EP3034627B1 - Massives paralleles verfahren zum entschlüsseln von dna und rna - Google Patents
Massives paralleles verfahren zum entschlüsseln von dna und rna Download PDFInfo
- Publication number
- EP3034627B1 EP3034627B1 EP15195765.1A EP15195765A EP3034627B1 EP 3034627 B1 EP3034627 B1 EP 3034627B1 EP 15195765 A EP15195765 A EP 15195765A EP 3034627 B1 EP3034627 B1 EP 3034627B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- nucleotide
- dna
- deaza
- deoxyribonucleic acids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 253
- 239000007787 solid Substances 0.000 claims abstract description 85
- 238000012163 sequencing technique Methods 0.000 claims abstract description 65
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical group OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 claims abstract description 32
- 108020004414 DNA Proteins 0.000 claims description 173
- 102000053602 DNA Human genes 0.000 claims description 169
- 239000002773 nucleotide Substances 0.000 claims description 79
- 239000000975 dye Substances 0.000 claims description 75
- 239000000126 substance Substances 0.000 claims description 74
- 230000015572 biosynthetic process Effects 0.000 claims description 45
- 238000003786 synthesis reaction Methods 0.000 claims description 45
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 claims description 44
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 42
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 34
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 34
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 32
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims description 31
- 229960000643 adenine Drugs 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 29
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 23
- 238000003776 cleavage reaction Methods 0.000 claims description 22
- 230000007017 scission Effects 0.000 claims description 22
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 20
- 229940113082 thymine Drugs 0.000 claims description 20
- 229940104302 cytosine Drugs 0.000 claims description 19
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical class NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 claims description 17
- LOSIULRWFAEMFL-UHFFFAOYSA-N 7-deazaguanine Chemical class O=C1NC(N)=NC2=C1CC=N2 LOSIULRWFAEMFL-UHFFFAOYSA-N 0.000 claims description 15
- 229930024421 Adenine Natural products 0.000 claims description 14
- 229940035893 uracil Drugs 0.000 claims description 14
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 125000004185 ester group Chemical group 0.000 claims description 10
- 125000000468 ketone group Chemical group 0.000 claims description 10
- 238000010348 incorporation Methods 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 abstract description 43
- 108020004707 nucleic acids Proteins 0.000 abstract description 43
- 150000007523 nucleic acids Chemical class 0.000 abstract description 43
- 125000003636 chemical group Chemical group 0.000 abstract description 24
- -1 nucleotide triphosphates Chemical class 0.000 description 35
- 238000001712 DNA sequencing Methods 0.000 description 32
- 238000013459 approach Methods 0.000 description 31
- 239000005546 dideoxynucleotide Substances 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 23
- 238000012546 transfer Methods 0.000 description 22
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 18
- 238000000065 atmospheric pressure chemical ionisation Methods 0.000 description 18
- 239000011521 glass Substances 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 17
- 150000002148 esters Chemical class 0.000 description 17
- 239000007850 fluorescent dye Substances 0.000 description 16
- ARLKCWCREKRROD-POYBYMJQSA-N [[(2s,5r)-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)CC1 ARLKCWCREKRROD-POYBYMJQSA-N 0.000 description 15
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005406 washing Methods 0.000 description 15
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 14
- 238000004949 mass spectrometry Methods 0.000 description 14
- 239000000370 acceptor Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- VWOLRKMFAJUZGM-UHFFFAOYSA-N 6-carboxyrhodamine 6G Chemical compound [Cl-].C=12C=C(C)C(NCC)=CC2=[O+]C=2C=C(NCC)C(C)=CC=2C=1C1=CC(C(O)=O)=CC=C1C(=O)OCC VWOLRKMFAJUZGM-UHFFFAOYSA-N 0.000 description 11
- WQZIDRAQTRIQDX-UHFFFAOYSA-N 6-carboxy-x-rhodamine Chemical compound OC(=O)C1=CC=C(C([O-])=O)C=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 WQZIDRAQTRIQDX-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 10
- 238000006303 photolysis reaction Methods 0.000 description 10
- 230000015843 photosynthesis, light reaction Effects 0.000 description 10
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 10
- OAKPWEUQDVLTCN-NKWVEPMBSA-N 2',3'-Dideoxyadenosine-5-triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO[P@@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)O1 OAKPWEUQDVLTCN-NKWVEPMBSA-N 0.000 description 9
- URGJWIFLBWJRMF-JGVFFNPUSA-N ddTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)CC1 URGJWIFLBWJRMF-JGVFFNPUSA-N 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 150000003141 primary amines Chemical class 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- BTOTXLJHDSNXMW-POYBYMJQSA-N 2,3-dideoxyuridine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(=O)NC(=O)C=C1 BTOTXLJHDSNXMW-POYBYMJQSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000000132 electrospray ionisation Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 6
- 108020004682 Single-Stranded DNA Proteins 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- HDRRAMINWIWTNU-NTSWFWBYSA-N [[(2s,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical class C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1CC[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HDRRAMINWIWTNU-NTSWFWBYSA-N 0.000 description 5
- 238000002189 fluorescence spectrum Methods 0.000 description 5
- 238000001819 mass spectrum Methods 0.000 description 5
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 238000003196 serial analysis of gene expression Methods 0.000 description 5
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 4
- 208000026350 Inborn Genetic disease Diseases 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- HDRRAMINWIWTNU-PRJDIBJQSA-N [[(5r)-5-(2-amino-6-oxo-3h-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1CCC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HDRRAMINWIWTNU-PRJDIBJQSA-N 0.000 description 4
- IQZLUWLMQNGTIW-UHFFFAOYSA-N acetoveratrone Chemical compound COC1=CC=C(C(C)=O)C=C1OC IQZLUWLMQNGTIW-UHFFFAOYSA-N 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 4
- 235000011180 diphosphates Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 208000016361 genetic disease Diseases 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000037452 priming Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WCXGUPASMSAFGS-UHFFFAOYSA-N 3-diphenylphosphanyl-4-methoxycarbonylbenzoic acid Chemical compound COC(=O)C1=CC=C(C(O)=O)C=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 WCXGUPASMSAFGS-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- RMRFFCXPLWYOOY-UHFFFAOYSA-N allyl radical Chemical compound [CH2]C=C RMRFFCXPLWYOOY-UHFFFAOYSA-N 0.000 description 3
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000000752 ionisation method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000006199 nebulizer Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000011178 triphosphate Nutrition 0.000 description 3
- 239000001226 triphosphate Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- VWJSSJFLXRMYNV-UHFFFAOYSA-N 1-(3,4-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=C(F)C(F)=C1 VWJSSJFLXRMYNV-UHFFFAOYSA-N 0.000 description 2
- HCEKGPAHZCYRBZ-UHFFFAOYSA-N 1-(3-fluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1 HCEKGPAHZCYRBZ-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229910019213 POCl3 Inorganic materials 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QCTBMLYLENLHLA-UHFFFAOYSA-N aminomethylbenzoic acid Chemical compound NCC1=CC=C(C(O)=O)C=C1 QCTBMLYLENLHLA-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000000617 arm Anatomy 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 108700025694 p53 Genes Proteins 0.000 description 2
- 230000002974 pharmacogenomic effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003212 purines Chemical group 0.000 description 2
- 150000003230 pyrimidines Chemical group 0.000 description 2
- 238000012175 pyrosequencing Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical group CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 2
- LFRDGHVRPSURMV-YFKPBYRVSA-N (4s)-4,5-dihydroxypentanal Chemical group OC[C@@H](O)CCC=O LFRDGHVRPSURMV-YFKPBYRVSA-N 0.000 description 1
- GAUSMJHDHCSZOX-UHFFFAOYSA-N 2,2,2-trifluoro-n-prop-2-ynylacetamide Chemical compound FC(F)(F)C(=O)NCC#C GAUSMJHDHCSZOX-UHFFFAOYSA-N 0.000 description 1
- WKGFWVPSZSRWKS-UHFFFAOYSA-N 2-amino-n-(3',6'-dihydroxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-yl)acetamide Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(NC(=O)CN)=CC=C21 WKGFWVPSZSRWKS-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- SBZDIRMBQJDCLB-UHFFFAOYSA-N 5-azidopentanoic acid Chemical compound OC(=O)CCCCN=[N+]=[N-] SBZDIRMBQJDCLB-UHFFFAOYSA-N 0.000 description 1
- WNXNUPJZWYOKMW-UHFFFAOYSA-N 5-bromopentanoic acid Chemical compound OC(=O)CCCCBr WNXNUPJZWYOKMW-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 101710086015 RNA ligase Proteins 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 102000004523 Sulfate Adenylyltransferase Human genes 0.000 description 1
- 108010022348 Sulfate adenylyltransferase Proteins 0.000 description 1
- 108010001244 Tli polymerase Proteins 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960003375 aminomethylbenzoic acid Drugs 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- IGFXRKMLLMBKSA-UHFFFAOYSA-N purine Chemical compound N1=C[N]C2=NC=NC2=C1 IGFXRKMLLMBKSA-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/14—Pyrrolo-pyrimidine radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6872—Methods for sequencing involving mass spectrometry
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/11—Compounds covalently bound to a solid support
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/117—Modifications characterised by incorporating modified base
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/186—Modifications characterised by incorporating a non-extendable or blocking moiety
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/101—Sanger sequencing method, i.e. oligonucleotide sequencing using primer elongation and dideoxynucleotides as chain terminators
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/122—Massive parallel sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/107—Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/50—Detection characterised by immobilisation to a surface
- C12Q2565/501—Detection characterised by immobilisation to a surface being an array of oligonucleotides
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
Definitions
- DNA deoxyribonucleic acid
- the current state-of-the-art technology for high throughput DNA sequencing such as used for the Human Genome Project (Pennisi 2000), is capillary array DNA sequencers using laser induced fluorescence detection (Smith et al., 1986; Ju et al. 1995, 1996; Kheterpal et al. 1996; Salas-Solano et al. 1998). Improvements in the polymerase that lead to uniform termination efficiency and the introduction of thermostable polymerases have also significantly improved the quality of sequencing data (Tabor and Richardson, 1987, 1995).
- capillary array DNA sequencing technology addresses the throughput and read length requirements of large scale DNA sequencing projects
- the throughput and accuracy required for mutation studies needs to be improved for a wide variety of applications ranging from disease gene discovery to forensic identification.
- electrophoresis based DNA sequencing methods have difficulty detecting heterozygotes unambiguously and are not 100% accurate in regions rich in nucleotides comprising guanine or cytosine due to compressions (Bowling et al. 1991; Yamakawa et al. 1997).
- the first few bases after the priming site are often masked by the high fluorescence signal from excess dye-labeled primers or dye-labeled terminators, and are therefore difficult to identify. Therefore, the requirement of electrophoresis for DNA sequencing is still the bottleneck for high-throughput DNA sequencing and mutation detection projects.
- the pyrosequencing approach that employs four natural nucleotides (comprising a base of adenine (A), cytosine (C), guanine (G), or thymine (T)) and several other enzymes for sequencing DNA by synthesis is now widely used for mutation detection (Ronaghi 1998).
- the detection is based on the pyrophosphate (PPi) released during the DNA polymerase reaction, the quantitative conversion of pyrophosphate to adenosine triphosphate (ATP) by sulfurylase, and the subsequent production of visible light by firefly luciferase.
- PPi pyrophosphate
- ATP adenosine triphosphate
- This procedure can only sequence up to 30 base pairs (bps) of nucleotide sequences, and each of the 4 nucleotides needs to be added separately and detected separately. Long stretches of the same bases cannot be identified unambiguously with the pyrosequencing method.
- modified DNA polymerases are able to recognize nucleotides with extensive modifications with bulky groups such as energy transfer dyes at the 5-position of the pyrimidines (T and C) and at the 7-position of purines (G and A) (Rosenblum et al. 1997, Zhu et al. 1994).
- the ternary complexes of rat DNA polymerase, a DNA template-primer, and dideoxycytidine triphosphate (ddCTP) have been determined (Pelletier et al. 1994) which supports this fact.
- the 3-D structure indicates that the surrounding area of the 3'-position of the deoxyribose ring in ddCTP is very crowded, while there is ample space for modification on the 5-position the cytidine base.
- nucleotide analogues by linking a unique label such as a fluorescent dye or a mass tag through a cleavable linker to the nucleotide base or an analogue of the nucleotide base, such as to the 5-position of the pyrimidines (T and C) and to the 7-position of the purines (G and A), to use a small cleavable chemical moiety to cap the 3'-OH group of the deoxyribose to make it nonreactive, and to incorporate the nucleotide analogues into the growing DNA strand as terminators. Detection of the unique label will yield the sequence identity of the nucleotide. Upon removing the label and the 3'-OH capping group, the polymerase reaction will proceed to incorporate the next nucleotide analogue and detect the next base.
- a unique label such as a fluorescent dye or a mass tag
- G and A analogue of the nucleotide base
- a photocleavable group it is also desirable to use a photocleavable group to cap the 3'-OH group.
- a photocleavable group is generally bulky and thus the DNA polymerase will have difficulty to incorporate the nucleotide analogues containing a photocleavable moiety capping the 3'-OH group. If small chemical moieties that can be easily cleaved chemically with high yield can be used to cap the 3'-OH group, such nucleotide analogues should also be recognized as substrates for DNA polymerase. It has been reported that 3'-O-methoxy-deoxynucleotides are good substrates for several polymerases (Axelrod et al. 1978).
- 3'-O-allyl-dATP was also shown to be incorporated by Ventr(exo-) DNA polymerase in the growing strand of DNA (Metzker et al. 1994).
- the procedure to chemically cleave the methoxy group is stringent and requires anhydrous conditions.
- An ester group was also explored to cap the 3'-OH group of the nucleotide, but it was shown to be cleaved by the nucleophiles in the active site in DNA polymerase (Canard et al. 1995).
- the optimized nucleotide set ( 3'-RO -A- LABEL1 , 3'-RO -C- LABEL2 , 3'-RO -G- LABEL3 , 3'-RO -T- LABEL4 , where R denotes the chemical group used to cap the 3'-OH) can then be used for DNA sequencing by the synthesis approach.
- MS mass spectrometry
- the mass resolution can be as good as one dalton.
- the MS approach disclosed in this application produces very high resolution of sequencing data by detecting the cleaved small mass tags instead of the long DNA fragment. This method also produces extremely fast separation in the time scale of microseconds. The high resolution allows accurate digital mutation and heterozygote detection.
- Another advantage of sequencing with mass spectrometry by detecting the small mass tags is that the compressions associated with gel based systems are completely eliminated.
- a primer that contains a stable loop to form an entity capable of self-priming in a polymerase reaction can be ligated to the 3' end of each single stranded DNA template that is immobilized on a solid surface such as a chip. This approach will solve the problem of washing off the growing extension products in each cycle.
- Saxon and Bertozzi developed an elegant and highly specific coupling chemistry linking a specific group that contains a phosphine moiety to an azido group on the surface of a biological cell.
- this coupling chemistry is adopted to create a solid surface which is coated with a covalently linked phosphine moiety, and to generate polymerase chain reaction (PCR) products that contain an azido group at the 5' end for specific coupling of the DNA template with the solid surface.
- PCR polymerase chain reaction
- One example of a solid surface is glass channels which have an inner wall with an uneven or porous surface to increase the surface area.
- Another example is a chip.
- the present specification discloses a novel and advantageous system for DNA sequencing by the synthesis approach which employs a stable DNA template, which is able to self prime for the polymerase reaction, covalently linked to a solid surface such as a chip, and 4 unique nucleotides analogues ( 3'-RO -A- LABEL1 , 3'-RO -C- LABEL2 , 3'-RO -G- LABEL3 , 3'-RO -T- LABEL4 ).
- the success of this novel system will allow the development of an ultra high-throughput and high fidelity DNA sequencing system for polymorphism, pharmacogenetics applications and for whole genome sequencing.
- SNPs single nucleotide polymorphisms
- SAGE serial analysis of gene expression
- Balasubramanian Shankar discloses a device comprising an array of molecules immobilized on a solid surface is disclosed, wherein the array has a surface density which allows each molecule to be individually resolved, e.g. by optical microscopy.
- Balasubramanian Shankar; Klenerman David does not disclose the oligonucleotides or methods of sequencing deoxyribonucleic acids of the current invention, which comprise nucleotide analogues having a label attached through a cleavable linker to the base and a small chemically cleavable chemical moiety capping the 3'-OH group.
- This invention is directed to a method for simultaneously sequencing a plurality of different deoxyribonucleic acids, wherein the plurality of different deoxyribonucleic acids is covalently immobilized on a solid surface, and wherein a sequencing method by synthesis comprising a plurality of cycles, each cycle having a plurality of steps, is simultaneously applied to each of said covalently immobilized different deoxyribonucleic acids, said sequencing method involving the detection of the identity of a plurality of nucleotide analogues incorporated into a plurality of growing strands of DNA hybridized to deoxyribonucleic acids, said method comprising:
- This invention is also directed to a plurality of different deoxyribonucleic acids covalently immobilized on a solid support, said plurality of different deoxyribonucleic acids comprising incorporated nucleotide analogues, wherein each nucleotide analogue is labeled with a unique label attached through a cleavable linker to the base and contains a small chemical moiety capping its 3'-OH group, wherein said small chemically cleavable chemical moiety is removable by chemical means, and wherein deoxyribonucleic acids having the same sequence are immobilized at a spot and greater than 10,000 spots are present on the solid support; wherein the unique labels are dyes having a unique fluorescence emission, and the unique fluorescence emission from a specific dye on the dye-labeled nucleotide analogues on each spot of the solid surface will reveal the identity of the incorporated nucleotide; and wherein the small chemically cleavable chemical moiety capping the 3'-OH group
- This invention is also directed to a method for sequencing a plurality of different deoxyribonucleic acids by synthesis involving the detection of the identity of nucleotide analogues incorporated into a plurality of different growing strands of DNA hybridized to deoxyribonucleic acids, said method comprising:
- This specification discloses a method for sequencing a nucleic acid by detecting the identity of a nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction, which comprises the following steps:
- the specification provides a method of attaching a nucleic acid to a solid surface which comprises:
- nucleotide analogue which comprises:
- the specification provides a parallel mass spectrometry system, which comprises a plurality of atmospheric pressure chemical ionization mass spectrometers for parallel analysis of a plurality of samples comprising mass tags.
- to cap an -OH group means to replace the "H" in the -OH group with a chemical group.
- the -OH group of the nucleotide analogue is capped with a cleavable chemical group.
- To uncap an -OH group means to cleave the chemical group from a capped -OH group and to replace the chemical group with "H", i.e., to replace the "R” in -OR with "H” wherein "R” is the chemical group used to cap the -OH group.
- nucleotide bases are abbreviated as follows: adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) .
- An analogue of a nucleotide base refers to a structural and functional derivative of the base of a nucleotide which can be recognized by polymerase as a substrate. That is, for example, an analogue of adenine (A) should form hydrogen bonds with thymine (T), a C analogue should form hydrogen bonds with G, a G analogue should form hydrogen bonds with C, and a T analogue should form hydrogen bonds with A, in a double helix format.
- A an analogue of adenine
- T thymine
- analogues of nucleotide bases include, but are not limited to, 7-deaza-adenine and 7-deaza-guanine, wherein the nitrogen atom at the 7-position of adenine or guanine is substituted with a carbon atom.
- a nucleotide analogue refers to a chemical compound that is structurally and functionally similar to the nucleotide, i.e. the nucleotide analogue can be recognized by polymerase as a substrate. That is, for example, a nucleotide analogue comprising adenine or an analogue of adenine should form hydrogen bonds with thymine, a nucleotide analogue comprising C or an analogue of C should form hydrogen bonds with G, a nucleotide analogue comprising G or an analogue of G should form hydrogen bonds with C, and a nucleotide analogue comprising T or an analogue of T should form hydrogen bonds with A, in a double helix format.
