EP3086335B1 - Magnet valve device for a fluid system and method for switching a solenoid valve - Google Patents
Magnet valve device for a fluid system and method for switching a solenoid valve Download PDFInfo
- Publication number
- EP3086335B1 EP3086335B1 EP16000598.9A EP16000598A EP3086335B1 EP 3086335 B1 EP3086335 B1 EP 3086335B1 EP 16000598 A EP16000598 A EP 16000598A EP 3086335 B1 EP3086335 B1 EP 3086335B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- armature
- switching
- solenoid valve
- magnetic field
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 34
- 239000012530 fluid Substances 0.000 title claims description 6
- 230000005291 magnetic effect Effects 0.000 claims description 94
- 230000005672 electromagnetic field Effects 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 24
- 230000002123 temporal effect Effects 0.000 claims description 2
- 230000003111 delayed effect Effects 0.000 claims 4
- 230000004907 flux Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013022 venting Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/122—Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/123—Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/124—Guiding or setting position of armatures, e.g. retaining armatures in their end position by mechanical latch, e.g. detent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/18—Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F2007/1669—Armatures actuated by current pulse, e.g. bistable actuators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F2007/1692—Electromagnets or actuators with two coils
Definitions
- the invention relates to a solenoid valve device with a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle, and a method for switching a bistable solenoid valve.
- a bistable solenoid valve in particular a 3/2-way valve may be provided which applies a first pressure output in a first position or first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second position, the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.
- both positions can be formed by the solenoid valve.
- a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.
- the DE 37 30 381 A1 shows such a bistable solenoid valve, which allows a permanent magnet holding force in both positions.
- an armature with two axially towards its end formed sealing means axially displaceable and abuts in its two positions to a first end core or second end core, wherein it closes in each of the positions with its respective sealant at the respective end core a fluid passage.
- a permanent magnet is provided to close a magnetic field via an outer magnetic yoke and the end cores toward the armature.
- a first permanent magnetic field is via the first core or a second permanent magnetic field via the second Core stronger or weaker than the other permanent magnetic field.
- either a first coil or a second coil is energized, which amplifies one of the two permanent magnetic fields to such an extent that, despite the formation of the air gap, it exceeds the magnetic holding force of the other permanent magnetic field and thus enables switching to the other stable end position.
- the US Pat. No. 7,483,254 B1 shows a control circuit for a bistable permanent magnet device, in which a control via pulsed signals, in particular with RC elements takes place.
- the EP 0 328 194 A1 describes a bistable valve mechanism with a spring preload, which can be overcome by energization.
- EP 1 331 426 A2 discloses a pulse driven solenoid, particularly for a solenoid valve, including a coil for generating a magnetic field in a magnetic circuit having a magnetically conductive core, a magnetically conductive core, and an armature cooperating with the core. Furthermore, the electromagnet contains a releasably attached permanent magnet whose magnetic field is at least partially superimposed on the coil.
- the permanent magnet is arranged outside of the magnetic circuit.
- DE 26 50 810 A1 discloses a solenoid valve having means for permanently magnetic locking in a first position and an arrangement for electromagnetic reversal from the first to another position.
- the invention has for its object to provide a solenoid valve device and a method for switching a bistable solenoid valve, which allow a safe and fast switching between its positions with little effort.
- the solenoid valve device in this case has the bistable solenoid valve, a circuit arrangement and a control device.
- a partial or complete compensation of the armature-holding permanent magnetic field is effected by a compensating electromagnetic field of the electromagnetic device, which is also provided for switching.
- the compensating current inputted to the electromagnet means for compensation is opposite to the current input to switch into the electromagnet means, so that the switching electromagnetic field is opposed to the compensating one.
- the compensating current is preferably input here with a time change, in particular with a time increase, z. B. via a ramp.
- This is z. B. a continuous increase from zero to a maximum current value possible.
- a jump to an average current value is possible, for. B. after a first period of time.
- the resetting switching operation can be improved by the compensating energization.
- the magnetic holding force of the holding permanent magnetic field is thus already reduced, and the switching electromagnetic field can be dimensioned smaller with respect to its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.
- the complementary design of a compensating electromagnetic field depending on the dynamics and position of the armature can also be problematic, since the respective restoring force is limited and serving for compensation "compensating" electromagnetic field due to the lack of air gap to the holding anchor quickly large can. So z. B. if too fast or too strong energization, the compensating first electromagnetic field (or the electromagnetic flux) may be so great that it not only compensates the permanent magnetic field, but overcompensated so much that results in a total magnetic field that of Amount ago is greater than the restoring force.
- a temporally variable energization of the compensating electromagnetic device or coil is provided, in particular with a time increase within a rise time.
- This can be z. B. by a time control, in which the current is not immediately driven to its maximum value, but is ramped up via a switch-on, which allows a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms.
- the electromagnetic field in the turn-on ramp initially compensates for the air gap-loosely-holding permanent magnetic field until the restoring force has overcome the holding force and an air gap is formed between the armature and the retaining core, which attenuates the sustaining permanent magnetic field.
- the armature can be pulled in the desired manner in the other switching position, before the first permanent magnetic field is overcompensated.
- the restoring device for forming the restoring force, ie for returning the armature in its first armature position, may be a mechanical spring device, for. B. a coil spring, which is thus switched between their states “tense” and "not tense”.
- the reset device is formed by a solenoid device.
- the electromagnet device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field or the smaller permanent flux due to the air gap.
- the first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field
- the second electromagnetic field and the second permanent magnetic field thus form a second overall magnetic field
- the currents can be controlled in combination by the two electromagnetic devices, z. B. as a series circuit or parallel connection of the two electromagnetic devices.
- the switching current of the one solenoid device and the compensating current of the other solenoid device can be formed and controlled together.
- the coils for each switching operation can be switched together, wherein the current directions for the respective switching operations are reversed accordingly, so that in each case an electromagnetic field as compensating, ie to compensate for the stronger permanent magnetic field (or permanent magnet flux) and the other magnetic switching, ie for the active circuit is used.
- the high-side driver circuits for the two electromagnetic devices can be formed separately, with common low-side drive to ground.
- the compensating electromagnetic field can be formed by a smaller current than the switching electromagnetic field.
- the compensating current of the one switching operation is set against the switching current from the current direction inputted by this electromagnetic device in the other switching operation.
- the solenoid valve may have a permanent magnet device with radial magnetization.
- a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke, forming two permanent magnetic fields extending from the yoke either at an axial end via the first core to the armature, or at the other end run second core to the armature, wherein in each of the two positions in each case an axial air gap is provided by the armature to one of the two cores.
- the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway.
- B. switching transistors, are provided for its wiring.
- Fig. 1 shows a bistable solenoid valve 1, which is designed for use in a fluid system 50, in particular a compressed air system 50, in particular as a 3/2 solenoid valve with three ports, preferably a pressure input 2a, a first pressure outlet 2b and a second pressure outlet 2c, the z. B. can serve as a vent.
- the bistable solenoid valve 1 in the compressed air system 50, z. B. the compressed air system of a commercial vehicle serve, optionally according to the first anchor position I the Fig.
- the bistable solenoid valve 1 on an armature guide tube 6 and a longitudinally adjustable in the armature guide tube 6 in the axial direction A guided anchor 7.
- a first valve seal 8 is formed, which at a first valve seat 9, z. B. to the closure of the pressure input 2a, comes to rest, as well as continue a second valve seal 10 to the plant comes on a second valve seat 11, z. B. for closing the second pressure output 2c.
- valve seals 8 and 10 are advantageously spring biased by an armature spring 13 for sealing engagement with their respective valve seat 9 and 11, respectively.
- the armature 7 is magnetically conductive, d. H. made of ferromagnetic material; in the axial direction A closes to a first side of a first core 12, in which according to this embodiment, the pressure input 2a and the first pressure outlet 2b are formed, and to the other, second side of a second core 14, in which the second pressure outlet 2c for the vent is formed.
- a magnetic device 15 Radially outside the armature guide tube 6, a magnetic device 15 is arranged, which has a permanent magnet means 16 and a total electromagnet means 17, wherein the one total electromagnet means 17 in turn with a first electromagnet means or first coil 18 and a second electromagnet means or second coil 19 is formed.
- the entire magnet device 15 is received in a magnetic yoke 20, 21, which is formed by a yoke pot 20 with pot bottom 20a and cylindrical pot wall 20b and the yoke cup 20 to a axial side closing yoke disc 21.
