[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3086335B1 - Magnet valve device for a fluid system and method for switching a solenoid valve - Google Patents

Magnet valve device for a fluid system and method for switching a solenoid valve Download PDF

Info

Publication number
EP3086335B1
EP3086335B1 EP16000598.9A EP16000598A EP3086335B1 EP 3086335 B1 EP3086335 B1 EP 3086335B1 EP 16000598 A EP16000598 A EP 16000598A EP 3086335 B1 EP3086335 B1 EP 3086335B1
Authority
EP
European Patent Office
Prior art keywords
armature
switching
solenoid valve
magnetic field
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16000598.9A
Other languages
German (de)
French (fr)
Other versions
EP3086335A1 (en
Inventor
Andreas Teichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP3086335A1 publication Critical patent/EP3086335A1/en
Application granted granted Critical
Publication of EP3086335B1 publication Critical patent/EP3086335B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/124Guiding or setting position of armatures, e.g. retaining armatures in their end position by mechanical latch, e.g. detent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1669Armatures actuated by current pulse, e.g. bistable actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Definitions

  • the invention relates to a solenoid valve device with a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle, and a method for switching a bistable solenoid valve.
  • a bistable solenoid valve in particular a 3/2-way valve may be provided which applies a first pressure output in a first position or first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second position, the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.
  • both positions can be formed by the solenoid valve.
  • a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.
  • the DE 37 30 381 A1 shows such a bistable solenoid valve, which allows a permanent magnet holding force in both positions.
  • an armature with two axially towards its end formed sealing means axially displaceable and abuts in its two positions to a first end core or second end core, wherein it closes in each of the positions with its respective sealant at the respective end core a fluid passage.
  • a permanent magnet is provided to close a magnetic field via an outer magnetic yoke and the end cores toward the armature.
  • a first permanent magnetic field is via the first core or a second permanent magnetic field via the second Core stronger or weaker than the other permanent magnetic field.
  • either a first coil or a second coil is energized, which amplifies one of the two permanent magnetic fields to such an extent that, despite the formation of the air gap, it exceeds the magnetic holding force of the other permanent magnetic field and thus enables switching to the other stable end position.
  • the US Pat. No. 7,483,254 B1 shows a control circuit for a bistable permanent magnet device, in which a control via pulsed signals, in particular with RC elements takes place.
  • the EP 0 328 194 A1 describes a bistable valve mechanism with a spring preload, which can be overcome by energization.
  • EP 1 331 426 A2 discloses a pulse driven solenoid, particularly for a solenoid valve, including a coil for generating a magnetic field in a magnetic circuit having a magnetically conductive core, a magnetically conductive core, and an armature cooperating with the core. Furthermore, the electromagnet contains a releasably attached permanent magnet whose magnetic field is at least partially superimposed on the coil.
  • the permanent magnet is arranged outside of the magnetic circuit.
  • DE 26 50 810 A1 discloses a solenoid valve having means for permanently magnetic locking in a first position and an arrangement for electromagnetic reversal from the first to another position.
  • the invention has for its object to provide a solenoid valve device and a method for switching a bistable solenoid valve, which allow a safe and fast switching between its positions with little effort.
  • the solenoid valve device in this case has the bistable solenoid valve, a circuit arrangement and a control device.
  • a partial or complete compensation of the armature-holding permanent magnetic field is effected by a compensating electromagnetic field of the electromagnetic device, which is also provided for switching.
  • the compensating current inputted to the electromagnet means for compensation is opposite to the current input to switch into the electromagnet means, so that the switching electromagnetic field is opposed to the compensating one.
  • the compensating current is preferably input here with a time change, in particular with a time increase, z. B. via a ramp.
  • This is z. B. a continuous increase from zero to a maximum current value possible.
  • a jump to an average current value is possible, for. B. after a first period of time.
  • the resetting switching operation can be improved by the compensating energization.
  • the magnetic holding force of the holding permanent magnetic field is thus already reduced, and the switching electromagnetic field can be dimensioned smaller with respect to its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.
  • the complementary design of a compensating electromagnetic field depending on the dynamics and position of the armature can also be problematic, since the respective restoring force is limited and serving for compensation "compensating" electromagnetic field due to the lack of air gap to the holding anchor quickly large can. So z. B. if too fast or too strong energization, the compensating first electromagnetic field (or the electromagnetic flux) may be so great that it not only compensates the permanent magnetic field, but overcompensated so much that results in a total magnetic field that of Amount ago is greater than the restoring force.
  • a temporally variable energization of the compensating electromagnetic device or coil is provided, in particular with a time increase within a rise time.
  • This can be z. B. by a time control, in which the current is not immediately driven to its maximum value, but is ramped up via a switch-on, which allows a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms.
  • the electromagnetic field in the turn-on ramp initially compensates for the air gap-loosely-holding permanent magnetic field until the restoring force has overcome the holding force and an air gap is formed between the armature and the retaining core, which attenuates the sustaining permanent magnetic field.
  • the armature can be pulled in the desired manner in the other switching position, before the first permanent magnetic field is overcompensated.
  • the restoring device for forming the restoring force, ie for returning the armature in its first armature position, may be a mechanical spring device, for. B. a coil spring, which is thus switched between their states “tense” and "not tense”.
  • the reset device is formed by a solenoid device.
  • the electromagnet device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field or the smaller permanent flux due to the air gap.
  • the first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field
  • the second electromagnetic field and the second permanent magnetic field thus form a second overall magnetic field
  • the currents can be controlled in combination by the two electromagnetic devices, z. B. as a series circuit or parallel connection of the two electromagnetic devices.
  • the switching current of the one solenoid device and the compensating current of the other solenoid device can be formed and controlled together.
  • the coils for each switching operation can be switched together, wherein the current directions for the respective switching operations are reversed accordingly, so that in each case an electromagnetic field as compensating, ie to compensate for the stronger permanent magnetic field (or permanent magnet flux) and the other magnetic switching, ie for the active circuit is used.
  • the high-side driver circuits for the two electromagnetic devices can be formed separately, with common low-side drive to ground.
  • the compensating electromagnetic field can be formed by a smaller current than the switching electromagnetic field.
  • the compensating current of the one switching operation is set against the switching current from the current direction inputted by this electromagnetic device in the other switching operation.
  • the solenoid valve may have a permanent magnet device with radial magnetization.
  • a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke, forming two permanent magnetic fields extending from the yoke either at an axial end via the first core to the armature, or at the other end run second core to the armature, wherein in each of the two positions in each case an axial air gap is provided by the armature to one of the two cores.
  • the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway.
  • B. switching transistors, are provided for its wiring.
  • Fig. 1 shows a bistable solenoid valve 1, which is designed for use in a fluid system 50, in particular a compressed air system 50, in particular as a 3/2 solenoid valve with three ports, preferably a pressure input 2a, a first pressure outlet 2b and a second pressure outlet 2c, the z. B. can serve as a vent.
  • the bistable solenoid valve 1 in the compressed air system 50, z. B. the compressed air system of a commercial vehicle serve, optionally according to the first anchor position I the Fig.
  • the bistable solenoid valve 1 on an armature guide tube 6 and a longitudinally adjustable in the armature guide tube 6 in the axial direction A guided anchor 7.
  • a first valve seal 8 is formed, which at a first valve seat 9, z. B. to the closure of the pressure input 2a, comes to rest, as well as continue a second valve seal 10 to the plant comes on a second valve seat 11, z. B. for closing the second pressure output 2c.
  • valve seals 8 and 10 are advantageously spring biased by an armature spring 13 for sealing engagement with their respective valve seat 9 and 11, respectively.
  • the armature 7 is magnetically conductive, d. H. made of ferromagnetic material; in the axial direction A closes to a first side of a first core 12, in which according to this embodiment, the pressure input 2a and the first pressure outlet 2b are formed, and to the other, second side of a second core 14, in which the second pressure outlet 2c for the vent is formed.
  • a magnetic device 15 Radially outside the armature guide tube 6, a magnetic device 15 is arranged, which has a permanent magnet means 16 and a total electromagnet means 17, wherein the one total electromagnet means 17 in turn with a first electromagnet means or first coil 18 and a second electromagnet means or second coil 19 is formed.
  • the entire magnet device 15 is received in a magnetic yoke 20, 21, which is formed by a yoke pot 20 with pot bottom 20a and cylindrical pot wall 20b and the yoke cup 20 to a axial side closing yoke disc 21.
  • the two cores 12 and 14 are advantageously in the radial direction R directly to the yoke disc 21 and the Jochtopf 20, ie without a radial air gap. Furthermore, the armature 7 lies in its two armature positions or positions directly in the axial direction A or -A on one of the two cores 12, 14 and has an air gap 22 to the respective other core 14, 12. Thus lies in the in Fig.
  • the armature 7 in the axial direction A directly, ie without an air gap, on the first core 12, wherein an axial air gap 22 is formed between the armature 7 and the second core 14; Accordingly, the armature 7 is in the second position II, not shown here directly to the second core 14, ie also without an air gap, in which case an air gap 22 between the armature 7 and the first core 12 is formed.
  • the permanent magnet device 16 is advantageously arranged axially between the first coil 18 and the second coil 19 and radially magnetized, d. H. the magnetization and thus the magnetic flux lines of the permanent magnetic field PM extend in the radial direction R, z. B. radially outward, d. H. perpendicular to the axis A.
  • the magnetic field is shown in part simplified by lines; In principle, the magnetic flux formed by the magnetic field is relevant to the magnetic effects.
  • the permanent magnet device 16 different configurations of the permanent magnet device 16 are possible, for. Example, by individual permanent magnets or a permanent magnet disc, which is designed as a ring or disc and in this case is magnetized in the radial direction.
  • the permanent magnet device 16 is formed outside the armature guide tube 6, it can also be formed with a wider axial extent, so that conventional materials for permanent magnets, for. As an iron alloy or a ceramic material used; the use z. B. rare earth is not required in principle.
  • the common permanent magnetic field PM thus proceeds according to Fig. 2 in the radial direction R through the permanent magnet device 16 and subsequently through the yoke 20, 21, wherein it extends axially in both directions, ie -A and A, ie along the pot wall 20b as a first permanent magnetic field PM1 and second permanent magnetic field PM2, wherein the permanent magnetic fields PM1, PM2 then extend at the axial ends radially downwards along the pot base 20b and the yoke disc 21 to the cores 12, 14, and subsequently axially, ie in the direction A or -A, to the armature 7 and back to the permanent magnet device 16th
  • the two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM thus forms z. B. a double torus or is dumbbell-shaped.
  • the magnetically conductive armature 7 is located on the first core 12, so that in this case the first permanent magnetic field PM1 extends directly from the first core 12 through the armature 7, and in the armature 7 in the axial direction to the permanent magnet device 16.
  • An air gap is formed at most as a radial air gap between the armature 7 and the permanent magnet means 16, but not as an axial gap, so that the first permanent magnetic field PM1 forms a strong magnetic holding force of the armature 7 on the first core 12.
  • the extending through the second core 14 second permanent magnetic field PM2 passes through the air gap 22 to the armature 7 and is significantly weakened by the air gap 22.
  • the magnetic holding force of the first permanent magnetic field PM1 is significantly larger than the attractive force of the second permanent magnetic field PM2; the armature 7 is in the right position, ie the anchor position I of Fig. 1 , kept safe.
  • the bistable magnetic valve 1 is basically symmetrical in the axial direction A with respect to the formation of the two cores 12 and 14 and the coils 18 and 19, the in Fig. 1 not shown second armature position II held securely, since here an air gap is formed correspondingly between the armature 7 and the first core 12, which weakens the first permanent magnetic field PM1, however, there is a strong second permanent magnetic field PM2.
  • the first coil 18 generates a first electromagnetic field EM1;
  • the second coil 19 generates a second electromagnetic field EM2, wherein the electromagnetic fields EM1 and EM2 are superimposed with the permanent magnetic fields PM1, PM2 and each other.
  • the first electromagnetic field EM1 of the first coil 18 is also toroidal in shape and extends substantially in accordance with the first permanent magnetic field PM1, in particular in rotationally symmetrical design of the permanent magnetic field PM1:
  • the first electromagnetic field EM1 initially extends within the first coil 18, ie in the axial direction A-depending on the current supply-from the first core 12 in the axial direction inwards or outwards, ie, for example from the outside (in FIG Fig. 1 right) inwardly to the armature 7, and from the armature 7 radially outwardly, ie along the permanent magnet means 16 outwardly, and from there along the pot wall 20b and the cup bottom 20a radially inwardly back to the first core 12.
  • the second electromagnetic field EM2 is similar to the second permanent magnetic field PM2, ie, depending on polarity, from the second core 14 in the axial direction A to the armature 7, or in the opposite direction from the armature 7 to the second core 14, and radially in each case radially outward along the permanent magnet device 16, the pot wall 20b in the axial direction, and along the yoke plate 21 radially inwardly.
  • the second electromagnetic field EM2 is again weakened by the air gap 22, the first electromagnetic field EM1, however, not.
  • the switching operations SV1 and SV2 of the bistable solenoid valve 1 between the first armature position I and the second armature position II are advantageously carried out by energizing each of both coils 18 and 19.
  • a first electromagnetic field EM1 of the first coil 18 is set up, which is opposite to the first permanent magnetic field PM1 and this partially compensated in particular, so that the magnetic holding force of the armature 6 on the first core 12 is at least reduced.
  • the second coil 19 is energized such that the second permanent magnetic field PM2 is amplified by the second electromagnetic field EM2, ie both fields PM2 and EM2 point in the same direction, so that in spite of the air gap 22 acting on the armature 7, in Fig. 1 towards the left magnetic force increases and the armature 7 in Fig. 1 shifted to the left, whereby the air gap 22 is reduced and disappears completely, and an air gap between the armature 7 and the first core 12 is formed.
  • one of the electromagnetic fields EM1 and EM2 is compensating and the other switching.
  • a first current I1 guided by the first coil 18 acts compensatingly, ie as a compensating first current I1_k, and a second current I2 conducted through the second coil 19 switches, ie as a switching second current I2_s.
  • a compensating second current I2_k is passed through the second coil 19, and a first current I1_s is conducted through the first coil 18.
  • the two coils 18 and 19 are connected via coil terminals 61a, b and 62a, b to a circuit arrangement 30, which represents in particular an output stage.
  • a solenoid valve device 5 is formed, which has the bistable solenoid valve 1, the circuit arrangement 30 and the control device 40.
  • the first current I1_k can cause the compensating, ie in Fig. 1 the first electromagnetic field EM1 is too strong and the difference EM1 - PM1 can be greater in magnitude than the positively overlapping, but weakened by the air gap 22, switching total second field EM2 + PM2.
  • At least the compensating current I1_k or I2_k is in each case increased with a time delay, advantageously via a ramp.
  • both currents can thus be ramped up with a time delay.
  • 3 and 4 show embodiments of a circuit arrangement 30 for such ramp controls.
  • the coils 18 and 19 can according to Fig. 3 be connected in a series circuit.
  • Tr1 OFF
  • Tr4 OFF
  • Tr2 ON
  • Tr3 ON to the supply voltage Uv over Tr2 and the series connection of the coils 18 and 19 and Tr3 to ground GND to lead.
  • the Amperewindungen AW are drawn, resulting in the product of the current and the number of turns, the starting-shift duration .DELTA.t1 between t2 and t1 is z. B.
  • ⁇ t2 50 to 70 ms
  • the total switching time .DELTA.t2 between t3 and t1 is z.
  • B. ⁇ t2 100 ms.
  • the purely mechanical switching of the valve takes place depending on the tolerance position of the individual components in the valve between the times t1 and t2.
  • Fig. 6 shows an alternative control in which at time t1, the current is driven immediately to a mean current value I_mid, and subsequently with a linear ramp up to the time t2 to the maximum value I_max until it is turned off again at time t3.
  • the switching periods ⁇ t1 and ⁇ t2 can have similar values as in Fig. 5 accept.
  • first in the first position I of Fig. 1 weak first electromagnetic field EM1 is formed, which fully or partially compensates the holding permanent magnetic field, here thus the first permanent magnetic field PM1, but only at time t2 reaches the maximum current value I_max.
  • the starting shift duration .DELTA.t1 is sufficient to achieve a mechanical adjustment of the armature 7 away from the first armature position I; as soon as an air gap forms between the armature 7 and the first core 12, the risk of unintentional holding in the first armature position I has already been significantly reduced.
  • FIGS. 7 and 8 show a detailed design of a solenoid valve 1 accordingly Fig. 1 ,
  • the permanent magnet device 16 is here opposite for illustrative purposes Fig. 1 reversed polarity used.
  • Compressed air 25a is from a compressed air supply 25, z. B. a compressed air reservoir, fed via a compressed air supply line 23 to the pressure input 2a, and passed over the first pressure output 2b and a pressure output line 26 to a consumer 24.
  • a pressure outlet 27 is attached directly or indirectly via a line.
  • the compressed air applied to the pressure inlet 2a and the inner bore 42 of the first core 12 is blocked at the closed first valve, ie between the first valve seat 9 and the first valve seal 8.
  • Compressed air 25a can from the consumer 24 via the pressure-output line 26, the first pressure outlet 2b, then via an outer axial bore 43 of the core 12, an interior 29 of the armature 7, in which preferably also z.
  • the inner armature spring 13 is provided, and are guided over the axial gap 22 of the open second valve 10,11 and the bore 14a of the second core 14 to the second pressure outlet 2c and thus to the pressure outlet 27 for venting.
  • the second valve 10, 11 is thus open, since the second valve seat 11 is separated from the second valve seal 10 by the axial gap 22.
  • the first valve 8, 9 is open, ie the axial gap 22 is formed between the first valve seat 9 and the first valve seal 8. Accordingly, the second valve 10, 11 closed by the second valve seat 11 rests on the second valve seal 10. Compressed air 25a is thus from the compressed air supply 25 via the compressed air supply line 23, the pressure inlet 2a, the inner bore 42, the open first valve 8, 9, the axial gap 22, the radially outer bore 43 to the first pressure outlet 2b and thus to the Consumer 24 led.
  • the holes 42, 43 in the first core 12 are advantageously formed by the first core 12 is formed with an inner tube 12 a and an outer tube 12 b, between which, at least in some areas the circumference of the outer axial bore 43 is formed; the inner bore 42 is formed by the central bore of the inner tube 12a.
  • the armature 7 is formed according to the embodiment shown here by a first anchor part 7a and a second anchor part 7b, the z. B. be joined together by press fitting; the armature spring 13 presses the valve seals 8 and 10 apart axially.
  • the armature 7 can thus be joined with an armature interior 29 which, as described above, serves as an air duct for the ventilation.
  • Fig. 9 to 12 show a non-claimed embodiment with a solenoid valve 101 with spring return by a spring device 70, here as a helical spring between the armature 7 and the yoke, z. B. the yoke disc 21, is provided.
  • a spring device 70 here as a helical spring between the armature 7 and the yoke, z. B. the yoke disc 21, is provided.
  • armature 7 is held in the second anchor position II to the holding core 14 (or second core or holding core), since the holding permanent magnetic field or second permanent magnetic field PM2 due to the lack of air gap 22 is strong enough, even without Supported by the second electromagnetic field EM2 to hold the armature 7 against the spring action of the spring device 70.
  • Fig. 12 is then the holding permanent magnetic field or second permanent magnetic field PM2 weakened by at least partial compensation by the compensating second electromagnetic field EM2_k, so that the spring restoring force of the spring device 70, the magnetic holding force, which is determined by the amount of the difference of the holding second permanent Magnetic field PM2 and the compensating second electromagnetic field EM2_k is exceeded.
  • the resetting switching operation SV1 or first switching operation takes place in the first armature position I, which in turn forms the air gap 22 between the holding core or holding core 14 and the armature 7.
  • Fig. 13 shows a circuit arrangement or power amplifier 130, respectively Fig. 3 is constructed with only the switching solenoid device or second coil 19 is energized.
  • Fig. 5 or 6 the time diagrams of the Fig. 5 or 6 be set.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Die Erfindung betrifft eine Magnetventil-Einrichtung mit einem bistabilen Magnetventil für ein Fluidsystem, insbesondere ein Druckluftsystem in einem Fahrzeug, und ein Verfahren zum Schalten eines bistabilen Magnetventils.The invention relates to a solenoid valve device with a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle, and a method for switching a bistable solenoid valve.

