication number Publication date
US20100086757A1 (en) 2010-04-08
WO2008071467A2 (en) 2008-06-19
WO2008071467A3 (en) 2009-02-19
EP1932936A1 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
EP1845171B1 (en) Use of metallic powders having different particle sizes for forming a coating system
EP2210045B1 (en) Burner element and burner having aluminum oxide coating and method for coating a burner element
WO2011058045A1 (en) Method for welding workpieces made of highly heat-resistant superalloys, including a particular mass feed rate of the welding filler material
EP2078579A1 (en) Method for soldering one component and component with soldering and welding points
DE102014103000A1 (en) Component with micro-cooled laser-deposited material layer and method for the production
WO2012062546A1 (en) Porous layer system having a porous inner layer
EP4382635A2 (en) Method for producing gas turbines, gas turbine and method for operating gas turbine plants
EP2882939B1 (en) Method for refurbishing a gas turbine blade and use of a gas turbine having said blade
EP2391744B1 (en) Coating using thermal and non-thermal coating method
EP2373824A1 (en) Method for coating a component with film cooling holes, and component
WO2009087189A2 (en) Small solder rod
WO2011091866A1 (en) Spray nozzle and method for atmospheric spraying, device for coating, and coated component
WO2008087084A1 (en) Powder mixture with blocky powders method for use of the powder mixture and components
EP2088224A1 (en) Method for manufacturing a rough layer and a layer system
EP2099948A2 (en) Method for coating a component
WO2012072345A1 (en) Production of a wire by means of a rapid prototyping process, wire and welding process
EP3177750B1 (en) Monitoring and control of a coating process on the basis of a heat distribution on the workpiece
EP1967615A1 (en) Method for applying a heat insulation coating and turbine components with a heat insulation coating
WO2018114766A1 (en) Method for joining hot gas component segments by soldering, and corresponding hot gas component
EP2322683B1 (en) Coating method for a component with partially closed holes and method for opening the holes
WO2014114597A1 (en) Controlled thermal coating
EP2445677A1 (en) Solder rod, soldering of holes, method for coating
EP2614920A1 (en) Welding method with different welding material, device for same and component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090514

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 28/04 20060101ALI20090925BHEP

Ipc: C23C 4/12 20060101AFI20090925BHEP

Ipc: C23C 28/00 20060101ALI20090925BHEP

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401