- the two cores 12 and 14 are advantageously in the radial direction R directly to the yoke disc 21 and the Jochtopf 20, ie without a radial air gap. Furthermore, the armature 7 lies in its two armature positions or positions directly in the axial direction A or -A on one of the two cores 12, 14 and has an air gap 22 to the respective other core 14, 12. Thus lies in the in Fig.
- the armature 7 in the axial direction A directly, ie without an air gap, on the first core 12, wherein an axial air gap 22 is formed between the armature 7 and the second core 14; Accordingly, the armature 7 is in the second position II, not shown here directly to the second core 14, ie also without an air gap, in which case an air gap 22 between the armature 7 and the first core 12 is formed.
- the permanent magnet device 16 is advantageously arranged axially between the first coil 18 and the second coil 19 and radially magnetized, d. H. the magnetization and thus the magnetic flux lines of the permanent magnetic field PM extend in the radial direction R, z. B. radially outward, d. H. perpendicular to the axis A.
- the magnetic field is shown in part simplified by lines; In principle, the magnetic flux formed by the magnetic field is relevant to the magnetic effects.
- the permanent magnet device 16 different configurations of the permanent magnet device 16 are possible, for. Example, by individual permanent magnets or a permanent magnet disc, which is designed as a ring or disc and in this case is magnetized in the radial direction.
- the permanent magnet device 16 is formed outside the armature guide tube 6, it can also be formed with a wider axial extent, so that conventional materials for permanent magnets, for. As an iron alloy or a ceramic material used; the use z. B. rare earth is not required in principle.
- the common permanent magnetic field PM thus proceeds according to Fig. 2 in the radial direction R through the permanent magnet device 16 and subsequently through the yoke 20, 21, wherein it extends axially in both directions, ie -A and A, ie along the pot wall 20b as a first permanent magnetic field PM1 and second permanent magnetic field PM2, wherein the permanent magnetic fields PM1, PM2 then extend at the axial ends radially downwards along the pot base 20b and the yoke disc 21 to the cores 12, 14, and subsequently axially, ie in the direction A or -A, to the armature 7 and back to the permanent magnet device 16th
- the two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM thus forms z. B. a double torus or is dumbbell-shaped.
- the magnetically conductive armature 7 is located on the first core 12, so that in this case the first permanent magnetic field PM1 extends directly from the first core 12 through the armature 7, and in the armature 7 in the axial direction to the permanent magnet device 16.
- An air gap is formed at most as a radial air gap between the armature 7 and the permanent magnet means 16, but not as an axial gap, so that the first permanent magnetic field PM1 forms a strong magnetic holding force of the armature 7 on the first core 12.
- the extending through the second core 14 second permanent magnetic field PM2 passes through the air gap 22 to the armature 7 and is significantly weakened by the air gap 22.
- the magnetic holding force of the first permanent magnetic field PM1 is significantly larger than the attractive force of the second permanent magnetic field PM2; the armature 7 is in the right position, ie the anchor position I of Fig. 1 , kept safe.
- the bistable magnetic valve 1 is basically symmetrical in the axial direction A with respect to the formation of the two cores 12 and 14 and the coils 18 and 19, the in Fig. 1 not shown second armature position II held securely, since here an air gap is formed correspondingly between the armature 7 and the first core 12, which weakens the first permanent magnetic field PM1, however, there is a strong second permanent magnetic field PM2.
- the first coil 18 generates a first electromagnetic field EM1;
- the second coil 19 generates a second electromagnetic field EM2, wherein the electromagnetic fields EM1 and EM2 are superimposed with the permanent magnetic fields PM1, PM2 and each other.
- the first electromagnetic field EM1 of the first coil 18 is also toroidal in shape and extends substantially in accordance with the first permanent magnetic field PM1, in particular in rotationally symmetrical design of the permanent magnetic field PM1:
- the first electromagnetic field EM1 initially extends within the first coil 18, ie in the axial direction A-depending on the current supply-from the first core 12 in the axial direction inwards or outwards, ie, for example from the outside (in FIG Fig. 1 right) inwardly to the armature 7, and from the armature 7 radially outwardly, ie along the permanent magnet means 16 outwardly, and from there along the pot wall 20b and the cup bottom 20a radially inwardly back to the first core 12.
- the second electromagnetic field EM2 is similar to the second permanent magnetic field PM2, ie, depending on polarity, from the second core 14 in the axial direction A to the armature 7, or in the opposite direction from the armature 7 to the second core 14, and radially in each case radially outward along the permanent magnet device 16, the pot wall 20b in the axial direction, and along the yoke plate 21 radially inwardly.
- the second electromagnetic field EM2 is again weakened by the air gap 22, the first electromagnetic field EM1, however, not.
- the switching operations SV1 and SV2 of the bistable solenoid valve 1 between the first armature position I and the second armature position II are advantageously carried out by energizing each of both coils 18 and 19.
- a first electromagnetic field EM1 of the first coil 18 is set up, which is opposite to the first permanent magnetic field PM1 and this partially compensated in particular, so that the magnetic holding force of the armature 6 on the first core 12 is at least reduced.
- the second coil 19 is energized such that the second permanent magnetic field PM2 is amplified by the second electromagnetic field EM2, ie both fields PM2 and EM2 point in the same direction, so that in spite of the air gap 22 acting on the armature 7, in Fig. 1 towards the left magnetic force increases and the armature 7 in Fig. 1 shifted to the left, whereby the air gap 22 is reduced and disappears completely, and an air gap between the armature 7 and the first core 12 is formed.
- one of the electromagnetic fields EM1 and EM2 is compensating and the other switching.
- a first current I1 guided by the first coil 18 acts compensatingly, ie as a compensating first current I1_k, and a second current I2 conducted through the second coil 19 switches, ie as a switching second current I2_s.
- a compensating second current I2_k is passed through the second coil 19, and a first current I1_s is conducted through the first coil 18.
- the two coils 18 and 19 are connected via coil terminals 61a, b and 62a, b to a circuit arrangement 30, which represents in particular an output stage.
- a solenoid valve device 5 is formed, which has the bistable solenoid valve 1, the circuit arrangement 30 and the control device 40.
- the first current I1_k can cause the compensating, ie in Fig. 1 the first electromagnetic field EM1 is too strong and the difference EM1 - PM1 can be greater in magnitude than the positively overlapping, but weakened by the air gap 22, switching total second field EM2 + PM2.
- At least the compensating current I1_k or I2_k is in each case increased with a time delay, advantageously via a ramp.
- both currents can thus be ramped up with a time delay.
- 3 and 4 show embodiments of a circuit arrangement 30 for such ramp controls.
- the coils 18 and 19 can according to Fig. 3 be connected in a series circuit.
- Tr1 OFF
- Tr4 OFF
- Tr2 ON
- Tr3 ON to the supply voltage Uv over Tr2 and the series connection of the coils 18 and 19 and Tr3 to ground GND to lead.
- the Amperewindungen AW are drawn, resulting in the product of the current and the number of turns, the starting-shift duration .DELTA.t1 between t2 and t1 is z. B.
- ⁇ t2 50 to 70 ms
- the total switching time .DELTA.t2 between t3 and t1 is z.
- B. ⁇ t2 100 ms.
- the purely mechanical switching of the valve takes place depending on the tolerance position of the individual components in the valve between the times t1 and t2.
- Fig. 6 shows an alternative control in which at time t1, the current is driven immediately to a mean current value I_mid, and subsequently with a linear ramp up to the time t2 to the maximum value I_max until it is turned off again at time t3.
- the switching periods ⁇ t1 and ⁇ t2 can have similar values as in Fig. 5 accept.
- first in the first position I of Fig. 1 weak first electromagnetic field EM1 is formed, which fully or partially compensates the holding permanent magnetic field, here thus the first permanent magnetic field PM1, but only at time t2 reaches the maximum current value I_max.
- the starting shift duration .DELTA.t1 is sufficient to achieve a mechanical adjustment of the armature 7 away from the first armature position I; as soon as an air gap forms between the armature 7 and the first core 12, the risk of unintentional holding in the first armature position I has already been significantly reduced.
- FIGS. 7 and 8 show a detailed design of a solenoid valve 1 accordingly Fig. 1 ,
- the permanent magnet device 16 is here opposite for illustrative purposes Fig. 1 reversed polarity used.
- Compressed air 25a is from a compressed air supply 25, z. B. a compressed air reservoir, fed via a compressed air supply line 23 to the pressure input 2a, and passed over the first pressure output 2b and a pressure output line 26 to a consumer 24.