Als bistabiles Magnetventil kann insbesondere ein 3/2-Wegeventil vorgesehen sein, das einen ersten Druckausgang in einer ersten Stellung bzw. ersten Ankerstellung an einen zweiten Druckausgang legt, um eine Druckausgangsleitung zu entlüften bzw. mit Atmosphäre zu verbinden; hierbei ist ein Druckeingang gesperrt. In einer zweiten Stellung wird der Druckeingang mit dem ersten Druckausgang verbunden, z. B. zur pneumatischen Versorgung einer Druckluft-Bremse. Der zweite Druckausgang ist hierbei gesperrt.As a bistable solenoid valve, in particular a 3/2-way valve may be provided which applies a first pressure output in a first position or first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second position, the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.

Somit sind durch das Magnetventil zwei Stellungen ausbildbar. Bei einem bistabilen Magnetventil werden beide Stellungen im stromlosen Zustand durch eine Permanentmagnet-Einrichtung sicher gehalten, wobei eine Elektromagneteinrichtung für die Schaltvorgänge vorgesehen ist.Thus, two positions can be formed by the solenoid valve. In a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.

Die DE 37 30 381 A1 zeigt ein derartiges bistabiles Magnetventil, das in beiden Stellungen eine Dauermagnet-Haltekraft ermöglicht. Hierbei ist ein Anker mit zwei zu seinen axialen Enden hin ausgebildeten Dichtmitteln axial verschiebbar und stößt in seinen beiden Stellungen an einen ersten Endkern oder zweiten Endkern, wobei er in jeder der Stellungen mit seinem jeweiligen Dichtmittel an dem jeweiligen Endkern einen Fluiddurchlass verschließt. Ein Dauermagnet ist vorgesehen, um ein magnetisches Feld über ein äußeres magnetisches Joch und die Endkerne zu dem Anker hin zu schließen. Je nach Ausbildung des Luftspaltes ist ein erstes Permanentmagnetfeld über den ersten Kern oder ein zweites Permanentmagnetfeld über den zweiten Kern stärker oder schwächer als das jeweils andere Permanentmagnetfeld. Zum Umschalten der stabilen Stellungen wird entweder eine erste Spule oder eine zweite Spule bestromt, die jeweils eines der beiden Permanentmagnetfelder soweit verstärkt, dass es trotz der Ausbildung des Luftspaltes die Magnethaltekraft des anderen Permanentmagnetfeldes übersteigt und somit ein Umschalten in die andere stabile Endstellung ermöglicht.The DE 37 30 381 A1 shows such a bistable solenoid valve, which allows a permanent magnet holding force in both positions. In this case, an armature with two axially towards its end formed sealing means axially displaceable and abuts in its two positions to a first end core or second end core, wherein it closes in each of the positions with its respective sealant at the respective end core a fluid passage. A permanent magnet is provided to close a magnetic field via an outer magnetic yoke and the end cores toward the armature. Depending on the design of the air gap, a first permanent magnetic field is via the first core or a second permanent magnetic field via the second Core stronger or weaker than the other permanent magnetic field. For switching the stable positions, either a first coil or a second coil is energized, which amplifies one of the two permanent magnetic fields to such an extent that, despite the formation of the air gap, it exceeds the magnetic holding force of the other permanent magnetic field and thus enables switching to the other stable end position.

Zur Ausbildung der Elektromagnetfelder ist jedoch eine hohe Anzahl Amperewindungen erforderlich, so dass großdimensionierte Spulen mit erheblichen Herstellungskosten erforderlich sind und die Schaltgeschwindigkeit begrenzt ist.To form the electromagnetic fields, however, a high number of ampere-turns is required, so that large-sized coils are required with considerable production costs and the switching speed is limited.

Die US 7,483,254 B1 zeigt eine Steuerschaltung für eine bistabile Permanentmagneteinrichtung, bei der eine Ansteuerung über gepulste Signale, insbesondere mit RC-Gliedern erfolgt.The US Pat. No. 7,483,254 B1 shows a control circuit for a bistable permanent magnet device, in which a control via pulsed signals, in particular with RC elements takes place.

Die EP 0 328 194 A1 beschreibt einen bistabilen Ventil-Mechanismus mit einer Federvorspannung, die durch Bestromung überwunden werden kann.The EP 0 328 194 A1 describes a bistable valve mechanism with a spring preload, which can be overcome by energization.