- nucleotide analogues disclosed herein include analogues which comprise an analogue of the nucleotide base such as 7-deaza-adenine or 7-deaza-guanine, wherein the nitrogen atom at the 7-position of adenine or guanine is substituted with a carbon atom.
- Analogues of dideoxynucleotides can similarly be prepared.
- a porous surface is a surface which contains pores or is otherwise uneven, such that the surface area of the porous surface is increased relative to the surface area when the surface is smooth.
- the present invention is directed to a method for simultaneously sequencing a plurality of different deoxyribonucleic acids, wherein the plurality of different deoxyribonucleic acids is covalently immobilized on a solid surface, and wherein a sequencing method by synthesis comprising a plurality of cycles, each cycle having a plurality of steps, is simultaneously applied to each of said covalently immobilized different deoxyribonucleic acids, said sequencing method involving the detection of the identity of a plurality of nucleotide analogues incorporated into a plurality of growing strands of DNA hybridized to deoxyribonucleic acids, said method comprising:
- the unique label is a fluorescent moiety.
- the present invention is also directed to a plurality of different deoxyribonucleic acids covalently immobilized on a solid support, said plurality of different deoxyribonucleic acids comprising incorporated nucleotide analogues, wherein each nucleotide analogue is labeled with a unique label attached through a cleavable linker to the base and contains a small chemical moiety capping its 3'-OH group, wherein said small chemically cleavable chemical moiety is removable by chemical means, and wherein deoxyribonucleic acids having the same sequence are immobilized at a spot and greater than 10,000 spots are present on the solid support; wherein the unique labels are dyes having a unique fluorescence emission, and the unique fluorescence emission from a specific dye on the dye-labeled nucleotide analogues on each spot of the solid surface will reveal the identity of the incorporated nucleotide; and wherein the small chemically cleavable chemical moiety capping the 3'-OH
- each nucleotide analogue comprises a base selected from the group consisting of adenine, guanine, cytosine, thymine, and uracil, or an analogue thereof.
- the present invention is also directed to a method for sequencing a plurality of different deoxyribonucleic acids by synthesis involving the detection of the identity of nucleotide analogues incorporated into a plurality of different growing strands of DNA hybridized to deoxyribonucleic acids, said method comprising:
- At least one of said nucleotide analogues is a 7-deaza adenine nucleotide analogue or 7-deaza guanine nucleotide analogue.
- nucleotide analogues are selected from the group consisting of cytosine, thymine, uracil, deaza-adenine and deaza-guanine and said unique label is attached through a cleavable linker to a 5-position of cytosine, thymine or uracil or to a 7-position of deaza-adenine or deaza-guanine.
- each of the deoxyribonucleic acids prior to step (a) contains an azido group.
- a plurality of deoxyribonucleic acids having the same sequence are immobilized at a spot, wherein the spot is one of greater than 10,000 spots on a chip, and wherein the density of spots on the chip is greater than 10,000 spots on a 4 cm x 1 cm chip.
- the methods further comprise a step of amplifying the different deoxyribonucleic acids before the deoxyribonucleic acids are covalently immobilized.
- the chemical moiety capping the 3'-OH group is as small as a -CH 2 OCH 3 group.
- the plurality of different deoxyribonucleic acids is covalently immobilized in a plurality of spots on a solid surface, wherein each spot comprises a plurality of the same deoxyribonucleic acid; and wherein the unique labels are dyes having a unique fluorescence emission, and the unique fluorescence emission from a specific dye on the dye-labeled nucleotide analogues on each spot of the solid surface will reveal the identity of the incorporated nucleotide.
- the present specification discloses a method for sequencing a nucleic acid by detecting the identity of a nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction, which comprises the following steps:
- the nucleotide base is adenine. In one embodiment, the nucleotide base is guanine. In one embodiment, the nucleotide base is cytosine. In one embodiment, the nucleotide base is thymine. In one embodiment, the nucleotide base is uracil. In one embodiment, the nucleotide base is an analogue of adenine. In one embodiment, the nucleotide base is an analogue of guanine. In one embodiment, the nucleotide base is an analogue of cytosine. In one embodiment, the nucleotide base is an analogue of thymine. In one embodiment, the nucleotide base is an analogue of uracil.
- the solid surface is glass, silicon, or gold.
- the solid surface is a magnetic bead, a chip, a channel in a chip, or a porous channel in a chip.
- the solid surface is glass.
- the solid surface is silicon.
- the solid surface is gold.
- the solid surface is a magnetic bead.
- the solid surface is a chip.
- the solid surface is a channel in a chip.
- the solid surface is a porous channel in a chip.
- Other materials can also be used as long as the material does not interfere with the steps of the method.
- the step of attaching the nucleic acid to the solid surface comprises:
- the step of coating the solid surface with the phosphine moiety comprises:
- the nucleic acid that is attached to the solid surface is a single-stranded deoxyribonucleic acid (DNA).
- the nucleic acid that is attached to the solid surface in step (i) is a double-stranded DNA, wherein only one strand is directly attached to the solid surface, and wherein the strand that is not directly attached to the solid surface is removed by denaturing before proceeding to step (ii).
- the primer is attached to a 3' end of the nucleic acid in step (ii), and the attached primer comprises a stable loop and an -OH group at a 3'-position of a deoxyribose capable of self-priming in the polymerase reaction.
- the step of attaching the primer to the nucleic acid comprises hybridizing the primer to the nucleic acid or ligating the primer to the nucleic acid.
- the primer is attached to the nucleic acid through a ligation reaction which links the 3' end of the nucleic acid with the 5' end of the primer.
- each different nucleotide analogue comprises a different base selected from the group consisting of thymine or uracil or an analogue of thymine or uracil, adenine or an analogue of adenine, cytosine or an analogue of cytosine, and guanine or an analogue of guanine, and wherein each of the four different nucleotide analogues comprises a unique label.
- the unique label that is attached to the nucleotide analogue is a fluorescent moiety or a fluorescent semiconductor crystal.
- the fluorescent moiety is selected from the group consisting of 5-carboxyfluorescein, 6-carboxyrhodamine-6G, N,N,N',N'-tetramethyl-6-carboxyrhodamine, and 6-carboxy-X-rhodamine.
- the fluorescent moiety is 5-carboxyfluorescein.
- the fluorescent moiety is 6-carboxyrhodamine-6G, N,N,N',N'-tetramethyl-6-carboxyrhodamine.
- the fluorescent moiety is 6-carboxy-X-rhodamine.
- the unique label that is attached to the nucleotide analogue is a fluorescence energy transfer tag which comprises an energy transfer donor and an energy transfer acceptor.
- the energy transfer donor is 5-carboxyfluorescein or cyanine
- the energy transfer acceptor is selected from the group consisting of dichlorocarboxyfluorescein, dichloro-6-carboxyrhodamine-6G, dichloro-N,N,N',N'-tetramethyl-6-carboxyrhodamine, and dichloro-6-carboxy-X-rhodamine.
- the energy transfer acceptor is dichlorocarboxyfluorescein.
- the energy transfer acceptor is dichloro-6-carboxyrhodamine-6G. In one embodiment, the energy transfer acceptor is dichloro-N,N,N',N'-tetramethyl-6-carboxyrhodamine. In one embodiment, the energy transfer acceptor is dichloro-6-carboxy-X-rhodamine.
- the unique label that is attached to the nucleotide analogue is a mass tag that can be detected and differentiated by a mass spectrometer.
- the mass tag is selected from the group consisting of a 2-nitro- ⁇ -methyl-benzyl group, a 2-nitro- ⁇ -methyl-3-fluorobenzyl group, a 2-nitro- ⁇ -methyl-3,4-difluorobenzyl group, and a 2-nitro- ⁇ -methyl-3,4-dimethoxybenzyl group.
- the mass tag is a 2-nitro- ⁇ -methyl-benzyl group.
- the mass tag is a 2-nitro- ⁇ -methyl-3-fluorobenzyl group.
- the mass tag is a 2-nitro- ⁇ -methyl-3,4-difluorobenzyl group. In one embodiment, the mass tag is a 2-nitro- ⁇ -methyl-3,4-dimethoxybenzyl group. In one embodiment, the mass tag is detected using a parallel mass spectrometry system which comprises a plurality of atmospheric pressure chemical ionization mass spectrometers for parallel analysis of a plurality of samples comprising mass tags.
- At least one of said incorporated nucleotide analogues is a 7-deaza adenine nucleotide analogue or 7-deaza guanine nucleotide analogue and said unique label is attached through a cleavable linker to a 5-position of cytosine or thymine or to a 7-position of deaza-adenine or deaza-guanine.
- the unique label could also be attached through a cleavable linker to another position in the base as long as the attachment of the label is stable during the polymerase reaction and the nucleotide analog can be recognized by polymerase as a substrate.
- the linker between the unique label and the nucleotide analogue is cleaved by a means selected from the group consisting of one or more of a physical means, a chemical means, a physical chemical means, heat, and light.
- the linker is cleaved by a physical means.
- the linker is cleaved by a chemical means.
- the linker is cleaved by a physical chemical means.
- the linker is cleaved by heat.
- the linker is cleaved by light.
- the linker is cleaved by ultraviolet light.
- the cleavable linker is a photocleavable linker which comprises a 2-nitrobenzyl moiety.
- the cleavable chemical group used to cap the -OH group at the 3'-position of the deoxyribose is cleaved by a chemical means.
- the linker is cleaved by a physical chemical means.
- the linker is cleaved by heat.
- the linker is cleaved by light.
- the linker is cleaved by ultraviolet light.
- the chemical compounds added in step (vi) to permanently cap any unreacted -OH group on the primer attached to the nucleic acid or on the primer extension strand are a polymerase and one or more different dideoxynucleotides or analogues of dideoxynucleotides.
- the different dideoxynucleotides are selected from the group consisting of 2',3'-dideoxyadenosine 5'-triphosphate, 2',3'-dideoxyguanosine 5'-triphosphate, 2',3'-dideoxycytidine 5'-triphosphate, 2',3'-dideoxythymidine 5'-triphosphate, 2',3'-dideoxyuridine 5'-triphosphase, and their analogues.
- the dideoxynucleotide is 2',3'-dideoxyadenosine 5'-triphosphate.
- the dideoxynucleotide is 2',3'-dideoxyguanosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxycytidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxythymidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxyuridine 5'-triphosphase. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxyadenosine 5'-triphosphate.
- the dideoxynucleotide is an analogue of 2',3'-dideoxyguanosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxycytidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxythymidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxyuridine 5'-triphosphase.
- a polymerase and one or more of four different dideoxynucleotides are added in step (vi), wherein each different dideoxynucleotide is selected from the group consisting of 2',3'-dideoxyadenosine 5'-triphosphate or an analogue of 2',3'-dideoxyadenosine 5'-triphosphate; 2',3'-dideoxyguanosine 5'-triphosphate or an analogue of 2',3'-dideoxyguanosine 5'-triphosphate; 2',3'-dideoxycytidine 5'-triphosphate or an analogue of 2',3'-dideoxycytidine 5'-triphosphate; and 2',3'-dideoxythymidine 5'-triphosphate or 2',3'-dideoxyuridine 5'-triphosphase or an analogue of 2',3'-dideoxythymidine 5'-triphosphate or an
- the dideoxynucleotide is 2',3'-dideoxyadenosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxyadenosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxyguanosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxyguanosine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxycytidine 5'-triphosphate.
- the dideoxynucleotide is an analogue of 2',3'-dideoxycytidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxythymidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is 2',3'-dideoxyuridine 5'-triphosphase. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxythymidine 5'-triphosphate. In one embodiment, the dideoxynucleotide is an analogue of 2',3'-dideoxyuridine 5'-triphosphase.
- Another type of chemical compound that reacts specifically with the -OH group could also be used to permanently cap any unreacted -OH group on the primer attached to the nucleic acid or on an extension strand formed by adding one or more nucleotides or nucleotide analogues to the primer.
- the invention provides a method for simultaneously sequencing a plurality of different nucleic acids, which comprises simultaneously applying any of the methods disclosed herein for sequencing a nucleic acid to the plurality of different nucleic acids.
- the method can be used to sequence from one to over 100,000 different nucleic acids simultaneously.
- the specification provides for the use of any of the methods disclosed herein for detection of single nucleotide polymorphisms, genetic mutation analysis, serial analysis of gene expression, gene expression analysis, identification in forensics, genetic disease association studies, DNA sequencing, genomic sequencing, translational analysis, or transcriptional analysis.
- the specification discloses a method of attaching a nucleic acid to a solid surface which comprises:
- the step of coating the solid surface with the phosphine moiety comprises:
- the solid surface is glass, silicon, or gold. In different embodiments, the solid surface is a magnetic bead, a chip, a channel in a chip, or a porous channel in a chip.
- the nucleic acid that is attached to the solid surface is a single-stranded or double-stranded DNA or a RNA.
- the nucleic acid is a double-stranded DNA and only one strand is attached to the solid surface.
- the strand of the double-stranded DNA that is not attached to the solid surface is removed by denaturing.
- the specification discloses the use of any of the methods disclosed herein for attaching a nucleic acid to a surface for gene expression analysis, microarray based gene expression analysis, or mutation detection, translational analysis, transcriptional analysis, or for other genetic applications.
- nucleotide analogue which comprises:
- the unique label is a fluorescent moiety or a fluorescent semiconductor crystal.
- the fluorescent moiety is selected from the group consisting of 5-carboxyfluorescein, 6-carboxyrhodamine-6G, N,N,N',N'-tetramethyl-6-carboxyrhodamine, and 6-carboxy-X-rhodamine.
- the unique label is a fluorescence energy transfer tag which comprises an energy transfer donor and an energy transfer acceptor.
- the energy transfer donor is 5-carboxyfluorescein or cyanine
- the energy transfer acceptor is selected from the group consisting of dichlorocarboxyfluorescein, dichloro-6-carboxyrhodamine-6G, dichloro-N,N,N',N'-tetramethyl-6-carboxyrhodamine, and dichloro-6-carboxy-X-rhodamine.
- the unique label is a mass tag that can be detected and differentiated by a mass spectrometer.
- the mass tag is selected from the group consisting of a 2-nitro- ⁇ -methyl-benzyl group, a 2-nitro- ⁇ -methyl-3-fluorobenzyl group, a 2-nitro- ⁇ -methyl-3,4-difluorobenzyl group, and a 2-nitro- ⁇ -methyl-3,4-dimethoxybenzyl group.
- At least one of the nucleotide analogues is a 7-deaza adenine nucleotide analogue or 7-deaza guanine nucleotide analogue and said unique label is attached through a cleavable linker to a 5-position of cytosine or thymine or to a 7-position of deaza-adenine or deaza-guanine.
- the unique label could also be attached through a cleavable linker to another position in the base as long as the attachment of the label is stable during the polymerase reaction and the nucleotide analogue can be recognized by polymerase as a substrate.
- the linker between the unique label and the nucleotide analogue is cleavable by a means selected from the group consisting of one or more of a physical means, a chemical means, a physical chemical means, heat, and light.
- the cleavable linker is a photocleavable linker which comprises a 2-nitrobenzyl moiety.
- the cleavable chemical group used to cap the -OH group at the 3'-position of the deoxyribose is cleavable by a chemical means.
- the nucleotide analogue is selected from the group consisting of: wherein Dye 1 , Dye 2 , Dye 3 , and Dye 4 are four different unique labels; and wherein R is a cleavable chemical group used to cap the -OH group at the 3'-position of the deoxyribose.
- the nucleotide analogue is selected from the group consisting of: wherein Tag 1 , Tag 2 , Tag 3 , and Tag 4 are four different mass tag labels; and wherein R is a cleavable chemical group used to cap the -OH group at the 3'-position of the deoxyribose.
- the specification discloses the use of any of the nucleotide analogues disclosed herein for detection of single nucleotide polymorphisms, genetic mutation analysis, serial analysis of gene expression, gene expression analysis, identification in forensics, genetic disease association studies, DNA sequencing, genomic sequencing, translational analysis, or transcriptional analysis.
- the specification discloses a parallel mass spectrometry system, which comprises a plurality of atmospheric pressure chemical ionization mass spectrometers for parallel analysis of a plurality of samples comprising mass tags.
- the mass spectrometers are quadrupole mass spectrometers.
- the mass spectrometers are time-of-flight mass spectrometers.
- the mass spectrometers are contained in one device.
- the system further comprises two turbo-pumps, wherein one pump is used to generate a vacuum and a second pump is used to remove undesired elements.
- the system comprises at least three mass spectrometers.
- the mass tags have molecular weights between 150 daltons and 250 daltons.
- the specification discloses the use of the system for DNA sequencing analysis, detection of single nucleotide polymorphisms, genetic mutation analysis, serial analysis of gene expression, gene expression analysis, identification in forensics, genetic disease association studies, DNA sequencing, genomic sequencing, translational analysis, or transcriptional analysis.
- Sequencing DNA by synthesis involves the detection of the identity of each nucleotide as it is incorporated into the growing strand of DNA in the polymerase reaction.
- the fundamental requirements for such a system to work are: (1) the availability of 4 nucleotide analogues (aA, aC, aG, aT) each labeled with a unique label and containing a chemical moiety capping the 3'-OH group; (2) the 4 nucleotide analogues (aA, aC, aG, aT) need to be efficiently and faithfully incorporated by DNA polymerase as terminators in the polymerase reaction; (3) the tag and the group capping the 3'-OH need to be removed with high yield to allow the incorporation and detection of the next nucleotide; and (4) the growing strand of DNA should survive the washing, detection and cleavage processes to remain annealed to the DNA template.
- FIG. 2A-2B The sequencing by synthesis approach disclosed herein is illustrated in Figure 2A-2B .
- the unique labels are fluorescent dyes and the surface is a chip; in Figure 2B , the unique labels are mass tags and the surface is channels etched into a chip.
- the synthesis approach uses a solid surface such as a glass chip with an immobilized DNA template that is able to self prime for initiating the polymerase reaction, and four nucleotide analogues ( 3'-RO -A- LABEL1 , 3'-RO -C- LABEL2 , 3'-RO -G- LABEL3 , 3'-RO -T- LABEL4 ) each labeled with a unique label, e.g.
- a fluorescent dye or a mass tag at a specific location on the purine or pyrimidine base, and a small cleavable chemical group (R) to cap the 3'-OH group.
- a detector is used to detect the unique label.
- a detector is used to detect the unique label.
- a four color fluorescence imager is used to image the surface of the chip, and the unique fluorescence emission from a specific dye on the nucleotide analogues on each spot of the chip will reveal the identity of the incorporated nucleotide ( step 2 in Fig. 2A ).
- ddNTPs dideoxynucleoside triphosphates
- the ddNTPs which lack a 3'-hydroxyl group, are chosen to cap the unreacted 3'-OH of the nucleotide due to their small size compared with the dye-labeled nucleotides, and the excellent efficiency with which they are incorporated by DNA polymerase.
- the dye moiety is then cleaved by light ( ⁇ 350 nm), and the R group protecting the 3'-OH is removed chemically to generate free 3'-OH group with high yield ( step 4 in Fig. 2A ).
- a washing step is applied to wash away the cleaved dyes and the R group.
- the self-primed DNA moiety on the chip at this stage is ready for the next cycle of the reaction to identify the next nucleotide sequence of the template DNA ( step 5 in Fig 2A ).
- Possible DNA polymerases include Thermo Sequenase, Taq FS DNA polymerase, T7 DNA polymerase, and Vent (exo-) DNA polymerase.
- the fluorescence emission from each specific dye can be detected using a fluorimeter that is equipped with an accessory to detect fluorescence from a glass slide.