- a pressure outlet 27 is attached directly or indirectly via a line.
- the compressed air applied to the pressure inlet 2a and the inner bore 42 of the first core 12 is blocked at the closed first valve, ie between the first valve seat 9 and the first valve seal 8.
- Compressed air 25a can from the consumer 24 via the pressure-output line 26, the first pressure outlet 2b, then via an outer axial bore 43 of the core 12, an interior 29 of the armature 7, in which preferably also z.
- the inner armature spring 13 is provided, and are guided over the axial gap 22 of the open second valve 10,11 and the bore 14a of the second core 14 to the second pressure outlet 2c and thus to the pressure outlet 27 for venting.
- the second valve 10, 11 is thus open, since the second valve seat 11 is separated from the second valve seal 10 by the axial gap 22.
- the first valve 8, 9 is open, ie the axial gap 22 is formed between the first valve seat 9 and the first valve seal 8. Accordingly, the second valve 10, 11 closed by the second valve seat 11 rests on the second valve seal 10. Compressed air 25a is thus from the compressed air supply 25 via the compressed air supply line 23, the pressure inlet 2a, the inner bore 42, the open first valve 8, 9, the axial gap 22, the radially outer bore 43 to the first pressure outlet 2b and thus to the Consumer 24 led.
- the holes 42, 43 in the first core 12 are advantageously formed by the first core 12 is formed with an inner tube 12 a and an outer tube 12 b, between which, at least in some areas the circumference of the outer axial bore 43 is formed; the inner bore 42 is formed by the central bore of the inner tube 12a.
- the armature 7 is formed according to the embodiment shown here by a first anchor part 7a and a second anchor part 7b, the z. B. be joined together by press fitting; the armature spring 13 presses the valve seals 8 and 10 apart axially.
- the armature 7 can thus be joined with an armature interior 29 which, as described above, serves as an air duct for the ventilation.
- Fig. 9 to 12 show a non-claimed embodiment with a solenoid valve 101 with spring return by a spring device 70, here as a helical spring between the armature 7 and the yoke, z. B. the yoke disc 21, is provided.
- a spring device 70 here as a helical spring between the armature 7 and the yoke, z. B. the yoke disc 21, is provided.
- armature 7 is held in the second anchor position II to the holding core 14 (or second core or holding core), since the holding permanent magnetic field or second permanent magnetic field PM2 due to the lack of air gap 22 is strong enough, even without Supported by the second electromagnetic field EM2 to hold the armature 7 against the spring action of the spring device 70.
- Fig. 12 is then the holding permanent magnetic field or second permanent magnetic field PM2 weakened by at least partial compensation by the compensating second electromagnetic field EM2_k, so that the spring restoring force of the spring device 70, the magnetic holding force, which is determined by the amount of the difference of the holding second permanent Magnetic field PM2 and the compensating second electromagnetic field EM2_k is exceeded.
- the resetting switching operation SV1 or first switching operation takes place in the first armature position I, which in turn forms the air gap 22 between the holding core or holding core 14 and the armature 7.
- Fig. 13 shows a circuit arrangement or power amplifier 130, respectively Fig. 3 is constructed with only the switching solenoid device or second coil 19 is energized.
- Fig. 5 or 6 the time diagrams of the Fig. 5 or 6 be set.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetically Actuated Valves (AREA)
Description
Die Erfindung betrifft eine Magnetventil-Einrichtung mit einem bistabilen Magnetventil für ein Fluidsystem, insbesondere ein Druckluftsystem in einem Fahrzeug, und ein Verfahren zum Schalten eines bistabilen Magnetventils.The invention relates to a solenoid valve device with a bistable solenoid valve for a fluid system, in particular a compressed air system in a vehicle, and a method for switching a bistable solenoid valve.
Als bistabiles Magnetventil kann insbesondere ein 3/2-Wegeventil vorgesehen sein, das einen ersten Druckausgang in einer ersten Stellung bzw. ersten Ankerstellung an einen zweiten Druckausgang legt, um eine Druckausgangsleitung zu entlüften bzw. mit Atmosphäre zu verbinden; hierbei ist ein Druckeingang gesperrt. In einer zweiten Stellung wird der Druckeingang mit dem ersten Druckausgang verbunden, z. B. zur pneumatischen Versorgung einer Druckluft-Bremse. Der zweite Druckausgang ist hierbei gesperrt.As a bistable solenoid valve, in particular a 3/2-way valve may be provided which applies a first pressure output in a first position or first armature position to a second pressure output to vent a pressure outlet line or to connect with atmosphere; In this case, a pressure input is blocked. In a second position, the pressure input is connected to the first pressure output, z. B. for the pneumatic supply of a compressed air brake. The second pressure output is blocked here.
Somit sind durch das Magnetventil zwei Stellungen ausbildbar. Bei einem bistabilen Magnetventil werden beide Stellungen im stromlosen Zustand durch eine Permanentmagnet-Einrichtung sicher gehalten, wobei eine Elektromagneteinrichtung für die Schaltvorgänge vorgesehen ist.Thus, two positions can be formed by the solenoid valve. In a bistable solenoid valve both positions are kept safe in the de-energized state by a permanent magnet device, wherein a solenoid device is provided for the switching operations.
Die
Zur Ausbildung der Elektromagnetfelder ist jedoch eine hohe Anzahl Amperewindungen erforderlich, so dass großdimensionierte Spulen mit erheblichen Herstellungskosten erforderlich sind und die Schaltgeschwindigkeit begrenzt ist.To form the electromagnetic fields, however, a high number of ampere-turns is required, so that large-sized coils are required with considerable production costs and the switching speed is limited.
Die
Die
Um den Elektromagneten ohne aufwendigen Umbau mit oder ohne Dauermagneten zu betreiben, ist der Dauermagnet außerhalb des Magnetkreises angeordnet.In order to operate the electromagnet without complex conversion with or without permanent magnets, the permanent magnet is arranged outside of the magnetic circuit.
Der Erfindung liegt die Aufgabe zugrunde, eine Magnetventil-Einrichtung und ein Verfahren zum Schalten eines bistabiles Magnetventils zu schaffen, die bei geringem Aufwand eine sichere und schnelle Umschaltung zwischen seinen Stellungen ermöglichen.The invention has for its object to provide a solenoid valve device and a method for switching a bistable solenoid valve, which allow a safe and fast switching between its positions with little effort.
Diese Aufgabe wird durch eine Magnetventil-Einrichtung und ein Verfahren geeignet zum Schalten bzw. zur Ansteuerung des Magnetventils nach den unabhängigen Ansprüchen gelöst. Das Verfahren kann insbesondere unter Verwendung der Magnetventil- Einrichtung erfolgen.This object is achieved by a solenoid valve device and a method suitable for switching or for driving the solenoid valve according to the independent claims. The method can be carried out in particular using the solenoid valve device.
Die Magnetventil-Einrichtung weist hierbei das bistabile Magnetventil, eine Schaltungsanordnung und eine Steuereinrichtung auf.The solenoid valve device in this case has the bistable solenoid valve, a circuit arrangement and a control device.
Somit erfolgt eine teilweise oder vollständige Kompensation des den Anker haltenden Permanent-Magnetfeldes durch ein kompensierendes Elektromagnetfeld der Elektromagneteinrichtung, die auch zum Schalten vorgesehen ist. Der zur Kompensation in die Elektromagneteinrichtung eingegebene kompensierende Strom ist entgegen gesetzt zu dem Strom, der zum Schalten in die Elektromagneteinrichtung eingegeben wird, so dass das schaltende Elektromagnetfeld dem kompensierenden entgegen gesetzt ist.Thus, a partial or complete compensation of the armature-holding permanent magnetic field is effected by a compensating electromagnetic field of the electromagnetic device, which is also provided for switching. The compensating current inputted to the electromagnet means for compensation is opposite to the current input to switch into the electromagnet means, so that the switching electromagnetic field is opposed to the compensating one.
Der kompensierende Strom wird hierbei vorzugsweise mit zeitlicher Veränderung eingegeben, insbesondere mit einem zeitlichem Anstieg, z. B. über eine Rampe. Hierbei ist z. B. ein kontinuierlicher Anstieg von Null auf einen maximalen Stromwert möglich. Alternativ oder ergänzend ist auch ein Sprung auf einen mittleren Stromwert möglich, z. B. nach einer ersten Zeitspanne. So kann ein maximaler Stromwert durch Sprünge und/oder einen kontinuierlichen Anstieg, z. B. als zeitliche Rampe, eingestellt werden.The compensating current is preferably input here with a time change, in particular with a time increase, z. B. via a ramp. This is z. B. a continuous increase from zero to a maximum current value possible. Alternatively or additionally, a jump to an average current value is possible, for. B. after a first period of time. Thus, a maximum current value by jumps and / or a continuous increase, z. B. as a time ramp.
