[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3015714B1 - Compresseur de turbomachine axiale avec double rotors contrarotatifs - Google Patents

Compresseur de turbomachine axiale avec double rotors contrarotatifs Download PDF

Info

Publication number
EP3015714B1
EP3015714B1 EP15190496.8A EP15190496A EP3015714B1 EP 3015714 B1 EP3015714 B1 EP 3015714B1 EP 15190496 A EP15190496 A EP 15190496A EP 3015714 B1 EP3015714 B1 EP 3015714B1
Authority
EP
European Patent Office
Prior art keywords
compressor
rotor
upstream
annular
rotating bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15190496.8A
Other languages
German (de)
English (en)
Other versions
EP3015714A1 (fr
Inventor
Cédric CRACCO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aero Boosters SA
Original Assignee
Safran Aero Boosters SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aero Boosters SA filed Critical Safran Aero Boosters SA
Publication of EP3015714A1 publication Critical patent/EP3015714A1/fr
Application granted granted Critical
Publication of EP3015714B1 publication Critical patent/EP3015714B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • F01D1/26Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/03Annular blade-carrying members having blades on the inner periphery of the annulus and extending inwardly radially, i.e. inverted rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/067Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages having counter-rotating rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/54Radial bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type

Definitions

  • the field of the present invention is that of turbomachines, and in particular turbofan engines for aeronautics. More specifically, the invention addresses the subject compressors of axial turbomachines whose rotor is formed of two counter-rotating blades.
  • the document FR 2 217 454 A1 and the document DE 1 428 220 A1 each disclose a turbojet engine with a compressor comprising counter-rotating rotors.
  • One of the rotors has a radial junction disposed axially at a rotating bearing connected to the other of the two rotors.
  • JP H10 73155 A discloses a turbomachine with two counter-rotating rotors, which respectively support a rotating bearing and a radial junction at the rotating bearing. In addition, a motion transmission rotates these rotors in opposite directions.
  • the object of the invention is to solve at least one of the problems posed by the prior art. More specifically, the object of the invention is to increase the pressure at the outlet of the compressor. The invention also aims to increase the compression ratio of the compressor while reducing the energy required to drive the compressor at a predefined rate.
  • the invention relates to an axial turbomachine compressor according to claim 1.
  • the radial junction comprises an internal transmission shaft fixing interface, the rotating bearing being arranged axially right of said internal interface.
  • each rotating bearing is arranged axially in line with the same row of blades of the inner rotor.
  • the radial junction has a profile of revolution about the axis of rotation of the compressor, said profile extending mainly radially, preferably substantially radially, towards the inside of the inner rotor; and / or the radial connection comprises a disc to the right of which is axially arranged the rotating bearing.
  • the rotating bearing is disposed outside the outer rotor, preferably the outer rotor comprises an upstream half and a downstream half, the rotating bearing is disposed at the upstream half of the outer rotor.
  • the compressor essentially comprises a rotating bearing or essentially two rotating bearings placed in line with the same row of blades.
  • At least one or each rotor comprises at least one internal annular reinforcement disposed inside the corresponding rotor, preferably each rotor comprises an internal annular reinforcement disposed inside the rotor to the right of each of his rows of blades.
  • the compressor comprises a transmission of movement between the rotors configured so that they rotate in opposite directions, preferably at the same angular speed.
  • the transmission comprises at least one pinion, preferably an annular row of pinions, each pinion having a radially oriented axis of rotation, preferably perpendicular to the axis of rotation of the compressor.
  • the transmission comprises two toothed rings each formed on one of the rotors, the teeth of each ring extending axially towards the other ring.
  • the transmission is placed at the axial half of the outer rotor opposite the axial half of the outer rotor where each rotary bearing mounted on the outer rotor is placed.
  • the outer rotor comprises an outer circular wall connecting all its rows of blades, an inner ferrule disposed inside the outer wall, the outer rotor comprises a row of blades forming one end.
  • axial compressor connecting the inner ferrule to the outer wall.
  • the outer ends of the blades of the inner rotor are free ends and / or the majority of the outer ends of the blades of the outer rotor are free ends.
  • the outer rotor comprises an axial section extending over less than one half, preferably less than one third, more preferably less than a quarter of its axial length on which each bearing is arranged. connecting it to the stator of the compressor.
  • At least one or each internal annular reinforcement has an outer annular portion of lesser thickness.
  • the radial annular junction extends radially inwards an internal annular reinforcement.
  • the rows of blades of the inner rotor and the outer rotor are configured to be able to compress progressively an annular flow when the rotors rotate in opposite directions of rotation.
  • the compressor may be an axial compressor.
  • An axial compressor can be understood as a compressor that axially compresses a flow when the latter moves axially downstream.
  • the crown teeth are formed on the inner annular reinforcements of the rotors.
  • the outer wall of the outer rotor has a decrease in diameter downstream.
  • the axial majority of the inner rotor is disposed inside the outer rotor.
  • each rotor comprises at least three rows of blades.
  • each rotor forms a drum through a row of vanes and / or the radial annular junction.
  • the blades of the rotors form rows of contra-rotating blades.
  • the upstream range and / or the downstream range surrounds the inner rotor, preferably at least one blade row of the inner rotor.
  • the outer rotor comprises a section extending over at least one third, preferably at least one half of its axial length which is free of a bearing cooperating with the stator of the compressor or the turbomachine, optionally the outer rotor comprises two sections extending over at least one third of its axial length which is free of a bearing cooperating with the stator of the compressor or the turbomachine.