- a multi-color scanning system capable of detecting multiple different fluorescent dyes (500 nm - 700 nm) (GSI Lumonics ScanArray 5000 Standard Biochip Scanning System) on a glass slide can be used.
- FIG. 2B An example of the sequencing by synthesis approach using mass tags is shown in Figure 2B .
- the approach uses a solid surface, such as a porous silica glass channels in a chip, with immobilized DNA template that is able to self prime for initiating the polymerase reaction, and four nucleotide analogues ( 3'-RO -A- Tag1 , 3'-RO -C- Tag2 , 3'-RO -G- Tag3 , 3'-RO -T- Tag4 ) each labeled with a unique photocleavable mass tag on the specific location of the base, and a small cleavable chemical group (R) to cap the 3'-OH group.
- 3'-RO -A- Tag1 3'-RO -C- Tag2
- 3'-RO -G- Tag3 3'-RO -T- Tag4
- nucleotide analogue that is complementary to the next nucleotide on the template is incorporated by polymerase in each channel of the glass chip (step 1 in Fig. 2B ).
- the small amount of unreacted 3'-OH group on the self-primed template moiety is capped by excess ddNTPs (ddATP, ddGTP, ddTTP and ddCTP) and DNA polymerase to avoid interference with the next round of synthesis ( step 2 in Fig. 2B ).
- the ddNTPs are chosen to cap the unreacted 3'-OH of the nucleotide due to their small size compared with the labeled nucleotides, and their excellent efficiency to be incorporated by DNA polymerase.
- the mass tags are cleaved by irradiation with light ( ⁇ 350 nm) (step 3 in Fig. 2B ) and then detected with a mass spectrometer. The unique mass of each tag yields the identity of the nucleotide in each channel ( step 4 in Fig. 2B ).
- the R protecting group is then removed chemically and washed away to generate free 3'-OH group with high yield ( step 5 in Fig. 2B ).
- the self-primed DNA moiety on the chip at this stage is ready for the next cycle of the reaction to identify the next nucleotide sequence of the template DNA ( step 6 in Fig. 2B ).
- mass spectrometry Since the development of new ionization techniques such as matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI), mass spectrometry has become an indispensable tool in many areas of biomedical research. Though these ionization methods are suitable for the analysis of bioorganic molecules, such as peptides and proteins, improvements in both detection and sample preparation are required for implementation of mass spectrometry for DNA sequencing applications. Since the approach disclosed herein uses small and stable mass tags, there is no need to detect large DNA sequencing fragments directly and it is not necessary to use MALDI or ESI methods for detection.
- MALDI matrix assisted laser desorption ionization
- ESI electrospray ionization
- Atmospheric pressure chemical ionization is an ionization method that uses a gas-phase ion-molecular reaction at atmospheric pressure (Dizidic et al. 1975).
- samples are introduced by either chromatography or flow injection into a pneumatic nebulizer where they are converted into small droplets by a high-speed beam of nitrogen gas.
- the excess amount of solvent is ionized by corona discharge.
- This ionized mobile phase acts as the ionizing agent toward the samples and yields pseudo molecular (M+H) + and (M-H) - ions.
- ESI and MALDI Due to the corona discharge ionization method, high ionization efficiency is attainable, maintaining stable ionization conditions with detection sensitivity lower than femtomole region for small and stable organic compounds.
- ESI and MALDI have replaced APCI for analysis of peptides and nucleic acids. Since in the approach disclosed the mass tags to be detected are relatively small and very stable organic molecules, the ability to detect large biological molecules gained by using ESI and MALDI is not necessary.
- APCI has several advantages over ESI and MALDI because it does not require any tedious sample preparation such as desalting or mixing with matrix to prepare crystals on a target plate. In ESI, the sample nature and sample preparation conditions (i.e.
- MALDI requires the addition of matrix prior to sample introduction into the mass spectrometer and its speed is often limited by the need to search for an ideal irradiation spot to obtain interpretable mass spectra. These limitations are overcome by APCI because the mass tag solution can be injected directly with no additional sample purification or preparation into the mass spectrometer. Since the mass tagged samples are volatile and have small mass numbers, these compounds are easily detectable by APCI ionization with high sensitivity. This system can be scaled up into a high throughput operation.
- the single stranded DNA template immobilized on a surface is prepared according to the scheme shown in Figure 3 .
- the surface can be, for example, a glass chip, such as a 4cm x 1cm glass chip, or channels in a glass chip.
- the surface is first treated with 0.5 M NaOH, washed with water, and then coated with high density 3-aminopropyltrimethoxysilane in aqueous ethanol (Woolley et al. 1994) forming a primary amine surface.
- N-Hydroxy Succinimidyl (NHS) ester of triarylphosphine ( 1 ) is covalently coupled with the primary amine group converting the amine surface to a novel triarylphosphine surface, which specifically reacts with DNA containing an azido group ( 2 ) forming a chip with immobilized DNA. Since the azido group is only located at the 5' end of the DNA and the coupling reaction is through the unique reaction of the triarylphosphine moiety with the azido group in aqueous solution (Saxon and Bertozzi 2000), such a DNA surface will provide an optimal condition for hybridization.
- the NHS ester of triarylphosphine ( 1 ) is prepared according to the scheme shown in Figure 4 .
- 3-diphenylphosphino-4-methoxycarbonyl-benzoic acid ( 3 ) is prepared according to the procedure described by Bertozzi et al. (Saxon and Bertozzi 2000).
- Treatment of ( 3 ) with N-Hydroxysuccinimide forms the corresponding NHS ester ( 4 ).
- Treatment of ( 5 ) with N-Hydroxysuccinimide generates the NHS ester ( 1 ) which is ready for coupling with the primary amine coated surface ( Figure 3 ).
- the azido labeled DNA ( 2 ) is synthesized according to the scheme shown in Figure 5 .
- Treatment of ethyl ester of 5-bromovaleric acid with sodium azide and then hydrolysis produces 5-azidovaleric acid (Khoukhi et al., 1987), which is subsequently converted to a NHS ester for coupling with an amino linker modified oligonucleotide primer.
- PCR polymerase chain reaction
- the self-primed DNA template moiety on the sequencing chip is constructed as shown in Figure 6 ( A & B ) using enzymatic ligation.
- a 5'-phosphorylated, 3'-OH capped loop oligonucleotide primer ( B ) is synthesized by a solid phase DNA synthesizer.
- the looped primer can only ligate to the 3'-end of the DNA templates that are immobilized on the sequencing chip using T4 RNA ligase (Zhang et al. 1996) to form the self-primed DNA template moiety ( A ).
- the looped primer ( B ) is designed to contain a very stable loop (Antao et al. 1991) and a stem containing the sequence of M13 reverse DNA sequencing primer for efficient priming in the polymerase reaction once the primer is ligated to the immobilized DNA on the sequencing chip and the 3'-OH cap group is chemically cleaved off (Ireland et al. 1986; Kamal et al. 1999).
- a scheme has been developed for evaluating the photocleavage efficiency using different dyes and testing the sequencing by synthesis approach.
- Four nucleotide analogues 3'-HO -A- Dye1 , 3'-HO -C- Dye2 , 3'-HO -G- Dye3 , 3'-HO -T- Dye4 each labeled with a unique fluorescent dye through a photocleavable linker are synthesized and used in the sequencing by synthesis approach.
- the photocleavable 2-nitrobenzyl moiety has been used to link biotin to DNA and protein for efficient removal by UV light ( ⁇ 350 nm) (Olejnik et al. 1995, 1999).
- the 2-nitrobenzyl group is used to bridge the fluorescent dye and nucleotide together to form the dye labeled nucleotides as shown in Figure 7 .
- the nucleotide analogues with a free 3'-OH are good substrates for the polymerase.
- An immobilized DNA template is synthesized ( Figure 9 ) that contains a portion of nucleotide sequence ACGTACGACGT (SEQ ID NO: 1) that has no repeated sequences after the priming site.
- 3'-HO -A- Dye1 and DNA polymerase are added to the self-primed DNA moiety and it is incorporated to the 3' site of the DNA. Then the steps in Figure 2A are followed (the chemical cleavage step is not required here because the 3'-OH is free) to detect the fluorescent signal from Dye-1 at 520 nm.
- 3'-HO -C- Dye2 is added to image the fluorescent signal from Dye-2 at 550 nm.
- 3'-HO -G- Dye3 is added to image the fluorescent signal from Dye-3 at 580 nm
- 3'-HO -T- Dye4 is added to image the fluorescent signal from Dye-4 at 610 nm.
- the expected photolysis products of DNA containing a photocleavable fluorescent dye at the 3' end of the DNA are shown in Figure 10 .
- the 2-nitrobenzyl moiety has been successfully employed in a wide range of studies as a photocleavable-protecting group (Pillai 1980).
- the efficiency of the photocleavage step depends on several factors including the efficiency of light absorption by the 2-nitrobenzyl moiety, the efficiency of the primary photochemical step, and the efficiency of the secondary thermal processes which lead to the final cleavage process (Turro 1991). Burgess et al.
- a photolysis setup can be used which allows a high throughput of monochromatic light from a 1000 watt high pressure xenon lamp (LX1000UV, ILC) in conjunction with a monochromator (Kratos, Schoeffel Instruments).
- LX1000UV, ILC 1000 watt high pressure xenon lamp
- a monochromator Karlos, Schoeffel Instruments
- This instrument allows the evaluation of the photocleavage of model systems as a function of the intensity and excitation wavelength of the absorbed light.
- Standard analytical analysis is used to determine the extent of photocleavage. From this information, the efficiency of the photocleavage as a function of wavelength can be determined. The wavelength at which photocleavage occurs most efficiently can be selected as for use in the sequencing system.
- Photocleavage results have been obtained using a model system as shown in Figure 11 .
- DMSO dimethylsulfonyl oxide
- the strong fluorescence emission indicates that PC-LC-Biotin-FAM is successfully immobilized to the streptavidin coated slide surface.
- nucleotide analogues 3'-RO -A- Dye1 , 3'-RO -C- Dye2 , 3'-RO -G- Dye3 , 3'-RO -T- Dye4 can be pursued for further study of the system.
- the 3'-OH is capped in all four nucleotide analogues, which then can be mixed together with DNA polymerase and used to evaluate the sequencing system using the scheme in Figure 9 .
- the spectral property of the fluorescent tags can be optimized by using energy transfer (ET) coupled dyes.
- ET primer and ET dideoxynucleotides have been shown to be a superior set of reagents for 4-color DNA sequencing that allows the use of one laser to excite multiple sets of fluorescent tags (Ju et al. 1995). It has been shown that DNA polymerase (Thermo Sequenase and Taq FS) can efficiently incorporate the ET dye labeled dideoxynucleotides (Rosenblum et al. 1997). These ET dye-labeled sequencing reagents are now widely used in large scale DNA sequencing projects, such as the human genome project.
- a library of ET dye labeled nucleotide analogues can be synthesized as shown in Figure 15 for optimization of the DNA sequencing system.
- the ET dye set (FAM-Cl 2 FAM, FAM-Cl 2 R6G, FAM-Cl 2 TAM, FAM-Cl 2 ROX) using FAM as a donor and dichloro(FAM, R6G, TAM, ROX) as acceptors has been reported in the literature (Lee et al. 1997) and constitutes a set of commercially available DNA sequencing reagents.
- an ET dye set can be constructed using cyanine (Cy2) as a donor and Cl 2 FAM, Cl 2 R6G, Cl 2 TAM, or Cl 2 ROX as energy acceptors. Since Cy2 possesses higher molar absorbance compared with the rhodamine and fluorescein derivatives, an ET system using Cy2 as a donor produces much stronger fluorescence signals than the system using FAM as a donor (Hung et al. 1996).
- Figure 16 shows a synthetic scheme for an ET dye labeled nucleotide analogue with Cy2 as a donor and Cl 2 FAM as an acceptor using similar coupling chemistry as for the synthesis of an energy transfer system using FAM as a donor (Lee et al. 1997).
- Coupling of Cl 2 FAM ( I ) with spacer 4-aminomethylbenzoic acid ( II ) produces III, which is then converted to NHS ester IV.
- Coupling of IV with amino-Cy2, and then converting the resulting compound to a NHS ester produces V, which subsequently couples with amino-photolinker nucleotide VI yields the ET dye labeled nucleotide VII.
- the precursors of four examples of mass tags are shown in Figure 17 .
- the precursors are: ( a ) acetophenone; ( b ) 3-fluoroacetophenone; ( c ) 3,4-difluoroacetophenone; and ( d ) 3,4-dimethoxyacetophenone.
- four photoactive tags are produced from the four precursors and used to code for the identity of each of the four nucleotides (A, C, G, T). Clean APCI mass spectra are obtained for the four mass tag precursors ( a, b, c, d ) as shown in Figure 18 .
- 2-nitro- ⁇ -methyl-benzyl (Tag-1) codes for A; 2-nitro- ⁇ -methyl-3-fluorobenzyl (Tag-2) codes for C; 2-nitro- ⁇ -methyl-3,4-difluorobenzyl (Tag-3) codes for G; 2-nitro- ⁇ -methyl-3,4-dimethoxybenzyl (Tag-4) codes for T.
- the synthesis of the NHS ester of one mass tag (Tag-3) is shown in Figure 20 .
- a similar scheme is used to create the other mass tags.
- the synthesis of 3'-HO -G- Tag3 is shown in Figure 21 using well-established procedures (Prober et al. 1987; Lee et al. 1992 and Hobbs et al. 1991).
- 7-propargylamino- dGTP is first prepared by reacting 7-I-dGTP with N-trifluoroacetylpropargyl amine, which is then coupled with the NHS-Tag-3 to produce 3'-HO -G- Tag3 .
- the nucleotide analogues with a free 3'-OH are good substrates for the polymerase.
- the sequencing by synthesis approach can be tested using mass tags using a scheme similar to that show for dyes in Figure 9 .
- a DNA template containing a portion of nucleotide sequence that has no repeated sequences after the priming site is synthesized and immobilized to a glass channel.
- 3'-HO -A- Tag1 and DNA polymerase are added to the self-primed DNA moiety to allow the incorporation of the nucleotide into the 3' site of the DNA.
- the photocleavage mechanism is as described above for the case where the unique labels are dyes.
- nucleotide analogues 3'-RO -A- Tag1 , 3'-RO -C- Tag2 , 3'-RO -G- Tag3 , 3'-RO -T- Tag4 can be pursued for further study of the system a discussed above for the case where the unique labels are dyes.
- the 3'-OH is capped in all four nucleotide analogues, which then can be mixed together with DNA polymerase and used to evaluate the sequencing system using a scheme similar to that in Figure 9 .
- MOM -CH 2 OCH 3
- Figure 23 illustrates an example of a parallel channel system.
- the system can be used with mass tag labels as shown and also with dye labels.
- a plurality of channels in a silica glass chip are connected on each end of the channel to a well in a well plate.
- the sequencing system also permits a number of channels other than 96 to be used.
- 96 channel devices for separating DNA sequencing and sizing fragments have been reported (Woolley and Mathies 1994, Woolley et al. 1997, Simpson et al. 1998).
- the chip is made by photolithographic masking and chemical etching techniques.
- the photolithographically defined channel patterns are etched in a silica glass substrate, and then capillary channels (id ⁇ 100 ⁇ m) are formed by thermally bonding the etched substrate to a second silica glass slide. Channels are porous to increase surface area.
- the immobilized single stranded DNA template chip is prepared according to the scheme shown in Figure 3 . Each channel is first treated with 0.5 M NaOH, washed with water, and is then coated with high density 3-aminopropyltrimethoxysilane in aqueous ethanol (Woolley et al. 1994) forming a primary amine surface.
- Succinimidyl (NHS) ester of triarylphosphine ( 1 ) is covalently coupled with the primary amine group converting the amine surface to a novel triarylphosphine surface, which specifically reacts with DNA containing an azido group ( 2 ) forming a chip with immobilized DNA. Since the azido group is only located at the 5' end of the DNA and the coupling reaction is through the unique reaction of triarylphosphine moiety with azido group in aqueous solution (Saxon and Bertozzi 2000), such a DNA surface provides an optimized condition for hybridization.
- Fluids such as sequencing reagents and washing solutions, can be easily pressure driven between the two 96 well plates to wash and add reagents to each channel in the chip for carrying out the polymerase reaction as well as collecting the photocleaved labels.
- the silica chip is transparent to ultraviolet light ( ⁇ ⁇ 350 nm).
- photocleaved mass tags are detected by an APCI mass spectrometer upon irradiation with a UV light source.
- the approach disclosed herein comprises detecting four unique photoreleased mass tags, which can have molecular weights from 150 to 250 daltons, to decode the DNA sequence, thereby obviating the issue of detecting large DNA fragments using a mass spectrometer as well as the stringent sample requirement for using mass spectrometry to directly detect long DNA fragments. It takes 10 seconds or less to analyze each mass tag using the APCI mass spectrometer. With 8 miniaturized APCI mass spectrometers in a system, close to 100,000 bp of high quality digital DNA sequencing data could be generated each day by each instrument using this approach. Since there is no separation and purification requirements using this approach, such a system is cost effective.
- Either quadrupole (including ion trap detector) or time-of-flight mass spectrometers can be selected for the ion optics. While modern mass spectrometer technology has made it possible to produce miniaturized mass spectrometers, most current research has focused on the design of a single stand-alone miniaturized mass spectrometer. Individual components of the mass spectrometer has been miniaturized for enhancing the mass spectrometer analysis capability (Liu et al. 2000, Zhang et al. 1999). A miniaturized mass spectrometry system using multiple analyzers (up to 10) in parallel has been reported (Badman and Cooks 2000).
- the mass spectrometer of Badman and Cook was designed to measure only single samples rather than multiple samples in parallel. They also noted that the miniaturization of the ion trap limited the capability of the mass spectrometer to scan wide mass ranges. Since the approach disclosed herein focuses on detecting four small stable mass tags (the mass range is less than 300 daltons), multiple miniaturized APCI mass spectrometers are easily constructed and assembled into a single unit for parallel analysis of the mass tags for DNA sequencing analysis.
- a complete parallel mass spectrometry system includes multiple APCI sources interfaced with multiple analyzers, coupled with appropriate electronics and power supply configuration.
- a mass spectrometry system with parallel detection capability will overcome the throughput bottleneck issue for application in DNA analysis.
- a parallel system containing multiple mass spectrometers in a single device is illustrated in Figures 23 and 24 .
- the examples in the figures show a system with three mass spectrometers in parallel. Higher throughput is obtained using a greater number of in parallel mass spectrometers.
- the three miniature mass spectrometers are contained in one device with two turbo-pumps. Samples are injected into the ion source where they are mixed with a nebulizer gas and ionized.
- One turbo pump is used as a differential pumping system to continuously sweep away free radicals, neutral compounds and other undesirable elements coming from the ion source at the orifice between the ion source and the analyzer.
- the second turbo pump is used to generate a continuous vacuum in all three analyzers and detectors simultaneously. Since the corona discharge mode and scanning mode of mass spectrometers are the same for each miniaturized mass spectrometer, one power supply for each analyzer and the ionization source can provide the necessary power for all three instruments.
- One power supply for each of the three independent detectors is used for spectrum collection.
- the data obtained are transferred to three independent A/D converters and processed by the data system simultaneously to identify the mass tag in the injected sample and thus identify the nucleotide.
- the entire device is able to fit on a laboratory bench top.
- the tumor suppressor gene p53 can be used as a model system to validate the DNA sequencing system.
- the p53 gene is one of the most frequently mutated genes in human cancer (O'Connor et al. 1997).
- a base pair DNA template (shown below) is synthesized containing an azido group at the 5' end and a portion of the sequences from exon 7 and exon 8 of the p53 gene:
- This template is chosen to explore the use of the sequencing system for the detection of clustered hot spot single base mutations.