Erfindungsgemäß wird erkannt, dass durch die kompensierende Bestromung der Rückstell-Schaltvorgang verbessert werden kann. Durch die zumindest teilweise Kompensation wird somit die magnetische Haltekraft des haltenden Permanentmagnetfeldes bereits verringert, und das schaltende Elektromagnetfeld kann bezüglich seiner magnetischen Feldstärke bzw. der Ausbildung an Amperewindungen kleiner dimensioniert werden, um den Schaltvorgang durch Verstärkung des zweiten Permanentmagnetfeldes zu ermöglichen.According to the invention, it is recognized that the resetting switching operation can be improved by the compensating energization. As a result of the at least partial compensation, the magnetic holding force of the holding permanent magnetic field is thus already reduced, and the switching electromagnetic field can be dimensioned smaller with respect to its magnetic field strength or the formation of ampere-turns in order to enable the switching process by amplifying the second permanent magnetic field.
Somit ist ohne apparativen Mehraufwand bzw. mit geringem Schaltungs-Mehraufwand für z. B. eine Brückenschaltung eine zusätzliche Nutzung einer bereits zum Schalten eingesetzten Elektromagneteinrichtung, z. B. Spule, möglich.Thus, without additional equipment overhead or with low circuit overhead for z. B. a bridge circuit an additional use of an already used for switching electromagnet device, for. B. coil, possible.
Erfindungsgemäß wird vorzugsweise weiterhin erkannt, dass die ergänzende Ausbildung eines kompensierenden Elektromagnetfeldes je nach Dynamik und Stellung des Ankers auch problematisch sein kann, da die jeweilige Rückstellkraft begrenzt ist und das zur Kompensation dienende "kompensierende" Elektromagnetfeld aufgrund des fehlenden Luftspaltes zum haltenden Anker schnell groß werden kann. So kann z. B. bei zu schneller oder zu starker Bestromung das kompensierende erste Elektromagnetfeld (bzw. der Elektromagnetfluss) ggf. so groß werden, das es das Permanent-Magnetfeld nicht nur kompensiert, sondern so stark überkompensiert, dass sich ein Gesamt-Magnetfeld ergibt, dass vom Betrag her größer ist als die Rückstellkraft.According to the invention is further preferably recognized that the complementary design of a compensating electromagnetic field depending on the dynamics and position of the armature can also be problematic, since the respective restoring force is limited and serving for compensation "compensating" electromagnetic field due to the lack of air gap to the holding anchor quickly large can. So z. B. if too fast or too strong energization, the compensating first electromagnetic field (or the electromagnetic flux) may be so great that it not only compensates the permanent magnetic field, but overcompensated so much that results in a total magnetic field that of Amount ago is greater than the restoring force.
Um eine derartige Überkompensation und somit einen fehlenden Schaltvorgang zu vermeiden, ist vorzugsweise eine zeitlich veränderliche Bestromung der kompensierenden Elektromagneteinrichtung bzw. Spule vorgesehen, insbesondere mit zeitlichem Anstieg innerhalb einer Anstiegszeit. Dies kann z. B. durch eine zeitliche Ansteuerung erfolgen, bei der der Strom nicht sofort auf seinen Maximalwert gefahren wird, sondern über eine Einschaltrampe hochgefahren wird, die eine mechanische Verstellung des Ankers ermöglicht, d. h. z. B. in einem Zeitraum oberhalb von 10 ms, z. B. in einem Zeitraum von 100 ms. Somit kompensiert das Elektromagnetfeld in der Einschaltrampe zunächst das Luftspalt-lose haltende Permanentmagnetfeld, bis die Rückstellkraft die haltende Kraft überwunden hat und ein Luftspalt zwischen Anker und haltendem Kern gebildet ist, der das haltenden Permanentmagnetfeld abschwächt. Somit kann der Anker in gewünschter Weise in die andere Schaltstellung gezogen werden, bevor das erste Permanentmagnetfeld überkompensiert wird.In order to avoid such overcompensation and thus a missing switching operation, preferably a temporally variable energization of the compensating electromagnetic device or coil is provided, in particular with a time increase within a rise time. This can be z. B. by a time control, in which the current is not immediately driven to its maximum value, but is ramped up via a switch-on, which allows a mechanical adjustment of the anchor, d. H. z. B. in a period above 10 ms, z. In a period of 100 ms. Thus, the electromagnetic field in the turn-on ramp initially compensates for the air gap-loosely-holding permanent magnetic field until the restoring force has overcome the holding force and an air gap is formed between the armature and the retaining core, which attenuates the sustaining permanent magnetic field. Thus, the armature can be pulled in the desired manner in the other switching position, before the first permanent magnetic field is overcompensated.
Die Rückstell-Einrichtung zur Ausbildung der Rückstellkraft, d.h. zur Rückstellung des Ankers in dessen erste Ankerstellung, kann gemäß einer nicht-beanspruchten Ausführungsform eine mechanische Federeinrichtung sein, z. B. eine Schraubenfeder, die somit zwischen ihren Zuständen "gespannt" und "nicht gespannt" geschaltet wird.The restoring device for forming the restoring force, ie for returning the armature in its first armature position, according to a non-claimed embodiment may be a mechanical spring device, for. B. a coil spring, which is thus switched between their states "tense" and "not tense".
Die Rückstell-Einrichtung wird durch eine Elektromagneteinrichtung ausgebildet. Für einen Schaltvorgang wird somit die Elektromagneteinrichtung an der schaltenden Seite, an der der axiale Luftspalt zwischen dem Kern und dem Anker vorgesehen ist, mit einem schaltenden Strom bestromt, um das aufgrund des Luftspalts geringere Permanentmagnetfeld bzw. den geringeren Permanentfluss zu unterstützen.The reset device is formed by a solenoid device. For a switching operation, the electromagnet device is thus energized on the switching side, at which the axial air gap between the core and the armature is provided, with a switching current in order to support the lower permanent magnetic field or the smaller permanent flux due to the air gap.
Das erste Elektromagnetfeld und erste Permanentmagnetfeld bilden somit ein erstes Gesamt-Magnetfeld, entsprechend bilden das zweite Elektromagnetfeld und zweite Permanentmagnetfeld somit ein zweites Gesamt-Magnetfeld.The first electromagnetic field and the first permanent magnetic field thus form a first overall magnetic field, accordingly the second electromagnetic field and the second permanent magnetic field thus form a second overall magnetic field.
Bei der Ausführungsform mit zwei Elektromagneteinrichtungen ist insbesondere auch eine symmetrische Ausbildung des Magnetventils bezüglich Anker, Permanentmagnet und den beiden Elektromagneteinrichtungen möglich, mit einer spezifischen, z. B. unsymmetrischen Ventil-Ausbildung. Hierbei können die Ströme durch die beiden Elektromagneteinrichtungen kombiniert angesteuert werden, z. B. als Reihenschaltung oder Parallelschaltung der beiden Elektromagneteinrichtungen. Somit können der schaltende Strom der einen Elektromagneteinrichtung und der kompensierende Strom der anderen Elektromagneteinrichtung zusammen ausgebildet und eingesteuert werden. Somit können die Spulen für jeden Schaltvorgang gemeinsam geschaltet werden, wobei die Stromrichtungen für die jeweiligen Schaltvorgänge entsprechend umgepolt werden, so dass jeweils ein Elektromagnetfeld als kompensierend, d.h. zur Kompensation des stärkeren Permanentmagnetfeldes (bzw. Permanentmagnetflusses) und das andere Magnetfeld schaltend, d.h. für die aktive Schaltung dient.In the embodiment with two electromagnetic devices in particular a symmetrical design of the solenoid valve with respect to armature, permanent magnet and the two electromagnetic devices is possible with a specific, z. B. unbalanced valve training. In this case, the currents can be controlled in combination by the two electromagnetic devices, z. B. as a series circuit or parallel connection of the two electromagnetic devices. Thus, the switching current of the one solenoid device and the compensating current of the other solenoid device can be formed and controlled together. Thus, the coils for each switching operation can be switched together, wherein the current directions for the respective switching operations are reversed accordingly, so that in each case an electromagnetic field as compensating, ie to compensate for the stronger permanent magnetic field (or permanent magnet flux) and the other magnetic switching, ie for the active circuit is used.