Einschub zum Stand der TechnikInset to the prior art

EP 1 331 426 A2 offenbart einen impulsbetriebenen Elektromagnet, insbesondere für ein Magnetventil, enthält eine Spule der zur Erzeugung eines Magnetfeldes in einem Magnetkreis, der einen magnetisch leitenden Hauptkern, ein magnetisch leitendes Kernstück und einen mit dem Kernstück zusammenwirkenden Anker aufweist. Ferner enthält der Elektromagnet einen lösbar befestigten Dauermagneten, dessen Magnetfeld dem der Spule zumindest teilweise überlagert ist. EP 1 331 426 A2 discloses a pulse driven solenoid, particularly for a solenoid valve, including a coil for generating a magnetic field in a magnetic circuit having a magnetically conductive core, a magnetically conductive core, and an armature cooperating with the core. Furthermore, the electromagnet contains a releasably attached permanent magnet whose magnetic field is at least partially superimposed on the coil.

Um den Elektromagneten ohne aufwendigen Umbau mit oder ohne Dauermagneten zu betreiben, ist der Dauermagnet außerhalb des Magnetkreises angeordnet.In order to operate the electromagnet without complex conversion with or without permanent magnets, the permanent magnet is arranged outside of the magnetic circuit.

DE 26 50 810 A1 offenbart ein Magnetventil mit einer Einrichtung zum permanentmagnetischen Arretieren in einer ersten Stellung und einer Anordnung zum elektromagnetischen Umsteuern von der ersten in eine andere Stellung. DE 26 50 810 A1 discloses a solenoid valve having means for permanently magnetic locking in a first position and an arrangement for electromagnetic reversal from the first to another position.

Der Erfindung liegt die Aufgabe zugrunde, eine Magnetventil-Einrichtung und ein Verfahren zum Schalten eines bistabiles Magnetventils zu schaffen, die bei geringem Aufwand eine sichere und schnelle Umschaltung zwischen seinen Stellungen ermöglichen.The invention has for its object to provide a solenoid valve device and a method for switching a bistable solenoid valve, which allow a safe and fast switching between its positions with little effort.

Diese Aufgabe wird durch eine Magnetventil-Einrichtung und ein Verfahren geeignet zum Schalten bzw. zur Ansteuerung des Magnetventils nach den unabhängigen Ansprüchen gelöst. Das Verfahren kann insbesondere unter Verwendung der Magnetventil- Einrichtung erfolgen.This object is achieved by a solenoid valve device and a method suitable for switching or for driving the solenoid valve according to the independent claims. The method can be carried out in particular using the solenoid valve device.

Die Magnetventil-Einrichtung weist hierbei das bistabile Magnetventil, eine Schaltungsanordnung und eine Steuereinrichtung auf.The solenoid valve device in this case has the bistable solenoid valve, a circuit arrangement and a control device.

Somit erfolgt eine teilweise oder vollständige Kompensation des den Anker haltenden Permanent-Magnetfeldes durch ein kompensierendes Elektromagnetfeld der Elektromagneteinrichtung, die auch zum Schalten vorgesehen ist. Der zur Kompensation in die Elektromagneteinrichtung eingegebene kompensierende Strom ist entgegen gesetzt zu dem Strom, der zum Schalten in die Elektromagneteinrichtung eingegeben wird, so dass das schaltende Elektromagnetfeld dem kompensierenden entgegen gesetzt ist.Thus, a partial or complete compensation of the armature-holding permanent magnetic field is effected by a compensating electromagnetic field of the electromagnetic device, which is also provided for switching. The compensating current inputted to the electromagnet means for compensation is opposite to the current input to switch into the electromagnet means, so that the switching electromagnetic field is opposed to the compensating one.

Der kompensierende Strom wird hierbei vorzugsweise mit zeitlicher Veränderung eingegeben, insbesondere mit einem zeitlichem Anstieg, z. B. über eine Rampe. Hierbei ist z. B. ein kontinuierlicher Anstieg von Null auf einen maximalen Stromwert möglich. Alternativ oder ergänzend ist auch ein Sprung auf einen mittleren Stromwert möglich, z. B. nach einer ersten Zeitspanne. So kann ein maximaler Stromwert durch Sprünge und/oder einen kontinuierlichen Anstieg, z. B. als zeitliche Rampe, eingestellt werden.The compensating current is preferably input here with a time change, in particular with a time increase, z. B. via a ramp. This is z. B. a continuous increase from zero to a maximum current value possible. Alternatively or additionally, a jump to an average current value is possible, for. B. after a first period of time. Thus, a maximum current value by jumps and / or a continuous increase, z. B. as a time ramp.

Erfindungsgemäß wird erkannt, dass durch die kompensierende Bestromung der Rückstell-Schaltvorgang verbessert werden kann. Durch die zumindest teilweise Kompensation wird somit die magnetische Haltekraft des haltenden Permanentmagnetfeldes bereits verringert, und das schaltende Elektromagnetfeld kann bezüglich seiner magnetischen Feldstärke bzw. der Ausbildung an Amperewindungen kleiner dimensioniert werden, um den Schaltvorgang durch Verstärkung des zweiten Permanentmagnetfeldes zu ermöglichen.According to the invention, it is recognized that the resetting switching operation can be improved by the compensating energization. As a result of the at least partial compensation, the magnetic holding force of the holding permanent magnetic field is thus already reduced, and the switching electromagnetic field can be dimensioned smaller with respect to its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.

Somit ist ohne apparativen Mehraufwand bzw. mit geringem Schaltungs-Mehraufwand für z. B. eine Brückenschaltung eine zusätzliche Nutzung einer bereits zum Schalten eingesetzten Elektromagneteinrichtung, z. B. Spule, möglich.Thus, without additional equipment overhead or with low circuit overhead for z. B. a bridge circuit an additional use of an already used for switching electromagnet device, for. B. coil, possible.

Erfindungsgemäß wird vorzugsweise weiterhin erkannt, dass die ergänzende Ausbildung eines kompensierenden Elektromagnetfeldes je nach Dynamik und Stellung des Ankers auch problematisch sein kann, da die jeweilige Rückstellkraft begrenzt ist und das zur Kompensation dienende "kompensierende" Elektromagnetfeld aufgrund des fehlenden Luftspaltes zum haltenden Anker schnell groß werden kann. So kann z. B. bei zu schneller oder zu starker Bestromung das kompensierende erste Elektromagnetfeld (bzw. der Elektromagnetfluss) ggf. so groß werden, das es das Permanent-Magnetfeld nicht nur kompensiert, sondern so stark überkompensiert, dass sich ein Gesamt-Magnetfeld ergibt, dass vom Betrag her größer ist als die Rückstellkraft.According to the invention is further preferably recognized that the complementary design of a compensating electromagnetic field depending on the dynamics and position of the armature can also be problematic, since the respective restoring force is limited and serving for compensation "compensating" electromagnetic field due to the lack of air gap to the holding anchor quickly large can. So z. B. if too fast or too strong energization, the compensating first electromagnetic field (or the electromagnetic flux) may be so great that it not only compensates the permanent magnetic field, but overcompensated so much that results in a total magnetic field that of Amount ago is greater than the restoring force.

Um eine derartige Überkompensation und somit einen fehlenden Schaltvorgang zu vermeiden, ist vorzugsweise eine zeitlich veränderliche Bestromung der kompensierenden Elektromagneteinrichtung bzw. Spule vorgesehen, insbesondere mit zeitlichem Anstieg innerhalb einer Anstiegszeit. Dies kann z. B. durch eine zeitliche Ansteuerung erfolgen, bei der der Strom nicht sofort auf seinen Maximalwert gefahren wird, sondern über eine Einschaltrampe hochgefahren wird, die eine mechanische Verstellung des Ankers ermöglicht, d. h. z. B. in einem Zeitraum oberhalb von 10 ms, z. B. in einem Zeitraum von 100 ms. Somit kompensiert das Elektromagnetfeld in der Einschaltrampe zunächst das Luftspalt-lose haltende Permanentmagnetfeld, bis die Rückstellkraft die haltende Kraft überwunden hat und ein Luftspalt zwischen Anker und haltendem Kern gebildet ist, der das haltenden Permanentmagnetfeld abschwächt. Somit kann der Anker in gewünschter Weise in die andere Schaltstellung gezogen werden, bevor das erste Permanentmagnetfeld überkompensiert wird.In order to avoid such overcompensation and thus a missing switching operation, preferably a temporally variable energization of the compensating electromagnetic device or coil is provided, in particular with a time increase within a rise time. This can be z. B. by a time control, in which the current is not immediately driven to its maximum value, but is ramped up via a switch-on, which allows a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms. Thus, the electromagnetic field in the turn-on ramp initially compensates for the air gap-loosely-holding permanent magnetic field until the restoring force has overcome the holding force and an air gap is formed between the armature and the retaining core, which attenuates the sustaining permanent magnetic field. Thus, the armature can be pulled in the desired manner in the other switching position, before the first permanent magnetic field is overcompensated.

Die Rückstell-Einrichtung zur Ausbildung der Rückstellkraft, d.h. zur Rückstellung des Ankers in dessen erste Ankerstellung, kann gemäß einer nicht-beanspruchten Ausführungsform eine mechanische Federeinrichtung sein, z. B. eine Schraubenfeder, die somit zwischen ihren Zuständen "gespannt" und "nicht gespannt" geschaltet wird.The restoring device for forming the restoring force, ie for returning the armature in its first armature position, according to a non-claimed embodiment may be a mechanical spring device, for. B. a coil spring, which is thus switched between their states "tense" and "not tense".

Die Rückstell-Einrichtung wird durch eine Elektromagneteinrichtung ausgebildet. Für einen Schaltvorgang wird somit die Elektromagneteinrichtung an der schaltenden Seite, an der der axiale Luftspalt zwischen dem Kern und dem Anker vorgesehen ist, mit einem schaltenden Strom bestromt, um das aufgrund des Luftspalts geringere Permanentmagnetfeld bzw. den geringeren Permanentfluss zu unterstützen.The reset device is formed by a solenoid device. For a switching operation, the electromagnet device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field or the smaller permanent flux due to the air gap.

Das erste Elektromagnetfeld und erste Permanentmagnetfeld bilden somit ein erstes Gesamt-Magnetfeld, entsprechend bilden das zweite Elektromagnetfeld und zweite Permanentmagnetfeld somit ein zweites Gesamt-Magnetfeld.The first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field, accordingly the second electromagnetic field and the second permanent magnetic field thus form a second overall magnetic field.

Bei der Ausführungsform mit zwei Elektromagneteinrichtungen ist insbesondere auch eine symmetrische Ausbildung des Magnetventils bezüglich Anker, Permanentmagnet und den beiden Elektromagneteinrichtungen möglich, mit einer spezifischen, z. B. unsymmetrischen Ventil-Ausbildung. Hierbei können die Ströme durch die beiden Elektromagneteinrichtungen kombiniert angesteuert werden, z. B. als Reihenschaltung oder Parallelschaltung der beiden Elektromagneteinrichtungen. Somit können der schaltende Strom der einen Elektromagneteinrichtung und der kompensierende Strom der anderen Elektromagneteinrichtung zusammen ausgebildet und eingesteuert werden. Somit können die Spulen für jeden Schaltvorgang gemeinsam geschaltet werden, wobei die Stromrichtungen für die jeweiligen Schaltvorgänge entsprechend umgepolt werden, so dass jeweils ein Elektromagnetfeld als kompensierend, d.h. zur Kompensation des stärkeren Permanentmagnetfeldes (bzw. Permanentmagnetflusses) und das andere Magnetfeld schaltend, d.h. für die aktive Schaltung dient.In the embodiment with two electromagnetic devices in particular a symmetrical design of the solenoid valve with respect to armature, permanent magnet and the two electromagnetic devices is possible with a specific, z. B. unbalanced valve training. In this case, the currents can be controlled in combination by the two electromagnetic devices, z. B. as a series circuit or parallel connection of the two electromagnetic devices. Thus, the switching current of the one solenoid device and the compensating current of the other solenoid device can be formed and controlled together. Thus, the coils for each switching operation can be switched together, wherein the current directions for the respective switching operations are reversed accordingly, so that in each case an electromagnetic field as compensating, ie to compensate for the stronger permanent magnetic field (or permanent magnet flux) and the other magnetic switching, ie for the active circuit is used.

Alternativ zu der kombinierten Ansteuerung sind auch separate Ansteuerungen der beiden Elektromagneteinrichtungen möglich, wobei z. B. die Highside-Treiberschaltungen für die beiden Elektromagneteinrichtungen separat ausgebildet werden können, bei gemeinsamer Lowside-Ansteuerung gegenüber Masse. Bei einer separaten Ansteuerung kann z. B. das kompensierenden Elektromagnetfeld durch einen kleineren Strom als das schaltenden Elektromagnetfeld ausgebildet werden.As an alternative to the combined control and separate controls of the two electromagnetic devices are possible, wherein z. B. the high-side driver circuits for the two electromagnetic devices can be formed separately, with common low-side drive to ground. In a separate control can z. B. the compensating electromagnetic field can be formed by a smaller current than the switching electromagnetic field.