- the potentially mutated bases are underlined ( A , G , C and T ) in the synthetic template.
- the synthetic template is immobilized on a sequencing chip or glass channels, then the loop primer is ligated to the immobilized template as described in Figure 6 , and then the steps in Figure 2 are followed for sequencing evaluation.
- DNA templates generated by PCR can be used to further validate the DNA sequencing system.
- the sequencing templates can be generated by PCR using flanking primers (one of the pair is labeled with an azido group at the 5' end) in the intron region located at each p53 exon boundary from a pool of genomic DNA (Boehringer, Indianapolis, IN) as described by Fu et al. (1998) and then immobilized on the DNA chip for sequencing evaluation.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Claims (13)
- Verfahren zum gleichzeitigen Sequenzieren einer Vielzahl an verschiedenen Desoxyribonukleinsäuren, wobei die Vielzahl an verschiedenen Desoxyribonukleinsäuren kovalent auf einer festen Oberfläche immobilisiert ist, und wobei ein Sequenzierverfahren durch Synthese umfassend eine Vielzahl an Zyklen, wobei jeder Zyklus eine Vielzahl an Schritten aufweist, gleichzeitig auf jede der kovalent immobilisierten verschiedenen Desoxyribonukleinsäuren angewendet wird, wobei das Sequenzierverfahren die Detektion der Identität einer Vielzahl an Nukleotidanaloga einbezieht, die in eine Vielzahl an wachsenden Strängen von mit Desoxyribonukleinsäuren hybridisierter DNA eingebaut sind, wobei das Verfahren umfasst:(a) Bereitstellen an die Vielzahl an verschiedenen Desoxyribonukleinsäuren von mehr als einem aus der Gruppe bestehend aus aA, aC, aG, aT und aU ausgewählten Nuklotidanalogon, wobei jedes Nuklotidanalogon mit einer eindeutigen Markierung markiert ist, die durch einen spaltbaren Linker mit der Base verbunden ist und eine kleine, chemisch spaltbare chemische Einheit enthält, die die 3'-OH-Gruppe verkappt, wobei die kleine, chemisch spaltbare chemische Einheit durch chemische Mittel entfernbar ist, unter solchen Bedingungen, dass eine Vielzahl an wachsenden Strängen durch Einbau von einem Nukleotidanalogon pro Strang verlängert werden, um eine Vielzahl an verlängerten wachsenden Strängen an DNA unter Verwendung einer DNA-Polymerasereaktion zu erzeugen, wobei die eingebauten Analoga als Terminatoren der Polymerasereaktion dienen;(b) Detektieren der eindeutigen Markierung der eingebauten Nukleotidanaloga, um dadurch 10000 oder mehr der Nukleotidanaloga zu identifizieren, in die Vielzahl an wachsenden Strängen eingebaut worden zu sein;(c) Entfernen der Markierung und Entfernen der kleinen, chemisch spaltbaren chemischen Einheit der eingebauten Nukleotidanaloga, die die 3'-OH-Gruppe verkappen, durch chemische Mittel; und(d) Wiederholen des Zyklus der Schritte (a) bis (c);wobei die Vielzahl an verschiedenen Desoxyribonukleinsäuren kovalent in einer Vielzahl an Punkten auf einer festen Oberfläche immobilisiert ist, wobei jeder Punkt eine Vielzahl der gleichen Desoxyribonukleinsäure umfasst, und wobei die eindeutigen Markierungen Farbstoffe mit einer eindeutigen Fluoreszenzemission sind, und die eindeutige Fluoreszenzemission eines speziellen Farbstoffs an den farbstoffmarkierten Nukleotidanaloga auf jedem Punkt der festen Oberfläche die Identität des eingebauten Nukleotids aufzeigen wird; und
wobei die kleine, chemisch spaltbare chemische Einheit, die die 3'-OH-Gruppe verkappt:(i) eine -CH2OCH3-Gruppe oder eine -CH2CH=CH2-Gruppe ist, oder so klein wie eine -CH2CH=CH2-Gruppe oder eine - CH2OCH3-Gruppe ist,(ii) keine Ketogruppe enthält,(iii) wenn sie an den 3'-Sauerstoff gebunden ist, keine Methoxygruppe oder Estergruppe bildet, und(iv) eine 3'-OH-Gruppe an der Desoxyribose bei Spaltung der kleinen chemisch spaltbaren chemischen Einheit, die die 3'-OH-Gruppe verkappt, bildet; undwobei mindestens eines der eingebauten Nukleotidanaloga ein 7-Deazaadeninnukleotidanalogon oder 7-Deazaguaninnukleotidanalogon ist, und die eindeutige Markierung durch einen spaltbaren Linker mit einer 7-Position von Deazaadenin oder Deazaguanin verbunden ist. - Verfahren nach Anspruch 1, wobei die eindeutige Markierung eine Fluoreszenzeinheit ist.
- Vielzahl an verschiedenen Desoxyribonukleinsäuren, die kovalent auf einem festen Träger immobilisiert sind, wobei die Vielzahl an verschiedenen Desoxyribonukleinsäuren eingebaute Nukleotidanaloga umfasst, wobei jedes Nukleotidanalogon mit einer eindeutigen Markierung markiert ist, die durch einen spaltbaren Linker mit der Base verbunden ist und eine kleine chemische Einheit enthält, die ihre 3'-OH-Gruppe verkappt, wobei die kleine chemisch spaltbare chemische Einheit durch chemische Mittel entfernbar ist, und wobei Desoxyribonukleinsäuren mit der gleichen Sequenz an einem Punkt immobilisiert sind, und größer als 10000 Punkte auf dem festen Träger vorliegen;wobei die eindeutigen Markierungen Farbstoffe mit einer eindeutigen Fluoreszenzemission sind, und die eindeutige Fluoreszenzemission eines spezifischen Farbstoffs an den farbstoffmarkierten Nukleotidanaloga auf jedem Punkt der festen Oberfläche die Identität des eingebauten Nukleotids aufzeigen wird; undwobei die kleine chemisch spaltbare chemische Einheit, die die 3'-OH-Gruppe verkappt:(i) eine -CH2OCH3-Gruppe oder eine -CH2CH=CH2-Gruppe ist, oder so klein wie eine -CH2CH=CH2-Gruppe oder eine-CH2OCH3-Gruppe ist,(ii) keine Ketogruppe enthält,(iii) wenn sie an den 3'-Sauerstoff gebunden ist, keine Methoxygruppe oder Estergruppe bildet, und(iv) eine 3'-OH-Gruppe an der Desoxyribose bei Spaltung der kleinen chemisch spaltbaren chemischen Einheit, die die 3'-OH-Gruppe verkappt, bildet; undwobei mindestens eines der eingebauten Nukleotidanaloga ein 7-Deazaadeninnukleotidanalogon oder 7-Deazaguaninnukleotidanalogon ist, und die eindeutige Markierung durch einen spaltbaren Linker mit einer 7-Position von Deazaadenin oder Deazaguanin verbunden ist.
- Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei jedes Nukleotidanalogon eine Base umfasst, die aus der Gruppe bestehend aus Adenin, Guanin, Cytosin, Thymin und Uracil, oder einem Analogon davon ausgewählt ist.
- Verfahren zum Sequenzieren einer Vielzahl an verschiedenen Desoxyribonukleinsäuren durch Synthese unter Einbeziehung der Detektion der Identität von Nukleotidanaloga, die in eine Vielzahl an verschiedenen wachsenden Strängen von mit Desoxyribonukleinsäuren hybridisierter DNA eingebaut werden, wobei das Verfahren umfasst:(a) Einbauen von einem Nukleotidanalogon in jeden wachsenden Strang der Vielzahl an verschiedenen wachsenden Strängen von DNA unter Verwendung einer DNA-Polymerasereaktion, wobei jedes Nukleotidanalogon ein Terminator in der DNA-Polymerasereaktion ist, und wobei jedes Nukleotidanalogon eine eindeutige Markierung umfasst, die durch einen spaltbaren Linker mit der Base verbunden ist und eine kleine chemisch spaltbare, die 3'-OH-Gruppe verkappende chemische Einheit enthält, die durch chemische Mittel entfernbar ist; und(b) Detektieren der Markierung jedes eingebauten Nukleotidanalogons, um dadurch 10000 oder mehr der eingebauten Nukleotidanaloga zu identifizieren, wobei das Verfahren gleichzeitig an verschiedenen Desoxyribonukleinsäuren angewendet wird, die kovalent an einer festen Oberfläche immobilisiert sind;wobei die Vielzahl an verschiedenen Desoxyribonukleinsäuren kovalent in einer Vielzahl an Punkten auf einer festen Oberfläche immobilisiert ist, wobei jeder Punkt eine Vielzahl der gleichen Desoxyribonukleinsäure umfasst, und wobei die eindeutigen Markierungen Farbstoffe mit einer eindeutigen Fluoreszenzemission sind, und die eindeutige Fluoreszenzemission eines spezifischen Farbstoffs an den farbstoffmarkierten Nukleotidanaloga auf jedem Punkt der festen Oberfläche die Identität des eingebauten Nukleotids aufzeigen wird; und
wobei die kleine chemisch spaltbare chemische Einheit, die die 3'-OH-Gruppe verkappt:(i) eine -CH2OCH3-Gruppe oder eine -CH2CH=CH2-Gruppe ist, oder so klein wie eine -CH2CH=CH2-Gruppe oder eine - CH2OCH3-Gruppe ist,(ii) keine Ketogruppe enthält,(iii) wenn sie an den 3'-Sauerstoff gebunden ist, keine Methoxygruppe oder Estergruppe bildet, und(iv) eine 3'-OH-Gruppe an der Desoxyribose bei Spaltung der kleinen chemisch spaltbaren chemischen Einheit, die die 3'-OH-Gruppe verkappt, bildet; undwobei mindestens eines der eingebauten Nukleotidanaloga ein 7-Deazaadeninnukleotidanalogon oder 7-Deazaguaninnukleotidanalogon ist, und die eindeutige Markierung durch einen spaltbaren Linker mit einer 7-Position von Deazaadenin oder Deazaguanin verbunden ist. - Verfahren nach Anspruch 1 oder 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei mindestens eines der Nukleotidanaloga ein 7-Deazaadeninnukleotidanalogon oder 7-Deazaguaninnukleotidanalogon ist.
- Verfahren nach Anspruch 1 oder 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei die Nukleotidanaloga aus der Gruppe bestehend aus Cytosin, Thymin, Uracil, Deazaadenin und Deazaguanin ausgewählt sind, und die eindeutige Markierung durch einen spaltbaren Linker mit einer 5-Position von Cytosin, Thymin oder Uracil, oder mit einer 7-Position von Deazaadenin oder Deazaguanin verbunden ist.
- Verfahren nach Anspruch 5, wobei jede der Desoxyribonukleinsäuren vor Schritt (a) eine Azidgruppe enthält.
- Verfahren nach Anspruch 1 oder 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei eine Vielzahl an Desoxyribonukleinsäuren mit der gleichen Sequenz an einem Punkt immobilisiert ist, wobei der Punkt einer der größer als 10000 Punkte auf einem Chip ist, und wobei die Dichte der Punkte auf dem Chip größer als 10000 Punkte auf einem 4 cm x 1 cm-Chip beträgt.
- Verfahren nach Anspruch 1 oder 5, das des Weiteren einen Schritt des Vervielfältigens der verschiedenen Desoxyribonukleinsäuren, bevor die Desoxyribonukleinsäuren kovalent immobilisiert werden, umfasst.
- Verfahren nach Anspruch 1 oder 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei die chemische Einheit, die die 3'-OH-Gruppe verkappt, so klein wie eine -CH2OCH3-Gruppe ist.
- Verfahren nach Anspruch 1 oder 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei die chemische Einheit, die die 3'-OH-Gruppe verkappt, so klein wie eine -CH2CH=CH2-Gruppe ist.
- Verfahren nach Anspruch 1 oder Anspruch 5, oder die Vielzahl an verschiedenen Desoxyribonukleinsäuren nach Anspruch 3, wobei die Vielzahl an verschiedenen Desoxyribonukleinsäuren an einer Vielzahl an Punkten auf einer festen Oberfläche kovalent immobilisiert ist, wobei jeder Punkt eine Vielzahl der gleichen Desoxyribonukleinsäuren umfasst; undwobei die eindeutigen Markierungen Farbstoffe mit einer eindeutigen Fluoreszenzemission sind, und die eindeutige Fluoreszenzemission eines spezifischen Farbstoffs an den farbstoffmarkierten Nukleotidanaloga auf jedem Punkt der festen Oberfläche die Identität des eingebauten Nukleotids aufzeigen wird.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68467000A | 2000-10-06 | 2000-10-06 | |
US30089401P | 2001-06-26 | 2001-06-26 | |
EP07004522A EP1790736A3 (de) | 2000-10-06 | 2001-10-05 | Massives paralleles Verfahren zum Entschlüsseln von DNA und RNA |
PCT/US2001/031243 WO2002029003A2 (en) | 2000-10-06 | 2001-10-05 | Massive parallel method for decoding dna and rna |
EP01977533A EP1337541B1 (de) | 2000-10-06 | 2001-10-05 | Massives Parallelverfahren zur Dekodierung von DNA und RNA |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07004522A Division EP1790736A3 (de) | 2000-10-06 | 2001-10-05 | Massives paralleles Verfahren zum Entschlüsseln von DNA und RNA |
EP01977533A Division EP1337541B1 (de) | 2000-10-06 | 2001-10-05 | Massives Parallelverfahren zur Dekodierung von DNA und RNA |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3034627A1 EP3034627A1 (de) | 2016-06-22 |
EP3034627B1 true EP3034627B1 (de) | 2019-01-30 |
Family
ID=26972030
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15195765.1A Revoked EP3034627B1 (de) | 2000-10-06 | 2001-10-05 | Massives paralleles verfahren zum entschlüsseln von dna und rna |
EP01977533A Expired - Lifetime EP1337541B1 (de) | 2000-10-06 | 2001-10-05 | Massives Parallelverfahren zur Dekodierung von DNA und RNA |
EP07004522A Ceased EP1790736A3 (de) | 2000-10-06 | 2001-10-05 | Massives paralleles Verfahren zum Entschlüsseln von DNA und RNA |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01977533A Expired - Lifetime EP1337541B1 (de) | 2000-10-06 | 2001-10-05 | Massives Parallelverfahren zur Dekodierung von DNA und RNA |
EP07004522A Ceased EP1790736A3 (de) | 2000-10-06 | 2001-10-05 | Massives paralleles Verfahren zum Entschlüsseln von DNA und RNA |
Country Status (9)
Country | Link |
---|---|
US (25) | US6664079B2 (de) |
EP (3) | EP3034627B1 (de) |
JP (1) | JP2004510433A (de) |
AT (1) | ATE356222T1 (de) |
AU (1) | AU2001296645A1 (de) |
CA (1) | CA2425112C (de) |
DE (2) | DE60127162T2 (de) |
HK (1) | HK1227441A1 (de) |
WO (1) | WO2002029003A2 (de) |
Families Citing this family (252)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7153943B2 (en) * | 1997-07-14 | 2006-12-26 | Bolder Biotechnology, Inc. | Derivatives of growth hormone and related proteins, and methods of use thereof |
US6780591B2 (en) | 1998-05-01 | 2004-08-24 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
US7875440B2 (en) | 1998-05-01 | 2011-01-25 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
US6818395B1 (en) | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
US7501245B2 (en) * | 1999-06-28 | 2009-03-10 | Helicos Biosciences Corp. | Methods and apparatuses for analyzing polynucleotide sequences |
US6627748B1 (en) | 2000-09-11 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Combinatorial fluorescence energy transfer tags and their applications for multiplex genetic analyses |
US20060057565A1 (en) * | 2000-09-11 | 2006-03-16 | Jingyue Ju | Combinatorial fluorescence energy transfer tags and uses thereof |
EP3034627B1 (de) | 2000-10-06 | 2019-01-30 | The Trustees of Columbia University in the City of New York | Massives paralleles verfahren zum entschlüsseln von dna und rna |
US9708358B2 (en) | 2000-10-06 | 2017-07-18 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
EP1368497A4 (de) * | 2001-03-12 | 2007-08-15 | California Inst Of Techn | Verfahren und vorrichtung zur analyse von polynukleotidsequenzen durch asynchrone basenverlängerung |
US7057026B2 (en) | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
GB0129012D0 (en) | 2001-12-04 | 2002-01-23 | Solexa Ltd | Labelled nucleotides |
US7166478B2 (en) * | 2002-03-12 | 2007-01-23 | Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. | Labeling reagents and labeled targets, target labeling processes and other processes for using same in nucleic acid determinations and analyses |
WO2003087839A1 (en) * | 2002-04-04 | 2003-10-23 | Xzillion Gmbh & Co. Kg | Method for characterising analytes |
US7074597B2 (en) | 2002-07-12 | 2006-07-11 | The Trustees Of Columbia University In The City Of New York | Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry |
US7414116B2 (en) | 2002-08-23 | 2008-08-19 | Illumina Cambridge Limited | Labelled nucleotides |
US11008359B2 (en) | 2002-08-23 | 2021-05-18 | Illumina Cambridge Limited | Labelled nucleotides |
DK3363809T3 (da) | 2002-08-23 | 2020-05-04 | Illumina Cambridge Ltd | Modificerede nukleotider til polynukleotidsekvensering |
HUE055068T2 (hu) * | 2002-08-23 | 2021-10-28 | Illumina Cambridge Ltd | Jelzett nukleotidok |
WO2004055160A2 (en) * | 2002-12-13 | 2004-07-01 | The Trustees Of Columbia University In The City Of New York | Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry |
US7323555B2 (en) * | 2002-12-26 | 2008-01-29 | Isao Saito | Nucleotide derivative and DNA microarray |
US7414117B2 (en) * | 2002-12-26 | 2008-08-19 | Ngk Insulators, Ltd. | Nucleotide derivative and DNA microarray |
US8637650B2 (en) | 2003-11-05 | 2014-01-28 | Genovoxx Gmbh | Macromolecular nucleotide compounds and methods for using the same |
US7169560B2 (en) | 2003-11-12 | 2007-01-30 | Helicos Biosciences Corporation | Short cycle methods for sequencing polynucleotides |
CA2557177A1 (en) | 2004-02-19 | 2005-09-01 | Stephen Quake | Methods and kits for analyzing polynucleotide sequences |
US7622279B2 (en) | 2004-03-03 | 2009-11-24 | The Trustees Of Columbia University In The City Of New York | Photocleavable fluorescent nucleotides for DNA sequencing on chip constructed by site-specific coupling chemistry |
US7157699B2 (en) * | 2004-03-29 | 2007-01-02 | Purdue Research Foundation | Multiplexed mass spectrometer |
WO2006073436A2 (en) * | 2004-04-29 | 2006-07-13 | The Trustees Of Columbia University In The City Of New York | Mass tag pcr for multiplex diagnostics |
US20070054345A1 (en) | 2004-05-19 | 2007-03-08 | Hunter Christie L | Expression quantification using mass spectrometry |