Alternativ zu der kombinierten Ansteuerung sind auch separate Ansteuerungen der beiden Elektromagneteinrichtungen möglich, wobei z. B. die Highside-Treiberschaltungen für die beiden Elektromagneteinrichtungen separat ausgebildet werden können, bei gemeinsamer Lowside-Ansteuerung gegenüber Masse. Bei einer separaten Ansteuerung kann z. B. das kompensierenden Elektromagnetfeld durch einen kleineren Strom als das schaltenden Elektromagnetfeld ausgebildet werden.As an alternative to the combined control and separate controls of the two electromagnetic devices are possible, wherein z. B. the high-side driver circuits for the two electromagnetic devices can be formed separately, with common low-side drive to ground. In a separate control can z. B. the compensating electromagnetic field can be formed by a smaller current than the switching electromagnetic field.
Vorzugsweise ist bei jeder Elektromagneteinrichtung der kompensierende Strom des einen Schaltvorgangs dem durch diese Elektromagneteinrichtung in dem anderen Schaltvorgang eingegebenen schaltenden Strom von der Stromrichtung her entgegen gesetzt.Preferably, in each solenoid device, the compensating current of the one switching operation is set against the switching current from the current direction inputted by this electromagnetic device in the other switching operation.
Bei der Ausführungsform mit zwei Elektromagneteinrichtungen kann das Magnetventil eine Permanentmagnet-Einrichtung mit radialer Magnetisierung aufweisen. Somit verläuft ein Permanentmagnetfeld in radialer Richtung von dem inneren Anker über den Permanentmagneten und ein äußeres magnetisches Joch, wobei sich zwei Permanentmagnetfelder ausbilden, die von dem Joch entweder an einem axialen Ende über den ersten Kern zu dem Anker, oder an dem anderen Ende über den zweiten Kern zu dem Anker verlaufen, wobei in jeder der beiden Stellungen jeweils ein axialer Luftspalt von dem Anker zu einem der beiden Kerne vorgesehen ist.In the embodiment with two electromagnetic devices, the solenoid valve may have a permanent magnet device with radial magnetization. Thus, a permanent magnetic field extends in the radial direction from the inner armature via the permanent magnet and an outer magnetic yoke, forming two permanent magnetic fields extending from the yoke either at an axial end via the first core to the armature, or at the other end run second core to the armature, wherein in each of the two positions in each case an axial air gap is provided by the armature to one of the two cores.
Hierbei wird insbesondere auch erkannt, dass die ergänzende Bestromung des kompensierenden Elektromagnetfeldes grundsätzlich keinen zusätzlichen Hardwareaufwand erfordert, da ohnehin eine Schalteinrichtung, z. B. Schalt-Transistoren, zu seiner Beschaltung vorgesehen sind.In this case, in particular, it is also recognized that the supplementary energization of the compensating electromagnetic field basically does not require any additional expenditure on hardware, since a switching device, for example, is required anyway. B. switching transistors, are provided for its wiring.
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:
- Fig. 1
- ein bistabiles Magnetventil gemäß einer Ausführungsform mit zwei Spulen in geschnittener Darstellung;
- Fig. 2
- eine Darstellung des Verlaufs der Magnetfeldlinien in
Fig. 1 ; - Fig. 3
- eine Schaltungsanordnung zur Ansteuerung der Spulen gemäß einer Ausführungsform mit Reihenschaltung beider Spulen;
- Fig. 4
- eine Schaltungsanordnung zur Ansteuerung der Spulen gemäß einer Ausführungsform mit Parallelschaltung beider Spulen;
- Fig. 5
- ein Zeitdiagramm des Spulenstroms gemäß einer Ausführungsformen mit Rampen-Ansteuerung;
- Fig. 6
- ein Zeitdiagramm des Spulenstroms gemäß einer weiteren Ausführungsformen mit Rampen-Ansteuerung;
- Fig. 7
- ein Schnittbild des bistabilen Magnetventils gemäß einer Ausführungsform mit zwei Spulen in der ersten Ankerstellung;
- Fig. 8
- ein Schnittbild des bistabilen Magnetventils aus
Fig. 9 in der zweiten Ankerstellung; - Fig. 9
- ein Schnittbild des bistabilen Magnetventils gemäß einer nicht-beanspruchten mit Feder-Rückstellung in der ersten Ankerstellung;
- Fig. 10
- das bistabile Magnetventil aus
Fig. 9 bei dem Anker-Schaltvorgang in die zweite Ankerstellung; - Fig. 11
- das bistabile Magnetventil aus
Fig. 9 in der zweiten Ankerstellung;bis 10 - Fig. 12
- das bistabile Magnetventil aus
Fig. 9 bei dem Rückstell-Schaltvorgang in die erste Ankerstellung; undbis 11 - Fig. 13
- ein Zeitdiagramm des Spulenstroms der Ausführungsform der
Fig. 9 bei Rampen- Ansteuerung.bis 12
- Fig. 1
- a bistable solenoid valve according to an embodiment with two coils in a sectional view;
- Fig. 2
- a representation of the course of the magnetic field lines in
Fig. 1 ; - Fig. 3
- a circuit arrangement for driving the coils according to an embodiment with series connection of both coils;
- Fig. 4
- a circuit arrangement for driving the coils according to an embodiment with parallel connection of both coils;
- Fig. 5
- a timing diagram of the coil current according to a embodiments with ramp drive;
- Fig. 6
- a timing diagram of the coil current according to another embodiments with ramp drive;
- Fig. 7
- a sectional view of the bistable solenoid valve according to an embodiment with two coils in the first armature position;
- Fig. 8
- a sectional view of the bistable solenoid valve
Fig. 9 in the second anchor position; - Fig. 9
- a sectional view of the bistable solenoid valve according to a non-claimed with spring return in the first armature position;
- Fig. 10
- the bistable solenoid valve off
Fig. 9 in the armature switching operation in the second armature position; - Fig. 11
- the bistable solenoid valve off
Fig. 9 to 10 in the second anchor position; - Fig. 12
- the bistable solenoid valve off
Fig. 9 to 11 in the return switching operation in the first armature position; and - Fig. 13
- a timing diagram of the coil current of the embodiment of the
Fig. 9 to 12 with ramp control.