  • the invention also relates to a turbomachine comprising a compressor, which is remarkable in that the compressor is in accordance with the invention, optionally the compressor is a low-pressure compressor, and / or the turbomachine comprising a transmission shaft, in particular an internal transmission shaft, which is connected to the radial junction.
  • the turbomachine comprises an intermediate casing, the compressor being mounted upstream of the intermediate casing, optionally the intermediate casing comprises an intermediate body and an annular bearing extending axially upstream from the intermediate body. , the rotating bearing being mounted inside the upstream annular bearing.
  • the turbomachine comprises an upstream casing, the compressor being mounted downstream of the upstream casing, possibly the upstream casing comprises an upstream body and an annular span extending axially downstream from the upstream body. , the rotating bearing being mounted inside the downstream annular bearing.
  • the turbomachine comprises an external transmission shaft and an internal transmission shaft disposed inside and / or through the outer shaft.
  • the invention improves the efficiency of the turbomachine by increasing the compression ratio of the compressor. This result is achieved by controlling the games during different phases of operation of the booster.
  • the stress of the centrifugal force is transformed into an advantage since the zones having increases of diameters identical or similar to the nominal speed are aligned.
  • the action of the dilation is also taken into account to determine the necessary safety clearance both at low ground speed, during the acceleration phase of the engine speed, and during operation in high altitude cruising flight.
  • the configuration of the compressor is particularly well adapted to resist pumping. Indeed, the presence of axial contact faces on the crowns of the transmission, and circularly distributed pinions, promotes the support between the rotors and the housings. The rotating bearing is also unloaded.
  • inner or inner and outer or outer refer to a positioning relative to the axis of rotation of an axial turbomachine.
  • the figure 1 represents in simplified manner an axial turbomachine. It is in this case a double-flow turbojet engine.
  • the turbojet engine 2 comprises a first compression level, called a low-pressure compressor 4, a second compression level, called a high-pressure compressor 6, a combustion chamber 8 and one or more levels of turbines 10.
  • the mechanical power the turbine 10 transmitted via a transmission shaft 11 to the rotor 12 sets in motion the two compressors 4 and 6.
  • the latter comprise several rows of rotor blades associated with rows of stator vanes.
  • the rotation of the rotor around its axis of rotation 14 thus makes it possible to generate an air flow and to compress it progressively until it reaches the combustion chamber 8. Reducing means can increase the speed of rotation transmitted. compressors.
  • An inlet fan commonly referred to as fan or blower 16 is coupled to the rotor 12 and generates an air flow which splits into a primary flow 18 passing through the various aforementioned levels of the turbomachine, and a secondary flow 20 passing through an annular duct (partially shown) along the machine to then join the primary flow at the turbine outlet.
  • the primary flows 18 and secondary 20 are annular flows, they are channeled by the casings of the stator of the turbomachine. These casings can furthermore make it possible to connect the blower, the compressors and the turbines. From upstream to downstream, the turbomachine may have an upstream casing between the fan 16 and the low-pressure compressor 4, as well as an intermediate casing between the compressors 4 and 6.
  • the figure 2 is a sectional view of a compressor 4 of an axial turbomachine such as that of the figure 1 .
  • the compressor may be a low-pressure compressor 4.
  • There may be seen a portion of the upstream housing 22 and a portion of the intermediate housing 24.
  • Each housing may have an annular row of housing arm 26 to connect their inner hubs 28 to the outer portions respectively.
  • the casing arms 26 radially cross the primary stream 18.
  • the compressor 4 comprises a rotor formed of two counter-rotating portions, namely an inner rotor 30 and an outer rotor 32, which rotate in opposite directions.
  • the rotors (30; 32) are coaxial and engaged with each other.
  • the inner rotor 30 is predominantly or completely housed in the outer rotor 32, the outer rotor 32 surrounds the inner rotor 30.
  • Each rotor (30; 32) comprises a circular wall and several rows of rotor blades, possibly three each.
  • the inner rotor 30 comprises an inner wall 34 from which the inner blades 36 extend radially outwards while the outer rotor 32 comprises an outer wall 38 from which the outer vanes 40 extend radially inwardly.
  • the outer wall 38 is longer axially than the inner wall 34, they define between them a vein, preferably sealed, guiding and delimiting the primary flow 18 during its compression. They have diameters reducing downstream, as the average diameter of the vein to promote the compression of the primary flow 18.
  • the walls (34; 38) can generally have constant thicknesses. They may have frustoconical shapes, or forms of warheads. They can present revolution profiles around of the axis of rotation 14, which have bent portions.
  • the outer wall 38 may include an axial portion whose profile is more inclined relative to the axis of rotation 14 than the rest of the profile.
  • the walls (34; 38) can be formed of several bladed sections fixed or axially welded to each other. Radial flanges (not shown) may be provided at the interfaces between the axial sections.
  • the outer rotor 32 comprises an upstream row of blades 40 forming the upstream end of the compressor 4, and an inner ring 42 connected to the inner ends of the outer vanes 40 upstream. These latter make it possible to drive the outer wall 38.
  • the shell 42 may be provided with a seal, for example layers of abradable material cooperating with one or more wipers 44 formed on the intermediate casing 24 or on the inner rotor 30. These seals avoid recirculation under the ferrule 42 which penalize the compression ratio.
  • Each rotor (30; 32) may comprise at least one annular reinforcement 46 or "leek".
  • the inner rotor 30 has a plurality of annular reinforcements 46, for example one disposed at each row of rotor vanes (36; 40). It can include three, including a central axially.