WO2005118608A2 (en) * | 2004-06-02 | 2005-12-15 | Asm Scientific, Inc. | 2’-nitrobenzyl-modified ribonucleotides |
JP2005353340A (ja) * | 2004-06-09 | 2005-12-22 | Hitachi Ltd | 質量分析装置 |
US20070048752A1 (en) | 2004-07-12 | 2007-03-01 | Applera Corporation | Mass tags for quantitative analyses |
CA2572754A1 (en) * | 2004-07-12 | 2006-02-16 | Applera Corporation | Mass tags for quantitative analyses |
GB0421294D0 (en) * | 2004-09-24 | 2004-10-27 | Angiogene Pharm Ltd | Bioreductively-activated prodrugs |
WO2006049297A1 (ja) * | 2004-11-08 | 2006-05-11 | Riken | 新規なヌクレオシド若しくはヌクレオチド誘導体及びその利用 |
EP2241637A1 (de) | 2005-02-01 | 2010-10-20 | AB Advanced Genetic Analysis Corporation | Nukleinsäuresequenzierung durch schrittweise Duplexverlängerung |
EP2272983A1 (de) | 2005-02-01 | 2011-01-12 | AB Advanced Genetic Analysis Corporation | Reagentien, Verfahren und Bibliotheken zur Sequenzierung mit Kügelchen |
US20060183238A1 (en) | 2005-02-09 | 2006-08-17 | Applera Corporation | Amine-containing compound analysis methods |
JP2006241133A (ja) * | 2005-03-04 | 2006-09-14 | Univ Of Tokyo | 光分解性保護基 |
US7544794B1 (en) * | 2005-03-11 | 2009-06-09 | Steven Albert Benner | Method for sequencing DNA and RNA by synthesis |
US8212020B2 (en) * | 2005-03-11 | 2012-07-03 | Steven Albert Benner | Reagents for reversibly terminating primer extension |
GB0507835D0 (en) * | 2005-04-18 | 2005-05-25 | Solexa Ltd | Method and device for nucleic acid sequencing using a planar wave guide |
WO2007002204A2 (en) | 2005-06-21 | 2007-01-04 | The Trustees Of Columbia University In The City Of New York | Pyrosequencing methods and related compostions |
WO2007014397A2 (en) * | 2005-07-28 | 2007-02-01 | Helicos Biosciences Corporation | Consecutive base single molecule sequencing |
WO2007021757A2 (en) * | 2005-08-15 | 2007-02-22 | Massachusetts Institute Of Technology | Fluorescent sensor and methods |
GB0517097D0 (en) | 2005-08-19 | 2005-09-28 | Solexa Ltd | Modified nucleosides and nucleotides and uses thereof |
US7666593B2 (en) | 2005-08-26 | 2010-02-23 | Helicos Biosciences Corporation | Single molecule sequencing of captured nucleic acids |
US7405281B2 (en) * | 2005-09-29 | 2008-07-29 | Pacific Biosciences Of California, Inc. | Fluorescent nucleotide analogs and uses therefor |
WO2007120192A2 (en) | 2005-10-27 | 2007-10-25 | The President And Fellows Of Harvard College | Methods and compositions for labeling nucleic acids |
GB2446084B (en) | 2005-10-31 | 2011-03-02 | Univ Columbia | Synthesis of four color 3-o-allyl modified photocleavable fluorescent nucleotides and related methods |
US8796432B2 (en) * | 2005-10-31 | 2014-08-05 | The Trustees Of Columbia University In The City Of New York | Chemically cleavable 3'-o-allyl-DNTP-allyl-fluorophore fluorescent nucleotide analogues and related methods |
CA2630544A1 (en) * | 2005-11-21 | 2007-05-31 | The Trustees Of Columbia University In The City Of New York | Multiplex digital immuno-sensing using a library of photocleavable mass tags |
JP2009519717A (ja) * | 2005-12-16 | 2009-05-21 | アプレラ コーポレイション | 位相を固定した配列決定のための方法およびシステム |
EP2623986B1 (de) | 2006-02-10 | 2017-06-14 | Life Technologies Corporation | Markierung und Detektion von posttranslational modifizierten Proteinen |
US8114636B2 (en) | 2006-02-10 | 2012-02-14 | Life Technologies Corporation | Labeling and detection of nucleic acids |
EP2007907A2 (de) * | 2006-04-19 | 2008-12-31 | Applera Corporation | Reagenzien, verfahren und bibliotheken für gelfreie, perlenbasierte sequenzierung |
WO2007135368A2 (en) | 2006-05-18 | 2007-11-29 | Solexa Limited | Dye compounds and the use of their labelled conjugates |
US8889348B2 (en) | 2006-06-07 | 2014-11-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by nanopore using modified nucleotides |
WO2008037568A2 (en) * | 2006-09-04 | 2008-04-03 | Quiatech Ab | Reversible terminators for efficient sequencing by synthesis |
US8399188B2 (en) | 2006-09-28 | 2013-03-19 | Illumina, Inc. | Compositions and methods for nucleotide sequencing |
WO2008069973A2 (en) | 2006-12-01 | 2008-06-12 | The Trustees Of Columbia University In The City Of New York | Four-color dna sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators |
US7893227B2 (en) * | 2006-12-05 | 2011-02-22 | Lasergen, Inc. | 3′-OH unblocked nucleotides and nucleosides base modified with non-cleavable, terminating groups and methods for their use in DNA sequencing |
US7897737B2 (en) * | 2006-12-05 | 2011-03-01 | Lasergen, Inc. | 3′-OH unblocked, nucleotides and nucleosides, base modified with photocleavable, terminating groups and methods for their use in DNA sequencing |
JP5513122B2 (ja) * | 2006-12-05 | 2014-06-04 | レーザーゲン インコーポレイテッド | 光開裂性標識ヌクレオチドとヌクレオシドおよび標識ヌクレオチドとヌクレオシドならびにdna配列決定におけるそれらの使用法 |
US11035823B2 (en) | 2009-03-17 | 2021-06-15 | Qiagen Sciences, Llc | Methods and devices for sequencing nucleic acids in smaller batches |
US8612161B2 (en) | 2008-03-19 | 2013-12-17 | Intelligent Biosystems Inc. | Methods and compositions for base calling nucleic acids |
US8481259B2 (en) * | 2007-02-05 | 2013-07-09 | Intelligent Bio-Systems, Inc. | Methods and devices for sequencing nucleic acids in smaller batches |
US11940413B2 (en) | 2007-02-05 | 2024-03-26 | IsoPlexis Corporation | Methods and devices for sequencing nucleic acids in smaller batches |
JP5750209B2 (ja) | 2007-03-16 | 2015-07-15 | アプタ バイオサイエンス リミテッド | 機能性分子、機能性分子合成用アミダイド、及び標的物質解析方法 |
US9163053B2 (en) * | 2007-05-18 | 2015-10-20 | Fluidigm Corporation | Nucleotide analogs |
WO2009026546A2 (en) * | 2007-08-23 | 2009-02-26 | Applied Biosystems Inc. | Methods of modifying support surfaces for the immobilization of particles and the use of the immobilized particles for analyzing nucleic acids |
EP2657869A3 (de) | 2007-08-29 | 2015-06-03 | Applied Biosystems, LLC | Alternative Nukleinsäuresequenzierverfahren |
JP2010539982A (ja) * | 2007-10-01 | 2010-12-24 | アプライド バイオシステムズ, エルエルシー | チェイスライゲーション配列決定法 |
EP2209911B1 (de) | 2007-10-19 | 2013-10-16 | The Trustees of Columbia University in the City of New York | Dna-sequenzierung mit reversiblen nicht-fluoreszenz-nukleotid-terminatoren und mit einer spaltbaren markierung modifizierten nukleotidterminatoren und eine deoxyinosineverbindung mit einer reversiblen terminatorgruppe |
EP4310194A3 (de) | 2007-10-19 | 2024-10-16 | The Trustees of Columbia University in the City of New York | Entwurf und synthese von spaltbaren fluoreszierenden nukleotiden als reversible terminatoren zur dna-sequenzierung durch synthese |
US8017338B2 (en) * | 2007-11-20 | 2011-09-13 | Life Technologies Corporation | Reversible di-nucleotide terminator sequencing |
WO2009067632A1 (en) * | 2007-11-20 | 2009-05-28 | Applied Biosystems Inc. | Method of sequencing nucleic acids using elaborated nucleotide phosphorothiolate compounds |
CN104529711B (zh) | 2007-11-21 | 2020-02-07 | 乔治亚大学研究基金公司 | 炔烃以及炔烃与1,3-偶极-官能化合物反应的方法 |
EP2263087B1 (de) | 2008-03-13 | 2017-08-09 | Pacific Biosciences of California, Inc. | Markierte reaktanden und ihre verwendung |
US9017973B2 (en) | 2008-03-19 | 2015-04-28 | Intelligent Biosystems, Inc. | Methods and compositions for incorporating nucleotides |
US10745740B2 (en) | 2008-03-19 | 2020-08-18 | Qiagen Sciences, Llc | Sample preparation |
US8058414B2 (en) * | 2008-04-29 | 2011-11-15 | Life Technologies Corporation | Unnatural polymerase substrates that can sustain enzymatic synthesis of double stranded nucleic acids from a nucleic acid template and methods of use |
EP2297344B1 (de) | 2008-05-16 | 2018-03-14 | Life Technologies Corporation | Doppelmarkierungsverfahren zur messung von zellproliferation |
CN102105481B (zh) * | 2008-05-27 | 2016-02-24 | 垂林克生物技术公司 | 用于核酸热启动扩增的化学修饰的核苷5’-三磷酸 |
US8148503B2 (en) | 2008-06-11 | 2012-04-03 | Lasergen, Inc. | Nucleotides and nucleosides and methods for their use in DNA sequencing |
US20110281740A1 (en) * | 2008-06-30 | 2011-11-17 | Joseph Beechem | Methods for Real Time Single Molecule Sequencing |
US20100120034A1 (en) * | 2008-07-03 | 2010-05-13 | Life Technologies Corporation | Methylation analysis of mate pairs |
US8173198B2 (en) * | 2008-07-23 | 2012-05-08 | Life Technologies Corporation | Deposition of metal oxides onto surfaces as an immobilization vehicle for carboxylated or phophated particles or polymers |
WO2010014820A2 (en) * | 2008-07-30 | 2010-02-04 | Life Technologies Corporation | Particles for use in supported nucleic acid ligation and detection sequencing |
US8541207B2 (en) | 2008-10-22 | 2013-09-24 | Illumina, Inc. | Preservation of information related to genomic DNA methylation |
ATE547522T1 (de) | 2008-12-23 | 2012-03-15 | Qiagen Gmbh | Verfahren und vorrichtung zur durchführung einer nukleinsäurepräparation und/oder amplifikation |
KR20100089688A (ko) * | 2009-02-04 | 2010-08-12 | 삼성전자주식회사 | 표적핵산의 서열을 분석하는 방법 |
US20100261185A1 (en) | 2009-03-27 | 2010-10-14 | Life Technologies Corporation | Labeled enzyme compositions, methods and systems |
US20100330569A1 (en) | 2009-04-23 | 2010-12-30 | Intelligent Bio-Systems, Inc. | Hydroxymethyl Linkers For Labeling Nucleotides |
EP2425023B1 (de) * | 2009-04-27 | 2015-12-23 | Pacific Biosciences of California, Inc. | Echtzeit-sequenzierungsverfahren und systeme |
GB0907372D0 (en) | 2009-04-29 | 2009-06-10 | Invitrogen Dynal As | Particles |
CN102858995B (zh) | 2009-09-10 | 2016-10-26 | 森特瑞隆技术控股公司 | 靶向测序方法 |
US10174368B2 (en) | 2009-09-10 | 2019-01-08 | Centrillion Technology Holdings Corporation | Methods and systems for sequencing long nucleic acids |
WO2011050938A1 (de) | 2009-10-26 | 2011-05-05 | Genovoxx Gmbh | Konjugate von nukleotiden und methoden zu deren anwendung |
US8324914B2 (en) | 2010-02-08 | 2012-12-04 | Genia Technologies, Inc. | Systems and methods for characterizing a molecule |
US20110192723A1 (en) * | 2010-02-08 | 2011-08-11 | Genia Technologies, Inc. | Systems and methods for manipulating a molecule in a nanopore |
US9678055B2 (en) | 2010-02-08 | 2017-06-13 | Genia Technologies, Inc. | Methods for forming a nanopore in a lipid bilayer |
US9605307B2 (en) | 2010-02-08 | 2017-03-28 | Genia Technologies, Inc. | Systems and methods for forming a nanopore in a lipid bilayer |
US8603741B2 (en) | 2010-02-18 | 2013-12-10 | Pacific Biosciences Of California, Inc. | Single molecule sequencing with two distinct chemistry steps |
US8759037B2 (en) | 2010-02-23 | 2014-06-24 | Illumina Cambridge Limited | Amplification methods to minimise sequence specific bias |
US8951940B2 (en) | 2010-04-01 | 2015-02-10 | Illumina, Inc. | Solid-phase clonal amplification and related methods |
US9029103B2 (en) | 2010-08-27 | 2015-05-12 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
CN103429754B (zh) * | 2010-09-23 | 2016-08-10 | 桑特里莱恩科技控股公司 | 天然延伸平行测序 |
GB201016484D0 (en) | 2010-09-30 | 2010-11-17 | Geneseque As | Method |
CN103328981B (zh) | 2010-10-04 | 2017-04-12 | 吉纳普赛斯股份有限公司 | 用于自动化可重复使用的平行生物反应的系统和方法 |
WO2013082164A1 (en) | 2011-11-28 | 2013-06-06 | Life Technologies Corporation | Enhanced ligation reactions |
US10443096B2 (en) | 2010-12-17 | 2019-10-15 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by synthesis using modified nucleotides and nanopore detection |
WO2012088341A2 (en) | 2010-12-22 | 2012-06-28 | Genia Technologies, Inc. | Nanopore-based single dna molecule characterization, identification and isolation using speed bumps |
WO2012100194A1 (en) | 2011-01-20 | 2012-07-26 | Ibis Biosciences, Inc. | Microfluidic transducer |
US9581563B2 (en) | 2011-01-24 | 2017-02-28 | Genia Technologies, Inc. | System for communicating information from an array of sensors |
US9110478B2 (en) | 2011-01-27 | 2015-08-18 | Genia Technologies, Inc. | Temperature regulation of measurement arrays |
US20120252682A1 (en) | 2011-04-01 | 2012-10-04 | Maples Corporate Services Limited | Methods and systems for sequencing nucleic acids |
WO2012146377A1 (de) | 2011-04-27 | 2012-11-01 | Dmitry Cherkasov | Methoden und komponenten zur detektion von nukleinsäureketten |
WO2012150035A1 (de) | 2011-05-04 | 2012-11-08 | Genovoxx Gmbh | Nukleosid-triphosphat-konjugate und methoden zu deren anwendung |
US9624539B2 (en) | 2011-05-23 | 2017-04-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by synthesis using Raman and infrared spectroscopy detection |
US9926596B2 (en) | 2011-05-27 | 2018-03-27 | Genapsys, Inc. | Systems and methods for genetic and biological analysis |
CN103946393A (zh) | 2011-08-19 | 2014-07-23 | 合成基因组股份有限公司 | 用于高通量识别新型杀虫组合物的整合的方法及其用途 |
US9988680B2 (en) | 2011-09-01 | 2018-06-05 | Case Western Reserve University | Non-natural nucleosides as theranostic agents |
AU2012308518B2 (en) | 2011-09-13 | 2017-08-17 | Agilent Technologies, Inc. | 5-methoxy, 3'-oh unblocked, fast photocleavable terminating nucleotides and methods for nucleic acid sequencing |
US10378051B2 (en) | 2011-09-29 | 2019-08-13 | Illumina Cambridge Limited | Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing |
US10093975B2 (en) | 2011-12-01 | 2018-10-09 | Genapsys, Inc. | Systems and methods for high efficiency electronic sequencing and detection |
CN104254771B (zh) | 2012-01-20 | 2018-01-12 | 吉尼亚科技公司 | 基于纳米孔的分子检测与测序 |
US8986629B2 (en) | 2012-02-27 | 2015-03-24 | Genia Technologies, Inc. | Sensor circuit for controlling, detecting, and measuring a molecular complex |
US10246479B2 (en) | 2012-04-09 | 2019-04-02 | The Trustees Of Columbia University In The City Of New York | Method of preparation of nanopore and uses thereof |
US9494554B2 (en) | 2012-06-15 | 2016-11-15 | Genia Technologies, Inc. | Chip set-up and high-accuracy nucleic acid sequencing |
ES2779699T3 (es) | 2012-06-20 | 2020-08-18 | Univ Columbia | Secuenciación de ácidos nucleicos mediante detección en nanoporos de moléculas de etiqueta |
US9605309B2 (en) | 2012-11-09 | 2017-03-28 | Genia Technologies, Inc. | Nucleic acid sequencing using tags |
US9759711B2 (en) | 2013-02-05 | 2017-09-12 | Genia Technologies, Inc. | Nanopore arrays |
CN103232489B (zh) * | 2013-02-18 | 2016-09-28 | 常州津坛生物科技有限公司 | 一种荧光探针化合物及其制备方法和用途 |
US9146248B2 (en) | 2013-03-14 | 2015-09-29 | Intelligent Bio-Systems, Inc. | Apparatus and methods for purging flow cells in nucleic acid sequencing instruments |
EP2971141B1 (de) | 2013-03-15 | 2018-11-28 | Genapsys, Inc. | Systeme für biologische analysen |
ES2685549T3 (es) | 2013-03-15 | 2018-10-09 | Illumina Cambridge Limited | Nucleósidos o nucleótidos modificados |
WO2014144883A1 (en) | 2013-03-15 | 2014-09-18 | The Trustees Of Columbia University In The City Of New York | Raman cluster tagged molecules for biological imaging |
US9591268B2 (en) | 2013-03-15 | 2017-03-07 | Qiagen Waltham, Inc. | Flow cell alignment methods and systems |
WO2014144898A1 (en) | 2013-03-15 | 2014-09-18 | The Trustees Of Columbia University In The City Of New York | Method for detecting multiple predetermined compounds in a sample |
US11331643B2 (en) | 2013-04-02 | 2022-05-17 | Molecular Assemblies, Inc. | Reusable initiators for synthesizing nucleic acids |
US10683536B2 (en) | 2013-04-02 | 2020-06-16 | Molecular Assemblies, Inc. | Reusable initiators for synthesizing nucleic acids |
US8808989B1 (en) | 2013-04-02 | 2014-08-19 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acids |
US9279149B2 (en) | 2013-04-02 | 2016-03-08 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acids |
US9771613B2 (en) | 2013-04-02 | 2017-09-26 | Molecular Assemblies, Inc. | Methods and apparatus for synthesizing nucleic acid |
US11384377B2 (en) | 2013-04-02 | 2022-07-12 | Molecular Assemblies, Inc. | Reusable initiators for synthesizing nucleic acids |
US10337049B2 (en) | 2013-06-17 | 2019-07-02 | The Trustees Of Columbia University In The City Of New York | Universal methylation profiling methods |
CN103601778A (zh) * | 2013-10-17 | 2014-02-26 | 上海交通大学 | 7-去氮-7-取代鸟嘌呤核苷的合成方法 |
US9551697B2 (en) | 2013-10-17 | 2017-01-24 | Genia Technologies, Inc. | Non-faradaic, capacitively coupled measurement in a nanopore cell array |
CN103601779B (zh) * | 2013-10-17 | 2016-05-04 | 上海交通大学 | 7-去氮-2’-脱氧-7-卤素取代鸟嘌呤核苷的合成方法 |
US10421995B2 (en) | 2013-10-23 | 2019-09-24 | Genia Technologies, Inc. | High speed molecular sensing with nanopores |
US9322062B2 (en) | 2013-10-23 | 2016-04-26 | Genia Technologies, Inc. | Process for biosensor well formation |
CN103588838A (zh) * | 2013-10-30 | 2014-02-19 | 上海交通大学 | 碱基修饰核苷酸的合成方法及其用途 |
CN103819523B (zh) * | 2014-01-22 | 2016-02-10 | 上海交通大学 | 7-去氮-7-卤素鸟嘌呤核苷的合成方法 |
CA2943952A1 (en) | 2014-03-24 | 2015-10-01 | The Trustees Of Columbia University In The City Of New York | Chemical methods for producing tagged nucleotides |
FR3020071B1 (fr) | 2014-04-17 | 2017-12-22 | Dna Script | Procede de synthese d'acides nucleiques, notamment d'acides nucleiques de grande longueur, utilisation du procede et kit pour la mise en œuvre du procede |
EP3556864B1 (de) | 2014-04-18 | 2020-12-09 | Genapsys, Inc. | Verfahren und systeme zur nukleinsäureamplifikation |