Vorzugsweise ist bei jeder Elektromagneteinrichtung der kompensierende Strom des einen Schaltvorgangs dem durch diese Elektromagneteinrichtung in dem anderen Schaltvorgang eingegebenen schaltenden Strom von der Stromrichtung her entgegen gesetzt.Preferably, in each solenoid device, the compensating current of the one switching operation is set against the switching current from the current direction inputted by this electromagnetic device in the other switching operation.

Bei der Ausführungsform mit zwei Elektromagneteinrichtungen kann das Magnetventil eine Permanentmagnet-Einrichtung mit radialer Magnetisierung aufweisen. Somit verläuft ein Permanentmagnetfeld in radialer Richtung von dem inneren Anker über den Permanentmagneten und ein äußeres magnetisches Joch, wobei sich zwei Permanentmagnetfelder ausbilden, die von dem Joch entweder an einem axialen Ende über den ersten Kern zu dem Anker, oder an dem anderen Ende über den zweiten Kern zu dem Anker verlaufen, wobei in jeder der beiden Stellungen jeweils ein axialer Luftspalt von dem Anker zu einem der beiden Kerne vorgesehen ist.In the embodiment with two electromagnetic devices, the solenoid valve may have a permanent magnet device with radial magnetization. Thus, a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke, forming two permanent magnetic fields extending from the yoke either at an axial end via the first core to the armature, or at the other end run second core to the armature, wherein in each of the two positions in each case an axial air gap is provided by the armature to one of the two cores.

Hierbei wird insbesondere auch erkannt, dass die ergänzende Bestromung des kompensierenden Elektromagnetfeldes grundsätzlich keinen zusätzlichen Hardwareaufwand erfordert, da ohnehin eine Schalteinrichtung, z. B. Schalt-Transistoren, zu seiner Beschaltung vorgesehen sind.In this case, in particular, it is also recognized that the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway. B. switching transistors, are provided for its wiring.

Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:

Fig. 1
ein bistabiles Magnetventil gemäß einer Ausführungsform mit zwei Spulen in geschnittener Darstellung;
Fig. 2
eine Darstellung des Verlaufs der Magnetfeldlinien in Fig. 1;
Fig. 3
eine Schaltungsanordnung zur Ansteuerung der Spulen gemäß einer Ausführungsform mit Reihenschaltung beider Spulen;
Fig. 4
eine Schaltungsanordnung zur Ansteuerung der Spulen gemäß einer Ausführungsform mit Parallelschaltung beider Spulen;
Fig. 5
ein Zeitdiagramm des Spulenstroms gemäß einer Ausführungsformen mit Rampen-Ansteuerung;
Fig. 6
ein Zeitdiagramm des Spulenstroms gemäß einer weiteren Ausführungsformen mit Rampen-Ansteuerung;
Fig. 7
ein Schnittbild des bistabilen Magnetventils gemäß einer Ausführungsform mit zwei Spulen in der ersten Ankerstellung;
Fig. 8
ein Schnittbild des bistabilen Magnetventils aus Fig. 9 in der zweiten Ankerstellung;
Fig. 9
ein Schnittbild des bistabilen Magnetventils gemäß einer nicht-beanspruchten mit Feder-Rückstellung in der ersten Ankerstellung;
Fig. 10
das bistabile Magnetventil aus Fig. 9 bei dem Anker-Schaltvorgang in die zweite Ankerstellung;
Fig. 11
das bistabile Magnetventil aus Fig. 9 bis 10 in der zweiten Ankerstellung;
Fig. 12
das bistabile Magnetventil aus Fig. 9 bis 11 bei dem Rückstell-Schaltvorgang in die erste Ankerstellung; und
Fig. 13
ein Zeitdiagramm des Spulenstroms der Ausführungsform der Fig. 9 bis 12 bei Rampen- Ansteuerung.
The invention will be explained in more detail below with reference to the accompanying drawings of some embodiments. Show it:
Fig. 1
a bistable solenoid valve according to an embodiment with two coils in a sectional view;
Fig. 2
a representation of the course of the magnetic field lines in Fig. 1 ;
Fig. 3
a circuit arrangement for driving the coils according to an embodiment with series connection of both coils;
Fig. 4
a circuit arrangement for driving the coils according to an embodiment with parallel connection of both coils;
Fig. 5
a timing diagram of the coil current according to a embodiments with ramp drive;
Fig. 6
a timing diagram of the coil current according to another embodiments with ramp drive;
Fig. 7
a sectional view of the bistable solenoid valve according to an embodiment with two coils in the first armature position;
Fig. 8
a sectional view of the bistable solenoid valve Fig. 9 in the second anchor position;
Fig. 9
a sectional view of the bistable solenoid valve according to a non-claimed with spring return in the first armature position;
Fig. 10
the bistable solenoid valve off Fig. 9 in the armature switching operation in the second armature position;
Fig. 11
the bistable solenoid valve off Fig. 9 to 10 in the second anchor position;
Fig. 12
the bistable solenoid valve off Fig. 9 to 11 in the return switching operation in the first armature position; and
Fig. 13
a timing diagram of the coil current of the embodiment of the Fig. 9 to 12 with ramp control.

Fig. 1 zeigt ein bistabiles Magnetventil 1, das zum Einsatz in einem Fluidsystem 50, insbesondere einem Druckluftsystem 50 ausgebildet ist, insbesondere als 3/2-Magnetventil mit drei Anschlüssen, vorzugsweise einem Druckeingang 2a, einem ersten Druckausgang 2b und einem zweiten Druckausgang 2c, der z. B. als Entlüftung dienen kann. Somit kann das bistabile Magnetventil 1 in dem Druckluftsystem 50, z. B. dem Druckluftsystem eines Nutzfahrzeuges, dazu dienen, wahlweise gemäß der ersten Ankerstellung I der Fig. 1 an den ersten Druckausgang 2b den zweiten Druckausgang 2c und somit die Entlüftung anzuschließen um die Druckluft-Zuführleitung zu entlüften, oder in der zweiten Ankerstellung II eine an den Druckeingang 2a angeschlossene Druckluft- Zuführleitung 1 an den ersten Druckausgang 2b anzuschließen, wie weiter unten mit Bezug zu Fig. 7 und 8 erläutert wird. Fig. 1 shows a bistable solenoid valve 1, which is designed for use in a fluid system 50, in particular a compressed air system 50, in particular as a 3/2 solenoid valve with three ports, preferably a pressure input 2a, a first pressure outlet 2b and a second pressure outlet 2c, the z. B. can serve as a vent. Thus, the bistable solenoid valve 1 in the compressed air system 50, z. B. the compressed air system of a commercial vehicle, serve, optionally according to the first anchor position I the Fig. 1 to connect to the first pressure outlet 2b the second pressure outlet 2c and thus the vent to vent the compressed air supply line, or connect in the second armature position II connected to the pressure input 2a compressed air supply line 1 to the first pressure outlet 2b, as further below with reference to FIGS. 7 and 8 is explained.

Hierzu weist das bistabile Magnetventil 1 ein Ankerführungsrohr 6 und einen in dem Ankerführungsrohr 6 in Axialrichtung A längsverstellbar geführten Anker 7 auf. An dem Anker 7 ist eine erste Ventildichtung 8 ausgebildet, die an einem ersten Ventilsitz 9, z. B. zum Verschluss des Druckeingangs 2a, zur Anlage kommt, sowie weiterhin eine zweite Ventildichtung 10, die zur Anlage an einem zweiten Ventilsitz 11 kommt, z. B. zum Verschluss des zweiten Druckausgangs 2c.For this purpose, the bistable solenoid valve 1 on an armature guide tube 6 and a longitudinally adjustable in the armature guide tube 6 in the axial direction A guided anchor 7. At the armature 7, a first valve seal 8 is formed, which at a first valve seat 9, z. B. to the closure of the pressure input 2a, comes to rest, as well as continue a second valve seal 10 to the plant comes on a second valve seat 11, z. B. for closing the second pressure output 2c.

Die Ventildichtungen 8 und 10 sind vorteilhafterweise durch eine Ankerfeder 13 federvorgespannt, zur dichtenden Anlage an ihrem jeweiligen Ventilsitz 9 bzw. 11.The valve seals 8 and 10 are advantageously spring biased by an armature spring 13 for sealing engagement with their respective valve seat 9 and 11, respectively.

Der Anker 7 ist magnetisch leitend, d. h. aus ferromagnetischem Material ausgebildet; in Axialrichtung A schließt sich zu einer ersten Seite ein erster Kern 12, in dem gemäß dieser Ausbildung der Druckeingang 2a und der erste Druckausgang 2b ausgebildet sind, sowie zu der anderen, zweiten Seite ein zweiter Kern 14 an, in dem der zweite Druckausgang 2c für die Entlüftung ausgebildet ist.The armature 7 is magnetically conductive, d. H. made of ferromagnetic material; in the axial direction A closes to a first side of a first core 12, in which according to this embodiment, the pressure input 2a and the first pressure outlet 2b are formed, and to the other, second side of a second core 14, in which the second pressure outlet 2c for the vent is formed.

Radial außerhalb des Ankerführungsrohrs 6 ist eine Magnet-Einrichtung 15 angeordnet, die eine Permanentmagnet-Einrichtung 16 und eine Gesamt-Elektromagneteinrichtung 17 aufweist, wobei die eine Gesamt- Elektromagneteinrichtung 17 wiederum mit einer ersten Elektromagneteinrichtung bzw. ersten Spule 18 und einer zweiten Elektromagneteinrichtung bzw. zweiten Spule 19 ausgebildet ist. Die gesamte Magnet-Einrichtung 15 ist in einem magnetischen Joch 20, 21 aufgenommen, das durch einen Jochtopf 20 mit Topfboden 20a und zylinderförmiger Topfwand 20b und eine den Jochtopf 20 zu einer axialen Seite hin verschließenden Jochscheibe 21 ausgebildet ist.Radially outside the armature guide tube 6, a magnetic device 15 is arranged, which has a permanent magnet means 16 and a total electromagnet means 17, wherein the one total electromagnet means 17 in turn with a first electromagnet means or first coil 18 and a second electromagnet means or second coil 19 is formed. The entire magnet device 15 is received in a magnetic yoke 20, 21, which is formed by a yoke pot 20 with pot bottom 20a and cylindrical pot wall 20b and the yoke cup 20 to a axial side closing yoke disc 21.

Die beiden Kerne 12 und 14 liegen vorteilhafterweise in radialer Richtung R direkt an der Jochscheibe 21 und dem Jochtopf 20 an, d.h. ohne radialen Luftspalt. Weiterhin liegt der Anker 7 in seinen beiden Ankerstellungen bzw. Stellungen direkt in axialer Richtung A bzw. -A an einem der beiden Kerne 12, 14 an und weist zu dem jeweils anderen Kern 14, 12 einen Luftspalt 22 auf. Somit liegt in der in Fig. 1 gezeigten ersten Stellung I der Anker 7 in axialer Richtung A direkt, d. h. ohne Luftspalt, an dem ersten Kern 12 an, wobei ein axialer Luftspalt 22 zwischen dem Anker 7 und dem zweiten Kern 14 ausgebildet ist; entsprechend liegt der Anker 7 in der hier nicht gezeigten zweiten Stellung II direkt an dem zweiten Kern 14 an, d. h. ebenfalls ohne Luftspalt, wobei dann ein Luftspalt 22 zwischen dem Anker 7 und dem ersten Kern 12 ausgebildet ist.The two cores 12 and 14 are advantageously in the radial direction R directly to the yoke disc 21 and the Jochtopf 20, ie without a radial air gap. Furthermore, the armature 7 lies in its two armature positions or positions directly in the axial direction A or -A on one of the two cores 12, 14 and has an air gap 22 to the respective other core 14, 12. Thus lies in the in Fig. 1 shown first position I, the armature 7 in the axial direction A directly, ie without an air gap, on the first core 12, wherein an axial air gap 22 is formed between the armature 7 and the second core 14; Accordingly, the armature 7 is in the second position II, not shown here directly to the second core 14, ie also without an air gap, in which case an air gap 22 between the armature 7 and the first core 12 is formed.