  • the outer rotor 32 may have an annular reinforcement 46 inside its inner shell 42, possibly placed in the radial extension of the blades 40 of the associated row.
  • the inner rotor 30 comprises a radial annular junction 48 for connecting it to the transmission shaft 11 from a turbine, it extends radially in the opposite direction of the blades of the inner rotor 30. It allows attachment.
  • the tree and the junction are solidary.
  • the radial junction 48 may be a disc, essentially flat. Alternatively, it may have a profile of revolution inclined relative to the radial direction, and form a funnel.
  • the radial junction 48 may be connected to an annular reinforcement 46, for example the central reinforcement so as to limit the radial deformations of the inner wall 34 which are related to the centrifugal force.
  • the junction may have an attachment interface to the shaft. Said interface may be tubular. It can be welded to the tree.
  • the rows of inner blades 36 and outer 40 are all arranged axially alternately; preferentially regularly. For example, each inner row 36 succeeds an outer row 40, or vice versa.
  • the blades (36; 40) of the rotors (30; 32) have ropes inclined relative to the axis of rotation 14, the inner blades 46 are inclined in one direction, while the outer blades 40 are inclined in the other meaning.
  • a rope is a line connecting a leading edge to a trailing edge of a profile of a blade (36; 40), the radial stack of profiles forming the blade.
  • the rotors (30; 32) are counter-rotating; they manage to compress the primary flow 18 when they rotate in opposite directions.
  • the annular flow 18 is compressed progressively from upstream to downstream of the compressor 4.
  • the inclination of the blades of the blades of each blade row can increase steadily from one row to the other, from upstream to the downstream.
  • the compressor 4 comprises a transmission 50, possibly configured so that the rotors (30; 32) rotate at the same number of revolutions per minute when they train each other.
  • the transmission 50 communicates rotations from one rotor to the other. It comprises at least one rotating element 52 whose axis of rotation is oriented radially, a ring formed inside each rotor (30; 32).
  • the transmission is disposed radially outside the rotors.
  • the rings may be formed on reinforcements 46 of the rotors (30; 32), on opposite faces and at the same level radially of said reinforcements.
  • the inner rotor 30 may furthermore have tubular reinforcements 54 between the annular reinforcements 46 for distributing axial forces coming from the transmission 50.
  • At least one casing (22; 24), for example the intermediate casing 24 has a body 56 and an annular bearing surface 58 extending axially from the body 56.
  • the profile of revolution about the axis of rotation 14 of the annular bearing surface 58 extends mainly axially, the range can be tubular.
  • the annular bearing is formed on the upstream housing, and / or in the body of a housing.
  • the ring span 58 can
  • the compressor 4 comprises at least one rotating bearing 60 articulating in rotation the outer rotor 32 with respect to the intermediate casing 24.
  • the outer rotor 32 may exhibit a thickening at the rotating bearing 60 to strengthen it.
  • the rotary bearing 60 is disposed axially right of the radial junction 48 of the inner rotor 30, which allows to superpose the support points, or support circles of the rotors.
  • the areas of rotors (30; 32) that are slightly deformed by the centrifugal force are aligned while the more deformed areas overlap.
  • the most deformed areas are those that are free of bearings, links. Since the rotors (30; 32) can rotate at the same rotational speeds, the centrifugal forces are similar all along the axis of rotation 14 for each rotor (30; 32). In particular, the two walls supporting the blades are subjected to similar centrifugal forces all along the axis of rotation. Thus, the spaces between the blades (36; 40) and the opposite walls (34; 38) generally remain constant at rest and in operation.
  • This feature favors the design of counter-rotating rotors whose clearance between the free ends of the blades and the radially facing wall surfaces are minimal, which has the effect of increasing the compression ratio at both low speed and high speed.
  • the advantage is to increase the efficiency of the turbomachine for different modes of operation. The gain is accentuated for a compressor called "high speed", that is to say whose speed is greater than 5000 rpm, and can reach 16 000 rpm.
  • the figure 3 represents a section of the compressor 4 along the axis 3-3 drawn on the figure 2 .
  • the transmission shaft 11, the intermediate casing 24, the inner wall 34 are concentric.
  • Another concentric drive shaft can independently connect the blower to a turbine.
  • the transmission 50 is annular, it allows to take some of the axial and / or radial forces that apply to the outer rotor. In this way, the forces exerted on the rotating bearing are limited, and a single bearing, or two bearings arranged on the same axial half of the external rotor can suffice.
  • these rotating means may be disposed at an axial end of the outer rotor, for example at a row of blades.
  • a ball bearing and / or a roller bearing can be used, they can be in abutment against each other.
  • the transmission 50 may comprise at least one or more pinions 52 distributed angularly about the axis of rotation 14. It may comprise at least three, at least six, possibly at least eight pinions 52. Their axes of rotation 62 may be regularly angularly inclined.
  • the figure 4 represents a section of a portion of the transmission 50. The section is performed parallel to the axis of rotation 14 of the turbomachine. A pinion 52 and two toothed rings (64; 66) are shown.
  • the transmission comprises a pinion 52 with an axis of rotation 62 arranged in the extension, perpendicular to the axis of rotation 14. This leads to limiting the frictional forces in the transmission 50, and therefore warming in the turbomachine.
  • the toothed crowns (64; 66) of the inner and outer rotors face each other; they are parallel. Their teeth 68 extend towards the ring (64; 66) disposed axially facing.
  • the toothed rings (64; 66) form circular racks with teeth formed on axial or substantially conical faces. The height and the depth of the teeth 68 of the racks are arranged axially.
  • the pinions 52 may be frustoconical so as to conform to the configuration of the transmission 50, that is to say between two substantially conical axial rings. Pinions are shown here, however smooth pebbles could be used instead. The crowns then have smooth running and driving surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