US20170218416A1 (en) * | 2014-05-16 | 2017-08-03 | The Regents Of The University Of California | Compositions and methods for single-molecule construction of dna |
US11021502B2 (en) | 2014-08-04 | 2021-06-01 | The Trustees Of The University Of Pennsylvania | Transcriptome in vivo analysis (TIVA) and transcriptome in situ analysis (TISA) |
GB201413929D0 (en) | 2014-08-06 | 2014-09-17 | Geneseque As | Method |
FR3025201B1 (fr) | 2014-09-02 | 2018-10-12 | Dna Script | Nucleotides modifies pour la synthese d'acides nucleiques, un kit renfermant de tels nucleotides et leur utilisation pour la production de genes ou sequences d'acides nucleiques synthetiques |
US10487357B2 (en) | 2014-10-03 | 2019-11-26 | Life Technologies Corporation | Methods of nucleic acid analysis using terminator nucleotides |
US10544455B2 (en) | 2014-10-03 | 2020-01-28 | Life Technologies Corporation | Sequencing methods, compositions and systems using terminator nucleotides |
US10059929B2 (en) | 2014-10-20 | 2018-08-28 | Molecular Assemblies, Inc. | Modified template-independent enzymes for polydeoxynucleotide synthesis |
WO2016144973A1 (en) | 2015-03-09 | 2016-09-15 | The Trustees Of Columbia University In The City Of New York | Pore-forming protein conjugate compositions and methods |
US9856285B2 (en) * | 2015-03-17 | 2018-01-02 | Kaohsiung Medical University | Reagents for universal site-specific labeling and modifications of nucleic acids |
EP3307908B1 (de) | 2015-06-09 | 2019-09-11 | Life Technologies Corporation | Verfahren zur molekularen markierung |
US10077470B2 (en) | 2015-07-21 | 2018-09-18 | Omniome, Inc. | Nucleic acid sequencing methods and systems |
AU2016298541B2 (en) | 2015-07-30 | 2019-10-31 | Illumina, Inc. | Orthogonal deblocking of nucleotides |
EP3356381A4 (de) | 2015-09-28 | 2019-06-12 | The Trustees of Columbia University in the City of New York | Design und synthese von auf neuartigem disulfidverbinder basierenden nukleotiden als reversible terminatoren zur dna-sequenzierung durch synthese |
EP3368668B1 (de) | 2015-10-28 | 2023-11-29 | Silicon Valley Scientific, Inc. | Verfahren und vorrichtung zur codierung von zellularen räumlichen positionsinformationen |
US11421264B2 (en) | 2015-11-06 | 2022-08-23 | IsoPlexis Corporation | Thiol-containing cleave reagents and oxidative wash |
EP3370731A4 (de) | 2015-11-06 | 2019-06-12 | Qiagen Sciences, LLC | Nukleotidanaloga |
US10753922B2 (en) | 2015-12-17 | 2020-08-25 | Hitachi High-Tech Corporation | Biomolecule measurement apparatus |
EP3414338B1 (de) | 2016-02-11 | 2022-12-21 | Qiagen Sciences, LLC | Polyphenolische additive in sequenzierung-durch-synthese |
US10036011B2 (en) | 2016-02-11 | 2018-07-31 | Qiagen Waltham, Inc. | Scavenger compounds for improved sequencing-by-synthesis |
EP3414347A4 (de) | 2016-02-11 | 2019-10-09 | Qiagen Sciences, LLC | Additiv zur verbesserung der sequenzierung durch syntheseleistung |
US10294514B2 (en) | 2016-04-29 | 2019-05-21 | Omniome, Inc. | Sequencing method employing ternary complex destabilization to identify cognate nucleotides |
US11266673B2 (en) | 2016-05-23 | 2022-03-08 | The Trustees Of Columbia University In The City Of New York | Nucleotide derivatives and methods of use thereof |
WO2017214127A1 (en) | 2016-06-06 | 2017-12-14 | Redvault Biosciences, Lp | Target reporter constructs and uses thereof |
CN116397014A (zh) | 2016-07-20 | 2023-07-07 | 测序健康公司 | 用于核酸测序的系统和方法 |
JP6828140B2 (ja) | 2016-08-15 | 2021-02-10 | オムニオム インコーポレイテッドOmniome, Inc. | 核酸をシーケンシングするための方法及びシステム |
US10428378B2 (en) | 2016-08-15 | 2019-10-01 | Omniome, Inc. | Sequencing method for rapid identification and processing of cognate nucleotide pairs |
WO2018089231A1 (en) | 2016-11-09 | 2018-05-17 | Qiagen Sciences Llc | Photoprotective mixtures as imaging reagents in sequencing-by-synthesis |
WO2018125759A1 (en) | 2016-12-30 | 2018-07-05 | Omniome, Inc. | Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides |
IL267836B2 (en) | 2017-01-04 | 2023-09-01 | Complete Genomics Inc | Stepwise sequence determination by unlabeled reversible terminations or natural nucleotides |
GB201700983D0 (en) | 2017-01-20 | 2017-03-08 | Life Tech As | Polymeric particles |
EP3571319A1 (de) | 2017-01-20 | 2019-11-27 | Omniome, Inc. | Verfahren zur detektion verwandter nukleotide in einem nukleinsäuresequenzierungaarbeitsablauf |
WO2018165207A1 (en) | 2017-03-06 | 2018-09-13 | Singular Genomic Systems, Inc. | Nucleic acid sequencing-by-synthesis (sbs) methods that combine sbs cycle steps |
WO2018183538A1 (en) * | 2017-03-28 | 2018-10-04 | The Trustees Of Columbia University In The City Of New York | 3'-o-modified nucleotide analogues with different cleavable linkers for attaching fluorescent labels to the base for dna sequencing by synthesis |
US9951385B1 (en) | 2017-04-25 | 2018-04-24 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
US10161003B2 (en) | 2017-04-25 | 2018-12-25 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
GB2578038B (en) | 2017-06-16 | 2022-11-23 | Life Technologies Corp | Control nucleic acids, and compositions, kits, and uses thereof |
US11110114B2 (en) | 2017-07-17 | 2021-09-07 | Oxford University Innovation Limited | Dinucleotides |
US11104700B2 (en) | 2017-07-17 | 2021-08-31 | Oxford University Innovation Limited | Oligonucleotides |
PL3663407T3 (pl) | 2017-08-01 | 2023-05-08 | Mgi Tech Co., Ltd. | Sposób sekwencjonowania kwasów nukleinowych |
CN111133115A (zh) | 2017-09-20 | 2020-05-08 | 瑞泽恩制药公司 | 用于其肿瘤携带高过客基因突变负荷的患者的免疫治疗方法 |
SG11202002516WA (en) | 2017-09-21 | 2020-04-29 | Genapsys Inc | Systems and methods for nucleic acid sequencing |
CA3079411C (en) | 2017-10-19 | 2023-12-05 | Omniome, Inc. | Simultaneous background reduction and complex stabilization in binding assay workflows |
WO2019079802A1 (en) * | 2017-10-20 | 2019-04-25 | President And Fellows Of Harvard College | METHODS OF HIGH-RATE ENCODING AND DECODING OF INFORMATION STORED IN DNA |
EP3728635A1 (de) | 2017-12-21 | 2020-10-28 | F. Hoffmann-La Roche AG | Zusammensetzungen und verfahren zur unidirektionalen nukleinsäuresequenzierung |
US10844430B2 (en) | 2018-01-24 | 2020-11-24 | Qiagen Sciences, Llc | DNA sequencing reaction additive |
US12103004B2 (en) | 2018-03-12 | 2024-10-01 | Silicon Valley Scientific, Inc. | Method and apparatus for processing tissue and other samples encoding cellular spatial position information |
US20210189460A1 (en) | 2018-04-25 | 2021-06-24 | Qiagen Sciences Llc | Sequential paired-end sequencing |
CA3067434A1 (en) | 2018-05-15 | 2019-11-21 | Illumina, Inc. | Compositions and methods for chemical cleavage and deprotection of surface-bound oligonucleotides |
US11995558B2 (en) | 2018-05-17 | 2024-05-28 | The Charles Stark Draper Laboratory, Inc. | Apparatus for high density information storage in molecular chains |
EP3793618A4 (de) | 2018-05-18 | 2022-03-02 | Singular Genomics Systems, Inc. | Silicium enthaltende nachweisbare verbindungen |
WO2019226689A1 (en) | 2018-05-22 | 2019-11-28 | Axbio Inc. | Methods, systems, and compositions for nucleic acid sequencing |
AU2019278884B2 (en) | 2018-05-30 | 2024-07-04 | Novartis Ag | Lipid-modified nucleic acid compounds and methods |
CN110818757A (zh) * | 2018-08-07 | 2020-02-21 | 深圳华大生命科学研究院 | 核苷酸类似物以及筛选dna聚合酶的方法 |
EP3850110A4 (de) | 2018-09-11 | 2022-06-08 | Singular Genomics Systems, Inc. | Modifizierte archaeale polymerasen der familie b |
EP3870593A4 (de) | 2018-10-25 | 2022-11-16 | Singular Genomics Systems, Inc. | Nukleotidanaloga |
WO2020093261A1 (zh) | 2018-11-07 | 2020-05-14 | 深圳华大智造极创科技有限公司 | 对多核苷酸进行测序的方法 |
US10704094B1 (en) | 2018-11-14 | 2020-07-07 | Element Biosciences, Inc. | Multipart reagents having increased avidity for polymerase binding |
US10768173B1 (en) | 2019-09-06 | 2020-09-08 | Element Biosciences, Inc. | Multivalent binding composition for nucleic acid analysis |
US10876148B2 (en) | 2018-11-14 | 2020-12-29 | Element Biosciences, Inc. | De novo surface preparation and uses thereof |
KR20210104779A (ko) | 2018-12-13 | 2021-08-25 | 디엔에이 스크립트 | 세포 및 생체분자 상의 직접 올리고뉴클레오타이드 합성 |
US11293061B2 (en) | 2018-12-26 | 2022-04-05 | Illumina Cambridge Limited | Sequencing methods using nucleotides with 3′ AOM blocking group |
US11970735B2 (en) | 2019-01-08 | 2024-04-30 | Singular Genomics Systems, Inc. | Nucleotide cleavable linkers and uses thereof |
WO2020165137A1 (en) | 2019-02-12 | 2020-08-20 | Dna Script | Efficient product cleavage in template-free enzymatic synthesis of polynucleotides. |
CA3130693A1 (en) | 2019-02-19 | 2020-08-27 | Ultima Genomics, Inc. | Linkers and methods for optical detection and sequencing |
CN113748216B (zh) | 2019-05-15 | 2024-04-23 | 青岛华大智造科技有限责任公司 | 一种基于自发光的单通道测序方法 |
JP7523526B2 (ja) | 2019-08-20 | 2024-07-26 | チンタオ エムジーアイ テック カンパニー リミテッド | 発光標識及び二次発光信号の光信号速度論に基づくポリヌクレオチドの配列決定方法 |
US11512295B2 (en) | 2019-09-12 | 2022-11-29 | Singular Genomics Systems, Inc. | Modified thermoccocus polymerases |
WO2021058438A1 (en) | 2019-09-23 | 2021-04-01 | Dna Script | Increasing long-sequence yields in template-free enzymatic synthesis of polynucleotides |
US11287422B2 (en) | 2019-09-23 | 2022-03-29 | Element Biosciences, Inc. | Multivalent binding composition for nucleic acid analysis |
WO2021092035A1 (en) | 2019-11-07 | 2021-05-14 | Singular Genomics Systems, Inc. | Silicon containing detectable compounds and uses thereof |
US20230061438A1 (en) | 2019-12-18 | 2023-03-02 | Roche Sequencing Solutions, Inc. | Methods of sequencing by synthesis using a consecutive labeling scheme |
AU2020412459B2 (en) | 2019-12-23 | 2022-12-08 | Singular Genomics Systems, Inc. | Methods for long read sequencing |
AU2020416718A1 (en) | 2019-12-31 | 2022-07-07 | Singular Genomics Systems, Inc. | Polynucleotide barcodes for long read sequencing |
US11807851B1 (en) | 2020-02-18 | 2023-11-07 | Ultima Genomics, Inc. | Modified polynucleotides and uses thereof |
US11034942B1 (en) | 2020-02-27 | 2021-06-15 | Singular Genomics Systems, Inc. | Modified pyrococcus polymerases and uses thereof |
US11359238B2 (en) | 2020-03-06 | 2022-06-14 | Singular Genomics Systems, Inc. | Linked paired strand sequencing |
US11174281B1 (en) | 2020-04-24 | 2021-11-16 | Singular Genomics Systems, Inc. | Modified nucleotides and uses thereof |
US20230160001A1 (en) * | 2020-05-08 | 2023-05-25 | Singular Genomics Systems, Inc. | Nucleotide cleavable linkers with rigid spacers and uses thereof |
EP4168421A1 (de) * | 2020-06-22 | 2023-04-26 | Illumina Cambridge Limited | Nukleoside und nukleotide mit 3'-acetal-blockierungsgruppe |
WO2022006081A1 (en) | 2020-06-30 | 2022-01-06 | Illumina, Inc. | Catalytically controlled sequencing by synthesis to produce scarless dna |
EP4153606A4 (de) | 2020-07-13 | 2024-10-02 | Singular Genomics Systems Inc | Verfahren zur sequenzierung komplementärer polynukleotide |
JP2023548149A (ja) * | 2020-10-29 | 2023-11-15 | アンバージェン, インコーポレイテッド | 生体分子プローブを使用した組織のマルチプレックス質量分析イメージングのための新規な光切断可能な質量タグ |
US12031179B2 (en) | 2020-10-30 | 2024-07-09 | Singular Genomics Systems, Inc. | Methods and compositions for reducing nucleotide impurities |
EP4251770A4 (de) | 2021-02-08 | 2024-05-29 | Singular Genomics Systems, Inc. | Verfahren und zusammensetzungen zur sequenzierung komplementärer polynukleotide |
US12054506B2 (en) | 2021-03-19 | 2024-08-06 | Singular Genomics Systems, Inc. | Reducing agents and uses thereof |
US11578320B2 (en) | 2021-04-27 | 2023-02-14 | Singular Genomics Systems, Inc. | High density sequencing and multiplexed priming |
EP4089098A1 (de) * | 2021-05-10 | 2022-11-16 | Miltenyi Biotec B.V. & Co. KG | Fret-farbstoffmarkierte reversible nukleotidterminatoren und ihre verwendung bei der sequenzierung von dna |
US12077789B2 (en) | 2021-08-14 | 2024-09-03 | Illumina, Inc. | Polymerases, compositions, and methods of use |
KR20240050459A (ko) | 2021-09-07 | 2024-04-18 | 엠쥐아이 테크 컴퍼니 엘티디. | 표적 폴리뉴클레오티드의 서열을 분석하기 위한 방법 |
KR20240052975A (ko) | 2021-09-07 | 2024-04-23 | 엠쥐아이 테크 컴퍼니 엘티디. | 표적 폴리뉴클레오티드의 서열을 분석하기 위한 방법 |
WO2023107673A2 (en) | 2021-12-10 | 2023-06-15 | Singular Genomics Systems, Inc. | Cleavable disulfide linkers and uses thereof |
AU2023244351A1 (en) | 2022-03-31 | 2024-01-18 | Illumina, Inc. | Nucleosides and nucleotides with 3' vinyl blocking group useful in sequencing by synthesis |
US20230383342A1 (en) | 2022-05-31 | 2023-11-30 | Illumina Cambridge Limited | Compositions and methods for nucleic acid sequencing |
US20240240217A1 (en) | 2022-12-09 | 2024-07-18 | Illumina, Inc. | Nucleosides and nucleotides with 3' blocking groups and cleavable linkers |
US20240271206A1 (en) | 2022-12-27 | 2024-08-15 | Illumina, Inc. | Methods of sequencing using 3' allyl blocked nucleotides |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991006678A1 (en) | 1989-10-26 | 1991-05-16 | Sri International | Dna sequencing |
US5151507A (en) | 1986-07-02 | 1992-09-29 | E. I. Du Pont De Nemours And Company | Alkynylamino-nucleotides |
US5547839A (en) | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
US5608063A (en) | 1986-07-02 | 1997-03-04 | E. I. Du Pont De Nemours And Company | Method, system and reagents for DNA sequencing |
WO2000053805A1 (en) | 1999-03-10 | 2000-09-14 | Asm Scientific, Inc. | A method for direct nucleic acid sequencing |
Family Cites Families (215)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4711955A (en) | 1981-04-17 | 1987-12-08 | Yale University | Modified nucleotides and methods of preparing and using same |
US5175269A (en) | 1984-01-30 | 1992-12-29 | Enzo Diagnostics, Inc. | Compound and detectable molecules having an oligo- or polynucleotide with modifiable reactive group |
US5118605A (en) * | 1984-10-16 | 1992-06-02 | Chiron Corporation | Polynucleotide determination with selectable cleavage sites |
US4824775A (en) | 1985-01-03 | 1989-04-25 | Molecular Diagnostics, Inc. | Cells labeled with multiple Fluorophores bound to a nucleic acid carrier |
US4772691A (en) | 1985-06-05 | 1988-09-20 | The Medical College Of Wisconsin, Inc. | Chemically cleavable nucleotides |
US4863849A (en) | 1985-07-18 | 1989-09-05 | New York Medical College | Automatable process for sequencing nucleotide |
DE3529478A1 (de) | 1985-08-16 | 1987-02-19 | Boehringer Mannheim Gmbh | 7-desaza-2'desoxyguanosin-nukleotide, verfahren zu deren herstellung und deren verwendung zur nukleinsaeure-sequenzierung |
US4888274A (en) | 1985-09-18 | 1989-12-19 | Yale University | RecA nucleoprotein filament and methods |
US5047519A (en) | 1986-07-02 | 1991-09-10 | E. I. Du Pont De Nemours And Company | Alkynylamino-nucleotides |
CA1340806C (en) | 1986-07-02 | 1999-11-02 | James Merrill Prober | Method, system and reagents for dna sequencing |
GB8810400D0 (en) | 1988-05-03 | 1988-06-08 | Southern E | Analysing polynucleotide sequences |
SE8801070D0 (sv) | 1988-03-23 | 1988-03-23 | Pharmacia Ab | Method for immobilizing a dna sequence on a solid support |
WO1989011548A1 (en) | 1988-05-20 | 1989-11-30 | Cetus Corporation | Immobilized sequence-specific probes |
US5174962A (en) | 1988-06-20 | 1992-12-29 | Genomyx, Inc. | Apparatus for determining DNA sequences by mass spectrometry |
US5043272A (en) | 1989-04-27 | 1991-08-27 | Life Technologies, Incorporated | Amplification of nucleic acid sequences using oligonucleotides of random sequence as primers |
GB8910880D0 (en) | 1989-05-11 | 1989-06-28 | Amersham Int Plc | Sequencing method |
US5424186A (en) | 1989-06-07 | 1995-06-13 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis |
US5302509A (en) | 1989-08-14 | 1994-04-12 | Beckman Instruments, Inc. | Method for sequencing polynucleotides |
US5437975A (en) | 1991-02-25 | 1995-08-01 | California Institute Of Biological Research | Consensus sequence primed polymerase chain reaction method for fingerprinting genomes |
JPH04337446A (ja) | 1991-05-15 | 1992-11-25 | Hitachi Ltd | 微粒子計測方法、定量方法および微粒子計測装置 |
US5556748A (en) | 1991-07-30 | 1996-09-17 | Xenopore Corporation | Methods of sandwich hybridization for the quantitative analysis of oligonucleotides |
WO1993005183A1 (en) | 1991-09-09 | 1993-03-18 | Baylor College Of Medicine | Method and device for rapid dna or rna sequencing determination by a base addition sequencing scheme |
DE4141178A1 (de) | 1991-12-13 | 1993-06-17 | Europ Lab Molekularbiolog | Verfahren zur sequenzierung von nukleinsaeuren |
DE4141698A1 (de) | 1991-12-18 | 1993-07-01 | Bosch Gmbh Robert | Verfahren zur schliesszeitregelung |
US6555349B1 (en) * | 1993-01-22 | 2003-04-29 | Cornell Research Foundation, Inc. | Methods for amplifying and sequencing nucleic acid molecules using a three component polymerase |
GB9208733D0 (en) | 1992-04-22 | 1992-06-10 | Medical Res Council | Dna sequencing method |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
GB9210176D0 (en) | 1992-05-12 | 1992-06-24 | Cemu Bioteknik Ab | Chemical method |