Die Permanentmagnet-Einrichtung 16 ist vorteilhafterweise axial zwischen der ersten Spule 18 und der zweiten Spule 19 angeordnet und radial magnetisiert, d. h. die Magnetisierung und somit die magnetischen Flusslinien des Permanentmagnetfeldes PM verlaufen in radialer Richtung R, z. B. radial nach außen, d. h. senkrecht zur Achse A. In den Figuren ist zum Teil vereinfacht das Magnetfeld durch Linien dargestellt; grundsätzlich ist der durch das Magnetfeld ausgebildete Magnetfluss für die magnetischen Wirkungen relevant.The permanent magnet device 16 is advantageously arranged axially between the first coil 18 and the second coil 19 and radially magnetized, d. H. the magnetization and thus the magnetic flux lines of the permanent magnetic field PM extend in the radial direction R, z. B. radially outward, d. H. perpendicular to the axis A. In the figures, the magnetic field is shown in part simplified by lines; In principle, the magnetic flux formed by the magnetic field is relevant to the magnetic effects.

Hierbei sind unterschiedliche Ausbildungen der Permanentmagnet-Einrichtung 16 möglich, z. B. durch einzelne Permanentmagnete oder eine Permanentmagnet-Scheibe, die als Ring bzw. Scheibe ausgeführt und hierbei in radialer Richtung magnetisiert ausgebildet ist.Here, different configurations of the permanent magnet device 16 are possible, for. Example, by individual permanent magnets or a permanent magnet disc, which is designed as a ring or disc and in this case is magnetized in the radial direction.

Da die Permanentmagnet-Einrichtung 16 außerhalb des Ankerführungsrohrs 6 ausgebildet ist, kann sie auch mit breiterer axialer Erstreckung ausgebildet werden, so dass herkömmliche Materialien für Permanentmagnete, z. B. eine Eisenlegierung oder ein keramisches Material, eingesetzt werden; der Einsatz z. B. seltener Erden ist grundsätzlich nicht erforderlich.Since the permanent magnet device 16 is formed outside the armature guide tube 6, it can also be formed with a wider axial extent, so that conventional materials for permanent magnets, for. As an iron alloy or a ceramic material used; the use z. B. rare earth is not required in principle.

Das gemeinsame Permanentmagnetfeld PM verläuft somit gemäß Fig. 2 in radialer Richtung R durch die Permanentmagnet-Einrichtung 16 und nachfolgend durch das Joch 20, 21, wobei es axial in beide Richtungen, d.h. -A und A verläuft, d.h. entlang der Topfwand 20b als erstes Permanentmagnetfeld PM1 und zweites Permanentmagnetfeld PM2, wobei die Permanentmagnetfelder PM1, PM2 dann an den axialen Enden radial nach unten entlang des Topfbodens 20b sowie der Jochscheibe 21 zu den Kernen 12, 14 verlaufen, und nachfolgend axial, d.h. in Richtung A oder -A, zu dem Anker 7 und wieder zu der Permanentmagnet-Einrichtung 16.The common permanent magnetic field PM thus proceeds according to Fig. 2 in the radial direction R through the permanent magnet device 16 and subsequently through the yoke 20, 21, wherein it extends axially in both directions, ie -A and A, ie along the pot wall 20b as a first permanent magnetic field PM1 and second permanent magnetic field PM2, wherein the permanent magnetic fields PM1, PM2 then extend at the axial ends radially downwards along the pot base 20b and the yoke disc 21 to the cores 12, 14, and subsequently axially, ie in the direction A or -A, to the armature 7 and back to the permanent magnet device 16th

Die beiden Permanentmagnetfelder PM1, PM2 können somit jeweils z. B. etwa die Form eines Torus aufweisen; das gesamte Permanentmagnetfeld PM bildet somit z. B. einen Doppel-Torus bzw. ist hantelförmig.The two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM thus forms z. B. a double torus or is dumbbell-shaped.

In der ersten Ankerstellung I bzw. Entlüftungsstellung der Fig. 1 liegt der magnetisch leitende Anker 7 an dem ersten Kern 12, so dass hier das erste Permanentmagnetfeld PM1 direkt vom ersten Kern 12 durch den Anker 7, und in dem Anker 7 axialer Richtung wiederum zu der Permanentmagnet-Einrichtung 16 verläuft. Ein Luftspalt ist allenfalls als radialer Luftspalt zwischen dem Anker 7 und der Permanentmagnet-Einrichtung 16 ausgebildet, jedoch nicht als Axialspalt, so dass das erste Permanentmagnetfeld PM1 eine starke magnetische Haltekraft des Ankers 7 am ersten Kern 12 ausbildet. Das durch den zweiten Kern 14 verlaufende zweite Permanentmagnetfeld PM2 verläuft hingegen durch den Luftspalt 22 zu dem Anker 7 und wird durch den Luftspalt 22 deutlich geschwächt. Somit ist die magnetische Haltekraft des ersten Permanentmagnetfeldes PM1 deutlich größer als die anziehende Kraft des zweiten Permanentmagnetfeldes PM2; der Anker 7 wird in der rechten Position, d. h. der Ankerstellung I der Fig. 1, sicher gehalten.In the first anchor position I or ventilation position of the Fig. 1 the magnetically conductive armature 7 is located on the first core 12, so that in this case the first permanent magnetic field PM1 extends directly from the first core 12 through the armature 7, and in the armature 7 in the axial direction to the permanent magnet device 16. An air gap is formed at most as a radial air gap between the armature 7 and the permanent magnet means 16, but not as an axial gap, so that the first permanent magnetic field PM1 forms a strong magnetic holding force of the armature 7 on the first core 12. The extending through the second core 14 second permanent magnetic field PM2, however, passes through the air gap 22 to the armature 7 and is significantly weakened by the air gap 22. Thus, the magnetic holding force of the first permanent magnetic field PM1 is significantly larger than the attractive force of the second permanent magnetic field PM2; the armature 7 is in the right position, ie the anchor position I of Fig. 1 , kept safe.

Da das bistabile Magnetventil 1 grundsätzlich in Axialrichtung A symmetrisch bezüglich der Ausbildung der beiden Kerne 12 und 14 und der Spulen 18 und 19 ist, wird auch die in Fig. 1 nicht gezeigte zweite Ankerstellung II sicher gehalten, da hier ein Luftspalt entsprechend zwischen dem Anker 7 und dem ersten Kern 12 ausgebildet wird, der das erste Permanentmagnetfeld PM1 schwächt, hingegen liegt ein starkes zweites Permanentmagnetfeld PM2 vor. Die erste Spule 18 erzeugt ein erstes Elektromagnetfeld EM1; entsprechend erzeugt die zweite Spule 19 ein zweites Elektromagnetfeld EM2, wobei die Elektromagnetfelder EM1 und EM2 mit den Permanentmagnetfeldern PM1, PM2 und miteinander überlagern.Since the bistable magnetic valve 1 is basically symmetrical in the axial direction A with respect to the formation of the two cores 12 and 14 and the coils 18 and 19, the in Fig. 1 not shown second armature position II held securely, since here an air gap is formed correspondingly between the armature 7 and the first core 12, which weakens the first permanent magnetic field PM1, however, there is a strong second permanent magnetic field PM2. The first coil 18 generates a first electromagnetic field EM1; Accordingly, the second coil 19 generates a second electromagnetic field EM2, wherein the electromagnetic fields EM1 and EM2 are superimposed with the permanent magnetic fields PM1, PM2 and each other.

Das erste Elektromagnetfeld EM1 der ersten Spule 18 ist ebenfalls Torusförmig ausgebildet und verläuft im Wesentlichen entsprechend dem ersten Permanentmagnetfeld PM1, insbesondere bei rotationssymmetrischer Ausbildung des Permanentmagnetfeldes PM1:
das erste Elektromagnetfeld EM1 verläuft zunächst innerhalb der ersten Spule 18, d. h. in Axialrichtung A-je nach Bestromung - von dem ersten Kern 12 in axialer Richtung nach innen oder außen, d. h. z. B. von außen (in Fig. 1 rechts) nach innen zu dem Anker 7, und von dem Anker 7 radial nach außen, d. h. entlang der Permanentmagnet-Einrichtung 16 nach außen, und von dort entlang der Topfwand 20b und dem Topfboden 20a radial nach innen zurück zum ersten Kern 12. Entsprechend verläuft bei Bestromung der zweiten Spule 19 das zweite Elektromagnetfeld EM2 ähnlich dem zweiten Permanent-magnetfeldes PM2, d.h. -je nach Polung - von dem zweiten Kern 14 in axialer Richtung A zu dem Anker 7 hin, oder in Gegenrichtung von dem Anker 7 zu dem zweiten Kern 14 hin, und jeweils in radialer Richtung radial nach außen entlang der Permanentmagnet-Einrichtung 16, der Topfwand 20b in axialer Richtung, und entlang der Jochscheibe 21 radial nach innen.
The first electromagnetic field EM1 of the first coil 18 is also toroidal in shape and extends substantially in accordance with the first permanent magnetic field PM1, in particular in rotationally symmetrical design of the permanent magnetic field PM1:
The first electromagnetic field EM1 initially extends within the first coil 18, ie in the axial direction A-depending on the current supply-from the first core 12 in the axial direction inwards or outwards, ie, for example from the outside (in FIG Fig. 1 right) inwardly to the armature 7, and from the armature 7 radially outwardly, ie along the permanent magnet means 16 outwardly, and from there along the pot wall 20b and the cup bottom 20a radially inwardly back to the first core 12. Accordingly when current is applied to the second coil 19, the second electromagnetic field EM2 is similar to the second permanent magnetic field PM2, ie, depending on polarity, from the second core 14 in the axial direction A to the armature 7, or in the opposite direction from the armature 7 to the second core 14, and radially in each case radially outward along the permanent magnet device 16, the pot wall 20b in the axial direction, and along the yoke plate 21 radially inwardly.

In Fig. 1 wird somit das zweite Elektromagnetfeld EM2 wiederum durch den Luftspalt 22 geschwächt, das erste Elektromagnetfeld EM1 hingegen nicht. Die Schaltvorgänge SV1 und SV2 des bistabilen Magnetventils 1 zwischen der ersten Ankerstellung I und der zweiten Ankerstellung II erfolgen vorteilhafterweise durch Bestromung jeweils beider Spulen 18 und 19. Für den zweiten Schaltvorgang SV2 von der ersten Ankerstellung I der Fig. 1 ausgehend wird ein erstes Elektromagnetfeld EM1 der ersten Spule 18 aufgebaut, das dem ersten Permanentmagnetfeld PM1 entgegengesetzt ist und dieses insbesondere teilweise kompensiert, so dass die magnetische Haltekraft des Ankers 6 am ersten Kern 12 zumindest verringert wird. Weiterhin wird die zweite Spule 19 derartig bestromt, dass das zweite Permanentmagnetfeld PM2 durch das zweite Elektromagnetfeld EM2 verstärkt wird, d. h. beide Felder PM2 und EM2 weisen in dieselbe Richtung, so dass trotz des Luftspaltes 22 die auf den Anker 7 wirkende, in Fig. 1 nach links zeigende magnetische Kraft größer wird und den Anker 7 in Fig. 1 nach links verstellt, wodurch der Luftspalt 22 verringert wird und ganz verschwindet, und ein Luftspalt zwischen dem Anker 7 und dem ersten Kern 12 entsteht.In Fig. 1 Thus, the second electromagnetic field EM2 is again weakened by the air gap 22, the first electromagnetic field EM1, however, not. The switching operations SV1 and SV2 of the bistable solenoid valve 1 between the first armature position I and the second armature position II are advantageously carried out by energizing each of both coils 18 and 19. For the second switching operation SV2 of the first armature position I of Fig. 1 a first electromagnetic field EM1 of the first coil 18 is set up, which is opposite to the first permanent magnetic field PM1 and this partially compensated in particular, so that the magnetic holding force of the armature 6 on the first core 12 is at least reduced. Furthermore, the second coil 19 is energized such that the second permanent magnetic field PM2 is amplified by the second electromagnetic field EM2, ie both fields PM2 and EM2 point in the same direction, so that in spite of the air gap 22 acting on the armature 7, in Fig. 1 towards the left magnetic force increases and the armature 7 in Fig. 1 shifted to the left, whereby the air gap 22 is reduced and disappears completely, and an air gap between the armature 7 and the first core 12 is formed.