Hierzu weist das bistabile Magnetventil 1 ein Ankerführungsrohr 6 und einen in dem Ankerführungsrohr 6 in Axialrichtung A längsverstellbar geführten Anker 7 auf. An dem Anker 7 ist eine erste Ventildichtung 8 ausgebildet, die an einem ersten Ventilsitz 9, z. B. zum Verschluss des Druckeingangs 2a, zur Anlage kommt, sowie weiterhin eine zweite Ventildichtung 10, die zur Anlage an einem zweiten Ventilsitz 11 kommt, z. B. zum Verschluss des zweiten Druckausgangs 2c.For this purpose, the
Die Ventildichtungen 8 und 10 sind vorteilhafterweise durch eine Ankerfeder 13 federvorgespannt, zur dichtenden Anlage an ihrem jeweiligen Ventilsitz 9 bzw. 11.The valve seals 8 and 10 are advantageously spring biased by an
Der Anker 7 ist magnetisch leitend, d. h. aus ferromagnetischem Material ausgebildet; in Axialrichtung A schließt sich zu einer ersten Seite ein erster Kern 12, in dem gemäß dieser Ausbildung der Druckeingang 2a und der erste Druckausgang 2b ausgebildet sind, sowie zu der anderen, zweiten Seite ein zweiter Kern 14 an, in dem der zweite Druckausgang 2c für die Entlüftung ausgebildet ist.The
Radial außerhalb des Ankerführungsrohrs 6 ist eine Magnet-Einrichtung 15 angeordnet, die eine Permanentmagnet-Einrichtung 16 und eine Gesamt-Elektromagneteinrichtung 17 aufweist, wobei die eine Gesamt- Elektromagneteinrichtung 17 wiederum mit einer ersten Elektromagneteinrichtung bzw. ersten Spule 18 und einer zweiten Elektromagneteinrichtung bzw. zweiten Spule 19 ausgebildet ist. Die gesamte Magnet-Einrichtung 15 ist in einem magnetischen Joch 20, 21 aufgenommen, das durch einen Jochtopf 20 mit Topfboden 20a und zylinderförmiger Topfwand 20b und eine den Jochtopf 20 zu einer axialen Seite hin verschließenden Jochscheibe 21 ausgebildet ist.Radially outside the
Die beiden Kerne 12 und 14 liegen vorteilhafterweise in radialer Richtung R direkt an der Jochscheibe 21 und dem Jochtopf 20 an, d.h. ohne radialen Luftspalt. Weiterhin liegt der Anker 7 in seinen beiden Ankerstellungen bzw. Stellungen direkt in axialer Richtung A bzw. -A an einem der beiden Kerne 12, 14 an und weist zu dem jeweils anderen Kern 14, 12 einen Luftspalt 22 auf. Somit liegt in der in
Die Permanentmagnet-Einrichtung 16 ist vorteilhafterweise axial zwischen der ersten Spule 18 und der zweiten Spule 19 angeordnet und radial magnetisiert, d. h. die Magnetisierung und somit die magnetischen Flusslinien des Permanentmagnetfeldes PM verlaufen in radialer Richtung R, z. B. radial nach außen, d. h. senkrecht zur Achse A. In den Figuren ist zum Teil vereinfacht das Magnetfeld durch Linien dargestellt; grundsätzlich ist der durch das Magnetfeld ausgebildete Magnetfluss für die magnetischen Wirkungen relevant.The
Hierbei sind unterschiedliche Ausbildungen der Permanentmagnet-Einrichtung 16 möglich, z. B. durch einzelne Permanentmagnete oder eine Permanentmagnet-Scheibe, die als Ring bzw. Scheibe ausgeführt und hierbei in radialer Richtung magnetisiert ausgebildet ist.Here, different configurations of the
Da die Permanentmagnet-Einrichtung 16 außerhalb des Ankerführungsrohrs 6 ausgebildet ist, kann sie auch mit breiterer axialer Erstreckung ausgebildet werden, so dass herkömmliche Materialien für Permanentmagnete, z. B. eine Eisenlegierung oder ein keramisches Material, eingesetzt werden; der Einsatz z. B. seltener Erden ist grundsätzlich nicht erforderlich.Since the
Das gemeinsame Permanentmagnetfeld PM verläuft somit gemäß
Die beiden Permanentmagnetfelder PM1, PM2 können somit jeweils z. B. etwa die Form eines Torus aufweisen; das gesamte Permanentmagnetfeld PM bildet somit z. B. einen Doppel-Torus bzw. ist hantelförmig.The two permanent magnetic fields PM1, PM2 can thus each z. B. have approximately the shape of a torus; the entire permanent magnetic field PM thus forms z. B. a double torus or is dumbbell-shaped.
In der ersten Ankerstellung I bzw. Entlüftungsstellung der
Da das bistabile Magnetventil 1 grundsätzlich in Axialrichtung A symmetrisch bezüglich der Ausbildung der beiden Kerne 12 und 14 und der Spulen 18 und 19 ist, wird auch die in
Das erste Elektromagnetfeld EM1 der ersten Spule 18 ist ebenfalls Torusförmig ausgebildet und verläuft im Wesentlichen entsprechend dem ersten Permanentmagnetfeld PM1, insbesondere bei rotationssymmetrischer Ausbildung des Permanentmagnetfeldes PM1:
das erste Elektromagnetfeld EM1 verläuft zunächst innerhalb der ersten Spule 18, d. h. in Axialrichtung A-je nach Bestromung - von dem ersten Kern 12 in axialer Richtung nach innen oder außen, d. h. z. B. von außen (in
The first electromagnetic field EM1 initially extends within the
In
Somit wirkt jeweils eines der elektromagnetischen Felder EM1 und EM2 kompensierend und das andere schaltend. Für den zweiten Schaltvorgang SV2 von der ersten Ankerstellung I bzw. Entlüftungsstellung der
Die beiden Spulen 18 und 19 sind über Spulenanschlüsse 61a,b und 62a, b an eine Schaltungsanordnung 30 angeschlossen, die insbesondere eine Endstufe darstellt. Somit wird eine Magnetventil-Einrichtung 5 gebildet, die das bistabile Magnetventil 1, die Schaltungsanordnung 30 und die Steuereinrichtung 40 aufweist.The two
Vorteilhafterweise wird hierbei erkannt, dass ein sofortiges und vollständiges Hochfahren des jeweils kompensierenden Stroms, in
Daher wird in beiden Schaltvorgängen zumindest der kompensierend wirkende Strom I1_k oder I2_k jeweils zeitlich verzögert hochgefahren, vorteilhafterweise über eine Rampe. Bei einer Reihenschaltung der beiden Ströme I1, I2 können somit beide Ströme zeitlich verzögert hochgefahren werden.
Die Spulen 18 und 19 können gemäß
Alternativ hierzu ist eine Parallelschaltung nach
Die H-Brücke der
Somit wird zwischen t1 und t2 zunächst ein in der ersten Stellung I der
In der ersten Ankerstellung I, d.h. der Entlüftungsstellung der
In der zweiten Ankerstellung II, d.h. der Belüftungsstellung der
Die Bohrungen 42, 43 im ersten Kern 12 sind vorteilhafterweise ausgebildet, indem der erste Kern 12 mit einem inneren Rohr 12a und einem äußeren Rohr 12b ausgebildet ist, zwischen denen zumindest in einigen Bereichen des Umfangs die äußere axiale Bohrung 43 ausgebildet ist; die innere Bohrung 42 wird durch die zentrale Bohrung des inneren Rohrs 12a gebildet.The
Der Anker 7 wird gemäß der hier gezeigten Ausbildung durch einen ersten Ankerteil 7a und einen zweiten Ankerteil 7b gebildet, die z. B. durch Presspassung zusammen gefügt werden; die Ankerfeder 13 drückt die Ventildichtungen 8 und 10 axial auseinander. Der Anker 7 kann somit mit einem Anker-Innenraum 29 gefügt werden, der wie oben beschrieben als Luftkanal für die Entlüftung dient.The
In
In dem zweiten Schaltvorgang bzw. Anker- Schaltvorgang SV2 der
In
In
- 1, 1011, 101
- bistabiles Magnetventilbistable solenoid valve
- 2a2a
- Druckeingangpressure input
- 2b2 B
- erster Druckausgang zu Druckanschlussleitung/-ausgangsleitungfirst pressure outlet to pressure connection line / output line
- 2c2c
- zweiter Druckausgang zu Entlüftungsecond pressure outlet for venting
- 3, 43, 4
- Druckluft-Zuführleitung und Druckluft-AusgangsleitungCompressed air supply line and compressed air outlet line
- 5, 1055, 105
- bistabile Magnetventil-Einrichtungbistable solenoid valve device
- 66
- AnkerführungsrohrArmature guide tube
- 77
- Ankeranchor
- 7a7a
- erstes Ankerteilfirst anchor part
- 7b7b
- zweites Ankerteilsecond anchor part
- 88th
-
erste Ventildichtung an Anker 7first valve seal to
anchor 7 - 99
- erster Ventilsitzfirst valve seat
- 1010
-
zweite Ventildichtung an Anker 7second valve seal to
anchor 7 - 1111
- zweiter Ventilsitzsecond valve seat
- 1212
- erster Kernfirst core
- 12a12a
-
inneres Rohr des ersten Kerns 12Inner tube of the
first core 12 - 12b12b
-
äußeres Rohr des ersten Kerns 12outer tube of the
first core 12 - 1313
-
innere Ankerfeder in Anker 7 zwischen den Ventildichtungen 8 und 10inner armature spring in
armature 7 between the valve seals 8 and 10th - 1414
- zweiter Kern, Halte-Kernsecond core, holding core
- 1515
- Magnet-EinrichtungMagnet means
- 16, 11616, 116
- Permanentmagnet-EinrichtungPermanent magnet means
- 1717
- ElektromagneteinrichtungElectromagnet means
- 1818
- erste Spulefirst coil
- 1919
- zweite Spulesecond coil
- 2020
- JochtopfJochtopf
- 20a20a
- Topfbodenpot base
- 20b20b
- Topfwandpot wall
- 2121
- Jochscheibeyoke disc
- 2222
- Luftspaltair gap
- 2323
- Druckluft-ZuleitungCompressed air supply
- 2424
- Verbraucherconsumer
- 2525
- DruckluftversorgungAir Supply
- 25a25a
- Druckluftcompressed air
- 2626
- Druck-AusgangsleitungPressure output line
- 2727
- Druckauslasspressure outlet
- 2828