US5383858B1 (en) | 1992-08-17 | 1996-10-29 | Medrad Inc | Front-loading medical injector and syringe for use therewith |
US5436143A (en) | 1992-12-23 | 1995-07-25 | Hyman; Edward D. | Method for enzymatic synthesis of oligonucleotides |
US5516664A (en) | 1992-12-23 | 1996-05-14 | Hyman; Edward D. | Enzymatic synthesis of repeat regions of oligonucleotides |
US6074823A (en) * | 1993-03-19 | 2000-06-13 | Sequenom, Inc. | DNA sequencing by mass spectrometry via exonuclease degradation |
FR2703052B1 (fr) | 1993-03-26 | 1995-06-02 | Pasteur Institut | Nouvelle méthode de séquençage d'acides nucléiques. |
US5959089A (en) | 1993-07-19 | 1999-09-28 | Hannessian; Stephen | Amino-cyclodextrin syntheses |
GB9315847D0 (en) * | 1993-07-30 | 1993-09-15 | Isis Innovation | Tag reagent and assay method |
US5547859A (en) | 1993-08-02 | 1996-08-20 | Goodman; Myron F. | Chain-terminating nucleotides for DNA sequencing methods |
EP0730662A4 (de) | 1993-09-10 | 1999-11-24 | Genevue Inc | Optische detektierung der position von oligonukleotiden auf grossen dna molekülen |
WO1995014108A1 (en) * | 1993-11-17 | 1995-05-26 | Amersham International Plc | Primer extension mass spectroscopy nucleic acid sequencing method |
US5869255A (en) | 1994-02-01 | 1999-02-09 | The Regents Of The University Of California | Probes labeled with energy transfer couples dyes exemplified with DNA fragment analysis |
US6028190A (en) | 1994-02-01 | 2000-02-22 | The Regents Of The University Of California | Probes labeled with energy transfer coupled dyes |
US5654419A (en) | 1994-02-01 | 1997-08-05 | The Regents Of The University Of California | Fluorescent labels and their use in separations |
FR2716263B1 (fr) * | 1994-02-11 | 1997-01-17 | Pasteur Institut | Procédé d'alignement de macromolécules par passage d'un ménisque et applications dans un procédé de mise en évidence, séparation et/ou dosage d'une macromolécule dans un échantillon. |
US5552278A (en) * | 1994-04-04 | 1996-09-03 | Spectragen, Inc. | DNA sequencing by stepwise ligation and cleavage |
US5714330A (en) | 1994-04-04 | 1998-02-03 | Lynx Therapeutics, Inc. | DNA sequencing by stepwise ligation and cleavage |
US6589736B1 (en) | 1994-11-22 | 2003-07-08 | The Trustees Of Boston University | Photocleavable agents and conjugates for the detection and isolation of biomolecules |
US20020168642A1 (en) | 1994-06-06 | 2002-11-14 | Andrzej Drukier | Sequencing duplex DNA by mass spectroscopy |
US5709999A (en) * | 1994-08-12 | 1998-01-20 | Myriad Genetics Inc. | Linked breast and ovarian cancer susceptibility gene |
US5872244A (en) | 1994-09-02 | 1999-02-16 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US6214987B1 (en) * | 1994-09-02 | 2001-04-10 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent formation of phosphodiester bonds using protected nucleotides |
US5763594A (en) * | 1994-09-02 | 1998-06-09 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US5808045A (en) * | 1994-09-02 | 1998-09-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6232465B1 (en) * | 1994-09-02 | 2001-05-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6013445A (en) | 1996-06-06 | 2000-01-11 | Lynx Therapeutics, Inc. | Massively parallel signature sequencing by ligation of encoded adaptors |
WO1998053300A2 (en) | 1997-05-23 | 1998-11-26 | Lynx Therapeutics, Inc. | System and apparaus for sequential processing of analytes |
US5614365A (en) | 1994-10-17 | 1997-03-25 | President & Fellow Of Harvard College | DNA polymerase having modified nucleotide binding site for DNA sequencing |
DE4438918A1 (de) | 1994-11-04 | 1996-05-09 | Hoechst Ag | Modifizierte Oligonukleotide, deren Herstellung sowie deren Verwendung |
SE9500342D0 (sv) | 1995-01-31 | 1995-01-31 | Marek Kwiatkowski | Novel chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation |
WO1996027025A1 (en) | 1995-02-27 | 1996-09-06 | Ely Michael Rabani | Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism |
US5885813A (en) | 1995-05-31 | 1999-03-23 | Amersham Life Science, Inc. | Thermostable DNA polymerases |
EP0745686A1 (de) | 1995-06-01 | 1996-12-04 | Roche Diagnostics GmbH | Die Verwendung der 3'-wesentlichen Bearbeitungs-Wirksamkeit von DNS-Polymerase |
US5770365A (en) * | 1995-08-25 | 1998-06-23 | Tm Technologies, Inc. | Nucleic acid capture moieties |
US5728528A (en) | 1995-09-20 | 1998-03-17 | The Regents Of The University Of California | Universal spacer/energy transfer dyes |
US5962228A (en) * | 1995-11-17 | 1999-10-05 | Lynx Therapeutics, Inc. | DNA extension and analysis with rolling primers |
US5945283A (en) | 1995-12-18 | 1999-08-31 | Washington University | Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer |
US5658736A (en) | 1996-01-16 | 1997-08-19 | Genetics Institute, Inc. | Oligonucleotide population preparation |
US6613508B1 (en) * | 1996-01-23 | 2003-09-02 | Qiagen Genomics, Inc. | Methods and compositions for analyzing nucleic acid molecules utilizing sizing techniques |
JP2002515738A (ja) | 1996-01-23 | 2002-05-28 | アフィメトリックス,インコーポレイティド | 核酸分析法 |
EP0992511B1 (de) | 1996-01-23 | 2009-03-11 | Operon Biotechnologies, Inc. | Verfahren und Zusammensetzungen zur Bestimmung von Sequenzen von Nukleinsäure-Molekülen |
US6312893B1 (en) * | 1996-01-23 | 2001-11-06 | Qiagen Genomics, Inc. | Methods and compositions for determining the sequence of nucleic acid molecules |
WO1997035033A1 (en) | 1996-03-19 | 1997-09-25 | Molecular Tool, Inc. | Method for determining the nucleotide sequence of a polynucleotide |
WO1997047761A1 (en) | 1996-06-14 | 1997-12-18 | Sarnoff Corporation | Method for polynucleotide sequencing |
US5821356A (en) | 1996-08-12 | 1998-10-13 | The Perkin Elmer Corporation | Propargylethoxyamino nucleotides |
US6361940B1 (en) | 1996-09-24 | 2002-03-26 | Qiagen Genomics, Inc. | Compositions and methods for enhancing hybridization and priming specificity |
GB9620209D0 (en) * | 1996-09-27 | 1996-11-13 | Cemu Bioteknik Ab | Method of sequencing DNA |
US5885775A (en) * | 1996-10-04 | 1999-03-23 | Perseptive Biosystems, Inc. | Methods for determining sequences information in polynucleotides using mass spectrometry |
US5853992A (en) | 1996-10-04 | 1998-12-29 | The Regents Of The University Of California | Cyanine dyes with high-absorbance cross section as donor chromophores in energy transfer labels |
US5856104A (en) * | 1996-10-28 | 1999-01-05 | Affymetrix, Inc. | Polymorphisms in the glucose-6 phosphate dehydrogenase locus |
US5858671A (en) | 1996-11-01 | 1999-01-12 | The University Of Iowa Research Foundation | Iterative and regenerative DNA sequencing method |
EP0963443B1 (de) | 1996-12-10 | 2006-03-08 | Sequenom, Inc. | Abspaltbare, nicht-flüchtige moleküle zur massenmarkierung |
WO1998030720A1 (en) | 1997-01-08 | 1998-07-16 | Proligo Llc | Bioconjugation of oligonucleotides |
US5804386A (en) | 1997-01-15 | 1998-09-08 | Incyte Pharmaceuticals, Inc. | Sets of labeled energy transfer fluorescent primers and their use in multi component analysis |
US6046005A (en) | 1997-01-15 | 2000-04-04 | Incyte Pharmaceuticals, Inc. | Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group |
US5876936A (en) * | 1997-01-15 | 1999-03-02 | Incyte Pharmaceuticals, Inc. | Nucleic acid sequencing with solid phase capturable terminators |
FR2758822B1 (fr) | 1997-01-30 | 1999-07-02 | Centre Nat Rech Scient | Utilisation d'un polypeptide a titre de recepteur cellulaire des adenovirus |
WO1998033939A1 (fr) | 1997-01-31 | 1998-08-06 | Hitachi, Ltd. | Procede pour determiner une sequence de base d'acide nucleique et appareil correspondant |
US6197557B1 (en) | 1997-03-05 | 2001-03-06 | The Regents Of The University Of Michigan | Compositions and methods for analysis of nucleic acids |
ES2230631T3 (es) | 1997-03-20 | 2005-05-01 | F. Hoffmann-La Roche Ag | Cebadores modificados. |
EP1591541B1 (de) | 1997-04-01 | 2012-02-15 | Illumina Cambridge Limited | Verfahren zur Vervielfältigung von Nukleinsäuren |
US6309829B1 (en) * | 1997-05-27 | 2001-10-30 | Pe Corporation (Ny) | Length determination of nucleic acid repeat sequences by discontinuous primer extension |
EP2267165B1 (de) | 1997-07-28 | 2016-11-30 | Gen-Probe Incorporated | Sequenzanalyse von Nukleinsäuren |
US5834203A (en) | 1997-08-25 | 1998-11-10 | Applied Spectral Imaging | Method for classification of pixels into groups according to their spectra using a plurality of wide band filters and hardwire therefore |
US6008379A (en) | 1997-10-01 | 1999-12-28 | The Perkin-Elmer Corporation | Aromatic-substituted xanthene dyes |
US6485944B1 (en) | 1997-10-10 | 2002-11-26 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
CA2305449A1 (en) | 1997-10-10 | 1999-04-22 | President & Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US6511803B1 (en) | 1997-10-10 | 2003-01-28 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US6227607B1 (en) | 1997-10-15 | 2001-05-08 | James E. Dewald, Jr. | Latching mechanism for latching a slide out room to main living area |
US6627436B2 (en) | 1997-10-31 | 2003-09-30 | Stratagene | Vector for gene expression in prokaryotic and eukaryotic systems |
US5876036A (en) | 1997-11-10 | 1999-03-02 | Mathis; Darryl | One-on-one basketball game apparatus |
US5936087A (en) | 1997-11-25 | 1999-08-10 | The Perkin-Elmer Corporation | Dibenzorhodamine dyes |
GB9815163D0 (en) | 1998-07-13 | 1998-09-09 | Brax Genomics Ltd | Compounds |
US6232103B1 (en) | 1998-03-23 | 2001-05-15 | Invitrogen Corporation | Methods useful for nucleic acid sequencing using modified nucleotides comprising phenylboronic acid |
JP3813818B2 (ja) | 1998-05-01 | 2006-08-23 | アリゾナ ボード オブ リージェンツ | オリゴヌクレオチドおよびdna分子のヌクレオチド配列の決定方法 |
US6780591B2 (en) | 1998-05-01 | 2004-08-24 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
US6175107B1 (en) * | 1998-05-27 | 2001-01-16 | Owens-Brockway Glass Container Inc. | Inspection of containers employing a single area array sensor and alternately strobed light sources |
US6096875A (en) | 1998-05-29 | 2000-08-01 | The Perlein-Elmer Corporation | Nucleotide compounds including a rigid linker |
US5948648A (en) | 1998-05-29 | 1999-09-07 | Khan; Shaheer H. | Nucleotide compounds including a rigid linker |
US6218530B1 (en) | 1998-06-02 | 2001-04-17 | Ambergen Inc. | Compounds and methods for detecting biomolecules |
US6287821B1 (en) | 1998-06-11 | 2001-09-11 | Orchid Biosciences, Inc. | Nucleotide analogues with 3'-pro-fluorescent fluorophores in nucleic acid sequence analysis |
US6335155B1 (en) | 1998-06-26 | 2002-01-01 | Sunesis Pharmaceuticals, Inc. | Methods for rapidly identifying small organic molecule ligands for binding to biological target molecules |
US6218118B1 (en) | 1998-07-09 | 2001-04-17 | Agilent Technologies, Inc. | Method and mixture reagents for analyzing the nucleotide sequence of nucleic acids by mass spectrometry |
GB0002310D0 (en) | 2000-02-01 | 2000-03-22 | Solexa Ltd | Polynucleotide sequencing |
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
WO2000006770A1 (en) * | 1998-07-30 | 2000-02-10 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
EP1104491A4 (de) | 1998-08-11 | 2003-01-29 | Caliper Techn Corp | Verfahren und systeme zur sequenzierung von dna mkittels unterscheidung der zerfallszeiten fluoreszierender sonden |
US6245507B1 (en) * | 1998-08-18 | 2001-06-12 | Orchid Biosciences, Inc. | In-line complete hyperspectral fluorescent imaging of nucleic acid molecules |
US20020012913A1 (en) | 1998-09-15 | 2002-01-31 | Kevin L. Gunderson | Nucleic acid analysis using complete n-mer arrays |
DE19844931C1 (de) | 1998-09-30 | 2000-06-15 | Stefan Seeger | Verfahren zur DNS- oder RNS-Sequenzierung |
US6500650B1 (en) | 1998-10-01 | 2002-12-31 | Variagenics, Inc. | Method for identifying polymorphisms |
US6221592B1 (en) * | 1998-10-20 | 2001-04-24 | Wisconsin Alumi Research Foundation | Computer-based methods and systems for sequencing of individual nucleic acid molecules |
AU2180200A (en) | 1998-12-14 | 2000-07-03 | Li-Cor Inc. | A heterogeneous assay for pyrophosphate detection |
US6207831B1 (en) * | 1998-12-21 | 2001-03-27 | Novartis Ag | Fluorescent dyes (AIDA) for solid phase and solution phase screening |
US6380378B1 (en) | 1998-12-24 | 2002-04-30 | Toagosei Company, Ltd. | Nucleotide compound, nucleotide block oligonucleotide, and method for producing them |
AU2496900A (en) * | 1999-01-06 | 2000-07-24 | Hyseq, Inc. | Enhanced sequencing by hybridization using pools of probes |
US20030054360A1 (en) * | 1999-01-19 | 2003-03-20 | Larry Gold | Method and apparatus for the automated generation of nucleic acid ligands |
EP2177627B1 (de) | 1999-02-23 | 2012-05-02 | Caliper Life Sciences, Inc. | Manipulation von Mikropartikeln in mikrofluidischen Systemen |
US7037654B2 (en) * | 1999-04-30 | 2006-05-02 | Aclara Biosciences, Inc. | Methods and compositions for enhancing detection in determinations employing cleavable electrophoretic tag reagents |
US7056661B2 (en) | 1999-05-19 | 2006-06-06 | Cornell Research Foundation, Inc. | Method for sequencing nucleic acid molecules |
US6277607B1 (en) * | 1999-05-24 | 2001-08-21 | Sanjay Tyagi | High specificity primers, amplification methods and kits |
US6248884B1 (en) | 1999-06-03 | 2001-06-19 | The Perkin-Elmer Corporation | Extended rhodamine compounds useful as fluorescent labels |
DE60019512T2 (de) * | 1999-06-07 | 2006-02-23 | Fuji Photo Film Co., Ltd., Minami-Ashigara | DNA Chip, PNA Chip, sowie Herstellungsverfahren |
US6818395B1 (en) | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
US6242193B1 (en) | 1999-07-30 | 2001-06-05 | Hitachi, Ltd. | Apparatus for determining base sequence of nucleic acid |
US6316230B1 (en) | 1999-08-13 | 2001-11-13 | Applera Corporation | Polymerase extension at 3′ terminus of PNA-DNA chimera |
EP1212342A4 (de) * | 1999-08-16 | 2003-04-02 | Human Genome Sciences Inc | 18 human-sekretierte proteine |
US6982146B1 (en) | 1999-08-30 | 2006-01-03 | The United States Of America As Represented By The Department Of Health And Human Services | High speed parallel molecular nucleic acid sequencing |
WO2001016375A2 (en) | 1999-08-30 | 2001-03-08 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | High speed parallel molecular nucleic acid sequencing |
US6664399B1 (en) | 1999-09-02 | 2003-12-16 | E. I. Du Pont De Nemours & Company | Triazole linked carbohydrates |
US6274320B1 (en) * | 1999-09-16 | 2001-08-14 | Curagen Corporation | Method of sequencing a nucleic acid |
AU7537200A (en) | 1999-09-29 | 2001-04-30 | Solexa Ltd. | Polynucleotide sequencing |
US6309836B1 (en) | 1999-10-05 | 2001-10-30 | Marek Kwiatkowski | Compounds for protecting hydroxyls and methods for their use |
WO2001027625A1 (en) | 1999-10-08 | 2001-04-19 | Leif Robert C | Conjugated polymer tag complexes |
WO2001029257A2 (en) * | 1999-10-22 | 2001-04-26 | Genset | Methods of genetic cluster analysis |
AU1471001A (en) | 1999-11-04 | 2001-05-14 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
WO2001048184A2 (de) * | 1999-12-23 | 2001-07-05 | Axaron Bioscience Ag | Verfahren zur parallelen sequenzierung eines nukleinsäuregemisches an einer oberfläche |
GB0002389D0 (en) | 2000-02-02 | 2000-03-22 | Solexa Ltd | Molecular arrays |
AU2001241125A1 (en) | 2000-03-14 | 2001-09-24 | Itoham Foods Inc. | Process for producing polypeptide having disulfide bond |
US6495680B1 (en) | 2000-03-24 | 2002-12-17 | The University Of Toledo | Helices and nanotubes on folding compositions and method of making same |
EP1182267B1 (de) | 2000-03-30 | 2012-01-18 | Toyota Jidosha Kabushiki Kaisha | Verfahren zur bestimmung der basensequenz eines einzelnen nukleinsäuremoleküls |
GB0013276D0 (en) | 2000-06-01 | 2000-07-26 | Amersham Pharm Biotech Uk Ltd | Nucleotide analogues |
GB0016473D0 (en) | 2000-07-05 | 2000-08-23 | Amersham Pharm Biotech Uk Ltd | Sequencing method |
EP1307469B1 (de) * | 2000-08-03 | 2008-01-23 | Boehringer Mannheim Gmbh | Nukleinsäurebindende verbindungen mit pyrazolo¬3,4-d pyrimidinanalogen von purin-2,6-diamin und ihre verwendung |
US20060057565A1 (en) | 2000-09-11 | 2006-03-16 | Jingyue Ju | Combinatorial fluorescence energy transfer tags and uses thereof |
WO2002022883A1 (en) | 2000-09-11 | 2002-03-21 | The Trustees Of Columbia University In The City Of New York | Combinatorial fluorescence energy transfer tags and uses thereof |
US6627748B1 (en) | 2000-09-11 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Combinatorial fluorescence energy transfer tags and their applications for multiplex genetic analyses |
US9708358B2 (en) | 2000-10-06 | 2017-07-18 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
EP3034627B1 (de) | 2000-10-06 | 2019-01-30 | The Trustees of Columbia University in the City of New York | Massives paralleles verfahren zum entschlüsseln von dna und rna |
EP1368497A4 (de) | 2001-03-12 | 2007-08-15 | California Inst Of Techn | Verfahren und vorrichtung zur analyse von polynukleotidsequenzen durch asynchrone basenverlängerung |