Somit wirkt jeweils eines der elektromagnetischen Felder EM1 und EM2 kompensierend und das andere schaltend. Für den zweiten Schaltvorgang SV2 von der ersten Ankerstellung I bzw. Entlüftungsstellung der Fig. 1 ausgehend wirkt somit ein durch die erste Spule 18 geleiteter erster Strom I1 kompensierend, d.h. als kompensierender erster Strom I1_k, und ein durch die zweite Spule 19 geleiteter zweiter Strom I2 schaltend, d.h. als schaltender zweiter Strom I2_s. Für den ersten Schaltvorgang SV1 zurück in die erste Ankerstellung I wird entsprechend durch die zweite Spule 19 ein kompensierender zweiter Strom I2_k und durch die erste Spule 18 ein schaltender erster Strom I1_s geleitet.Thus, one of the electromagnetic fields EM1 and EM2 is compensating and the other switching. For the second switching operation SV2 of the first anchor position I or vent position of the Fig. 1 Thus, a first current I1 guided by the first coil 18 acts compensatingly, ie as a compensating first current I1_k, and a second current I2 conducted through the second coil 19 switches, ie as a switching second current I2_s. For the first switching operation SV1 back into the first armature position I, a compensating second current I2_k is passed through the second coil 19, and a first current I1_s is conducted through the first coil 18.

Die beiden Spulen 18 und 19 sind über Spulenanschlüsse 61a,b und 62a, b an eine Schaltungsanordnung 30 angeschlossen, die insbesondere eine Endstufe darstellt. Somit wird eine Magnetventil-Einrichtung 5 gebildet, die das bistabile Magnetventil 1, die Schaltungsanordnung 30 und die Steuereinrichtung 40 aufweist.The two coils 18 and 19 are connected via coil terminals 61a, b and 62a, b to a circuit arrangement 30, which represents in particular an output stage. Thus, a solenoid valve device 5 is formed, which has the bistable solenoid valve 1, the circuit arrangement 30 and the control device 40.

Vorteilhafterweise wird hierbei erkannt, dass ein sofortiges und vollständiges Hochfahren des jeweils kompensierenden Stroms, in Fig. 1 somit des ersten Stroms I1_k, dazu führen kann, dass das kompensierende, d.h. in Fig. 1 das erste Elektromagnetfeld EM1 zu stark wird und die Differenz EM1 - PM1 vom Betrag her größer werden kann als das sich positiv überlagernde, jedoch durch den Luftspalt 22 geschwächte, schaltende zweite Gesamtfeld EM2 + PM2.In this case, it is advantageously recognized that an immediate and complete startup of the respective compensating current, in Fig. 1 Thus, the first current I1_k, can cause the compensating, ie in Fig. 1 the first electromagnetic field EM1 is too strong and the difference EM1 - PM1 can be greater in magnitude than the positively overlapping, but weakened by the air gap 22, switching total second field EM2 + PM2.

Daher wird in beiden Schaltvorgängen zumindest der kompensierend wirkende Strom I1_k oder I2_k jeweils zeitlich verzögert hochgefahren, vorteilhafterweise über eine Rampe. Bei einer Reihenschaltung der beiden Ströme I1, I2 können somit beide Ströme zeitlich verzögert hochgefahren werden. Fig. 3 und 4 zeigen Ausbildungen einer Schaltungsanordnung 30 für derartige Rampensteuerungen.Therefore, in both switching operations, at least the compensating current I1_k or I2_k is in each case increased with a time delay, advantageously via a ramp. In the case of a series connection of the two currents I1, I2, both currents can thus be ramped up with a time delay. 3 and 4 show embodiments of a circuit arrangement 30 for such ramp controls.

Die Spulen 18 und 19 können gemäß Fig. 3 in einer Reihenschaltung geschaltet sein. Somit weist die Schaltungsanordnung 30 gemäß Fig. 3 vier Transistoren, vorzugsweise Schaltungs-MOSFETS Tr1, Tr2, Tr3 und Tr4 auf, die als Endstufen-H-Brücke geschaltet sind, so dass gemäß Fig. 3 über Steuersignale S1, S2, S3, S4 eine Bestromung entweder mit Tr1 = ON, Tr4 = ON und Tr2 = OFF, Tr3 = OFF vorliegt, um die Versorgungsspannung Uv von z. B. 24 V oder 12 V über Tr1, die Reihenschaltung der Spulen 19 und 18, sowie Tr4 auf Masse GND zu führen, oder entsprechend symmetrisch umgekehrt mit Tr1 = OFF, Tr4 = OFF, Tr2 = ON und Tr3 = ON, um die Versorgungsspannung Uv über Tr2 und die Reihenschaltung der Spulen 18 und 19 sowie Tr3 zur Masse GND zu führen.The coils 18 and 19 can according to Fig. 3 be connected in a series circuit. Thus, the circuit arrangement 30 according to Fig. 3 four transistors, preferably circuit MOSFETs Tr1, Tr2, Tr3 and Tr4, which are connected as an output stage H-bridge, so that according to Fig. 3 via control signals S1, S2, S3, S4, a current supply either Tr1 = ON, Tr4 = ON and Tr2 = OFF, Tr3 = OFF is present to the supply voltage Uv of z. B. 24 V or 12 V via Tr1, the series connection of the coils 19 and 18, and Tr4 to ground GND to lead, or corresponding symmetrically reversed with Tr1 = OFF, Tr4 = OFF, Tr2 = ON and Tr3 = ON to the supply voltage Uv over Tr2 and the series connection of the coils 18 and 19 and Tr3 to ground GND to lead.

Alternativ hierzu ist eine Parallelschaltung nach Fig. 4 vorgesehen.Alternatively, a parallel connection is after Fig. 4 intended.

Die H-Brücke der Fig. 3 oder 4 ist hierbei zur Ausbildung einer zeitlichen Rampe gemäß Fig. 5 oder 6 geeignet, bei der der Spulenstrom I, d.h. bei der Reihenschaltung der Fig. 3 der gemeinsame Spulenstrom I1= I2=I, zum Zeitpunkt t1 eingeschaltet und auf einen maximalen Stromwert I_max hochgefahren wird, den er zu einem Zeitpunkt t2 erreicht. Zu einem nachfolgenden Zeitpunkt t3 kann der gemeinsame Strom I nachfolgend sofort abgeschaltet werden. Ergänzend sind die Amperewindungen AW eingezeichnet, die sich als Produkt des Stroms und der Wicklungszahl ergeben, Die Anfahr-Schaltdauer Δt1 zwischen t2 und t1 beträgt z. B. Δt2=50 bis 70 ms, die Gesamt-Schaltdauer Δt2 zwischen t3 und t1 beträgt z. B. Δt2 =100 ms. Das rein mechanische Schalten des Ventils erfolgt je nach Toleranzlage der einzelnen Bauteile im Ventil zwischen den Zeitpunkten t1 und t2.The H bridge of the 3 or 4 is here to form a temporal ramp according to Fig. 5 or 6 suitable, in which the coil current I, ie in the series circuit of Fig. 3 the common coil current I1 = I2 = I, is switched on at the time t1 and ramped up to a maximum current value I_max, which it reaches at a time t2. To a subsequent one At time t3, the common current I can be switched off immediately below. In addition, the Amperewindungen AW are drawn, resulting in the product of the current and the number of turns, the starting-shift duration .DELTA.t1 between t2 and t1 is z. B. Δt2 = 50 to 70 ms, the total switching time .DELTA.t2 between t3 and t1 is z. B. Δt2 = 100 ms. The purely mechanical switching of the valve takes place depending on the tolerance position of the individual components in the valve between the times t1 and t2.

Fig. 6 zeigt eine alternative Ansteuerung, bei der zum Zeitpunkt t1 der Strom sofort auf einen mittleren Stromwert I_mid, und nachfolgend mit linearer Rampe bis zum Zeitpunkt t2 auf den Maximalwert I_max gefahren wird, bis er zum Zeitpunkt t3 wieder ausgeschaltet wird. Die Schaltdauern Δt1 und Δt2 können ähnliche Werte wie in Fig. 5 annehmen. Fig. 6 shows an alternative control in which at time t1, the current is driven immediately to a mean current value I_mid, and subsequently with a linear ramp up to the time t2 to the maximum value I_max until it is turned off again at time t3. The switching periods Δt1 and Δt2 can have similar values as in Fig. 5 accept.

Somit wird zwischen t1 und t2 zunächst ein in der ersten Stellung I der Fig. 1 schwaches erstes Elektromagnetfeld EM1 ausgebildet, das das haltende Permanentmagnetfeld, hier somit das erste Permanentmagnetfeld PM1 ganz oder teilweise kompensiert, jedoch erst zum Zeitpunkt t2 den maximalen Stromwert I_max erreicht. Die Anfahr-Schaltdauer Δt1 ist hinreichend, um eine mechanische Verstellung des Ankers 7 weg von der ersten Ankerstellung I zu erreichen; sobald sich ein Luftspalt zwischen dem Anker 7 und dem ersten Kern 12 bildet, ist die Gefahr eines unbeabsichtigten Haltens in der ersten Ankerstellung I bereits deutlich verringert.Thus, between t1 and t2, first in the first position I of Fig. 1 weak first electromagnetic field EM1 is formed, which fully or partially compensates the holding permanent magnetic field, here thus the first permanent magnetic field PM1, but only at time t2 reaches the maximum current value I_max. The starting shift duration .DELTA.t1 is sufficient to achieve a mechanical adjustment of the armature 7 away from the first armature position I; as soon as an air gap forms between the armature 7 and the first core 12, the risk of unintentional holding in the first armature position I has already been significantly reduced.

Fig. 7 und Fig. 8 zeigen eine detaillierte Ausbildung eines Magnetventils 1 entsprechend Fig. 1. Die Permanent-Magneteinrichtung 16 ist hier zur Veranschaulichung in gegenüber Fig. 1 umgekehrter Polung eingesetzt. Druckluft 25a wird von einer Druckluftversorgung 25, z. B. einem Druckluftspeicher, über eine Druckluft-Zuleitung 23 dem Druckeingang 2a zugeführt, und über den ersten Druckausgang 2b und eine Druck- Ausgangsleitung 26 zu einem Verbraucher 24 geführt. An den zweiten Druckausgang 2c, der als Entlüftung dient, ist ein Druckauslass 27 direkt oder über indirekt eine Leitung angebracht. FIGS. 7 and 8 show a detailed design of a solenoid valve 1 accordingly Fig. 1 , The permanent magnet device 16 is here opposite for illustrative purposes Fig. 1 reversed polarity used. Compressed air 25a is from a compressed air supply 25, z. B. a compressed air reservoir, fed via a compressed air supply line 23 to the pressure input 2a, and passed over the first pressure output 2b and a pressure output line 26 to a consumer 24. At the second pressure output 2c, as Venting is a pressure outlet 27 is attached directly or indirectly via a line.

In der ersten Ankerstellung I, d.h. der Entlüftungsstellung der Fig. 7, wird die an dem Druckeingang 2a und der inneren Bohrung 42 des ersten Kerns 12 anliegende Druckluft an dem geschlossenen ersten Ventil, d.h. zwischen dem ersten Ventilsitz 9 und der ersten Ventildichtung 8, blockiert. Druckluft 25a kann von dem Verbraucher 24 über die Druck-Ausgangsleitung 26, den ersten Druckausgang 2b, dann über eine äußere axiale Bohrung 43 des Kerns 12, einen Innenraum 29 des Ankers 7, in dem vorzugsweise auch z. B. die innere Ankerfeder 13 vorgesehen ist, und über den Axialspalt 22 des offenen zweiten Ventils 10,11 sowie die Bohrung 14a des zweiten Kerns 14 zum zweiten Druckausgang 2c und somit zu dem Druckauslass 27 zur Entlüftung geführt werden. Das zweite Ventil 10, 11 ist somit offen, da der zweite Ventilsitz 11 von der zweiten Ventildichtung 10 durch den Axialspalt 22 getrennt ist.In the first anchor position I, ie the venting position of Fig. 7 , the compressed air applied to the pressure inlet 2a and the inner bore 42 of the first core 12 is blocked at the closed first valve, ie between the first valve seat 9 and the first valve seal 8. Compressed air 25a can from the consumer 24 via the pressure-output line 26, the first pressure outlet 2b, then via an outer axial bore 43 of the core 12, an interior 29 of the armature 7, in which preferably also z. B. the inner armature spring 13 is provided, and are guided over the axial gap 22 of the open second valve 10,11 and the bore 14a of the second core 14 to the second pressure outlet 2c and thus to the pressure outlet 27 for venting. The second valve 10, 11 is thus open, since the second valve seat 11 is separated from the second valve seal 10 by the axial gap 22.