- Polrohr für radialen Feldlinien-ÜbergangPole tube for radial field line transition
- 2929
- Anker-InnenraumAnchor interior
- 30, 13030, 130
- Schaltungsanordnungcircuitry
- 4040
- Steuereinrichtungcontrol device
- 4242
-
zentrale Bohrung im ersten Kern 12central bore in the
first core 12 - 4343
-
äußere Bohrung im ersten Kern 12, zwischen den Rohren 12a, 12bouter bore in the
first core 12, between the 12a, 12btubes
- 5050
- Fluidsystemfluid system
- 61a,b61a, b
-
Spulenanschlüsse der ersten Spule 18 an die SchaltungsanordnungCoil terminals of the
first coil 18 to the circuit arrangement - 62a, b62a, b
-
Spulenanschlüsse der zweiten Spule 19 an die SchaltungsanordnungCoil terminals of the
second coil 19 to the circuit arrangement
- 7070
- RückstellfederReturn spring
- Tr1, Tr2, Tr3, Tr4Tr1, Tr2, Tr3, Tr4
-
Transistoren der Schaltungsanordnung 30Transistors of the
circuit arrangement 30 - Uvuv
- Versorgungsspannungsupply voltage
- GNDGND
- MasseDimensions
- AA
- Achse, AxialrichtungAxis, axial direction
- RR
- Radialrichtungradial direction
- PMPM
- Gesamt-MagnetfeldTotal magnetic field
- PM1PM1
- erstes Permanentmagnetfeldfirst permanent magnetic field
- PM2PM2
- zweites Permanentmagnetfeldsecond permanent magnetic field
- EM1EM1
- erstes Elektromagnetfeld, Rückstell- Elektromagnetfeldfirst electromagnetic field, reset electromagnetic field
- EM2EM2
- zweites Elektromagnetfeld, Anker- Elektromagnetfeldsecond electromagnetic field, armature electromagnetic field
- EM2_kEM2_k
- zweites kompensierendes Elektromagnetfeldsecond compensating electromagnetic field
- EM1_kEM1_k
- erstes kompensierendes Elektromagnetfeldfirst compensating electromagnetic field
- N, SN, S
- Nordpol, SüdpolNorth Pole, South Pole
- II
- Strom bei ReihenschaltungCurrent in series connection
- I_si_s
- schaltender Stromswitching current
- I_kI_k
- kompensierender Stromcompensating current
- I1I1
- erster Strom durch die erste Spule 18first current through the first coil 18th
- I1_sI1_s
- schaltender erster Stromswitching first current
- I1_kI1_k
- kompensierender erster Stromcompensating first current
- I_midI_mid
- mittlerer Stromwertmean current value
- I_maxi_max
- maximaler Stromwertmaximum current value
- I2I2
- zweiter Strom durch die zweite Spule 19second current through the second coil 19th
- I2_sI2_s
- schaltender zweiter Stromswitching second stream
- I2_kI2_k
- kompensierender zweiter Stromcompensating second stream
- S1S1
- erstes Ansteuersignal der Rampensteuerungfirst drive signal of the ramp control
- S2S2
- zweites Ansteuersignal der Rampensteuerungsecond drive signal of the ramp control
- S3S3
- drittes Ansteuersignal der Rampensteuerungthird drive signal of the ramp control
- S4S4
- viertes Ansteuersignal der Rampensteuerungfourth drive signal of the ramp control
- SV1SV1
- Rückstell- Schaltvorgang, erster SchaltvorgangReset switching operation, first switching operation
- SV2SV2
- Anker- Schaltvorgang, zweiter SchaltvorgangAnchor switching process, second switching operation
Claims (15)
- Bistable solenoid valve device (5, 105) for a fluid system (50), having a solenoid valve (1, 101), a circuit arrangement (30, 130) and a control device (40) for actuating the circuit arrangement (30, 130), wherein the solenoid valve (1, 101) has:an armature (7), which can be displaced between a first armature position (I) and a second armature position (II), and valve means (8, 9, 10, 11), which can be displaced by way of the armature (7) and which are in various valve positions in the first and second armature position (I, II),a permanent-magnet device (16, 116) for forming a holding permanent magnetic field (PM2), which holds the armature (7) in the second armature position (II),a switching electromagnet device (19) for forming a switching electromagnetic field (EM2) for an armature switching process (SV2) from the first armature position (I) to the second armature position (II), anda return device (12, 18; 70) for returning the armature (7) in a return switching process (SV1) to the first armature position (I), wherein the circuit arrangement (30, 130) is designed to actuate the switching electromagnet device (19) in the armature switching process (SV2) by way of a switching current (I2_S),whereinthe control device (40) is designed to actuate the circuit arrangement (30, 130) in such a way that the switching electromagnet device (19) in the return switching process (SV1) is energized by way of a compensation current (I_k) to form a compensating electromagnetic field (EM2_k) for at least partial compensation of the holding permanent magnetic field (PM2), whereinthe solenoid valve (1, 101) has a magnetic yoke (20, 21) and a holding core (14) for positioning the armature (7) in the second armature position (II),whereinan air gap (22) is formed between the armature (7) and the holding core (14) in the first armature position (I), andthe holding permanent magnetic field (PM2) and the switching electromagnetic field (EM2) run over the magnetic yoke (20, 21), the holding core (14) and the armature (7), whereinthe return device (12, 18) has a first core (12) for positioning the armature (7) in the first armature position (I) and a first electromagnet device (18),which is energized in the return switching process (SV1) to form a first electromagnetic field (EM1),wherein the first electromagnetic field (EM1) and a first permanent magnetic field (PM1) of the permanent-magnet device (16) run over the magnetic yoke (20, 21),the first core (12) and the armature (7), wherein in the first armature position (I) the first permanent magnetic field (PM1) holds the armature (7) on the first core (12) and the air gap (22) is formed between the armature (7) and the holding core (14), wherein the control device (40) is designed to actuate the circuit arrangement (30) in such a way that the first electromagnet device (18) in the armature switching process (SV2) is energized by way of a compensation current (I_k) to form a temporally increasing compensating electromagnetic field for at least partial compensation of the first permanent magnetic field (PM1).
- Solenoid valve device (5, 105) according to Claim 1, characterized in that a current direction of the compensation current (I_k) in the switching electromagnet device (19) is opposite to a current direction of the switching current (I2_S) in the switching electromagnet device (19).
- Solenoid valve device (5, 105) according to Claim 1 or 2, characterized in that the compensation current (I_k) during the return switching process (SV1) is temporally variable and has a maximum current value (I_max) only after a start-up period (Δ_t1).
- Solenoid valve device (5, 105) according to Claim 3, characterized in that a maximum current value (I_max) of the compensation current (I_k) during the return switching process (SV1) lies below a switching current value of the switching current (I2_S).
- Solenoid valve device (5, 105) according to Claim 3 or 4, characterized in that the compensation current (I_k) during the return switching process (SV1) has a temporally delayed steady and/or rapid increase to the maximum current value (I_max) of the compensation current (I_k).
- Solenoid valve device (5, 105) according to Claim 5, characterized in that the temporally delayed increase of the compensation current (I_k) has at least a steady temporal ramp profile (Δt1) and/or a rapid profile to an average current value (I_mid) with a subsequent increase to the maximum current value (I_max).
- Solenoid valve device (5, 105) according to one of the preceding claims, characterized in that the solenoid valve (1, 101) is formed as a 3/2 directional control valve with a pressure input (2a), a first pressure output (2b) and a second pressure output (2c), wherein the first pressure output (2b) in both armature positions (I, II) is connected in each case to either the pressure input (2a) or the second pressure output (2c) and the respective other connection (2c, 2a) is blocked.
- Solenoid valve device (5) according to Claim 1, characterized in that the two electromagnet devices (18, 19) are connected as a series circuit or parallel circuit and are both able to be energized jointly in both switching processes (SV1, SV2).
- Solenoid valve device (5) according to Claim 1 or 8, characterized in that the two electromagnet devices (18, 19) are able to be energized by way of the control device (40) for the return switching process (SV1) in a first direction and for the armature switching process (SV2) in a second direction opposite to the first direction.