    Domaine technique
  • Le domaine de la présente invention est celui des turbomachines, et en particulier des turboréacteurs double flux pour l'aéronautique. Plus précisément l'invention aborde le sujet les compresseurs de turbomachines axiales dont le rotor est formé de deux portions aubagées contrarotatives.
  • Technique antérieure
  • L'emploi de rotors contrarotatifs pour un compresseur permet d'en augmenter le taux de compression pour une longueur imposée et pour un nombre de rangées d'aube prédéterminé. Cette solution permet ainsi de raccourcir à la fois le compresseur et la turbomachine dans laquelle se trouve le compresseur ; un allégement substantiel est par la même réalisé.
  • Le document US20140286749 A1 divulgue une turbomachine axiale avec un compresseur formé de deux rotors contrarotatifs. Chaque rotor supporte plusieurs rangées d'aubes, les aubes du rotor interne et les aubes du rotor externe forment une alternance. Le rotor interne entraîne le rotor externe par l'intermédiaire d'un pignon dont l'axe de rotation est orienté radialement. L'entraînement entre les rotors s'effectue par l'intermédiaire de différents arbres perpendiculaires dotés de pignons. Une transmission débrayable est ajoutée sur l'un des arbres. Cette architecture permet de moduler la compression en découplant les rotors. Toutefois, cette solution est complexe en raison du nombre de constituants. Le coût de fabrication et l'entretien nécessitent des ressources importantes. Par ailleurs, le taux de compression reste réduit.
  • Le document FR 2 217 454 A1 et le document DE 1 428 220 A1 divulguent chacun un turboréacteur double flux avec un compresseur comportant des rotors contrarotatifs. L'un des rotors comporte une jonction radiale disposée axialement au niveau d'un palier tournant lié à l'autre des deux rotors.
  • Le document JP H10 73155 A divulgue une turbomachine avec deux rotors contrarotatifs, lesquels supportent respectivement un palier tournant et une jonction radiale au niveau du palier tournant. En outre, une transmission de mouvement fait tourner ces rotors dans des sens inverses.
  • Résumé de l'invention Problème technique
  • L'invention a pour objectif de résoudre au moins un des problèmes posés par l'art antérieur. Plus précisément, l'invention a pour objectif d'augmenter la pression en sortie du compresseur. L'invention a également pour objectif d'augmenter le taux de compression du compresseur tout en réduisant l'énergie nécessaire pour entraîner le compresseur à un débit prédéfini.
  • Solution technique
  • L'invention a pour objet un compresseur de turbomachine axiale selon la revendication 1.
  • Selon un mode avantageux de l'invention, la jonction radiale comprend une interface interne de fixation d'arbre de transmission, le palier tournant étant disposé au droit axialement de ladite interface interne.
  • Selon un mode avantageux de l'invention, chaque palier tournant est disposé axialement au droit d'une même rangée d'aubes du rotor interne.
  • Selon un mode avantageux de l'invention, la jonction radiale présente un profil de révolution autour de l'axe de rotation du compresseur, ledit profil s'étendant principalement radialement, préférentiellement essentiellement radialement, vers l'intérieur du rotor interne; et/ou la liaison radiale comprend un disque au droit duquel est disposé axialement le palier tournant.
  • Selon un mode avantageux de l'invention, le palier tournant est disposé à l'extérieur du rotor externe, préférentiellement le rotor externe comprend une moitié amont et une moitié aval, le palier tournant est disposé au niveau de la moitié amont du rotor externe.
  • Selon un mode avantageux de l'invention, le compresseur comprend essentiellement un palier tournant ou essentiellement deux paliers tournants placés au droit d'une même rangée d'aubes.
  • Selon un mode avantageux de l'invention, au moins un ou chaque rotor comprend au moins un renfort annulaire interne disposé à l'intérieur du rotor correspondant, préférentiellement chaque rotor comprend un renfort annulaire interne disposé à l'intérieur du rotor au droit de chacune de ses rangées d'aubes.
  • Selon un mode avantageux de l'invention, le compresseur comprend une transmission de mouvement entre les rotors configurée pour qu'ils tournent en sens inverses, préférentiellement à une même vitesse angulaire.
  • Selon un mode avantageux de l'invention, la transmission comprend au moins un pignon, préférentiellement une rangée annulaire de pignons, chaque pignon présentant un axe de rotation orienté radialement, préférentiellement perpendiculairement à l'axe de rotation du compresseur.
  • Selon un mode avantageux de l'invention, la transmission comprend deux couronnes dentées chacune formée sur l'un des rotors, les dents de chaque couronne s'étendant axialement vers l'autre couronne.
  • Selon un mode avantageux de l'invention, la transmission est placée au niveau de la moitié axiale du rotor externe opposée à la moitié axiale du rotor externe où est placé chaque palier tournant monté sur le rotor externe.
  • Selon un mode avantageux de l'invention, le rotor externe comprend une paroi circulaire externe reliant toutes ses rangées d'aubes, une virole interne disposée à l'intérieur de la paroi externe, le rotor externe comprend une rangée d'aubes formant une extrémité axiale du compresseur reliant la virole interne à la paroi externe.
  • Selon un mode avantageux de l'invention, les extrémités externes des aubes du rotor interne sont des extrémités libres et/ou la majorité des extrémités externes des aubes du rotor externe sont des extrémités libres.
  • Selon un mode avantageux de l'invention, le rotor externe comprend un tronçon axial s'étendant sur moins d'une moitié, préférentiellement moins d'un tiers, plus préférentiellement moins d'un quart de sa longueur axiale sur lequel est disposé chaque palier le reliant au stator du compresseur.
  • Selon un mode avantageux de l'invention, au moins un ou chaque renfort annulaire interne présente une portion annulaire externe de moindre épaisseur.
  • Selon un mode avantageux de l'invention, la jonction annulaire radiale prolonge radialement vers l'intérieur un renfort annulaire interne.
  • Selon un mode avantageux de l'invention, les rangées d'aubes du rotor interne et du rotor externe sont configurées pour pouvoir comprimer progressivement un flux annulaire lorsque les rotors tournent dans des sens de rotation inverses.
  • Selon un mode avantageux de l'invention, le compresseur peut être un compresseur axial. Un compresseur axial peut être entendu comme un compresseur qui comprime axialement un flux lorsque ce dernier se déplace axialement vers l'aval.
  • Selon un mode avantageux de l'invention, les dents des couronnes sont formées sur les renforts annulaires internes des rotors.
  • Selon un mode avantageux de l'invention, la paroi externe du rotor externe présente une diminution de diamètre vers l'aval.
  • Selon un mode avantageux de l'invention, la majorité axiale du rotor interne est disposée à l'intérieur du rotor externe.
  • Selon un mode avantageux de l'invention, chaque rotor comprend au moins trois rangées d'aubes.
  • Selon un mode avantageux de l'invention, chaque rotor forme un tambour grâce à une rangée d'aubes et/ou la jonction annulaire radiale.
  • Selon un mode avantageux de l'invention, les aubes des rotors forment des rangées d'aubes contrarotatives.
  • Selon un mode avantageux de l'invention, la portée amont et/ou la portée aval entoure le rotor interne, préférentiellement au moins une rangée d'aube du rotor interne.