In der zweiten Ankerstellung II, d.h. der Belüftungsstellung der Fig. 8, ist das erste Ventil 8, 9 offen, d.h. der Axialspalt 22 ist zwischen dem ersten Ventilsitz 9 und der ersten Ventildichtung 8 ausgebildet. Entsprechend ist das zweite Ventil 10, 11 geschlossenen, indem der zweite Ventilsitz 11 auf der zweiten Ventildichtung 10 aufliegt. Druckluft 25a wird somit von der Druckluftversorgung 25 über die Druckluft-Zuleitung 23, den Druckeingang 2a, die innere Bohrung 42, das offene erste Ventil 8, 9, den Axialspalt 22, die radial äußere Bohrung 43 zu dem ersten Druckausgang 2b und somit zu dem Verbraucher 24 geführt.In the second anchor position II, ie the ventilation position of the Fig. 8 , the first valve 8, 9 is open, ie the axial gap 22 is formed between the first valve seat 9 and the first valve seal 8. Accordingly, the second valve 10, 11 closed by the second valve seat 11 rests on the second valve seal 10. Compressed air 25a is thus from the compressed air supply 25 via the compressed air supply line 23, the pressure inlet 2a, the inner bore 42, the open first valve 8, 9, the axial gap 22, the radially outer bore 43 to the first pressure outlet 2b and thus to the Consumer 24 led.

Die Bohrungen 42, 43 im ersten Kern 12 sind vorteilhafterweise ausgebildet, indem der erste Kern 12 mit einem inneren Rohr 12a und einem äußeren Rohr 12b ausgebildet ist, zwischen denen zumindest in einigen Bereichen des Umfangs die äußere axiale Bohrung 43 ausgebildet ist; die innere Bohrung 42 wird durch die zentrale Bohrung des inneren Rohrs 12a gebildet.The holes 42, 43 in the first core 12 are advantageously formed by the first core 12 is formed with an inner tube 12 a and an outer tube 12 b, between which, at least in some areas the circumference of the outer axial bore 43 is formed; the inner bore 42 is formed by the central bore of the inner tube 12a.

Der Anker 7 wird gemäß der hier gezeigten Ausbildung durch einen ersten Ankerteil 7a und einen zweiten Ankerteil 7b gebildet, die z. B. durch Presspassung zusammen gefügt werden; die Ankerfeder 13 drückt die Ventildichtungen 8 und 10 axial auseinander. Der Anker 7 kann somit mit einem Anker-Innenraum 29 gefügt werden, der wie oben beschrieben als Luftkanal für die Entlüftung dient.The armature 7 is formed according to the embodiment shown here by a first anchor part 7a and a second anchor part 7b, the z. B. be joined together by press fitting; the armature spring 13 presses the valve seals 8 and 10 apart axially. The armature 7 can thus be joined with an armature interior 29 which, as described above, serves as an air duct for the ventilation.

Fig. 9 bis 12 zeigen eine nicht-beanspruchte Ausführungsform mit einem Magnetventil 101 mit Feder-Rückstellung durch eine Feder-Einrichtung 70, die hier als Schraubenfeder zwischen dem Anker 7 und dem Joch, z. B. der Jochscheibe 21, vorgesehen ist. Somit ist die Feder-Einrichtung 70 in der zweiten Ankerstellung II der Fig. 11 gespannt und in der ersten Ankerstellung I der Fig. 9 entspannt. Fig. 9 to 12 show a non-claimed embodiment with a solenoid valve 101 with spring return by a spring device 70, here as a helical spring between the armature 7 and the yoke, z. B. the yoke disc 21, is provided. Thus, the spring means 70 in the second anchor position II of Fig. 11 curious and in the first anchor position I the Fig. 9 relaxed.

In Fig. 9 ist somit das zweite Permanent-Magnetfeld PM2 durch den Luftspalt 22 geschwächt und daher zu gering, um die Federkraft zu überwinden.In Fig. 9 Thus, the second permanent magnetic field PM2 is weakened by the air gap 22 and therefore too small to overcome the spring force.

In dem zweiten Schaltvorgang bzw. Anker- Schaltvorgang SV2 der Fig. 10 überlagert sich das schaltende Elektromagnetfeld EM2_s verstärkend bzw. konstruktiv mit dem zweiten Permanent-Magnetfeld PM2, so dass die Federkraft überwunden wird und der Anker 7 nach oben bewegt wird.In the second switching operation or armature switching operation SV2 of Fig. 10 the switching electromagnetic field EM2_s is superimposed reinforcing or constructive with the second permanent magnetic field PM2, so that the spring force is overcome and the armature 7 is moved upward.

In Fig. 11 wird der Anker 7 in der zweiten Ankerstellung II an dem haltenden Kern 14 (bzw. zweiten Kern oder Halte-Kern) gehalten, da das haltende Permanent-Magnetfeld bzw. zweite Permanent-Magnetfeld PM2 aufgrund des fehlenden Luftspaltes 22 stark genug ist, auch ohne Unterstützung durch das zweite Elektromagnetfeld EM2 den Anker 7 gegen die Federwirkung der Federeinrichtung 70 zu halten.In Fig. 11 the armature 7 is held in the second anchor position II to the holding core 14 (or second core or holding core), since the holding permanent magnetic field or second permanent magnetic field PM2 due to the lack of air gap 22 is strong enough, even without Supported by the second electromagnetic field EM2 to hold the armature 7 against the spring action of the spring device 70.

In Fig. 12 wird dann das haltende Permanent-Magnetfeld bzw. zweite Permanent-Magnetfeld PM2 durch zumindest teilweise Kompensation durch das kompensierende zweite Elektromagnetfeld EM2_k geschwächt, so dass die Feder-Rückstellkraft der Federeinrichtung 70 die magnetische Haltekraft, die durch den Betrag der Differenz des haltenden zweiten Permanent-Magnetfeldes PM2 und des kompensierenden zweiten Elektromagnetfeldes EM2_k bestimmt wird, übersteigt. Somit erfolgt der Rückstell-Schaltvorgang SV1 bzw. erste Schaltvorgang in die erste Ankerstellung I, wodurch sich wiederum der Luftspalt 22 zwischen dem haltenden Kern bzw. Halte-Kern 14 und dem Anker 7 bildet.In Fig. 12 is then the holding permanent magnetic field or second permanent magnetic field PM2 weakened by at least partial compensation by the compensating second electromagnetic field EM2_k, so that the spring restoring force of the spring device 70, the magnetic holding force, which is determined by the amount of the difference of the holding second permanent Magnetic field PM2 and the compensating second electromagnetic field EM2_k is exceeded. Thus, the resetting switching operation SV1 or first switching operation takes place in the first armature position I, which in turn forms the air gap 22 between the holding core or holding core 14 and the armature 7.

Fig. 13 zeigt eine Schaltungsanordnung bzw. Endstufe 130, die entsprechend Fig. 3 aufgebaut ist wobei lediglich die Schalt- Elektromagneteinrichtung bzw. zweite Spule 19 bestromt wird. Hierbei können wiederum die Zeitdiagramme der Fig. 5 oder 6 angesetzt werden. Fig. 13 shows a circuit arrangement or power amplifier 130, respectively Fig. 3 is constructed with only the switching solenoid device or second coil 19 is energized. Here again the time diagrams of the Fig. 5 or 6 be set.

Bezugszeichenliste (Bestandteil der Beschreibung)List of Reference Numerals (part of the description)

1, 1011, 101
bistabiles Magnetventilbistable solenoid valve
2a2a
Druckeingangpressure input
2b2 B
erster Druckausgang zu Druckanschlussleitung/-ausgangsleitungfirst pressure outlet to pressure connection line / output line
2c2c
zweiter Druckausgang zu Entlüftungsecond pressure outlet for venting
3, 43, 4
Druckluft-Zuführleitung und Druckluft-AusgangsleitungCompressed air supply line and compressed air outlet line
5, 1055, 105
bistabile Magnetventil-Einrichtungbistable solenoid valve device
66
AnkerführungsrohrArmature guide tube
77
Ankeranchor
7a7a
erstes Ankerteilfirst anchor part
7b7b
zweites Ankerteilsecond anchor part
88th
erste Ventildichtung an Anker 7first valve seal to anchor 7
99
erster Ventilsitzfirst valve seat
1010
zweite Ventildichtung an Anker 7second valve seal to anchor 7
1111
zweiter Ventilsitzsecond valve seat
1212
erster Kernfirst core
12a12a
inneres Rohr des ersten Kerns 12Inner tube of the first core 12
12b12b
äußeres Rohr des ersten Kerns 12outer tube of the first core 12
1313
innere Ankerfeder in Anker 7 zwischen den Ventildichtungen 8 und 10inner armature spring in armature 7 between the valve seals 8 and 10th
1414
zweiter Kern, Halte-Kernsecond core, holding core
1515
Magnet-EinrichtungMagnet means
16, 11616, 116
Permanentmagnet-EinrichtungPermanent magnet means
1717
ElektromagneteinrichtungElectromagnet means
1818
erste Spulefirst coil
1919
zweite Spulesecond coil
2020
JochtopfJochtopf
20a20a
Topfbodenpot base
20b20b
Topfwandpot wall
2121
Jochscheibeyoke disc
2222
Luftspaltair gap
2323
Druckluft-ZuleitungCompressed air supply
2424
Verbraucherconsumer
2525
DruckluftversorgungAir Supply
25a25a
Druckluftcompressed air
2626
Druck-AusgangsleitungPressure output line
2727
Druckauslasspressure outlet
2828
Polrohr für radialen Feldlinien-ÜbergangPole tube for radial field line transition
2929
Anker-InnenraumAnchor interior
30, 13030, 130
Schaltungsanordnungcircuitry
4040
Steuereinrichtungcontrol device
4242
zentrale Bohrung im ersten Kern 12central bore in the first core 12
4343
äußere Bohrung im ersten Kern 12, zwischen den Rohren 12a, 12bouter bore in the first core 12, between the tubes 12a, 12b
5050
Fluidsystemfluid system
61a,b61a, b
Spulenanschlüsse der ersten Spule 18 an die SchaltungsanordnungCoil terminals of the first coil 18 to the circuit arrangement
62a, b62a, b
Spulenanschlüsse der zweiten Spule 19 an die SchaltungsanordnungCoil terminals of the second coil 19 to the circuit arrangement
7070
RückstellfederReturn spring
Tr1, Tr2, Tr3, Tr4Tr1, Tr2, Tr3, Tr4
Transistoren der Schaltungsanordnung 30Transistors of the circuit arrangement 30
Uvuv
Versorgungsspannungsupply voltage
GNDGND
MasseDimensions
AA
Achse, AxialrichtungAxis, axial direction
RR
Radialrichtungradial direction
PMPM
Gesamt-MagnetfeldTotal magnetic field
PM1PM1
erstes Permanentmagnetfeldfirst permanent magnetic field
PM2PM2
zweites Permanentmagnetfeldsecond permanent magnetic field
EM1EM1
erstes Elektromagnetfeld, Rückstell- Elektromagnetfeldfirst electromagnetic field, reset electromagnetic field
EM2EM2
zweites Elektromagnetfeld, Anker- Elektromagnetfeldsecond electromagnetic field, armature electromagnetic field
EM2_kEM2_k
zweites kompensierendes Elektromagnetfeldsecond compensating electromagnetic field
EM1_kEM1_k
erstes kompensierendes Elektromagnetfeldfirst compensating electromagnetic field
N, SN, S
Nordpol, SüdpolNorth Pole, South Pole
II
Strom bei ReihenschaltungCurrent in series connection
I_si_s
schaltender Stromswitching current
I_kI_k
kompensierender Stromcompensating current
I1I1
erster Strom durch die erste Spule 18first current through the first coil 18th
I1_sI1_s
schaltender erster Stromswitching first current
I1_kI1_k
kompensierender erster Stromcompensating first current
I_midI_mid
mittlerer Stromwertmean current value
I_maxi_max
maximaler Stromwertmaximum current value
I2I2
zweiter Strom durch die zweite Spule 19second current through the second coil 19th
I2_sI2_s
schaltender zweiter Stromswitching second stream
I2_kI2_k
kompensierender zweiter Stromcompensating second stream
S1S1
erstes Ansteuersignal der Rampensteuerungfirst drive signal of the ramp control
S2S2
zweites Ansteuersignal der Rampensteuerungsecond drive signal of the ramp control
S3S3
drittes Ansteuersignal der Rampensteuerungthird drive signal of the ramp control
S4S4
viertes Ansteuersignal der Rampensteuerungfourth drive signal of the ramp control
SV1SV1
Rückstell- Schaltvorgang, erster SchaltvorgangReset switching operation, first switching operation
SV2SV2
Anker- Schaltvorgang, zweiter SchaltvorgangAnchor switching process, second switching operation