- Solenoid valve device (5, 105) according to one of the preceding claims, characterized in that the circuit arrangement (30) has:high-side drivers (Tr1, Tr2), for example transistors,which are connected between an upper supply voltage (Uv) and the two electromagnet devices (18, 19), andlow-side drivers (Tr3, Tr4), for example transistors,which are connected between the two electromagnet devices (18, 19) and a lower supply voltage, for example ground (GND), wherein the high-side drivers (Tr1, Tr2) and the low-side drivers (Tr3, Tr4) are able to be switched, in particular able to be switched over in alternation, for the switching processes (SV1, SV2).
- Method for switching a bistable solenoid valve (1, 101), in which a switching electromagnet device (19) is energized by way of a switching current (I2s) in an armature switching process (SV2) to form a switching electromagnetic field (EM2), by way of which an armature (7) is displaced from a first armature position (I) to a second armature position (II), wherein valve means (8, 9, 10, 11) are displaced by way of the armature (7),
wherein the armature (7) is held in the second armature position (II) by way of a holding permanent magnetic field (PM2) of a holding permanent-magnet device (16, 116), and
the armature (7) is returned to the first armature position (I) by a return device (12, 18; 70) in a return switching process (SV1), wherein
the switching electromagnet device (19) is energized in the return switching process (SV1) by way of a compensation current (I_K) to form a compensating electromagnetic field (EM2_k) for at least partial compensation of the holding permanent magnetic field (PM2), wherein the compensation current (I_k) and the switching current (I2_S) are oriented in opposite directions, wherein the compensation current (I_K) is introduced into the switching electromagnet device (19) in a temporally variable and/or temporally increasing manner and reaches a maximum current value (I_max) only after a start-up period (Δ_t1), wherein the armature (7) bears against a holding core (14) in the second armature position (II), through which holding core the holding permanent magnetic field (PM2) runs, and the armature (7) is moved away from the holding core (14) in the return switching process (SV1) even before the maximum current value (I_max) of the compensation current (I_k) is reached so as to form an air gap (22) between the armature (7) and the holding core (14) to weaken the permanent magnetic field (PM2) and the compensating electromagnetic field. - Method according to Claim 11, characterized in that the compensation current (I_k) is raised in the return switching process (SV1) with a temporally delayed steady and/or rapid increase to the maximum current value (I_max).
- Method according to Claim 12, characterized in that the temporally delayed increase has at least a steady ramp profile and/or a rapid profile to an average current value (I_mid).
- Method according to one of Claims 11 to 13, characterized in that the return device (12, 18) has a first electromagnet device (18),
wherein the first electromagnet device (18) is energized in the return switching process (SV1) so as to form a first electromagnetic field (EM1), which pulls the armature (7) into the first armature position (I),
wherein the armature (7) is held in the first armature position (I) by way of a first permanent magnetic field (PM1),
wherein the first electromagnet device (18) is energized in the armature switching process (SV2) to form a first compensating electromagnetic field (EM1_k) for at least partial compensation of the first permanent magnetic field (PM1), preferably with corresponding energization in both switching process (SV1, SV2). - Method according to Claim 14, characterized in that the two electromagnet devices (18, 19), connected in series or in parallel, are energized jointly in both switching processes (SV1, SV2).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015005332.9A DE102015005332A1 (en) | 2015-04-25 | 2015-04-25 | Solenoid valve device for a fluid system and method for switching a solenoid valve |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3086335A1 EP3086335A1 (en) | 2016-10-26 |
EP3086335B1 true EP3086335B1 (en) | 2019-10-16 |
Family
ID=55661033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16000598.9A Active EP3086335B1 (en) | 2015-04-25 | 2016-03-12 | Magnet valve device for a fluid system and method for switching a solenoid valve |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3086335B1 (en) |
DE (1) | DE102015005332A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114017534B (en) * | 2021-11-12 | 2023-06-13 | 中国航发贵州红林航空动力控制科技有限公司 | Two-position three-way electromagnetic valve with position self-locking function |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2650810A1 (en) * | 1976-11-06 | 1978-05-11 | Kernforschung Gmbh Ges Fuer | Electromagnetically operated fluid valve - has two pot magnets with open sides closed by circular anchor plates moved by inner coil |
US4751487A (en) * | 1987-03-16 | 1988-06-14 | Deltrol Corp. | Double acting permanent magnet latching solenoid |
DE3730381C2 (en) | 1987-09-10 | 1997-06-12 | Kuhnke Gmbh Kg H | Bistable solenoid valve with permanent magnetic holding force |
US4883025A (en) | 1988-02-08 | 1989-11-28 | Magnavox Government And Industrial Electronics Company | Potential-magnetic energy driven valve mechanism |
DE10203013A1 (en) * | 2002-01-26 | 2003-08-14 | Danfoss As | Pulse powered electromagnet |
CN101399124B (en) | 2007-09-24 | 2010-11-10 | 王光顺 | Control circuit for bistable state permanent magnet operating mechanism |
DE102007063479A1 (en) * | 2007-12-20 | 2008-11-20 | Siemens Ag | Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets |
DE102008022953A1 (en) * | 2008-05-09 | 2009-11-26 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Device and method for operating and monitoring a solenoid valve of an electric parking brake |
DE102010001914A1 (en) * | 2010-02-15 | 2011-08-18 | Robert Bosch GmbH, 70469 | Steering device for a motor vehicle |
-
2015
- 2015-04-25 DE DE102015005332.9A patent/DE102015005332A1/en not_active Withdrawn
-
2016
- 2016-03-12 EP EP16000598.9A patent/EP3086335B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3086335A1 (en) | 2016-10-26 |
DE102015005332A1 (en) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3086334B1 (en) | Bistable solenoid valve for a fluid system, solenoid valve device and method for switching the solenoid valve | |
EP2250651B1 (en) | Electromagnetic actuating mechanism | |
DE102009049009B4 (en) | Actuator for an internal combustion engine | |
DE4012832C2 (en) | magnetic valve | |
WO2007079767A1 (en) | Method and device for operating a switching device | |
DE10207828A1 (en) | Solenoid magnet has stator and excitation coil, with armature including permanent magnet polarized at right angles to direction of motion of armature | |
DE102013108164B4 (en) | Valve with a linear actuator for the valve piston | |
EP3257060B1 (en) | Solenoid valve, valve device with a solenoid valve of this type, vehicle with such a valve and method for operating a solenoid valve of this type | |
EP3086335B1 (en) | Magnet valve device for a fluid system and method for switching a solenoid valve | |
EP1620667B1 (en) | Solenoid assembly | |
DE102010015514A1 (en) | locking unit | |
EP3089177B1 (en) | Circuit assembly and method for controlling a bistable magnetic valve for a fluid system | |
EP3185256A1 (en) | Electromagnet | |
DE102019204839A1 (en) | Electromagnetic drive device and proportional solenoid valve equipped with it | |
WO2009053177A1 (en) | Multi-pole magnetic actuator | |
DE29703143U1 (en) | Circuit for actuating a magnet armature of an electromagnet | |
DE10202628A1 (en) | Multi-stable positioning/control device e.g. for bistable relay, includes component with permanent magnetic properties arranged in series with interconnected permanent magnetic part-zones | |
DE3438215A1 (en) | Arrangement for driving a plurality of solenoid valves (magnetic valves) | |
AT518231B1 (en) | Poled electromechanical relay with controllable power consumption | |
EP1590822B1 (en) | Electromagnetic drive for switching devices | |
DE102013105670A1 (en) | Bistable electro-permanent actuator | |
DE19901679B4 (en) | electromagnet | |
DE102012204322B4 (en) | Bidirectional electromagnetic actuator | |
DE102017214703B4 (en) | Solenoid valve, especially for slip-controlled vehicle braking systems | |
DE102021111032A1 (en) | Electromagnetic drive for example for a 3/2-way valve and 3/2-way valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20170426 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 7/124 20060101ALI20190403BHEP Ipc: H01F 7/122 20060101AFI20190403BHEP Ipc: H01F 7/18 20060101ALI20190403BHEP Ipc: H01F 7/123 20060101ALI20190403BHEP Ipc: H01F 7/16 20060101ALI20190403BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190606 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016007078 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1192096 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200117 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016007078 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
26N | No opposition filed |
Effective date: 20200717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016007078 Country of ref document: DE Owner name: ZF CV SYSTEMS EUROPE BV, BE Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502016007078 Country of ref document: DE Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200312 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016007078 Country of ref document: DE Owner name: ZF CV SYSTEMS EUROPE BV, BE Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1192096 Country of ref document: AT Kind code of ref document: T Effective date: 20210312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210312 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240103 Year of fee payment: 9 |