  • Selon un mode avantageux de l'invention, le rotor externe comprend un tronçon s'étendant sur au moins un tiers, préférentiellement au moins une moitié de sa longueur axiale qui est libre de palier coopérant avec le stator du compresseur ou de la turbomachine, éventuellement le rotor externe comprend deux tronçons s'étendant sur au moins un tiers de sa longueur axiale qui est libre de palier coopérant avec le stator du compresseur ou de la turbomachine.
  • L'invention a également pour objet une turbomachine comprenant un compresseur, remarquable en ce que le compresseur est conforme à l'invention, éventuellement le compresseur est un compresseur basse pression, et/ou la turbomachine comprenant un arbre de transmission, notamment un arbre interne de transmission, auquel est reliée la jonction radiale.
  • Selon un mode avantageux de l'invention, la turbomachine comprend un carter intermédiaire, le compresseur étant monté en amont du carter intermédiaire, éventuellement le carter intermédiaire comprend un corps intermédiaire et une portée annulaire s'étendant axialement vers l'amont depuis le corps intermédiaire, le palier tournant étant monté à l'intérieur de la portée annulaire amont.
  • Selon un mode avantageux de l'invention, la turbomachine comprend un carter amont, le compresseur étant monté en aval du carter amont, éventuellement le carter amont comprend un corps amont et une portée annulaire s'étendant axialement vers l'aval depuis le corps amont, le palier tournant étant monté à l'intérieur de la portée annulaire aval.
  • Selon un mode avantageux de l'invention, la turbomachine comprend un arbre externe de transmission et un arbre interne de transmission disposé à l'intérieur de et/ou traversant l'arbre externe.
  • Avantages apportés
  • L'invention améliore le rendement de la turbomachine en augmentant le taux de compression du compresseur. Ce résultat est atteint en maîtrisant les jeux lors de différentes phases de fonctionnement du booster. La contrainte de la force centrifuge est transformée en un avantage puisque les zones présentant des augmentations de diamètres identiques ou similaires au régime nominal sont alignées. L'action de la dilation est également prise en compte pour déterminer le jeu de sécurité nécessaire à la fois à bas régime au sol, lors de la phase d'accélération du régime moteur, et lors du fonctionnement en vol de croisière en altitude.
  • La configuration du compresseur est particulièrement bien adaptée pour résister au pompage. En effet, la présence de faces de contact axiales sur les couronnes de la transmission, et de pignons répartis circulairement, favorise l'appui entre les rotors et les carters. Le palier tournant est également délesté.
  • Brève description des dessins
    • La figure 1 représente une turbomachine axiale selon l'invention.
    • La figure 2 esquisse un compresseur de turbomachine selon l'invention.
    • La figure 3 illustre une coupe du compresseur suivant l'axe 3-3 tracé sur la figure 2 selon l'invention.
    • La figure 4 illustre une coupe d'une portion de la transmission selon l'invention.
    Description des modes de réalisation
  • Dans la description qui va suivre, les termes intérieur ou interne et extérieur ou externe renvoient à un positionnement par rapport à l'axe de rotation d'une turbomachine axiale.
  • La figure 1 représente de manière simplifiée une turbomachine axiale. Il s'agit dans ce cas précis d'un turboréacteur double-flux. Le turboréacteur 2 comprend un premier niveau de compression, dit compresseur basse-pression 4, un deuxième niveau de compression, dit compresseur haute-pression 6, une chambre de combustion 8 et un ou plusieurs niveaux de turbines 10. En fonctionnement, la puissance mécanique de la turbine 10 transmise via un arbre de transmission 11 jusqu'au rotor 12 met en mouvement les deux compresseurs 4 et 6. Ces derniers comportent plusieurs rangées d'aubes de rotor associées à des rangées d'aubes de stators. La rotation du rotor autour de son axe de rotation 14 permet ainsi de générer un débit d'air et de comprimer progressivement ce dernier jusqu'à l'entrée de la chambre de combustion 8. Des moyens de démultiplication peuvent augmenter la vitesse de rotation transmise aux compresseurs.
  • Un ventilateur d'entrée communément désigné fan ou soufflante 16 est couplé au rotor 12 et génère un flux d'air qui se divise en un flux primaire 18 traversant les différents niveaux sus mentionnés de la turbomachine, et un flux secondaire 20 traversant un conduit annulaire (partiellement représenté) le long de la machine pour ensuite rejoindre le flux primaire en sortie de turbine.
  • Les flux primaire 18 et secondaire 20 sont des flux annulaires, ils sont canalisés par les carters du stator de la turbomachine. Ces carters peuvent en outre permettre de relier la soufflante, les compresseurs et les turbines. D'amont en aval, la turbomachine peut présenter un carter amont entre la soufflante 16 et le compresseur basse pression 4, ainsi qu'un carter intermédiaire entre les compresseurs 4 et 6.
  • La figure 2 est une vue en coupe d'un compresseur 4 d'une turbomachine axiale telle que celle de la figure 1. Le compresseur peut être un compresseur basse-pression 4. On peut y observer une partie du carter amont 22 et une partie du carter intermédiaire 24. Chaque carter peut présenter une rangée annulaire de bras de carter 26 pour relier leurs moyeux internes 28 aux portions externes respectives. Les bras de carter 26 traversent radialement le flux primaire 18.
  • Le compresseur 4 comprend un rotor formé de deux portions contrarotatives, à savoir un rotor interne 30 et un rotor externe 32, qui tournent dans des sens inverses. Les rotors (30 ; 32) sont coaxiaux et engagés l'un dans l'autre. Le rotor interne 30 est majoritairement ou totalement logé dans le rotor externe 32, le rotor externe 32 entoure le rotor interne 30.
  • Chaque rotor (30 ; 32) comprend une paroi circulaire et plusieurs rangées d'aubes rotoriques, éventuellement trois chacun. Le rotor interne 30 comprend une paroi interne 34 d'où s'étendent radialement les aubes internes 36 vers l'extérieur tandis que le rotor externe 32 comprend une paroi externe 38 d'où s'étendent radialement vers l'intérieur les aubes externes 40. La paroi externe 38 est plus longue axialement que la paroi interne 34, elles définissent entre elles une veine, avantageusement étanche, guidant et délimitant le flux primaire 18 au cours de sa compression. Elles présentent des diamètres se réduisant vers l'aval, tout comme le diamètre moyen de la veine pour favoriser la compression du flux primaire 18.
  • Les parois (34 ; 38) peuvent généralement présenter des épaisseurs constantes. Elles peuvent présenter des formes tronconiques, ou des formes d'ogives. Elles peuvent présenter des profils de révolution autour de l'axe de rotation 14, qui présentent des portions coudées. La paroi externe 38 peut inclure une portion axiale dont le profil est davantage incliné par rapport à l'axe de rotation 14 que le reste du profil. Les parois (34 ; 38) peuvent être formées de plusieurs tronçons aubagés fixés ou soudés axialement les uns aux autres. Des brides radiales (non représentées) peuvent être prévues aux interfaces entre les tronçons axiaux.
  • Le rotor externe 32 comprend une rangée amont d'aubes 40 formant l'extrémité amont du compresseur 4, et une virole interne 42 reliée aux extrémités internes des aubes externes 40 amont. Ces dernières permettent d'entraîner la paroi externe 38. La virole 42 peut être pourvue d'étanchéité, par exemple de couches de matériaux abradable coopérant avec une ou plusieurs léchettes 44 formées sur le carter intermédiaire 24 ou sur le rotor interne 30. Ces étanchéités évitent les recirculations sous la virole 42 qui pénalisent le taux de compression.