Claims (15)

  1. Bistable solenoid valve device (5, 105) for a fluid system (50), having a solenoid valve (1, 101), a circuit arrangement (30, 130) and a control device (40) for actuating the circuit arrangement (30, 130), wherein the solenoid valve (1, 101) has:
    an armature (7), which can be displaced between a first armature position (I) and a second armature position (II), and valve means (8, 9, 10, 11), which can be displaced by way of the armature (7) and which are in various valve positions in the first and second armature position (I, II),
    a permanent-magnet device (16, 116) for forming a holding permanent magnetic field (PM2), which holds the armature (7) in the second armature position (II),
    a switching electromagnet device (19) for forming a switching electromagnetic field (EM2) for an armature switching process (SV2) from the first armature position (I) to the second armature position (II), and
    a return device (12, 18; 70) for returning the armature (7) in a return switching process (SV1) to the first armature position (I), wherein the circuit arrangement (30, 130) is designed to actuate the switching electromagnet device (19) in the armature switching process (SV2) by way of a switching current (I2_S),
    wherein
    the control device (40) is designed to actuate the circuit arrangement (30, 130) in such a way that the switching electromagnet device (19) in the return switching process (SV1) is energized by way of a compensation current (I_k) to form a compensating electromagnetic field (EM2_k) for at least partial compensation of the holding permanent magnetic field (PM2), wherein
    the solenoid valve (1, 101) has a magnetic yoke (20, 21) and a holding core (14) for positioning the armature (7) in the second armature position (II),
    wherein
    an air gap (22) is formed between the armature (7) and the holding core (14) in the first armature position (I), and
    the holding permanent magnetic field (PM2) and the switching electromagnetic field (EM2) run over the magnetic yoke (20, 21), the holding core (14) and the armature (7), wherein
    the return device (12, 18) has a first core (12) for positioning the armature (7) in the first armature position (I) and a first electromagnet device (18),
    which is energized in the return switching process (SV1) to form a first electromagnetic field (EM1),
    wherein the first electromagnetic field (EM1) and a first permanent magnetic field (PM1) of the permanent-magnet device (16) run over the magnetic yoke (20, 21),
    the first core (12) and the armature (7), wherein in the first armature position (I) the first permanent magnetic field (PM1) holds the armature (7) on the first core (12) and the air gap (22) is formed between the armature (7) and the holding core (14), wherein the control device (40) is designed to actuate the circuit arrangement (30) in such a way that the first electromagnet device (18) in the armature switching process (SV2) is energized by way of a compensation current (I_k) to form a temporally increasing compensating electromagnetic field for at least partial compensation of the first permanent magnetic field (PM1).
  2. Solenoid valve device (5, 105) according to Claim 1, characterized in that a current direction of the compensation current (I_k) in the switching electromagnet device (19) is opposite to a current direction of the switching current (I2_S) in the switching electromagnet device (19).
  3. Solenoid valve device (5, 105) according to Claim 1 or 2, characterized in that the compensation current (I_k) during the return switching process (SV1) is temporally variable and has a maximum current value (I_max) only after a start-up period (Δ_t1).
  4. Solenoid valve device (5, 105) according to Claim 3, characterized in that a maximum current value (I_max) of the compensation current (I_k) during the return switching process (SV1) lies below a switching current value of the switching current (I2_S).
  5. Solenoid valve device (5, 105) according to Claim 3 or 4, characterized in that the compensation current (I_k) during the return switching process (SV1) has a temporally delayed steady and/or rapid increase to the maximum current value (I_max) of the compensation current (I_k).
  6. Solenoid valve device (5, 105) according to Claim 5, characterized in that the temporally delayed increase of the compensation current (I_k) has at least a steady temporal ramp profile (Δt1) and/or a rapid profile to an average current value (I_mid) with a subsequent increase to the maximum current value (I_max).
  7. Solenoid valve device (5, 105) according to one of the preceding claims, characterized in that the solenoid valve (1, 101) is formed as a 3/2 directional control valve with a pressure input (2a), a first pressure output (2b) and a second pressure output (2c), wherein the first pressure output (2b) in both armature positions (I, II) is connected in each case to either the pressure input (2a) or the second pressure output (2c) and the respective other connection (2c, 2a) is blocked.
  8. Solenoid valve device (5) according to Claim 1, characterized in that the two electromagnet devices (18, 19) are connected as a series circuit or parallel circuit and are both able to be energized jointly in both switching processes (SV1, SV2).
  9. Solenoid valve device (5) according to Claim 1 or 8, characterized in that the two electromagnet devices (18, 19) are able to be energized by way of the control device (40) for the return switching process (SV1) in a first direction and for the armature switching process (SV2) in a second direction opposite to the first direction.
  10. Solenoid valve device (5, 105) according to one of the preceding claims, characterized in that the circuit arrangement (30) has:
    high-side drivers (Tr1, Tr2), for example transistors,
    which are connected between an upper supply voltage (Uv) and the two electromagnet devices (18, 19), and
    low-side drivers (Tr3, Tr4), for example transistors,
    which are connected between the two electromagnet devices (18, 19) and a lower supply voltage, for example ground (GND), wherein the high-side drivers (Tr1, Tr2) and the low-side drivers (Tr3, Tr4) are able to be switched, in particular able to be switched over in alternation, for the switching processes (SV1, SV2).
  11. Method for switching a bistable solenoid valve (1, 101), in which a switching electromagnet device (19) is energized by way of a switching current (I2s) in an armature switching process (SV2) to form a switching electromagnetic field (EM2), by way of which an armature (7) is displaced from a first armature position (I) to a second armature position (II), wherein valve means (8, 9, 10, 11) are displaced by way of the armature (7),
    wherein the armature (7) is held in the second armature position (II) by way of a holding permanent magnetic field (PM2) of a holding permanent-magnet device (16, 116), and
    the armature (7) is returned to the first armature position (I) by a return device (12, 18; 70) in a return switching process (SV1), wherein
    the switching electromagnet device (19) is energized in the return switching process (SV1) by way of a compensation current (I_K) to form a compensating electromagnetic field (EM2_k) for at least partial compensation of the holding permanent magnetic field (PM2), wherein the compensation current (I_k) and the switching current (I2_S) are oriented in opposite directions, wherein the compensation current (I_K) is introduced into the switching electromagnet device (19) in a temporally variable and/or temporally increasing manner and reaches a maximum current value (I_max) only after a start-up period (Δ_t1), wherein the armature (7) bears against a holding core (14) in the second armature position (II), through which holding core the holding permanent magnetic field (PM2) runs, and the armature (7) is moved away from the holding core (14) in the return switching process (SV1) even before the maximum current value (I_max) of the compensation current (I_k) is reached so as to form an air gap (22) between the armature (7) and the holding core (14) to weaken the permanent magnetic field (PM2) and the compensating electromagnetic field.
  12. Method according to Claim 11, characterized in that the compensation current (I_k) is raised in the return switching process (SV1) with a temporally delayed steady and/or rapid increase to the maximum current value (I_max).
  13. Method according to Claim 12, characterized in that the temporally delayed increase has at least a steady ramp profile and/or a rapid profile to an average current value (I_mid).
  14. Method according to one of Claims 11 to 13, characterized in that the return device (12, 18) has a first electromagnet device (18),
    wherein the first electromagnet device (18) is energized in the return switching process (SV1) so as to form a first electromagnetic field (EM1), which pulls the armature (7) into the first armature position (I),
    wherein the armature (7) is held in the first armature position (I) by way of a first permanent magnetic field (PM1),
    wherein the first electromagnet device (18) is energized in the armature switching process (SV2) to form a first compensating electromagnetic field (EM1_k) for at least partial compensation of the first permanent magnetic field (PM1), preferably with corresponding energization in both switching process (SV1, SV2).
  15. Method according to Claim 14, characterized in that the two electromagnet devices (18, 19), connected in series or in parallel, are energized jointly in both switching processes (SV1, SV2).
EP16000598.9A 2015-04-25 2016-03-12 Magnet valve device for a fluid system and method for switching a solenoid valve Active EP3086335B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015005332.9A DE102015005332A1 (en) 2015-04-25 2015-04-25 Solenoid valve device for a fluid system and method for switching a solenoid valve

Publications (2)

Publication Number Publication Date
EP3086335A1 EP3086335A1 (en) 2016-10-26
EP3086335B1 true EP3086335B1 (en) 2019-10-16

Family

ID=55661033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16000598.9A Active EP3086335B1 (en) 2015-04-25 2016-03-12 Magnet valve device for a fluid system and method for switching a solenoid valve

Country Status (2)

Country Link
EP (1) EP3086335B1 (en)
DE (1) DE102015005332A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017534B (en) * 2021-11-12 2023-06-13 中国航发贵州红林航空动力控制科技有限公司 Two-position three-way electromagnetic valve with position self-locking function

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2650810A1 (en) * 1976-11-06 1978-05-11 Kernforschung Gmbh Ges Fuer Electromagnetically operated fluid valve - has two pot magnets with open sides closed by circular anchor plates moved by inner coil
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
DE3730381C2 (en) 1987-09-10 1997-06-12 Kuhnke Gmbh Kg H Bistable solenoid valve with permanent magnetic holding force
US4883025A (en) 1988-02-08 1989-11-28 Magnavox Government And Industrial Electronics Company Potential-magnetic energy driven valve mechanism
DE10203013A1 (en) * 2002-01-26 2003-08-14 Danfoss As Pulse powered electromagnet
CN101399124B (en) 2007-09-24 2010-11-10 王光顺 Control circuit for bistable state permanent magnet operating mechanism
DE102007063479A1 (en) * 2007-12-20 2008-11-20 Siemens Ag Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets
DE102008022953A1 (en) * 2008-05-09 2009-11-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Device and method for operating and monitoring a solenoid valve of an electric parking brake
DE102010001914A1 (en) * 2010-02-15 2011-08-18 Robert Bosch GmbH, 70469 Steering device for a motor vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3086335A1 (en) 2016-10-26
DE102015005332A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
EP3086334B1 (en) Bistable solenoid valve for a fluid system, solenoid valve device and method for switching the solenoid valve
EP2250651B1 (en) Electromagnetic actuating mechanism
DE102009049009B4 (en) Actuator for an internal combustion engine
DE4012832C2 (en) magnetic valve
WO2007079767A1 (en) Method and device for operating a switching device
DE10207828A1 (en) Solenoid magnet has stator and excitation coil, with armature including permanent magnet polarized at right angles to direction of motion of armature
DE102013108164B4 (en) Valve with a linear actuator for the valve piston
EP3257060B1 (en) Solenoid valve, valve device with a solenoid valve of this type, vehicle with such a valve and method for operating a solenoid valve of this type
EP3086335B1 (en) Magnet valve device for a fluid system and method for switching a solenoid valve
EP1620667B1 (en) Solenoid assembly
DE102010015514A1 (en) locking unit
EP3089177B1 (en) Circuit assembly and method for controlling a bistable magnetic valve for a fluid system
EP3185256A1 (en) Electromagnet
DE102019204839A1 (en) Electromagnetic drive device and proportional solenoid valve equipped with it
WO2009053177A1 (en) Multi-pole magnetic actuator
DE29703143U1 (en) Circuit for actuating a magnet armature of an electromagnet
DE10202628A1 (en) Multi-stable positioning/control device e.g. for bistable relay, includes component with permanent magnetic properties arranged in series with interconnected permanent magnetic part-zones
DE3438215A1 (en) Arrangement for driving a plurality of solenoid valves (magnetic valves)
AT518231B1 (en) Poled electromechanical relay with controllable power consumption
EP1590822B1 (en) Electromagnetic drive for switching devices
DE102013105670A1 (en) Bistable electro-permanent actuator
DE19901679B4 (en) electromagnet
DE102012204322B4 (en) Bidirectional electromagnetic actuator
DE102017214703B4 (en) Solenoid valve, especially for slip-controlled vehicle braking systems
DE102021111032A1 (en) Electromagnetic drive for example for a 3/2-way valve and 3/2-way valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170426

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 7/124 20060101ALI20190403BHEP

Ipc: H01F 7/122 20060101AFI20190403BHEP

Ipc: H01F 7/18 20060101ALI20190403BHEP

Ipc: H01F 7/123 20060101ALI20190403BHEP

Ipc: H01F 7/16 20060101ALI20190403BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007078

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1192096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007078

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

26N No opposition filed

Effective date: 20200717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016007078

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016007078

Country of ref document: DE

Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016007078

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1192096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240103

Year of fee payment: 9