US20030027140A1 (en) | 2001-03-30 | 2003-02-06 | Jingyue Ju | High-fidelity DNA sequencing using solid phase capturable dideoxynucleotides and mass spectrometry |
DE10120798B4 (de) | 2001-04-27 | 2005-12-29 | Genovoxx Gmbh | Verfahren zur Bestimmung der Genexpression |
DE10120797B4 (de) | 2001-04-27 | 2005-12-22 | Genovoxx Gmbh | Verfahren zur Analyse von Nukleinsäureketten |
US6573677B2 (en) * | 2001-06-18 | 2003-06-03 | Motorola, Inc. | Method of compensating for abrupt load changes in an anti-pinch window control system |
US6613523B2 (en) | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
CA2452474C (en) | 2001-07-13 | 2012-03-06 | Ambergen, Inc. | Nucleotide compositions comprising photocleavable markers and methods of preparation thereof |
US6902904B2 (en) | 2001-08-27 | 2005-06-07 | Pharmanetics Incorporated | Coagulation assay reagents containing lanthanides |
DE10239504A1 (de) | 2001-08-29 | 2003-04-24 | Genovoxx Gmbh | Verfahren zur Analyse von Nukleinsäurekettensequenzen und der Genexpression |
GB0128526D0 (en) | 2001-11-29 | 2002-01-23 | Amersham Pharm Biotech Uk Ltd | Nucleotide analogues |
GB0129012D0 (en) | 2001-12-04 | 2002-01-23 | Solexa Ltd | Labelled nucleotides |
US7057026B2 (en) * | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
EP1572902B1 (de) * | 2002-02-01 | 2014-06-11 | Life Technologies Corporation | HOCHWIRKSAME siRNAS ZUR REDUZIERUNG DER EXPRESSION VON ZIELGENEN |
AU2003244370A1 (en) | 2002-02-05 | 2003-09-02 | Baylor College Of Medecine | Substituted 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene compounds for 8-color dna sequencing |
US6858393B1 (en) | 2002-03-13 | 2005-02-22 | Stratagene California | Chain terminators for DNA synthesis |
AU2003214765B2 (en) | 2002-04-04 | 2007-07-26 | Qiagen Gmbh | New method |
AU2003224836A1 (en) * | 2002-04-12 | 2003-10-27 | Stratagene | Dual-labeled nucleotides |
US7074597B2 (en) | 2002-07-12 | 2006-07-11 | The Trustees Of Columbia University In The City Of New York | Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry |
ATE322500T1 (de) | 2002-08-12 | 2006-04-15 | Hoffmann La Roche | Verfahren zur herstellung von einem ribofuranose |
HUE055068T2 (hu) | 2002-08-23 | 2021-10-28 | Illumina Cambridge Ltd | Jelzett nukleotidok |
US7414116B2 (en) | 2002-08-23 | 2008-08-19 | Illumina Cambridge Limited | Labelled nucleotides |
DK3363809T3 (da) | 2002-08-23 | 2020-05-04 | Illumina Cambridge Ltd | Modificerede nukleotider til polynukleotidsekvensering |
JP2004085934A (ja) * | 2002-08-27 | 2004-03-18 | Pentax Corp | ズームレンズ鏡筒の繰出カム機構及び繰出カム機構 |
WO2004055160A2 (en) | 2002-12-13 | 2004-07-01 | The Trustees Of Columbia University In The City Of New York | Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry |
WO2004096747A1 (en) | 2003-04-28 | 2004-11-11 | Basf Aktiengesellschaft | Process for the separation of palladium catalyst from crude reaction mixtures of aryl acetic acids obtained by carbonylation |
DE10324808B4 (de) | 2003-06-02 | 2005-10-20 | Bosch Gmbh Robert | Optimierte Steuergerät-Konfiguration für eine Kfz-Feststellbremse |
US20050170367A1 (en) | 2003-06-10 | 2005-08-04 | Quake Stephen R. | Fluorescently labeled nucleoside triphosphates and analogs thereof for sequencing nucleic acids |
GB0321306D0 (en) * | 2003-09-11 | 2003-10-15 | Solexa Ltd | Modified polymerases for improved incorporation of nucleotide analogues |
US7622026B2 (en) * | 2004-03-02 | 2009-11-24 | Panasonic Corporation | Biosensor |
US7622279B2 (en) * | 2004-03-03 | 2009-11-24 | The Trustees Of Columbia University In The City Of New York | Photocleavable fluorescent nucleotides for DNA sequencing on chip constructed by site-specific coupling chemistry |
US20050239134A1 (en) | 2004-04-21 | 2005-10-27 | Board Of Regents, The University Of Texas System | Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein |
WO2006073436A2 (en) | 2004-04-29 | 2006-07-13 | The Trustees Of Columbia University In The City Of New York | Mass tag pcr for multiplex diagnostics |
US20060105461A1 (en) * | 2004-10-22 | 2006-05-18 | May Tom-Moy | Nanopore analysis system |
US7393533B1 (en) | 2004-11-08 | 2008-07-01 | La Jolla Institute For Allergy And Immunology | H3L envelope protein immunization methods and H3L envelope passive protection methods |
WO2007002204A2 (en) | 2005-06-21 | 2007-01-04 | The Trustees Of Columbia University In The City Of New York | Pyrosequencing methods and related compostions |
GB2446084B (en) | 2005-10-31 | 2011-03-02 | Univ Columbia | Synthesis of four color 3-o-allyl modified photocleavable fluorescent nucleotides and related methods |
US8796432B2 (en) | 2005-10-31 | 2014-08-05 | The Trustees Of Columbia University In The City Of New York | Chemically cleavable 3'-o-allyl-DNTP-allyl-fluorophore fluorescent nucleotide analogues and related methods |
CA2630544A1 (en) * | 2005-11-21 | 2007-05-31 | The Trustees Of Columbia University In The City Of New York | Multiplex digital immuno-sensing using a library of photocleavable mass tags |
US8889348B2 (en) | 2006-06-07 | 2014-11-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by nanopore using modified nucleotides |
US8399188B2 (en) | 2006-09-28 | 2013-03-19 | Illumina, Inc. | Compositions and methods for nucleotide sequencing |
WO2008069973A2 (en) | 2006-12-01 | 2008-06-12 | The Trustees Of Columbia University In The City Of New York | Four-color dna sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators |
US8481259B2 (en) | 2007-02-05 | 2013-07-09 | Intelligent Bio-Systems, Inc. | Methods and devices for sequencing nucleic acids in smaller batches |
US8612161B2 (en) | 2008-03-19 | 2013-12-17 | Intelligent Biosystems Inc. | Methods and compositions for base calling nucleic acids |
EP4310194A3 (de) | 2007-10-19 | 2024-10-16 | The Trustees of Columbia University in the City of New York | Entwurf und synthese von spaltbaren fluoreszierenden nukleotiden als reversible terminatoren zur dna-sequenzierung durch synthese |
EP2209911B1 (de) | 2007-10-19 | 2013-10-16 | The Trustees of Columbia University in the City of New York | Dna-sequenzierung mit reversiblen nicht-fluoreszenz-nukleotid-terminatoren und mit einer spaltbaren markierung modifizierten nukleotidterminatoren und eine deoxyinosineverbindung mit einer reversiblen terminatorgruppe |
JP5018402B2 (ja) | 2007-10-31 | 2012-09-05 | ダイキン工業株式会社 | 調湿装置 |
DE102009027275A1 (de) | 2009-06-29 | 2010-12-30 | Robert Bosch Gmbh | Bildverarbeitungsverfahren für ein Fahrerassistenzsystem eines Kraftfahrzeugs zur Detektion und Klassifikation wenigstens eines Teils wenigstens eines vorgegebenen Bildelements |
US9309569B2 (en) | 2010-08-26 | 2016-04-12 | Intelligent Bio-Systems, Inc. | Methods and compositions for sequencing nucleic acid using charge |
US10443096B2 (en) | 2010-12-17 | 2019-10-15 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by synthesis using modified nucleotides and nanopore detection |
US9624539B2 (en) | 2011-05-23 | 2017-04-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by synthesis using Raman and infrared spectroscopy detection |
US10246479B2 (en) | 2012-04-09 | 2019-04-02 | The Trustees Of Columbia University In The City Of New York | Method of preparation of nanopore and uses thereof |
ES2779699T3 (es) | 2012-06-20 | 2020-08-18 | Univ Columbia | Secuenciación de ácidos nucleicos mediante detección en nanoporos de moléculas de etiqueta |
WO2014144898A1 (en) | 2013-03-15 | 2014-09-18 | The Trustees Of Columbia University In The City Of New York | Method for detecting multiple predetermined compounds in a sample |
WO2014144883A1 (en) | 2013-03-15 | 2014-09-18 | The Trustees Of Columbia University In The City Of New York | Raman cluster tagged molecules for biological imaging |
US9159610B2 (en) | 2013-10-23 | 2015-10-13 | Globalfoundires, Inc. | Hybrid manganese and manganese nitride barriers for back-end-of-line metallization and methods for fabricating the same |
CN106164297B (zh) | 2014-02-12 | 2020-09-08 | 纽约哥伦比亚大学理事会 | 单分子电子多重snp试验以及pcr分析 |
CA2943952A1 (en) | 2014-03-24 | 2015-10-01 | The Trustees Of Columbia University In The City Of New York | Chemical methods for producing tagged nucleotides |
US20170101675A1 (en) | 2014-05-19 | 2017-04-13 | The Trustees Of Columbia University In The City Of New York | Ion sensor dna and rna sequencing by synthesis using nucleotide reversible terminators |
US10113084B2 (en) | 2014-05-22 | 2018-10-30 | Illinois Tool Works, Inc. | Mold release agent |
-
2001
- 2001-10-05 EP EP15195765.1A patent/EP3034627B1/de not_active Revoked
- 2001-10-05 JP JP2002532574A patent/JP2004510433A/ja not_active Withdrawn
- 2001-10-05 CA CA2425112A patent/CA2425112C/en not_active Expired - Lifetime
- 2001-10-05 DE DE60127162T patent/DE60127162T2/de not_active Expired - Lifetime
- 2001-10-05 AT AT01977533T patent/ATE356222T1/de active
- 2001-10-05 WO PCT/US2001/031243 patent/WO2002029003A2/en active IP Right Grant
- 2001-10-05 AU AU2001296645A patent/AU2001296645A1/en not_active Abandoned
- 2001-10-05 EP EP01977533A patent/EP1337541B1/de not_active Expired - Lifetime
- 2001-10-05 DE DE20122767U patent/DE20122767U1/de not_active Expired - Lifetime
- 2001-10-05 EP EP07004522A patent/EP1790736A3/de not_active Ceased
- 2001-10-05 US US09/972,364 patent/US6664079B2/en not_active Expired - Lifetime
-
2003
- 2003-11-06 US US10/702,203 patent/US7345159B2/en not_active Expired - Lifetime
-
2007
- 2007-06-05 US US11/810,509 patent/US7790869B2/en not_active Expired - Fee Related
- 2007-08-20 US US11/894,808 patent/US7635578B2/en not_active Expired - Fee Related
- 2007-08-20 US US11/894,690 patent/US7713698B2/en not_active Expired - Fee Related
-
2010
- 2010-07-19 US US12/804,284 patent/US8088575B2/en not_active Expired - Fee Related
-
2011
- 2011-12-28 US US13/339,089 patent/US20120142006A1/en not_active Abandoned
-
2012
- 2012-11-08 US US13/672,437 patent/US20130096015A1/en not_active Abandoned
-
2013
- 2013-08-05 US US13/959,660 patent/US9133511B2/en not_active Expired - Fee Related
-
2015
- 2015-03-27 US US14/670,748 patent/US10669577B2/en not_active Expired - Fee Related
-
2016
- 2016-05-27 US US15/167,917 patent/US9725480B2/en not_active Expired - Lifetime
- 2016-12-15 US US15/380,311 patent/US9719139B2/en not_active Expired - Lifetime
- 2016-12-15 US US15/380,270 patent/US9718852B2/en not_active Expired - Lifetime
- 2016-12-22 HK HK16114596A patent/HK1227441A1/zh not_active IP Right Cessation
-
2017
- 2017-07-12 US US15/647,657 patent/US9868985B2/en not_active Expired - Lifetime
-
2018
- 2018-03-08 US US15/915,983 patent/US10669582B2/en not_active Expired - Fee Related
- 2018-10-01 US US16/149,114 patent/US10407459B2/en not_active Expired - Fee Related
- 2018-10-01 US US16/149,098 patent/US10407458B2/en not_active Expired - Fee Related
- 2018-10-02 US US16/150,185 patent/US10435742B2/en not_active Expired - Fee Related
- 2018-10-02 US US16/150,180 patent/US10457984B2/en not_active Expired - Fee Related
- 2018-10-02 US US16/150,191 patent/US10428380B2/en not_active Expired - Fee Related
- 2018-11-26 US US16/200,571 patent/US10577652B2/en not_active Expired - Fee Related
- 2018-11-26 US US16/200,557 patent/US10662472B2/en not_active Expired - Fee Related
- 2018-11-26 US US16/200,540 patent/US10570446B2/en not_active Expired - Fee Related
- 2018-11-26 US US16/200,549 patent/US10648028B2/en not_active Expired - Fee Related
- 2018-11-26 US US16/200,564 patent/US10633700B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151507A (en) | 1986-07-02 | 1992-09-29 | E. I. Du Pont De Nemours And Company | Alkynylamino-nucleotides |
US5608063A (en) | 1986-07-02 | 1997-03-04 | E. I. Du Pont De Nemours And Company | Method, system and reagents for DNA sequencing |
US5547839A (en) | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
WO1991006678A1 (en) | 1989-10-26 | 1991-05-16 | Sri International | Dna sequencing |
WO2000053805A1 (en) | 1999-03-10 | 2000-09-14 | Asm Scientific, Inc. | A method for direct nucleic acid sequencing |
Non-Patent Citations (12)
Title |
---|
ALBERTS ET AL.: "Molecular Biology of the Cell, 3rd ed.", 1994, New York, pages: 98 - 103, XP055656993 |
B. B. ROSENBLUM ET AL.: "NEW DYE-LABELED TERMINATORS FOR IMPROVED DNA SEQUENCING PATTERNS", NUCLEIC ACIDS RESEARCH, vol. 25, no. 22, 1997, pages 4500 - 4504, XP002201149 |
B. CANARD ET AL.: "Catalytic editing properties of DNA polymerases (pucleotide analogues/termination/active site/mechanism)", PNAS, vol. 92, 1995, pages 10859 - 10863, XP055488231 |
DATABASE INSPEC [online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 24 June 1994 (1994-06-24), PELLETIER H ET AL: "Structures of ternary complexes of rat DNA polymerase [beta], a DNA template-primer, and ddCTP", Database accession no. 4729992 * |
J. M. PROBER ET AL.: "A SYSTEM FOR RAPID DNA SEQUENCING WITH FLUORESCENT CHAIN- TERMINATING DIDEOXYNUCLEOTIDES", SCIENCE, vol. 238, no. 4825, 1987, pages 336 - 341, XP000604017 |
M. B. WELCH ET AL.: "Syntheses of Nucleosides Designed for Combinatorial DNA Sequencing", CHEM. EUR. J., vol. 5, no. 3, 1999, pages 951 - 960, XP002570325 |
M. L. METZKER ET AL.: "Termination of DNA synthesis by novel 3'-modified-deoxyribonucleoside 5'-triphosphates", NUCLEIC ACIDS RESEARCH, vol. 22, no. 20, 1994, pages 4259 - 4267, XP002191232 |
N. RAMZAEVA ET AL.: "7-DEAZAGUANINE DNA: OLIGONUCLEOTIDES WITH HYDROPHOBIC OR CATIONIC SIDE CHAINS", HELVETICA CHIMICA ACTA, vol. 80, 1997, pages 1809 - 1822, XP002064597 |
N. RAMZAEVA ET AL.: "7-SUBSTITUTED 7-DEAZA-2'-DEOXYGUANOSINES: REGIOSELECTIVE HALOGENATION OF PYRROLOÚ2,3-D3⁄4PYRIMIDINE NUCLEOSIDES", HELVETICA CHIMICA ACTA, vol. 78, 1995, pages 1083 - 1090, XP000655172 |
R. GIGG ET AL.: "The Allyl Ether as a Protecting Group in Carbohydrate Chemistry. Part II", JOURNAL OF THE CHEMICAL SOCIETY, 1968, pages 1903 - 1911, XP055656997 |
SCIENCE USA, vol. 264, no. 5167, 1994, pages 1891 - 1903, ISSN: 0036-8075 * |
SEELA ET AL.: "OLIGONUCLEOTIDE DUPLEX STABILITY CONTROLLED BY THE 7-SUBSTITUENTS OF 7-DEAZAGUANINE BASES", BIOORGANIC & MECHANICAL CHEMISTRY LETTERS, vol. 5, no. 24, 1995, pages 3049 - 3052, XP000655156 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10577652B2 (en) | Massive parallel method for decoding DNA and RNA | |
US9708358B2 (en) | Massive parallel method for decoding DNA and RNA | |
CA2754196A1 (en) | Massive parallel method for decoding dna and rna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160209 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1337541 Country of ref document: EP Kind code of ref document: P Ref document number: 1790736 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1227441 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 60151059 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C12Q0001680000 Ipc: C12Q0001686000 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C12Q 1/6874 20180101ALI20180724BHEP Ipc: C12Q 1/686 20180101AFI20180724BHEP Ipc: C12Q 1/6869 20180101ALI20180724BHEP Ipc: C12Q 1/6876 20180101ALI20180724BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180813 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: EDWARDS, JOHN, ROBERT Inventor name: JU, JINGYUE Inventor name: ITAGAKI, YASUHIRO Inventor name: LI, ZENGMIN |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20181212 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1337541 Country of ref document: EP Kind code of ref document: P Ref document number: 1790736 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: C12Q 1/6876 20180101ALI20180724BHEP Ipc: C12Q 1/686 20180101AFI20180724BHEP Ipc: C12Q 1/6869 20180101ALI20180724BHEP Ipc: C12Q 1/6874 20180101ALI20180724BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60151059 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 60151059 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: ILLUMINA, INC. Effective date: 20191029 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60151059 Country of ref document: DE Representative=s name: WITTHOFF JAEKEL STEINECKE PATENTANWAELTE PARTG, DE |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201022 Year of fee payment: 20 Ref country code: CH Payment date: 20201021 Year of fee payment: 20 Ref country code: FR Payment date: 20201022 Year of fee payment: 20 Ref country code: GB Payment date: 20201022 Year of fee payment: 20 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ILLUMINA, INC. Effective date: 20191029 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60151059 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20211004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20211004 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 60151059 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 60151059 Country of ref document: DE |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 20221003 |