  • Chaque rotor (30 ; 32) peut comprendre au moins un renfort annulaire 46 ou « poireau ». Le rotor interne 30 présente plusieurs renforts annulaires 46, par exemple un disposé au niveau de chaque rangée d'aubes rotoriques (36 ; 40). Il peut en comprendre trois, dont un central axialement. Le rotor externe 32 peut présenter un renfort annulaire 46 à l'intérieur de sa virole interne 42, éventuellement placée dans le prolongement radial des aubes 40 de la rangée associée.
  • Le rotor interne 30 comprend une jonction annulaire radiale 48 permettant de le relier à l'arbre de transmission 11 provenant d'une turbine, elle s'étend radialement dans le sens opposé des aubes du rotor interne 30. Elle permet une fixation. L'arbre et la jonction sont solidaires. La jonction radiale 48 peut être un disque, essentiellement plat. Alternativement, elle peut présenter un profil de révolution incliné par rapport à la direction radiale, et former un entonoir. La jonction radiale 48 peut être liée à un renfort annulaire 46, par exemple le renfort central de sorte à limiter les déformations radiales de la paroi interne 34 qui sont liées à la force centrifuge. La jonction peut présenter une interface de fixation à l'arbre. Ladite interface peut être tubulaire. Elle peut être soudée à l'arbre.
  • Les rangées d'aubes internes 36 et externes 40 sont toutes disposées axialement par alternance ; préférentiellement régulièrement. Par exemple à chaque rangée interne 36 succède une rangée externe 40, ou inversement. Les aubes (36 ; 40) des rotors (30 ; 32) présentent des cordes inclinées par rapport à l'axe de rotation 14, les aubes internes 46 sont inclinées dans un sens, tandis que les aubes externes 40 sont inclinées dans l'autre sens. Une corde est une ligne reliant un bord d'attaque à un bord de fuite d'un profil d'une aube (36 ; 40), l'empilement radial des profils formant l'aube. Ainsi, les rotors (30 ; 32) sont contrarotatifs ; ils parviennent à comprimer le flux primaire 18 lorsqu'ils tournent dans des sens inverses. Le flux annulaire 18 est comprimé progressivement de l'amont vers l'aval du compresseur 4. L'inclinaison des cordes des aubes de chaque rangée d'aube peut augmenter régulièrement d'une rangée à l'autre, d'amont vers l'aval.
  • Afin d'assurer la rotation des rotors (30 ; 32) dans des sens inverses, le compresseur 4 comprend une transmission 50, éventuellement configurée de sorte à ce que les rotors (30 ; 32) tournent à des mêmes nombres de tours par minute lorsqu'ils s'entraînent mutuellement. La transmission 50 communique des rotations d'un rotor à l'autre. Elle comprend au moins un élément tournant 52 dont l'axe de rotation est orienté radialement, une couronne formée à l'intérieur de chaque rotor (30 ; 32). Suivant une alternative de l'invention, la transmission est disposée à l'extérieur radialement des rotors. Les couronnes peuvent être formées sur des renforts 46 des rotors (30 ; 32), sur des faces en regard et au même niveau radialement desdits renforts. Le rotor interne 30 peut en outre présenter des renforts tubulaires 54 entre les renforts annulaires 46 pour répartir des efforts axiaux issus de la transmission 50.
  • Au moins un carter (22 ; 24), par exemple le carter intermédiaire 24 présente un corps 56 et une portée annulaire 58 s'étendant axialement depuis le corps 56. Le profil de révolution autour de l'axe de rotation 14 de la portée annulaire 58 s'étend principalement axialement, la portée peut être tubulaire. Alternativement, la portée annulaire est formée sur le carter amont, et/ou dans le corps d'un carter. La portée annulaire 58 peut épouser la surface annulaire externe de la paroi externe 38. Le compresseur 4 comprend au moins un palier tournant 60 articulant en rotation le rotor externe 32 par rapport au carter intermédiaire 24. Le rotor externe 32 peut présenter un épaississement au niveau du palier tournant 60 pour le renforcer. Selon l'invention, le palier tournant 60 est disposé au droit axialement de la jonction radiale 48 du rotor interne 30, ce qui permet de superposer les points d'appuis, ou cercles de support des rotors.
  • Ainsi, les zones de rotors (30 ; 32) peu déformées par la force centrifuge sont alignées, tandis que les zones plus déformées se chevauchent. Les zones plus déformées sont celles qui sont libres de paliers, de liaisons. Puisque les rotors (30 ; 32) peuvent tourner à des mêmes vitesses de rotation, les forces centrifuges sont similaires tout le long de l'axe de rotation 14 pour chaque rotor (30 ; 32). En particulier, les deux parois supportant les aubes sont soumises à des forces centrifuges similaires tout le long de l'axe de rotation. Ainsi, les espaces entre les aubes (36 ; 40) et les parois opposées (34 ; 38) restent généralement constants au repos et en fonctionnement. Cette particularité favorise la conception de rotors contrarotatifs dont les jeux entre les extrémités libres des aubes et les surfaces des parois radialement en regard sont minimes, ce qui a pour effet d'augmenter le taux de compression tant à bas régime qu'à haut régime. L'avantage est d'augmenter le rendement de la turbomachine pour différents modes de fonctionnement. Le gain s'accentue pour un compresseur dit « haute vitesse », c'est-à-dire dont la vitesse de rotation est supérieure à 5 000 tr/min, et qui peut atteindre 16 000 tr/min.
  • La figure 3 représente une coupe du compresseur 4 suivant l'axe 3-3 tracé sur la figure 2. L'arbre de transmission 11, le carter intermédiaire 24, la paroi interne 34 sont concentriques. Un autre arbre de transmission concentrique peut relier indépendamment la soufflante à une turbine.
  • La transmission 50 est annulaire, elle permet de reprendre une partie des efforts axiaux et/ou radiaux qui s'appliquent sur le rotor externe. De la sorte, les efforts s'exerçant sur le palier tournant sont limités, et un seul roulement, ou deux roulements disposés sur une même moitié axiale du rotor externe peuvent suffire. Eventuellement, ces moyens tournant peuvent être disposés à une extrémité axiale du rotor externe, par exemple au niveau d'une rangée d'aubes. Un roulement à billes et/ou un roulement à rouleaux peuvent être employés, ils peuvent être en butée l'un contre l'autre.
  • La transmission 50 peut comprendre au moins un, ou plusieurs pignons 52 répartis angulairement autour de l'axe de rotation 14. Elle peut comprendre au moins trois, au moins six, éventuellement au moins huit pignons 52. Leurs axes de rotation 62 peuvent être régulièrement inclinés angulairement.
  • La figure 4 représente une coupe d'une portion de la transmission 50. La coupe est effectuée parallèlement à l'axe de rotation 14 de la turbomachine. Un pignon 52 et deux couronnes dentées (64 ; 66) sont représentés.
  • La transmission comprend un pignon 52 avec un axe de rotation 62 agencé dans le prolongement, perpendiculairement à l'axe de rotation 14. Ceci conduit à limiter les efforts de frottement dans la transmission 50, et donc réchauffement dans la turbomachine. Les couronnes dentées (64 ; 66) des rotors interne et externe se font face ; elles sont parallèles. Leurs dents 68 s'étendent en direction de la couronne (64 ; 66) disposée axialement en regard. Les couronnes dentées (64 ; 66) forment des crémaillères circulaires avec des dentures formées sur des faces axiales ou sensiblement coniques. La hauteur et la profondeur des dentures 68 des crémaillères sont agencées axialement.
  • Les pignons 52 peuvent être tronconiques de sorte à se conformer à la configuration de la transmission 50, c'est-à-dire entre deux couronnes axiales sensiblement coniques. Des pignons sont ici représentés, toutefois des galets lisses pourraient être employés en remplacement. Les couronnes présentent alors des surfaces de roulement et d'entraînement lisses.

Claims (14)

  1. Compresseur (4 ; 6) de turbomachine axiale (2) comprenant :
    - un rotor interne (30) muni de plusieurs rangées annulaires d'aubes (36) et d'une jonction annulaire radiale interne (48) destinée à relier le rotor interne (30) à un arbre de transmission (11) de la turbomachine (2); et
    - un rotor externe (32) entourant le rotor interne (30) et comportant plusieurs rangées annulaires d'aubes (40) ; les rangées d'aubes du rotor interne et du rotor externe sont disposées par alternance afin de comprimer un flux annulaire (18 ; 20) lorsque les rotors (30 ; 32) tournent en sens inverses ;
    - un stator ;
    au moins un palier tournant (60) lié au rotor externe (32) et disposé au droit axialement de la jonction radiale (48) du rotor interne (30) de sorte à aligner axialement les zones de maintien des rotors ;
    le palier tournant (60) formant une liaison tournante entre le rotor externe (32) et le stator du compresseur (4 ; 6) ;
    caractérisé en ce que
    le rotor interne (30) comporte une paroi circulaire interne (34) reliant toutes ses rangées d'aubes (36), la jonction annulaire radiale (48) et le palier tournant (60) étant disposés au niveau axialement du milieu de la paroi circulaire interne (34).
  2. Compresseur (4 ; 6) selon la revendication 1, caractérisé en ce que la jonction radiale (48) comprend une interface interne de fixation d'arbre de transmission (11), le palier tournant (60) étant disposé au droit axialement de ladite interface interne.
  3. Compresseur (4 ; 6) selon l'une des revendications 1 à 2, caractérisé en ce que chaque palier tournant (60) est disposé axialement au droit d'une même rangée d'aubes (36) du rotor interne (30).
  4. Compresseur (4 ; 6) selon l'une des revendications 1 à 3, caractérisé en ce que la jonction radiale (48) présente un profil de révolution autour de l'axe de rotation du compresseur (14), ledit profil s'étendant principalement radialement, préférentiellement essentiellement radialement, vers l'intérieur du rotor interne (30); et/ou la liaison radiale (48) comprend un disque au droit duquel est disposé axialement le palier tournant.
  5. Compresseur (4 ; 6) selon l'une des revendications 1 à 4, caractérisé en ce que le palier tournant (60) est disposé à l'extérieur du rotor externe (32), préférentiellement le rotor externe (32) comprend une moitié amont et une moitié aval, le palier tournant (60) est disposé au niveau de la moitié amont du rotor externe (32).
  6. Compresseur (4 ; 6) selon l'une des revendications 1 à 5, caractérisé en ce qu'au moins un ou chaque rotor (30 ; 32) comprend au moins un renfort annulaire interne (46) disposé à l'intérieur du rotor (30 ; 32) correspondant, préférentiellement chaque rotor comprend un renfort annulaire interne disposé à l'intérieur du rotor au droit de chacune de ses rangées d'aubes.
  7. Compresseur (4 ; 6) selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend une transmission de mouvement (50) entre les rotors (30 ; 32) configurée pour qu'ils tournent en sens inverses, préférentiellement à une même vitesse angulaire.
  8. Compresseur (4; 6) selon la revendication 7, caractérisé en ce que la transmission (50) comprend au moins un pignon (52), préférentiellement une rangée annulaire de pignons (52), chaque pignon (52) présentant un axe de rotation (62) orienté radialement, préférentiellement perpendiculairement à l'axe de rotation (14) du compresseur.
  9. Compresseur (4 ; 6) selon l'une des revendications 7 à 8, caractérisé en ce que la transmission (50) comprend deux couronnes dentées (64 ; 66) chacune formée sur l'un des rotors (30 ; 32), les dents (68) de chaque couronne s'étendant axialement vers l'autre couronne (64 ; 66).
  10. Compresseur (4 ; 6) selon l'une des revendications 7 à 9, caractérisé en ce que la transmission (50) est placée au niveau de la moitié axiale du rotor externe (32) opposée à la moitié axiale du rotor externe (32) où est placé chaque palier tournant (60) monté sur le rotor externe (32).
  11. Compresseur (4 ; 6) selon l'une des revendications 1 à 10, caractérisé en ce que le rotor externe (32) comprend une paroi circulaire externe (38) reliant toutes ses rangées d'aubes (40), une virole interne (42) disposée à l'intérieur de la paroi externe (38), le rotor externe (32) comprend une rangée d'aubes (40) formant une extrémité axiale du compresseur (4; 6) reliant la virole interne (42) à la paroi externe (38).
  12. Turbomachine (2) comprenant un compresseur (4 ; 6), caractérisée en ce que le compresseur (4; 6) est conforme à l'une des revendications 1 à 11, éventuellement le compresseur étant un compresseur basse pression (4), et la turbomachine (2) comprenant un arbre de transmission (11), notamment un arbre interne de transmission, auquel est reliée la jonction radiale (48).
  13. Turbomachine (2) selon la revendication 12, caractérisée en ce qu'elle comprend un carter intermédiaire (24), le compresseur (4 ; 6) étant monté en amont du carter intermédiaire (24), éventuellement le carter intermédiaire (24) comprenant un corps intermédiaire (56) et une portée annulaire (58) s'étendant axialement vers l'amont depuis le corps intermédiaire (56), le palier tournant (60) étant monté à l'intérieur de la portée annulaire (58) amont.
  14. Turbomachine (2) selon l'une des revendications 12 à 13, caractérisée en ce qu'elle comprend un carter amont (22), le compresseur (4 ; 6) étant monté en aval du carter amont (22), éventuellement le carter amont (22) comprenant un corps amont et une portée annulaire s'étendant axialement vers l'aval depuis le corps amont, le palier tournant (60) étant monté à l'intérieur de la portée annulaire aval.
EP15190496.8A 2014-10-27 2015-10-20 Compresseur de turbomachine axiale avec double rotors contrarotatifs Active EP3015714B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE2014/0791A BE1022364B1 (fr) 2014-10-27 2014-10-27 Compresseur de turbomachine axiale avec double rotors contrarotatifs

Publications (2)

Publication Number Publication Date
EP3015714A1 EP3015714A1 (fr) 2016-05-04
EP3015714B1 true EP3015714B1 (fr) 2018-05-23

Family

ID=52449880

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15190496.8A Active EP3015714B1 (fr) 2014-10-27 2015-10-20 Compresseur de turbomachine axiale avec double rotors contrarotatifs

Country Status (6)

Country Link
US (1) US10260348B2 (fr)
EP (1) EP3015714B1 (fr)
CN (1) CN105545769B (fr)
BE (1) BE1022364B1 (fr)
CA (1) CA2910101A1 (fr)
RU (1) RU2714804C2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557028B1 (fr) * 2018-04-17 2022-06-01 Rolls-Royce Deutschland Ltd & Co KG Moteur de turbine à gaz
BE1026411B1 (fr) * 2018-06-21 2020-01-30 Safran Aero Boosters Sa Virole extérieure de turbomachine
FR3093541B1 (fr) * 2019-03-08 2021-07-16 Safran Aircraft Engines Turbine à gaz pour aéronef à double rotor
FR3097271B1 (fr) * 2019-06-12 2021-05-28 Safran Aircraft Engines Dispositif de refroidissement d’un carter d’une turbomachine
US11274557B2 (en) * 2019-11-27 2022-03-15 General Electric Company Damper assemblies for rotating drum rotors of gas turbine engines
CN113503264A (zh) * 2021-07-22 2021-10-15 浙江华擎航空发动机科技有限公司 一种采用组合轴系结构的多级压气机
CN115342084B (zh) * 2022-07-16 2024-09-06 西北工业大学 一种对转压气机自循环机匣处理扩稳装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB978658A (en) * 1962-05-31 1964-12-23 Rolls Royce Gas turbine by-pass engines
US3861139A (en) * 1973-02-12 1975-01-21 Gen Electric Turbofan engine having counterrotating compressor and turbine elements and unique fan disposition
US4159624A (en) * 1978-02-06 1979-07-03 Gruner George P Contra-rotating rotors with differential gearing
US4790133A (en) * 1986-08-29 1988-12-13 General Electric Company High bypass ratio counterrotating turbofan engine
JPH1073155A (ja) * 1996-06-28 1998-03-17 Hiroyasu Tanigawa 磁気動力伝達装置を含むエネルギ変換方法及び装置
US6732502B2 (en) * 2002-03-01 2004-05-11 General Electric Company Counter rotating aircraft gas turbine engine with high overall pressure ratio compressor
US6711887B2 (en) * 2002-08-19 2004-03-30 General Electric Co. Aircraft gas turbine engine with tandem non-interdigitated counter rotating low pressure turbines
FR2866073B1 (fr) * 2004-02-11 2006-07-28 Snecma Moteurs Turboreacteur ayant deux soufflantes contrarotatives solidaires d'un compresseur a basse pression contrarotatif
FR2866074B1 (fr) * 2004-02-11 2006-04-28 Snecma Moteurs Architecture d'un turboreacteur ayant une double soufflante a l'avant
US7195446B2 (en) * 2004-10-29 2007-03-27 General Electric Company Counter-rotating turbine engine and method of assembling same
RU109233U1 (ru) * 2011-03-23 2011-10-10 Борис Андреевич Шахов Турбина
US20130219859A1 (en) * 2012-02-29 2013-08-29 Gabriel L. Suciu Counter rotating low pressure compressor and turbine each having a gear system
US9353754B2 (en) 2012-03-13 2016-05-31 Embry-Riddle Aeronautical University, Inc. Multi-stage axial compressor with counter-rotation using accessory drive

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105545769A (zh) 2016-05-04
US10260348B2 (en) 2019-04-16
RU2714804C2 (ru) 2020-02-19
BE1022364B1 (fr) 2016-03-17
RU2015145197A3 (fr) 2019-05-21
CA2910101A1 (fr) 2016-04-27
RU2015145197A (ru) 2017-04-27
US20160115793A1 (en) 2016-04-28
EP3015714A1 (fr) 2016-05-04
CN105545769B (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
EP3015714B1 (fr) Compresseur de turbomachine axiale avec double rotors contrarotatifs
EP3006713B1 (fr) Compresseur de turbomachine axiale avec rotor contrarotatif
EP2937517B1 (fr) Stator de turbomachine axiale et turbomachine associée
EP2977549B1 (fr) Aubage de turbomachine axiale et turbomachine associée
EP3361058B1 (fr) Compresseur de turbomachine et turbomachine associée
EP2966264B1 (fr) Caisson à aubes de redresseur de compresseur de turbomachine axiale
EP3095963B1 (fr) Aube et virole à fourreau de compresseur de turbomachine axiale
EP2977559B1 (fr) Stator de turbomachine axiale et turbomachine associée
EP3137741A1 (fr) Turbomachine d'aeronef a prelevement de puissance mecanique ameliore
CA2518355A1 (fr) Retenue des clavettes de centrage des anneaux sous aubes de stator a calage variable d'un moteur a turbine a gaz
EP2843196B1 (fr) Compresseur de turbomachine et turboachine associée
EP2818635B1 (fr) Tambour de compresseur de turbomachine axiale avec fixation mixte d'aubes
EP3409902B1 (fr) Système d'étanchéité pour compresseur de turbomachine
EP3265654B1 (fr) Disque aubagé monobloc comportant un moyeu raccourci et une pièce de maintien
BE1025092B1 (fr) Joint a brosse pour rotor de turbomachine
EP3569854B1 (fr) Architecture de turbomachine a triple compresseur
EP3382155B1 (fr) Système d'étanchéité pour turbomachine et turbomachine associée
EP3594503B1 (fr) Turbomachine
EP3290657B1 (fr) Stator à aubes ajustables pour compresseur de turbomachine axiale
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor
EP4010566B1 (fr) Compresseur de turbomoteur d'aéronef comprenant un dispositif de blocage d'un anneau de retenue
BE1025984B1 (fr) Veine de compresseur basse-pression pour turbomachine
BE1025131A1 (fr) Arbre de transmission à double cannelure pour turbomachine
BE1024699A1 (fr) Compresseur basse pression a memoire de forme pour turbomachine axiale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161026

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AERO BOOSTERS SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 1/26 20060101ALI20171114BHEP

Ipc: F04D 29/059 20060101ALI20171114BHEP

Ipc: F02C 3/067 20060101ALI20171114BHEP

Ipc: F01D 5/03 20060101ALI20171114BHEP

Ipc: F01D 25/16 20060101ALI20171114BHEP

Ipc: F04D 19/02 20060101AFI20171114BHEP

INTG Intention to grant announced

Effective date: 20171130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1001744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015011379

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1001744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015011379

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151020

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240919

Year of fee payment: 10